Problems 4 - Character codings, Dictionary
coders

Coding Technology

Illés Horvath

2025/10/31

Reminder: character encodings

Character codings: prefix codes, code tree for decoding.
Fixed length encoding.

Shannon—Fano code: codeword lengths ¢; = [— log, p;|, greedy
tree construction.

Huffman code: in each step, add the two smallest probabilities.
Huffman is optimal among character codings.

Entropy as a measure of information. Theoretical lower bound for
average codeword length.

H(X) = Z pilog,(1/pi)

Arithmetic coding: partition [0, 1] according to character
probabilities, repeat for subintervals in each step. Not a character
encoding, but asymptotically optimal.

Problem 1

We have a source with the following distribution and code table:

Source symbol Probability Codeword

A 0.4 0
B 0.2 10
C 0.2 110
D 0.2 1111

(a) Is this a prefix code?
(b) What is the average codelength?

(c) How far is the average codelength from the theoretical lower
bound of compressibility?

(d) Is this an optimal character encoding?

Problem 1

Solution.

(a) In order to check if the code is prefix, we can draw the code

tree:
AlO
B | 10
C | 110
D | 1111

Characters are only in the leaves, so this is a prefix code.

Problem 1

Solution.

(a) In order to check if the code is prefix, we can draw the code

tree:
AlO
B | 10
C | 110
D | 1111

Characters are only in the leaves, so this is a prefix code.
(b) L= ,piti=04-1402-2+02-3+02-4=22.

Problem 1
Solution.
(a) In order to check if the code is prefix, we can draw the code

tree:
AlO
B | 10
C | 110
D | 1111

Characters are only in the leaves, so this is a prefix code.
(b) L= ,piti=04-1402-2+02-3+02-4=22.
(c) Theoretical lower bound for average codeword length:

4

1

H(X) = pilog, <p> =04-1.31+3-0.2-2.322 = 1.922,
i=1 !

SO
L — H(X) =0.278

Problem 1

(d) Is this an optimal character encoding?

Problem 1

(d) Is this an optimal character encoding?

For the character D, the codeword 111 is sufficient instead of
1111 (and the code is still prefix), so the code is not optimal.

Problem 1

(d) Is this an optimal character encoding?

For the character D, the codeword 111 is sufficient instead of
1111 (and the code is still prefix), so the code is not optimal.

What if we use D — 111, is the code optimal then?

Problem 1

(d) Is this an optimal character encoding?

For the character D, the codeword 111 is sufficient instead of
1111 (and the code is still prefix), so the code is not optimal.

What if we use D — 111, is the code optimal then?

We can check by comparing it to Huffman:

Problem 1

(d) Is this an optimal character encoding?

For the character D, the codeword 111 is sufficient instead of
1111 (and the code is still prefix), so the code is not optimal.

What if we use D — 111, is the code optimal then?

We can check by comparing it to Huffman:

p1=04
p2=0.2
p3 =02

ps = 0.2

Problem 1

(d) Is this an optimal character encoding?

For the character D, the codeword 111 is sufficient instead of
1111 (and the code is still prefix), so the code is not optimal.

What if we use D — 111, is the code optimal then?

We can check by comparing it to Huffman:

p1 =04 0.4
p2 =02 0.2

pP3 = 0.2 7 0.4
ps = 0.2

Problem 1

(d) Is this an optimal character encoding?

For the character D, the codeword 111 is sufficient instead of
1111 (and the code is still prefix), so the code is not optimal.

What if we use D — 111, is the code optimal then?

We can check by comparing it to Huffman:

p1=0.4 0.4 0.4
P> =0.2 0.2 0.6
p3 =0.2 0.4 7

ps =02 7

Problem 1

(d) Is this an optimal character encoding?

For the character D, the codeword 111 is sufficient instead of
1111 (and the code is still prefix), so the code is not optimal.

What if we use D — 111, is the code optimal then?

