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ABSTRACT
A basic feature of a single server queue is waiting time
recorded at the time of arrival of a new customer, follow-
ing a simple non-linear dynamics. By a remarkable coinci-
dence the same dynamics is obtained for what is called the
the Page-Hinkley detector designed for real-time change de-
tection of stochastic processes [1, 2]. According to this an
alarm is given if the detector (an equivalent to waiting time)
exceeds a prefixed threshold.

A result on the empirical tail-probabilities of the detector
under very general technical conditions will be presented,
assuming no change, thus providing an upper bound for the
false alarm rate. These results translate to results on empir-
ical large deviations for waiting times. The above mentioned
technical condition can be verified in a variety of interesting
special cases to be briefly presented.
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Waiting time; Page-Hinkley detector; Change detection.
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ABSTRACT
In this paper, we study an MAP/M/∞ queue associated
with an inventory system. The inventory is replenished ac-
cording to the (s, S)-policy. The (self) service and lead times
are assumed to be exponentially distributed. No arriving
customer is allowed to enter into the system (of infinite ca-
pacity) when there is no stock available for servicing the
customer. Thus, every customer in service is attached with
an inventory at the time of entering into the system. We
employ algorithmic approach for the computation of various
quantities of interest and derive some explicit expressions in
some cases. An illustrative example is discussed.

Keywords
MAP/M/∞ queue; inventory; lead time; (s, S) policy; phase
type distribution; algorithmic probability

1. INTRODUCTION
This paper deals with a queueing-inventory system with

an unlimited number of servers. One can think of this as a
self-service system for the customers. