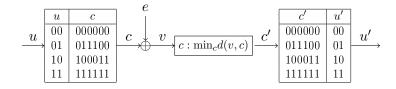
Sample midterm test sheet A Coding Technology Fall 2025

- 1. For each of these statements, decide if it is true or false. (5 correct answers \rightarrow 10 pts, 4 correct answers \rightarrow 5 pts, 0–3 correct answers \rightarrow 0 pts)
 - A. Any C(n,k) binary code has 2^k codewords.
 - B. For any C(n, k) binary Hamming code, $n = 2^k 1$.
 - C. If two error correction codes are equivalent, they have the same error correction capabilities.
 - D. In a Galois field, every nonzero element has a multiplicative inverse.
 - E. $g(x) = y^5x + y^2x + x^2$ generates a BCH code over GF(8).
- 2. Consider the following coding scheme.



- (a) What are the n and k parameters of the code? (2 pts)
- (b) How many errors can this code correct? (2 pts)
- (c) Execute the entire coding scheme for u=(01) and e=(000010), that is, calculate c,v,c',u'. Is the decoding correct? (6 pts)
- 3. The C(16,11) extended Hamming code can distinguish between 0, 1 or 2 errors (assuming ≤ 2 errors occurred), and for 0 or 1 errors, it can decode correctly. For a channel with bit error probability $p_b = 0.01$, calculate the probability of each of the following outcomes for a single block:
 - (a) 0 or 1 errors detected, correct decoding (4 pts);
 - (b) 2 errors detected, no decoding (3 pts);
 - (c) erroneous decoding (3 pts).
- 4. An LDPC code has parity check matrix

Execute the bit-flipping algorithm for the received vector v = (1101001100) to obtain the detected codeword c'. (10 pts)

- 5. Design a code over GF(5) that can correct 1 error by generator matrix. (Primitive elements over GF(5) are 2 and 3.)
 - (a) What are the code parameters? (2 pts)
 - (b) Calculate the code rate. (2 pts)
 - (c) Determine the generator matrix of the code. (3 pts)
 - (d) Calculate the codeword corresponding to the message vector whose digits are all 3's. (3 pts)

Sample midterm test sheet B Coding Technology Fall 2025

- 1. For each of these statements, decide if it is true or false. (5 correct answers \rightarrow 10 pts, 4 correct answers \rightarrow 5 pts, 0–3 correct answers \rightarrow 0 pts)
 - A. Any C(n,k) binary code has 2^n codewords.
 - B. Perfect C(n, k) codes have minimal code distance $d_{\min} = n k + 1$.
 - C. The code rate of a C(n, k) code is k/n.
 - D. For a systematic linear binary code, the rightmost $(n-k)\times(n-k)$ block of H is the identity matrix.
 - E. Reed-Solomon codes are MDS codes.
- 2. For a systematic binary linear code, we know the error group corresponding to one of the syndromes:

$$(100) \quad \to \quad \{(10011), (01010), (00100), (11101)\}.$$

- (a) Which is the group leader? (2 pts)
- (b) What are the parameters of the code? (2 pts)
- (c) List the codewords. (2 pts)
- (d) Compute the generator matrix and parity check matrix. (2 pts)
- (e) How many errors can the code detect? How many errors can the code correct? (2 pts)
- 3. A binary linear code has parity check matrix

$$H = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}.$$

- (a) What are the code parameters? (2 pts)
- (b) Is this a Hamming code? (2 pts)
- (c) Decode the received vector v = (0101100). Describe how the error vector is detected based on the syndrome, then decode the message. (6 pts)
- 4. A binary CRC code adds 3 bits to each message, with parameter vector d = (011).
 - (a) What is the codeword corresponding to the message u = (1011101)? (5 pts)
 - (b) Does the code detect the error for e = (0001001000)? (5 pts)
- 5. Consider GF(8) with reducing polynomial $p(y) = y^3 + y + 1$. Design a code over GF(8) that can correct 1 error by generator polynomial.
 - (a) Determine the generator polynomial of the code. (2 pts)
 - (b) Calculate the code rate. (2 pts)
 - (c) When using this code to transmit a message over a channel with digit error probability p = 0.01, what is the probability of a decoding error? (6 pts)