We can check by comparing it to Huffman:

p1=0.4 0.4 0.4 1
P> =0.2 0.2 0.6 7
p3 =0.2 0.4 7

ps =02 7

Problem 1

(d) Is this an optimal character encoding?

For the character D, the codeword 111 is sufficient instead of
1111 (and the code is still prefix), so the code is not optimal.

What if we use D — 111, is the code optimal then?

We can check by comparing it to Huffman:

p1=0.4 0.4 0.4 1
P> =0.2 0.2 0.6 7
p3 =0.2 0.4 7

ps =02 7

Problem 1

(d) Is this an optimal character encoding?

For the character D, the codeword 111 is sufficient instead of
1111 (and the code is still prefix), so the code is not optimal.

What if we use D — 111, is the code optimal then?

We can check by comparing it to Huffman:

=04 0.4 0.4 1
b1 7 AT
p2=0.2 0.2 7 0.6 B | 01
p3 =0.2 0.4 C | 001
. D | 000
ps = 0.2

Problem 1

(d) Is this an optimal character encoding?

For the character D, the codeword 111 is sufficient instead of
1111 (and the code is still prefix), so the code is not optimal.

What if we use D — 111, is the code optimal then?

We can check by comparing it to Huffman:

=04 0.4 0.4 1
b1 7 AT
p2=0.2 0.2 7 0.6 B | 01
p3 =0.2 0.4 C | 001
. D | 000
ps = 0.2

Same codeword lengths — the code is equivalent to Huffman,
both are optimal, and the average codeword length is

L=04-1+02-2+02-3+02-3=2.0.

Problem 1

(d) During Huffman, in the second column we picked the bottom

0.4.
p1 =04 0.4 0.4 1
p2=0.2 0.2 0.6 7
p3 =0.2 0.4 7
ps = 0.2 7

Problem 1

(d) During Huffman, in the second column we picked the bottom

0.4.
p3 = 0.2 7 0.4
psa=0.2
What if we pick the other 0.47
p1 = 0.4 0.4 7 0.6 1
p2 =02 0.2

P4 = 0.2

Problem 1

(d) During Huffman, in the second column we picked the bottom

0.4.
p3 = 0.2 7 0.4
psa=0.2
What if we pick the other 0.47
p1 = 0.4 0.4 7 0.6 1
p2 =02 0.2

P4 = 0.2

11
10
01
00

Ol 0| | >

Problem 1

(d) During Huffman, in the second column we picked the bottom
0.4.
p1 = 0.4 04 04 1
p2=0.2 0.2 0.6 7
p3 =0.2 0.4 7
psa=0.2 7
What if we pick the other 0.47
p1=0.4 0.4 0.6 1
P> =0.2 0.2 7
p3 =02 0.4 0.4
ps = 0.2 7
L = 2, same as for the previous choice. This coding is also an
optimal Huffman code, just using a different tree.

11
10
01
00

Ol 0| | >

Problem 2

Encode the following distribution using Fixed length coding,
Shannon—Fano coding and Huffman coding. Compute the average
codeword length for each coding. Compute the theoretical lower
bound.

pP1 = 0.49
p> =0.14
ps = 0.14
pa = 0.07
ps = 0.07
pe = 0.04
pr = 0.02
ps = 0.02

Po = 0.01

Problem 2

Solution. For fixed length encoding, the required codeword length
is [log, 9] = 4, and

Symbol | Codeword
X1 0000
X 0001
X3 0010
X4 0011
Xs 0100
Xe 0101
X7 0110
Xg 0111
Xo 1000

Average codeword length is L = 4.

Problem 2

For the Shannon—Fano coding, the codeword lengths are
lj = [logy 1/pj], so

= [log, 1/0.49] = [1.029] = 2,
— Tlog,1/0.14] = [2.836] = 3,
= [log, 1/0.14] = [2.836] = 3,
— [log, 1/0.07] = [3.836] = 4,
= [log, 1/0.07] = [3.836] = 4,
= [log, 1/0.04] = [4.644] =5,
= [log, 1/0.02] = [5.644] = 6,
= [log, 1/0.02] = [5.644] = 6,
= [log, 1/0.01] = [6.644] = 7.

