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Coding Technology

General setup.

During the Coding Technology course, our main focus is on various
types of codes:

I Error correction codes adding redundancy to the messages
that allow detection and/or correction of errors, allowing
reliable communication over noisy channels. Also known as
Error Control, or Channel Coding.

I Data compression codes identify patterns and eliminate
redundancies in data. Also known as Source Coding.

I Cryptography protocols that turn readable information into
unintelligible text, allowing secure private communication over
public channels.



Cryptography

Main objective: secure communication over a public channel.

message Cipher

key

Public channel

attacker

Decipher

key

message

Construct algorithms that turn private information into
unintelligible (obscure/nonsense) text (encryption) that can only
be read by reversing the process (decryption).

Ideally, decryption should be practically impossible without the key,
but low computational complexity for the receiver who has the key.

(There are other applications, e.g. authentication, which are similar
in spirit and use mostly similar techniques, but the setup is slightly
different.)
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Symmetric encryption

Symmetric encryption or conventional setup for secure
communication:

I the key k is from a finite set of size K ;

I x = (x1 . . . xM): the original message or plaintext;

I y = (y1 . . . yN): the encrypted message or ciphertext.

For each k ,
y = Ek(x)

where Ek is the encryption function, and

x = Dk(y)

where Dk is the decryption function, which is the inverse of Ek .
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Setup

In secure communication between two parties, the sender is often
referred to as Alice, while the receiver is Bob.

There is also an enemy/adversary Eve, who is listening
(eavesdropping) on the public communications channel used by
Alice and Bob, and wants to decrypt the messages sent to Bob.

Eve’s goal is typically to identify either the plaintext x or the key
k . In order to do this, she wants to conduct an attack.

We generally assume that the cryptography protocol used is fully
known to all parties, except for the key, which is unknown to Eve.



Setup

In secure communication between two parties, the sender is often
referred to as Alice, while the receiver is Bob.

There is also an enemy/adversary Eve, who is listening
(eavesdropping) on the public communications channel used by
Alice and Bob, and wants to decrypt the messages sent to Bob.

Eve’s goal is typically to identify either the plaintext x or the key
k . In order to do this, she wants to conduct an attack.

We generally assume that the cryptography protocol used is fully
known to all parties, except for the key, which is unknown to Eve.



Setup

In secure communication between two parties, the sender is often
referred to as Alice, while the receiver is Bob.

There is also an enemy/adversary Eve, who is listening
(eavesdropping) on the public communications channel used by
Alice and Bob, and wants to decrypt the messages sent to Bob.

Eve’s goal is typically to identify either the plaintext x or the key
k . In order to do this, she wants to conduct an attack.

We generally assume that the cryptography protocol used is fully
known to all parties, except for the key, which is unknown to Eve.



Setup

In secure communication between two parties, the sender is often
referred to as Alice, while the receiver is Bob.

There is also an enemy/adversary Eve, who is listening
(eavesdropping) on the public communications channel used by
Alice and Bob, and wants to decrypt the messages sent to Bob.

Eve’s goal is typically to identify either the plaintext x or the key
k . In order to do this, she wants to conduct an attack.

We generally assume that the cryptography protocol used is fully
known to all parties, except for the key, which is unknown to Eve.



Types of attacks

Passive attacks:

I ciphertext only attack: Eve has a series of Ek(x1), . . . ,Ek(xL)
ciphertexts encrypted with a common key k ;

I known plaintext attack: Eve has a series of
(x1,Ek(x1)), . . . , (xL,Ek(xL)) pairs encrypted with a common
key k ;

I chosen plaintext attack: for any x , Eve can obtain Ek(x);

I chosen text attack: for any x , Eve can obtain Ek(x), and for
any y , Eve can obtain Dk(y).

Passive attacks usually exploit statistical patterns in either the
plaintext or the ciphertext.
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Types of attacks

Active attacks:

I ciphertext modification: replacing a ciphertext by directly
accessing the channel;

I impersonation/spoofing attack: impersonating either Alice or
Bob to obtain information;

I man-in-the-middle attack: getting between the
communication of Alice and Bob and changing it in both
directions;

I possibly other types of manipulation.
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Additive cipher

Historical examples.

