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Problem A1

A. Any C(n, k) binary code has 2k codewords.

True. There are 2k possible message vectors, and one codeword
for each.

B. For any C(n, k) binary Hamming code, n = 2k − 1.

False, for a binary Hamming code, n = 2n−k − 1 instead.

C. If two error correction codes are equivalent, they have the same
error correction capabilities.

True. For equivalent codes, we can permute the codeword bits,
and we can permute how the codewords are assigned to the
messages, but neither of those operation changes the minimal
distance between codewords, which determines the error
correction capability.
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D. In a Galois field, every nonzero element has a multiplicative
inverse.

True, this is one of the field axioms, so it is true by definition.

E. g(x) = y5x + y2x + x2 generates a BCH code over GF(8).

False, BCH codes are generated by binary polynomials (so only
0 or 1 coefficients).



Problem A2

Consider the following coding scheme.

u c

00 000000
01 011100
10 100011
11 111111

u ⊕c

e

c : mincd(v , c)
v

c ′ u′

000000 00
011100 01
100011 10
111111 11

c ′ u′

(a) What are the n and k parameters of the code? (2 pts)

(b) How many errors can this code correct? (2 pts)

(c) Execute the entire coding scheme for u = (0 1) and
e = (0 0 0 0 1 0), that is, calculate c , v , c ′, u′. Is the decoding
correct? (6 pts)
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u c
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10 100011
11 111111

u ⊕c

e

c : mincd(v , c)
v

c ′ u′

000000 00
011100 01
100011 10
111111 11

c ′ u′

(a) What are the n and k parameters of the code? (2 pts)

n = 6 (the length of the codewords), k = 2 (there are 4 = 2k

messages).

(b) How many errors can this code correct? (2 pts)

By pairwise comparison, the minimal codeword distance is
dmin = 3.

Alternatively, due to (011100)+(100011)=(111111), this is a
linear code, so dmin = minc 6=0 w(c) = 3.
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u c

00 000000
01 011100
10 100011
11 111111

u ⊕c

e

c : mincd(v , c)
v

c ′ u′

000000 00
011100 01
100011 10
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c ′ u′

(c) Execute the entire coding scheme for u = (0 1) and
e = (0 0 0 0 1 0), that is, calculate c , v , c ′, u′. Is the decoding
correct? (6 pts)

u = (01) → c = (011100)

v = c + e = (011110)

d((011110), (011100)) = 1 is minimal → c ′ = (011100)

u′ = (01)

The decoding is correct.



Problem A3
The C(16,11) extended Hamming code can distinguish between 0,
1 or 2 errors (assuming ≤ 2 errors occurred), and for 0 or 1 errors,
it can decode correctly. For a channel with bit error probability
pb = 0.01, calculate the probability of each of the following
outcomes for a single block:

(a) 0 or 1 errors detected, correct decoding (4 pts);
(b) 2 errors detected, no decoding (3 pts);
(c) erroneous decoding (3 pts).

Solution.

(a) (
16

0

)
(1− 0.01)16 +

(
16

1

)
0.011(1− 0.01)15 = 0.9891

(b) (
16

2

)
0.012(1− 0.01)14 = 0.0104

(c)
1− 0.9891− 0.0104 = 0.0005



Problem A4

An LDPC code has parity check matrix

H =


1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1


Execute the bit-flipping algorithm for the received vector
v = (1101001100) to obtain the detected codeword c ′. (10 pts)
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H =


1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1



v =
[
1 1 0 1 0 0 1 1 0 0

]

1 1 0 1 0 0 1 1 0 0
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H =


1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1



v =
[
1 1 0 1 0 0 1 1 0 0

]

1 0 0 1 0 0 1 1 0 0

c ′ =
[
1 0 0 1 0 0 1 1 0 0

]



Problem A5

Design a code over GF(5) that can correct 1 error by generator
matrix. (Primitive elements over GF(5) are 2 and 3.)

(a) What are the code parameters? (2 pts)

(b) Calculate the code rate. (2 pts)

(c) Determine the generator matrix of the code. (3 pts)

(d) Calculate the codeword corresponding to the message vector
whose digits are all 3’s. (3 pts)

We make a Reed–Solomon code over GF(5).

(a) n = 5− 1 = 4. RS codes can correct
⌊
n−k
2

⌋
errors, and from⌊

n−k
2

⌋
= 1, we have k = 2 (or k = 1, but k = 2 is better).

(b) For a C(4,2) code, the code rate is 2/4 = 0.5.
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(c) Determine the generator matrix of the code. (3 pts)

We need to pick a primitive element α. For α = 2 or 3
respectively, the generator matrix is

G =

[
1 1 1 1
1 2 4 3

]
G =

[
1 1 1 1
1 3 4 2

]

(d) Calculate the codeword corresponding to the message vector
whose digits are all 3’s. (3 pts)

(3 3) ·
[

1 1 1 1
1 2 4 3

]
= (1 4 0 2)

(3 3) ·
[

1 1 1 1
1 3 4 2

]
= (1 2 0 4)



Problem B1

A. Any C(n, k) binary code has 2n codewords.

False. There are 2k codewords.

B. Perfect C(n, k) codes have minimal code distance
dmin = n − k + 1.

False. For perfect codes, the Hamming-bound holds with
equality, not the Singleton bound.

C. The code rate of a C(n, k) code is k/n.

True.

D. For a systematic linear binary code, the rightmost
(n − k)× (n − k) block of H is the identity matrix.

True. The size of H is (n − k)× n, so the rightmost square
block is (n − k)× (n − k).

E. Reed-Solomon codes are MDS codes.

True.



Problem B2

For a systematic binary linear code, we know the error group
corresponding to one of the syndromes:

(100) → {(10011), (01010), (00100), (11101)}.

(a) Which is the group leader? (2 pts)

(b) What are the parameters of the code? (2 pts)

(c) List the codewords. (2 pts)

(d) Compute the generator matrix and parity check matrix. (2 pts)

(e) How many errors can the code detect? How many errors can
the code correct? (2 pts)
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(a) Which is the group leader? (2 pts)

The group leader from the error group is the vector with
minimal weight, so (00100).

(b) What are the parameters of the code? (2 pts)

Each error group contains 2k = 4 received vectors → k = 2.
The length of each received vector is n = 5. This is a C(5,2)
code.

(c) List the codewords. (2 pts)

The codewords are obtained by adding of the group members
to all of the vectors in the error group, so

c(1) = (10011) + (10011) = (00000)

c(2) = (01010) + (10011) = (11001)

c(3) = (00100) + (10011) = (10111)

c(4) = (11101) + (10011) = (01110)
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(d) Compute the generator matrix and parity check matrix. (2
pts)

G can be put together from the codewords assigned to the
messages (10) and (01). The code is systematic, so
(10)→ (10111), (01)→ (01110), and

G =

[
1 0 1 1 1
0 1 1 1 0

]
H = [BT |I ] is obtained from G = [I |B]:

H =

1 1 1 0 0
1 1 0 1 0
1 0 0 0 1


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(e) How many errors can the code detect? How many errors can
the code correct? (2 pts)

The codewords from part (c) are
(00000), (11001), (10111), (01110).

The minimal weight among nonzero codewords is dmin = 3, so
the code can

I detect dmin − 1 = 2 errors, and
I correct

⌊
dmin−1

2

⌋
= 1 error.



Problem B3

A binary linear code has parity check matrix

H =

1 1 0 1 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1

 .
(a) What are the code parameters? (2 pts)

(b) Is this a Hamming code? (2 pts)

(c) Decode the received vector v = (0 1 0 1 1 0 0). Describe how
the error vector is detected based on the syndrome, then
decode the message. (6 pts)

(a) What are the code parameters? (2 pts)

H has size (n − k)× n, so n − k = 3, n = 7, then k = 4, and
this is a C(7,4) code.
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H =

1 1 0 1 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1


(b) Is this a Hamming code? (2 pts)

Yes, it is! The columns of H are all nonzero binary vectors of
length n − k = 3. (Also, the rightmost block of H is the
identity matrix, so the code is systematic.)

(c) Decode the received vector v = (0 1 0 1 1 0 0). Describe how
the error vector is detected based on the syndrome, then
decode the message. (6 pts)
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H =

1 1 0 1 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1


(c) To decode, we first compute the syndrome vector

s = vHT = (1 0 1).

For Hamming codes, we find the column of H corresponding
to s. It is column 1 →

e ′ = (1000000)

c ′ = v + e ′ = (0101100) + (1000000) = (1101100)

u′ = (1101)

because the code is systematic.



Problem B4

A binary CRC code adds 3 bits to each message, with parameter
vector d = (011).

(a) What is the codeword corresponding to the message
u = (1011101)? (5 pts)

(b) Does the code detect the error for e = (0001001000)? (5 pts)

First we extend both u and d :

u = (1011101) → (1011101000)

d = (011) → (1011)
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(a) Coding:
1 0 1 1 1 0 1 0 0 0
1 0 1 1

0 0 0 0 1 0 1 0 0 0
→ 1 0 1 1

0 0 0 0 0 0 0 1 0 0

The codeword is the last 3 bits appended to the original
message, so

c = (1 0 1 1 1 0 1 1 0 0)
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(b) Error detection:

0 0 0 1 0 0 1 0 0 0
1 0 1 1

0 0 0 0 0 1 0 0 0 0
→ 1 0 1 1

0 0 0 0 0 0 0 1 1 0

Last 3 bits are nonzero → error detected.



Problem B5
Consider GF(8) with reducing polynomial p(y) = y3 + y + 1.
Design a code over GF(8) that can correct 1 error by generator
polynomial.

(a) Determine the generator polynomial of the code. (2 pts)
(b) Calculate the code rate. (2 pts)
(c) When using this code to transmit a message over a channel

with digit error probability p = 0.01, what is the probability of
a decoding error? (6 pts)

We can design either a BCH or RS code.

(a) For the RS code, parameters are n = 7, k = 5, and the
generator polynomial is

g(x) = (x − y)(x − y2).

For the BCH code, we need y1 and y2 among the roots of
g(x), and they belong to the conjugate group {y1, y2, y4}
with minimal polynomial x3 + x + 1, so

g(x) = x3 + x + 1
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(b) Calculate the code rate. (2 pts)

The degree of g(x) is n − k , so the RS code is a C(7,5) code
with code rate 5/7, and the BCH code is a C(7,4) code with
code rate 4/7.

(c) When using this code to transmit a message over a channel
with digit error probability p = 0.01, what is the probability of
a decoding error? (6 pts)

1− (1− p)7 − 7p(1− p)6 ≈ 0.00203