Problem 3

Code tree and codeword table for Shannon—Fano:

Symbol | Codeword
X1 00

X 010

X3 011

X4 1000

Xs 1001

Xs 10100

X7 101010
Xs 101011
Xo 1011000

Problem 3

Code tree and codeword table for Shannon—Fano:

Symbol | Codeword
X1 00

X 010

X3 011

X4 1000

Xs 1001

Xs 10100

X7 101010
Xs 101011
Xo 1011000

The average codeword length is

LsF=0.49-2+4+2x0.14-3+2x0.07 -4+
0.04-54+2x0.02-6+0.01-7=2.89.

Problem 2

For Huffman coding, we add the two smallest probabilities in each
step.

p1 = 0.49
p2=0.14
p3 =0.14
pa = 0.07
ps = 0.07
pe = 0.04
p7 = 0.02
ps = 0.02

po = 0.01

Problem 2

For Huffman coding, we add the two smallest probabilities in each
step.

p1 =049 0.49
p =014 014
ps=0.14 0.14
ps =007 0.07
ps =007 0.07
ps =004 0.04
pr =002 0.02

Ps = 0.02 7 0.03
po = 0.01

Problem 2

For Huffman coding, we add the two smallest probabilities in each
step.

p1=049 049 049
p=014 014 0.4
ps=0.14 014 0.14
pa =007 007 007
ps =007 007 007
ps =004 0.04 004
pr =002 0.02 7 0.05

Ps = 0.02 7 0.03
po = 0.01

Problem 2

For Huffman coding, we add the two smallest probabilities in each
step.

p1 = 0.49 0.49 0.49 0.49
p2=0.14 0.14 0.14 0.14
p3 =0.14 0.14 0.14 0.14
pa = 0.07 0.07 0.07 0.07
ps = 0.07 0.07 0.07 0.07
ps = 0.04 0.04 0.04 0.09
pr = 0.02 0.02 7 0.05 7

Ps = 0.02 7 0.03
po = 0.01

Problem 2

For Huffman coding, we add the two smallest probabilities in each
step.

p1 = 0.49 0.49 0.49 0.49 0.49
p2=0.14 0.14 0.14 0.14 0.14
p3 =0.14 0.14 0.14 0.14 0.14
pa = 0.07 0.07 0.07 0.07 0.14
ps = 0.07 0.07 0.07 0.07 7 0.09
ps = 0.04 0.04 0.04 0.09

pr = 0.02 0.02 7 0.05 7

Ps = 0.02 7 0.03
po = 0.01

Problem 2

For Huffman coding, we add the two smallest probabilities in each
step.

p1 = 0.49 0.49 0.49 0.49 0.49 0.49
p2=0.14 0.14 0.14 0.14 0.14 0.14
p3 =0.14 0.14 0.14 0.14 0.14 0.14
pa = 0.07 0.07 0.07 0.07 0.14 0.23
ps = 0.07 0.07 0.07 0.07 7 0.09 7

ps = 0.04 0.04 0.04 0.09

pr = 0.02 0.02 7 0.05 7

Ps = 0.02 7 0.03
po = 0.01

Problem 2

For Huffman coding, we add the two smallest probabilities in each
step.

p1 = 0.49 0.49 0.49 0.49 0.49 0.49 0.49
p2 =0.14 0.14 0.14 0.14 0.14 0.14 0.28
p3 =0.14 0.14 0.14 0.14 0.14 0.14 7 0.23
pa = 0.07 0.07 0.07 0.07 0.14 0.23

ps = 0.07 0.07 0.07 0.07 7 0.09 7

ps = 0.04 0.04 0.04 0.09

pr = 0.02 0.02 7 0.05 7

Ps = 0.02 7 0.03
po = 0.01

Problem 2

For Huffman coding, we add the two smallest probabilities in each
step.