Additive cipher, also known as Caesar cipher. If the size of the
alphabet is n (e.g. n = 26 for English texts),

Ek(x) = y = x + k mod n,

where k is the value of the key.

Example. If x = ABRACA, and k = 2, then

y = Ek(x) = CDTCEC

Decoding is

Dk(y) = x = y − k mod n
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Additive cipher

Issue: the additive cipher is vulnerable to attacks.

The ciphertext FDHVDU has been encrypted with an additive
cipher. Attack it.

We could try out all 26 possible keys. Any ideas about what order?

The ciphertext contains 2 D’s. Using that the most common
letters in English texts are E, T, A, O, I, N, we could try to match
D to those letters first.

E → D ⇐⇒ k = 25 → x = GEIWEV

T → D ⇐⇒ k = 10 → x = VTXLTK
A→ D ⇐⇒ k = 3 →

x = CAESAR



Additive cipher

Issue: the additive cipher is vulnerable to attacks.

The ciphertext FDHVDU has been encrypted with an additive
cipher. Attack it.

We could try out all 26 possible keys. Any ideas about what order?

The ciphertext contains 2 D’s. Using that the most common
letters in English texts are E, T, A, O, I, N, we could try to match
D to those letters first.

E → D ⇐⇒ k = 25 → x = GEIWEV

T → D ⇐⇒ k = 10 → x = VTXLTK
A→ D ⇐⇒ k = 3 →

x = CAESAR



Additive cipher

Issue: the additive cipher is vulnerable to attacks.

The ciphertext FDHVDU has been encrypted with an additive
cipher. Attack it.

We could try out all 26 possible keys. Any ideas about what order?

The ciphertext contains 2 D’s. Using that the most common
letters in English texts are E, T, A, O, I, N, we could try to match
D to those letters first.

E → D ⇐⇒ k = 25 → x = GEIWEV

T → D ⇐⇒ k = 10 → x = VTXLTK
A→ D ⇐⇒ k = 3 →

x = CAESAR



Additive cipher

Issue: the additive cipher is vulnerable to attacks.

The ciphertext FDHVDU has been encrypted with an additive
cipher. Attack it.

We could try out all 26 possible keys. Any ideas about what order?

The ciphertext contains 2 D’s. Using that the most common
letters in English texts are E, T, A, O, I, N, we could try to match
D to those letters first.

E → D ⇐⇒ k = 25 → x = GEIWEV

T → D ⇐⇒ k = 10 → x = VTXLTK
A→ D ⇐⇒ k = 3 →

x = CAESAR



Additive cipher

Issue: the additive cipher is vulnerable to attacks.

The ciphertext FDHVDU has been encrypted with an additive
cipher. Attack it.

We could try out all 26 possible keys. Any ideas about what order?

The ciphertext contains 2 D’s. Using that the most common
letters in English texts are E, T, A, O, I, N, we could try to match
D to those letters first.

E → D ⇐⇒ k = 25 → x = GEIWEV
T → D ⇐⇒ k = 10 → x = VTXLTK

A→ D ⇐⇒ k = 3 →

x = CAESAR



Additive cipher

Issue: the additive cipher is vulnerable to attacks.

The ciphertext FDHVDU has been encrypted with an additive
cipher. Attack it.

We could try out all 26 possible keys. Any ideas about what order?

The ciphertext contains 2 D’s. Using that the most common
letters in English texts are E, T, A, O, I, N, we could try to match
D to those letters first.

E → D ⇐⇒ k = 25 → x = GEIWEV
T → D ⇐⇒ k = 10 → x = VTXLTK
A→ D ⇐⇒ k = 3 →

x = CAESAR



Additive cipher

Issue: the additive cipher is vulnerable to attacks.

The ciphertext FDHVDU has been encrypted with an additive
cipher. Attack it.

We could try out all 26 possible keys. Any ideas about what order?

The ciphertext contains 2 D’s. Using that the most common
letters in English texts are E, T, A, O, I, N, we could try to match
D to those letters first.

E → D ⇐⇒ k = 25 → x = GEIWEV
T → D ⇐⇒ k = 10 → x = VTXLTK
A→ D ⇐⇒ k = 3 → x = CAESAR



Linear cipher

Linear cipher:
Ek(x) = y = ax + b mod n,

where k = (a, b) is the value of the key. gcd(a, n) = 1 must hold!

Decryption is also linear:

Dk(y) = a−1y − a−1b mod n.

Just slightly better than additive ciphers, but still vulnerable to
attacks.
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Linear block cipher

Linear block cipher. k = (A, b), where A is an invertible N × N
binary matrix and b is a binary column vector of length N.

x and y are binary column vectors of length N.

Encryption is
Ek(x) = y = Ax + b,

decryption is
Dk(y) = x = A−1(y − b)

Attack it using a known plaintext attack.
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Linear block cipher
A known plaintext attack means that pairs (x1, y1), (x2, y2), . . . are
available to Eve.

We can eliminate b:

y2 − y1 = A(x2 − x1)

y3 − y1 = A(x3 − x1)

...

Can we compute A?

Not from a single equation, but if we put together several, then we
get

Y = AX

where Y and X are matrices with columns y2 − y1, y3 − y1, . . . and
x2 − x1, x3 − x1, . . . respectively.

If X is N × N and invertible, then

A = YX−1
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Linear block cipher
Once we have A, we can compute b from

b = y1 − Ax1

Can this attack be prevented by using the same key k only a
limited number of times?

Actually yes; for the matrix inversion, we needed N + 1 (xi , yi )
pairs. With only N pairs available, this attack cannot fully obtain
A and b.

So if each k = (A, b) is used only N times, the success of this
attack can be limited.

Two practical issues:

I some information is obtained about the key;

I the key needs to be changed frequently.

We will address both issues soon.
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One-time pad

Information-theoretic security or unconditional security means that
using a ciphertext only attack, the attacker can obtain no
information about the key or the plaintext.

One time pad (OTP): both the sender and the receiver have the
same random bit sequence k; the encryption is bitwise addition of
the message and the key.

Example:

x = 01001101
+k = 11010000

y = 10011101
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One-time pad

Theorem
As long as the key is used only once, OTP offers unconditional
security.

Proof. If the key is a random bit sequence, for a ciphertext y , any
x plaintexts will be equally likely.

Theorem
OTP is essentially the only cryptography protocol that offers
unconditional security.

Proof (sketch). The key must have entropy at least equal to
entropy of the message; in other words, the key must be at least as
long as the plaintext and at least as random as the plaintext.
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Computational security

The issue with one-time pad is that when encrypting, the same key
can only be used once; if it is used more than once, some
information may be derived from it.

So either Alice and Bob both need to know a long common secret
key, or they have to arrange a secure key exchange often. Neither
is very practical.

Unconditional security is too strict. In practice, we settle for
computational security: a protocol is computationally secure if
attacking it would require an infeasibly long time with available
computing systems and known algorithms.

Computationally secure protocols are usually based on
mathematical problems that are known to be computationally
complex.



Computational security

The issue with one-time pad is that when encrypting, the same key
can only be used once; if it is used more than once, some
information may be derived from it.

So either Alice and Bob both need to know a long common secret
key, or they have to arrange a secure key exchange often. Neither
is very practical.

Unconditional security is too strict. In practice, we settle for
computational security: a protocol is computationally secure if
attacking it would require an infeasibly long time with available
computing systems and known algorithms.

Computationally secure protocols are usually based on
mathematical problems that are known to be computationally
complex.



Computational security

The issue with one-time pad is that when encrypting, the same key
can only be used once; if it is used more than once, some
information may be derived from it.

So either Alice and Bob both need to know a long common secret
key, or they have to arrange a secure key exchange often. Neither
is very practical.

