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Reminder: character encodings

Character codings: prefix codes, code tree for decoding.

Fixed length encoding.

Shannon–Fano code: codeword lengths `i = d− log2 pie, greedy
tree construction.

Huffman code: in each step, add the two smallest probabilities.
Huffman is optimal among character codings.

Entropy as a measure of information. Theoretical lower bound for
average codeword length.

H(X ) =
∑
i

pi log2(1/pi )

Arithmetic coding: partition [0, 1] according to character
probabilities, repeat for subintervals in each step. Not a character
encoding, but asymptotically optimal.



Problem 1

We have a source with the following distribution and code table:

Source symbol Probability Codeword
A 0.4 0
B 0.2 10
C 0.2 110
D 0.2 1111

(a) Is this a prefix code?

(b) What is the average codelength?

(c) How far is the average codelength from the theoretical lower
bound of compressibility?

(d) Is this an optimal character encoding?



Problem 1
Solution.

(a) In order to check if the code is prefix, we can draw the code
tree:

A 0

B 10

C 110

D 1111

A

1

0
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0
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1

0
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Characters are only in the leaves, so this is a prefix code.

(b) L =
∑4

i=1 pi`i = 0.4 · 1 + 0.2 · 2 + 0.2 · 3 + 0.2 · 4 = 2.2.

(c) Theoretical lower bound for average codeword length:

H(X ) =
4∑

i=1

pi log2

(
1

pi

)
= 0.4 · 1.31 + 3 · 0.2 · 2.322 = 1.922,

so
L− H(X ) = 0.278
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Problem 1

(d) Is this an optimal character encoding?

For the character D, the codeword 111 is sufficient instead of
1111 (and the code is still prefix), so the code is not optimal.

What if we use D → 111, is the code optimal then?

We can check by comparing it to Huffman:
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Same codeword lengths → the code is equivalent to Huffman,
both are optimal, and the average codeword length is

L = 0.4 · 1 + 0.2 · 2 + 0.2 · 3 + 0.2 · 3 = 2.0.
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Problem 1

(d) During Huffman, in the second column we picked the bottom
0.4.

p1 = 0.4

p2 = 0.2

p3 = 0.2

p4 = 0.2

0.4

0.2

0.4

0.4

0.6

1

What if we pick the other 0.4?
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L = 2, same as for the previous choice. This coding is also an
optimal Huffman code, just using a different tree.
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Problem 2

Encode the following distribution using Fixed length coding,
Shannon–Fano coding and Huffman coding. Compute the average
codeword length for each coding. Compute the theoretical lower
bound.

p1 = 0.49

p2 = 0.14

p3 = 0.14

p4 = 0.07

p5 = 0.07

p6 = 0.04

p7 = 0.02

p8 = 0.02

p9 = 0.01



Problem 2

Solution. For fixed length encoding, the required codeword length
is dlog2 9e = 4, and

Symbol Codeword

X1 0000

X2 0001

X3 0010

X4 0011

X5 0100

X6 0101

X7 0110

X8 0111

X9 1000

Average codeword length is L = 4.



Problem 2

For the Shannon–Fano coding, the codeword lengths are
`i = dlog2 1/pie, so

`1 = dlog2 1/0.49e = d1.029e = 2,

`2 = dlog2 1/0.14e = d2.836e = 3,

`3 = dlog2 1/0.14e = d2.836e = 3,

`4 = dlog2 1/0.07e = d3.836e = 4,

`5 = dlog2 1/0.07e = d3.836e = 4,

`6 = dlog2 1/0.04e = d4.644e = 5,

`7 = dlog2 1/0.02e = d5.644e = 6,

`8 = dlog2 1/0.02e = d5.644e = 6,

`9 = dlog2 1/0.01e = d6.644e = 7.