p1 = 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
p2 =0.14 0.14 0.14 0.14 0.14 0.14 0.28 0.51
p3 =0.14 0.14 0.14 0.14 0.14 0.14 7 0.23 7

pa = 0.07 0.07 0.07 0.07 0.14 0.23

ps = 0.07 0.07 0.07 0.07 7 0.09 7

ps = 0.04 0.04 0.04 0.09

pr = 0.02 0.02 7 0.05 7

Ps = 0.02 7 0.03
po = 0.01

Problem 2

For Huffman coding, we add the two smallest probabilities in each

step.
p1 = 0.49
p2=0.14
p3 =0.14
pa = 0.07
ps = 0.07
pe = 0.04
p7 = 0.02
ps = 0.02

po = 0.01

0.49
0.14
0.14
0.07
0.07
0.04
0.02
0.03

0.49
0.14
0.14
0.07
0.07
0.04
0.05

0.49
0.14
0.14
0.07
0.07
0.09

/

0.49
0.14
0.14
0.14
0.09

0.49
0.14
0.14
0.23

/

0.49
0.28
0.23

0.49

7 0.51

71

Problem 2

Then the code tree and codeword table can be obtained:

X; = (011)

X3 = (010)
X, = (0011)

X5 = (0010)
Xs = (0001)

X; = (00001)
Xg = (000001)

Xo = (000000)

Symbol | Codeword
X1 1

X 011

X3 010

Xa 0011

Xs 0010

Xs 0001

X7 00001

Xs 000001
Xo 000000

Problem 2

Then the code tree and codeword table can be obtained:

X1 = (1) X, = (011) iymbol fodeword
1
X3 = (010) Xa 011
X4 = (0011) X, 010
X5 = (0010) Xa 0011
Xo = (0001) Xs 0010
X; = (00001) X6 0001
X = (000001) X7 00001
Xs 000001
Xy = (000000) Xo 000000

Lyufr = 0.49-1+0.14-3 +0.14-3 4+ 0.07-4 4+ 0.07 - 4+
+0.04-440.02-540.02-6+40.01-6 =2.33

Problem 2

Entropy of the source:

9
1
H(X) = Z pi logs <p> = 2.314.
i=1 !

Problem 2

Entropy of the source:
2 1
H(X) = pi log () = 2.314.
0= pios

Comparison with the average codeword length for the various
codings:

Lfixed =4

LsF =2.89
Lpute = 2.33

Problem 3

A source has alphabet {A,B,C,D}, with distribution
P(A) =04, P(B)=03, P(C)=0.2, P(D)=0.1.

For each of Fixed length coding, Huffman coding and Arithmetic
coding, what is the length of the codeword corresponding to the
message AAAAA?

And for the messages BBBBB, CCCCC and DDDDD?

Problem 3

A source has alphabet {A,B,C,D}, with distribution
P(A) =04, P(B)=03, P(C)=0.2, P(D)=0.1.

For each of Fixed length coding, Huffman coding and Arithmetic
coding, what is the length of the codeword corresponding to the
message AAAAA?

And for the messages BBBBB, CCCCC and DDDDD?

Solution. For Fixed length encoding, all characters are 2 bits, so
the length of each of the four messages is 10 bits.