Unconditional security is too strict. In practice, we settle for
computational security: a protocol is computationally secure if
attacking it would require an infeasibly long time with available
computing systems and known algorithms.

Computationally secure protocols are usually based on
mathematical problems that are known to be computationally
complex.



Computational security

The issue with one-time pad is that when encrypting, the same key
can only be used once; if it is used more than once, some
information may be derived from it.

So either Alice and Bob both need to know a long common secret
key, or they have to arrange a secure key exchange often. Neither
is very practical.

Unconditional security is too strict. In practice, we settle for
computational security: a protocol is computationally secure if
attacking it would require an infeasibly long time with available
computing systems and known algorithms.

Computationally secure protocols are usually based on
mathematical problems that are known to be computationally
complex.



Computational security

Computational security is not a rigorous definition. It reflects the
current state of the art, both in terms of known algorithms to solve
specific problems and also in terms of currently available
computational power.

As time progresses, either of those might change (e.g. due to
quantum computers), and the definition of computational security
might need to be updated accordingly.

It is also not a precise definition as it depends on what
mathematical problems are considered computationally complex.
Generally, it is required that no polynomial time algorithm is
known.

NP-hard problems are typically good candidates, but even in that
case, P 6= NP is not actually proven, just a conjecture.
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Computationally complex problems

Some computationally complex mathematical problems that are
used in cryptography:

I Integer factorization. Given an integer number n that is the
product of two primes, compute the two primes. Used in the
RSA algorithm.

I Discrete logarithm problem. Given g and g x mod n, compute
x . Used in the Digital signature algorithm (DSA).

I Multivariate quadratic problem. Solve a system of
multivariate quadratic equations over GF(q). Used in the
Rainbow signature scheme.

I Shortest vector problem. Given an n-dimensional lattice, find
the shortest lattice vector. Used in post-quantum secure
cryptosystems.
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Public key cryptography

Instead of a common key k which is known by both the sender and
the receiver, public key cryptography works the following way:

I the receiver has a k = (d , e) pair of keys

I d is a private key known only by the receiver

I e is a public key known by everyone

y = Ee(x) x = Dd(y)

Ex

Sender’s
protected region

Receiver’s
protected region

D

d

x

e e e

ciphertext

Adversary



RSA algorithm

The Rivest–Shamir–Adleman (RSA) algorithm is a public key
protocol.

Key generation:

I select 2 large primes p and q; n = pq.

I m = (p − 1)(q − 1).

I Select a coding exponent e so that gcd(e,m) = 1 and
1 < e < m.

I Solve de = 1 mod m to obtain the decoding key d .

I (n, e) is the public key;

I p, q,m and d are kept secret.
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RSA algorithm

Encryption (using the public key):

I the plaintext is cut into sections which can be turned into
numbers x such that 0 ≤ x < n.

I the ciphertext is y = xe mod n.

Decryption:

I x = yd mod n.
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RSA algorithm

Why does the RSA algorithm work?

RSA is useful only if ALL of the following properties hold:

1. Key generation is computationally simple

2. Encryption using the public key is computationally simple

3. Decryption using the private key is computationally simple

4. Encryption and decryption are indeed inverse operations

5. Attacking without the private key is computationally complex
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RSA algorithm

1. Key generation is computationally simple:

I Primality testing (checking whether a given number is a prime
or not) is computationally simple.

I There are many primes even among large numbers: the Prime
Number Theorem states that among numbers of order N, on
average 1 out of log(N) numbers is a prime.

I So finding large prime numbers for p and q is easy: we can
just start prime checking large numbers randomly, and we will
soon find two large prime numbers.

I gcd and de = 1 mod m can be solved fast using the
Extended Euclidean Algorithm.



Extended Euclidean Algorithm

The Extended Euclidean Algorithm can be used to find gcd(a, b)
and also to solve

gcd(a, b) = s · a + t · b.