Problem 3

Code tree and codeword table for Shannon–Fano:
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0
Symbol Codeword

X1 00

X2 010

X3 011

X4 1000

X5 1001

X6 10100

X7 101010

X8 101011

X9 1011000

The average codeword length is

LS–F =0.49 · 2 + 2× 0.14 · 3 + 2× 0.07 · 4+

0.04 · 5 + 2× 0.02 · 6 + 0.01 · 7 = 2.89.
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Problem 2

For Huffman coding, we add the two smallest probabilities in each
step.
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Problem 2

Then the code tree and codeword table can be obtained:

X1 = (1)
1

0 1

0

X2 = (011)

X3 = (010)

1

0

1

0

X4 = (0011)

X5 = (0010)

X6 = (0001)

1

0

1

0 X7 = (00001)1

0 X8 = (000001)

X9 = (000000)

1

0

Symbol Codeword

X1 1

X2 011

X3 010

X4 0011

X5 0010

X6 0001

X7 00001
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Problem 2

Entropy of the source:

H(X ) =
9∑

i=1

pi log2

(
1

pi

)
= 2.314.

Comparison with the average codeword length for the various
codings:

Lfixed = 4

LS–F = 2.89

LHuff = 2.33
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Problem 3

A source has alphabet {A,B,C,D}, with distribution

P(A) = 0.4, P(B) = 0.3, P(C ) = 0.2, P(D) = 0.1.

For each of Fixed length coding, Huffman coding and Arithmetic
coding, what is the length of the codeword corresponding to the
message AAAAA?

And for the messages BBBBB, CCCCC and DDDDD?

Solution. For Fixed length encoding, all characters are 2 bits, so
the length of each of the four messages is 10 bits.
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For Huffman coding,

p1 = 0.4

p2 = 0.3
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A → 1
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B → 01
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C → 001

D → 000
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The codewords are:

I AAAAA → 11111, length 5

I BBBBB → 0101010101, length 10

I CCCCC → 001001001001001, length 15

I DDDDD → 000000000000000, length 15
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Problem 3

For Arithmetic coding, the length of the messages:

AAAAA → d− log2

(
0.45

)
e+ 1 = 7

BBBBB → d− log2

(
0.35

)
e+ 1 = 10

CCCCC → d− log2

(
0.25

)
e+ 1 = 13

DDDDD → d− log2

(
0.15

)
e+ 1 = 18



Problem 4

Using the Fixed length encoding, Huffman and Arithmetic coding
from the previous problem, compute the codeword length for a
message containing 40 A’s, 30 B’s, 20 C’s and 10 D’s total.

Solution. For Fixed length encoding, the codeword length is

100× 2 = 200 bits.

Using Huffman, it is

40× 1 + 30× 2 + 20× 3 + 10× 3 = 190 bits.

With Arithmetic coding, it is⌈
− log2(0.440 · 0.330 · 0.220 · 0.110)

⌉
+ 1 = 186 bits.
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Problem 5

We have a source with 7 characters and probabilities

p1 = 0.5, p2 = p3 = 0.125, p4 = p5 = p6 = p7 = 0.0625.

Compute the codeword lengths for this source for both
Shannon–Fano coding and Huffman coding. Also compute the
entropy of the source.

Solution. For the Shannon–Fano coding, the codeword lengths are
`i = dlog2 1/pie, that is,

`1 = 1, `2 = `3 = 3, `4 = `5 = `6 = `7 = 4,

and the average codeword length is

LS–F = 0.5× 1 + 2× 0.125× 3 + 4× 0.0625× 4 = 2.25.
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Problem 5

For Huffman coding, the average codeword length is

LHuff = 0.5× 1 + 2× 0.125× 3 + 4× 0.0625× 4 = 2.25.

The entropy of the source is

H(X ) =−
(
0.5× log2(0.5) + 2× 0.125 · log2(0.125)

+ 4× 0.0625 · log2(0.0625)
)

= 2.25.

Both Shannon–Fano and Huffman reach the theoretical lower
bound for this source.