Problem 3

For Huffman coding,

P1= 0.4
p2 =03
p3 = 0.2

P4 = 0.1

Problem 3

For Huffman coding,

p1 = 0.4 0.4
p2 = 0.3 0.3

p3 = 0.2 7 0.3
P4 = 0.1

Problem 3

For Huffman coding,

1= 0.4 0.4 0.4
p2=0.3 0.3 0.6
p3 =0.2 0.3 7
pa=0.1 7

Problem 3

For Huffman coding,

1= 0.4 0.4 0.4 1
p2=0.3 0.3 0.6 7
p3 =0.2 0.3 7

pa=0.1 7

Problem 3

For Huffman coding,

1= 0.4 0.4 0.4 1
p2=0.3 0.3 0.6 7
p3 =0.2 0.3 7

pa=0.1 7

Problem 3

For Huffman coding,

p1 =04 0.4 0.4 1
p2=0.3 0.3 0.6 7
p3 =0.2 0.3 7

pa=0.1 7

Problem 3

For Huffman coding,

1= 0.4 0.4 0.4 1
p2=0.3 0.3 0.6 7
p3 =0.2 0.3 7

pa=0.1 7

The codewords are:
» AAAAA — 11111, length 5
» BBBBB — 0101010101, length 10
» CCCCC — 001001001001001, length 15
» DDDDD — 000000000000000, length 15

Problem 3

For Arithmetic coding, the length of the messages:

AAAAA

BBBBB

CCCCC

DDDDD

4>

ﬁ

—

_>

Problem 4

Using the Fixed length encoding, Huffman and Arithmetic coding
from the previous problem, compute the codeword length for a
message containing 40 A's, 30 B's, 20 C’s and 10 D's total.

Problem 4

Using the Fixed length encoding, Huffman and Arithmetic coding
from the previous problem, compute the codeword length for a
message containing 40 A's, 30 B's, 20 C’s and 10 D's total.

Solution. For Fixed length encoding, the codeword length is

100 x 2 = 200 bits.

Problem 4

Using the Fixed length encoding, Huffman and Arithmetic coding
from the previous problem, compute the codeword length for a
message containing 40 A's, 30 B's, 20 C’s and 10 D's total.

Solution. For Fixed length encoding, the codeword length is

100 x 2 = 200 bits.

Using Huffman, it is

40 x 1 +30 x 2420 x 3410 x 3 =190 bits.

Problem 4

Using the Fixed length encoding, Huffman and Arithmetic coding
from the previous problem, compute the codeword length for a
message containing 40 A's, 30 B's, 20 C’s and 10 D's total.

Solution. For Fixed length encoding, the codeword length is

100 x 2 = 200 bits.

Using Huffman, it is

40 x 1 +30 x 2420 x 3410 x 3 =190 bits.

With Arithmetic coding, it is

[—log,(0.4*0 - 0.3%°. 0.2 - 0.1'%)] + 1 = 186 bits.

Problem 5

We have a source with 7 characters and probabilities
p1 =05, p>=p3=0.125 ps = ps = pe = pr = 0.0625.

Compute the codeword lengths for this source for both
Shannon—-Fano coding and Huffman coding. Also compute the
entropy of the source.

Problem 5

We have a source with 7 characters and probabilities
p1 =05, p>=p3=0.125 ps = ps = pe = pr = 0.0625.

Compute the codeword lengths for this source for both
Shannon—-Fano coding and Huffman coding. Also compute the
entropy of the source.

Solution. For the Shannon—Fano coding, the codeword lengths are
¢; = [logy 1/pi], that is,

=1, ly=10l3=3, ly=1I5=10e=1I7=4,
and the average codeword length is

LsFp=05x1+2x0.125x 344 x 0.0625 x 4 = 2.25.

Problem 5

For Huffman coding,

0.5
0.125
0.125
0.0625
0.0625
0.0625
0.0625

Problem 5

For Huffman coding,

0.5 1
0.125 0.125
0.125 0.125

0.0625 0.0625
0.0625 0.0625

0.0625 7 0.125
0.0625

Problem 5

For Huffman coding,

0.5
0.125
0.125
0.0625
0.0625
0.0625
0.0625

1
0.125
0.125

0.0625 7
0.0625
7 0.125

0.5
0.125
0.125
0.125
0.125

Problem 5

For Huffman coding,

0.5 1 0.5 0.5
0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125

0.0625 0.0625 7 0.125 7 0.25
0.125

0.0625 0.0625

0.0625 7 0.125
0.0625

Problem 5

For Huffman coding,

0.5 1 0.5 0.5 0.5
0.125 0.125 0.125 0.125 7 0.25
0.125 0.125 0.125 0.125 0.25

0.0625 0.0625 7 0.125 7 0.25
0.125

0.0625 0.0625

0.0625 7 0.125
0.0625

Problem 5

For Huffman coding,

0.5 1 0.5 0.5 0.5 0.5
0.125 0.125 0.125 0.125 7 0.25 7 0.5
0.125 0.125 0.125 0.125 0.25