Assume a > b; initialize r0 = a, r1 = b and also
s0 = 1, t0 = 0, s1 = 0, t1 = 1. In each step, we write

rk−1 = rk · qk+1 + rk+1 rk = sk · a + tk · b,

where 0 ≤ rk+1 < rk , and sk+1 and tk+1 are computed from

sk+1 = sk−1 − qksk , tk+1 = tk−1 − qktk .

The algorithm stops when rk+1 = 0; then rk = gcd(a, b), and
gcd(a, b) = sk · a + tk · b.

For gcd(n, e) = 1, the algorithm gives 1 = gcd(n, e) = s · n + t · e,
so e−1 = t mod n.
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Extended Euclidean Algorithm
Compute the greatest common divisor (gcd) of a = 8387 and
b = 1243, and also compute s and t so that

gcd(8387, 1243) = s · 8387 + t · 1243.

Solution.

8387 = 1243 · 6 + 929 929 = a− 6b
1243 = 929 · 1 + 314 314 = −a + 7b

929 = 314 · 2 + 301 301 = 3a− 20b
314 = 301 · 1 + 13 13 = −4a + 27b
301 = 13 · 23 + 2 2 = 95a− 641b

13 = 2 · 6 + 1 1 = −574a + 3873b
2 = 1 · 2 + 0.

Finally,

gcd(8387, 1243) = 1 = −574 · 8387 + 3873 · 1243.
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Extended Euclidean algorithm

Compute the multiplicative inverse of 1243 mod 8387.

From the Extended Euclidean algorithm,

gcd(8387, 1243) = 1 = −574 · 8387 + 3873 · 1243;

this means
3873 · 1243 = 1 mod 8387,

so
1243−1 = 3873 mod 8387.

Theorem
The Extended Euclidean algorithm takes no more than
log1.618(min(a, b)) steps.

(No proof.)

Any guess for what pairs of numbers it is slowest for, and where
does the value 1.618 come from?
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RSA algorithm

2-3. Encryption and decryption are computationally simple.

xe mod n (and yd mod n) can be computed using Fast modular
exponentiation:

I Write e in base 2 as

e = 2b1 + 2b2 + · · ·+ 2b`

where b1 > b2 > · · · > b` are integers.

I Compute x2 mod n, x4 mod n, . . . x2
b1 mod n by taking the

square of the previous term mod n in each step.

I Compute xe mod n as

xe = x2
b1 · x2b2 · · · x2

b` mod n



Fast modular exponentiation

Compute 2342 mod 131.

I 42 = 32 + 8 + 2.

I
232 = 529 = 5 mod 131

234 = 52 = 25 mod 131
238 = 252 = 625 = 101 mod 131
2316 = 1012 = 10201 = 114 mod 131
2332 = 1142 = 12296 = 27 mod 131

I

2342 = 2332 · 238 · 232 = 27 · 101 · 5 = 11 mod 131
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RSA algorithm
4. Encryption and decryption are indeed inverse operations.

Let φ(n) be Euler’s totient function:

n = pk11 · · · p
kr
r

φ(n) = pk1−1
1 (p1 − 1) · · · pkr−1

r (pr − 1),

specifically, if n = pq, then φ(n) = (p − 1)(q − 1).

Theorem (Euler–Fermat)

If gcd(x , n)=1, then

xφ(n) = 1 mod n

(No proof.)

For RSA, decryption and encryption are indeed inverse operations:

de = 1 mod φ(n) =⇒ xde = x mod n.
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RSA algorithm

5. Attacking without the private key is computationally complex.

Integer factorization is computationally difficult for large numbers.
This is not a proven fact; it’s just that no polynomial time
algorithm is known. (Note that despite this, primality testing is
computationally simple! That is, we can easily tell if a number is a
prime or not, but if it is not a prime, we cannot factor it.)

So even though n is public, p and q cannot be computed
efficiently, and without p and q, m = φ(n) and d cannot be
computed either. Overall, if p and q are sufficiently large,
attacking RSA is computationally infeasible.

Currently, sufficiently large means prime numbers with 150+ digits
(in base 10).

(1991, RSA challenge to factorize 54 numbers; currently 23 has
been factorized, the largest has 250 digits.)
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