Actually, Huffman and Shannon–Fano both reach the entropy for
the same sources in general: when all probabilities are negative
integer powers of 2.
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Adaptive Huffman code

Adaptive Huffman code: the code tree is based on the number of
occurrences of each character seen so far. Internal nodes get the
sum of their children.

1. Initialize the code tree.

2. Code the next character according to the current state of the
code tree.

3. Add the character to the tree.

4. Check the sibling property, and restore it if necessary by
exchanging two nodes with their entire subtrees.

5. Go to next character and repeat from step 2.

Sibling property: listing the nodes from bottom level to top level,
going from left to right within each level, the nodes are increasing,
except possibly for sibling pairs.



Problem 6

Determine the missing values. Does the sibling property hold for
this tree?

46

? 28

7 ? 13 ?

3 ? ? 6 7 ?

1 2 2 2 3 2



Problem 6

46

18 28

7 11 13 15

3 4 5 6 7 6

1 2 2 2 3 2

Starting from the bottom left, going left to right first, then up one
level and repeat, the sequence (1, 2), (2, 2), (3, 2), (3, 4), (5, 6),
(7, 6), (7, 11), (13, 15), (18, 28), 46 is decreasing only for two
sibling pairs, so the sibling property holds for this tree, this is a
valid Huffman-tree.
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Problem 7
Over the alphabet {a,c,g,t}, apply adaptive Huffman coding to the
message “aagacaa”.

Solution. Initialization:

4
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a c g t

0 1 0 1 a → 00
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3 2
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2 1 1 1

a c g t

0 1 0 1
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Problem 8

Can we obtain the following code tree as the result of a Huffman
algorithm for code tree construction?

1

0.5 0.5

0 1

0.35 0.15 0.15 0.35

A B C D

0 1 0 1

Solution 1. No, the sibling property does not hold.

Solution 2. For the Huffman tree construction, in the first step of
the algorithm, the two smallest probabilities are the two 0.15’s, so
they would have to be matched to each other, not to the 0.35’s.
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Reminder: Dictionary coders

LZ77: search ahead for a section of text seen recently.

search buffer look-up buffer
text text
↖ ↙

sections matched
with search buffer

Output is a sequence of (p, `, c) records (position of match, length
of match, next character).

LZ78: parse the text into sections 1 character longer than seen
before. The output is a sequence of records (i , c) (address of old
section, new character).



Problem 9

Compute the next two records of the LZ77 algorithm, starting from
the following position.

b a b l a k b a r n a a b l a k b a a h a r a r r a d a. . .

Solution.

I first step:

a b l a k b a r n a a b l a k b a a h a r a r r a d a. . .

10

5

(10,5,b)

I next step:

a b l a k b a r n a a b l a k b a a h a r a r r a d a . . .

7

2

(7,2,h)
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Problem 10

An LZ77 coder has parameters hs = h` = 4. Decode the following
sequence of records: (0,0,C), (0,0,A), (2,1,D), (3,2,B), (2,5,A).

Solution. (0,0,X)-type records code a single character (X), so the
first two records are decoded to CA.

The numbers in the record (2,1,D) are decoded as a copy
command: move back 2 positions and copy 1 character (C). Then
the D is added to the end → CACD.

Similarly, (3,2,B) results in CACDACB.

For the record (2,5,A), we execute a similar copy command, but
we only have 2 characters (CB) to copy; in this case, we keep
copying those 2 characters cyclically until we get 5 characters
(CBCBC), then add an A to the end → CACDACBCBCBCA.
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Problem 11

Using LZ78, encode the message AABABBBABBABB. Also
convert the dictionary to binary.

Solution.
A

|

A B

|

A B B

|

B

|

A B B A

|

B B

1 (0,A) 1

2 (1,B) 111

3 (2,B) 111101

4 (0,B) 11110001

5 (3,A) 11110000110

6 (4,B) 111100001101001
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