0.0625 0.0625 7 0.125 7 0.25
0.125

0.0625 0.0625

0.0625 7 0.125
0.0625

Problem 5

For Huffman coding,

0.5 1 0.5 0.5 0.5 0.5 7 1
0.125 0.125 0.125 0.125 7 0.25 7 0.5
0.25

0.125 0.125 0.125 0.125

0.0625 0.0625 7 0.125 7 0.25
0.125

0.0625 0.0625

0.0625 7 0.125
0.0625

Problem 5

For Huffman coding,

0.5 1 0.5 0.5 0.5 0.5 7 1
0.125 0.125 0.125 0.125 7 0.25 7 0.5
0.25

0.125 0.125 0.125 0.125

0.0625 0.0625 7 0.125 7 0.25
0.125

0.0625 0.0625

0.0625 7 0.125
0.0625

Problem 5

For Huffman coding,

0.5 1
0.125 0.125
0.125 0.125
0.0625 0.0625
0.0625 0.0625

0.0625 7 0.125
0.0625

0.5 0.5 0.5 0.5 7 1
0.125 0.125 7 0.25 7 0.5
0.25

0.125 0.125

0.125 7 0.25
0.125

Codeword lengths:
1,3,3,4,4,4 4

Problem 5

For Huffman coding, the average codeword length is

Ly = 0.5 X 1+ 2 x 0.125 x 3 + 4 x 0.0625 x 4 = 2.25.

Problem 5

For Huffman coding, the average codeword length is
LiusF =05 x 142 x0.125 x 3+ 4 x 0.0625 x 4 = 2.25.
The entropy of the source is

H(X) = — (0.5 x logy(0.5) + 2 x 0.125 - log,(0.125)
+ 4 % 0.0625 - log,(0.0625)) = 2.25.

Problem 5

For Huffman coding, the average codeword length is
LiusF =05 x 142 x0.125 x 3+ 4 x 0.0625 x 4 = 2.25.
The entropy of the source is

H(X) = — (0.5 x logy(0.5) + 2 x 0.125 - log,(0.125)
+ 4 % 0.0625 - log,(0.0625)) = 2.25.

Both Shannon—Fano and Huffman reach the theoretical lower
bound for this source.

Problem 5

For Huffman coding, the average codeword length is
LiusF =05 x 142 x0.125 x 3+ 4 x 0.0625 x 4 = 2.25.
The entropy of the source is

H(X) = — (0.5 x logy(0.5) + 2 x 0.125 - log,(0.125)
+ 4 % 0.0625 - log,(0.0625)) = 2.25.

Both Shannon—Fano and Huffman reach the theoretical lower
bound for this source.

Actually, Huffman and Shannon—Fano both reach the entropy for
the same sources in general: when all probabilities are negative
integer powers of 2.

Adaptive Huffman code

Adaptive Huffman code: the code tree is based on the number of
occurrences of each character seen so far. Internal nodes get the
sum of their children.

1. Initialize the code tree.

2. Code the next character according to the current state of the
code tree.

3. Add the character to the tree.

4. Check the sibling property, and restore it if necessary by
exchanging two nodes with their entire subtrees.

5. Go to next character and repeat from step 2.

Sibling property: listing the nodes from bottom level to top level,
going from left to right within each level, the nodes are increasing,
except possibly for sibling pairs.

Problem 6

Determine the missing values. Does the sibling property hold for
this tree?

Problem 6

Problem 6

Starting from the bottom left, going left to right first, then up one
level and repeat, the sequence (1, 2), (2, 2), (3, 2), (3, 4), (5, 6),
(7, 6), (7, 11), (13, 15), (18, 28), 46 is decreasing only for two
sibling pairs, so the sibling property holds for this tree, this is a
valid Huffman-tree.

Problem 7

Over the alphabet {a,c,g,t}, apply adaptive Huffman coding to the
message “aagacaa’.

Problem 7

Over the alphabet {a,c,g,t}, apply adaptive Huffman coding to the
message “aagacaa’.

Solution. Initialization:

Problem 7

Over the alphabet {a,c,g,t}, apply adaptive Huffman coding to the
message “aagacaa’.

Solution. Initialization:

a— 00

Problem 7

Over the alphabet {a,c,g,t}, apply adaptive Huffman coding to the
message “aagacaa’.

Solution. Initialization:

a— 00

Problem 7

Over the alphabet {a,c,g,t}, apply adaptive Huffman coding to the
message “aagacaa’.

Solution. Initialization:

a— 00

Problem 7

aagacaa

Problem 7

aagacaa

aa — 0011

Problem 7

aagacaa

aa — 0011

Problem 7

aagacaa

aa — 0011

Problem 7

aagacaa

Problem 7

aagacaa

aag — 001110

Problem 7

aagacaa

aag — 001110

Problem 7

aagacaa

aag — 001110

aaga — 0011100

Problem 7

aagacaa

Problem 7

aagacaa

aagac — 001110111

Problem 7

aagacaa

aagac — 001110111

Problem 7

aagacaa

aagac — 001110111

aagaca — 0011101110

Problem 7

aagacaa

Problem 7

aagacaa

aagacaa — 00111011100

Problem 7

aagacaa

aagacaa — 00111011100

Problem 7

aagacaa

aagacaa — 00111011100

aagacaa — 0011101110

Problem 8

Can we obtain the following code tree as the result of a Huffman
algorithm for code tree construction?

Problem 8

Can we obtain the following code tree as the result of a Huffman
algorithm for code tree construction?

Solution 1. No, the sibling property does not hold.

Problem 8

Can we obtain the following code tree as the result of a Huffman
algorithm for code tree construction?

Solution 1. No, the sibling property does not hold.

Solution 2. For the Huffman tree construction, in the first step of
the algorithm, the two smallest probabilities are the two 0.15's, so
they would have to be matched to each other, not to the 0.35's.

Reminder: Dictionary coders

LZ77: search ahead for a section of text seen recently.

search buffer look-up buffer
| text | text |
N vd
sections matched
with search buffer

Output is a sequence of (p, ¢, c) records (position of match, length
of match, next character).

LZ78: parse the text into sections 1 character longer than seen
before. The output is a sequence of records (i, ¢) (address of old
section, new character).

Problem 9

Compute the next two records of the LZ77 algorithm, starting from
the following position.

bablakbarnalablakbaahar|arrada...

Problem 9

Compute the next two records of the LZ77 algorithm, starting from
the following position.

bablakbarnalablakbaahar|arrada...

Solution.

> first step:
10

-— >

ablak barna| ablak baahar|arrada...

-~

5

Problem 9

Compute the next two records of the LZ77 algorithm, starting from
the following position.

bablakbarnalablakbaahar|arrada...

Solution.

> first step:
10

-— >

ablak barna| ablak baahar|arrada... (10,5,b)

-~

5

Problem 9

Compute the next two records of the LZ77 algorithm, starting from
the following position.

bablakbarnalablakbaahar|arrada...

Solution.
> first step:
10
ablak barna| ablak baahar|arrada... (10,5,b)
5
> next step:
47—>

ablakbarnaa blakb|{laa hararradal...

-~

2

Problem 9

Compute the next two records of the LZ77 algorithm, starting from
the following position.

bablakbarnalablakbaahar|arrada...

Solution.
> first step:
10
ablak barna| ablak baahar|arrada... (10,5,b)
5
> next step:
47—>
ablakbarnaa blakb|laa hararrada‘... (7,2,h)

-~

2

Problem 10

An LZ77 coder has parameters hs = hy = 4. Decode the following
sequence of records: (0,0,C), (0,0,A), (2,1,D), (3,2,B), (2,5,A).

Problem 10

An LZ77 coder has parameters hs = hy = 4. Decode the following
sequence of records: (0,0,C), (0,0,A), (2,1,D), (3,2,B), (2,5,A).

Solution. (0,0,X)-type records code a single character (X), so the
first two records are decoded to CA.

Problem 10

An LZ77 coder has parameters hs = hy = 4. Decode the following
sequence of records: (0,0,C), (0,0,A), (2,1,D), (3,2,B), (2,5,A).

Solution. (0,0,X)-type records code a single character (X), so the
first two records are decoded to CA.

The numbers in the record (2,1,D) are decoded as a copy
command: move back 2 positions and copy 1 character (C). Then
the D is added to the end — CACD.

Problem 10

An LZ77 coder has parameters hs = hy = 4. Decode the following
sequence of records: (0,0,C), (0,0,A), (2,1,D), (3,2,B), (2,5,A).

Solution. (0,0,X)-type records code a single character (X), so the
first two records are decoded to CA.

The numbers in the record (2,1,D) are decoded as a copy
command: move back 2 positions and copy 1 character (C). Then
the D is added to the end — CACD.

Similarly, (3,2,B) results in CACDACB.

Problem 10

An LZ77 coder has parameters hs = hy = 4. Decode the following
sequence of records: (0,0,C), (0,0,A), (2,1,D), (3,2,B), (2,5,A).

Solution. (0,0,X)-type records code a single character (X), so the
first two records are decoded to CA.

The numbers in the record (2,1,D) are decoded as a copy
command: move back 2 positions and copy 1 character (C). Then
the D is added to the end — CACD.

Similarly, (3,2,B) results in CACDACB.

For the record (2,5,A), we execute a similar copy command, but
we only have 2 characters (CB) to copy; in this case, we keep
copying those 2 characters cyclically until we get 5 characters
(CBCBC), then add an A to the end — CACDACBCBCBCA.

Problem 11

Using LZ78, encode the message AABABBBABBABB. Also
convert the dictionary to binary.

Problem 11

Using LZ78, encode the message AABABBBABBABB. Also
convert the dictionary to binary.

Solution.
AABABBBABBABB

Problem 11

Using LZ78, encode the message AABABBBABBABB. Also
convert the dictionary to binary.

Solution.
AIJABABBBABBABB

1] (0A) 1

Problem 11

Using LZ78, encode the message AABABBBABBABB. Also
convert the dictionary to binary.

Solution.
AJAB/ABBBABBABB

1] (0A) 1
(1,B) [111

Problem 11

Using LZ78, encode the message AABABBBABBABB. Also
convert the dictionary to binary.

Solution.
A/AB/JABBIBABBABB

1] (0A) 1
(1,B) [111
3| (2,B) | 111101

Problem 11

Using LZ78, encode the message AABABBBABBABB. Also
convert the dictionary to binary.

Solution.
A/AB/ABB|BJABBABB

1] (0A) 1

2 | (1,B) | 111

3| (2,B) | 111101
4| (0,B) | 11110001

Problem 11

Using LZ78, encode the message AABABBBABBABB. Also
convert the dictionary to binary.

Solution.
A/AB|/ABB|BJABBAIBB

1] (0A) 1

2 [(1,B) [111

3| (2,B) | 111101

4| (0,B) | 11110001

5| (3,A) | 11110000110

Problem 11

Using LZ78, encode the message AABABBBABBABB. Also
convert the dictionary to binary.

Solution.
A/AB|/ABB|BJABBAIBB

1] (0A) 1

2 [(1,B) [111

3| (2,B) | 111101

4| (0,B) | 11110001

5| (3,A) | 11110000110

6 | (4,B) | 111100001101001

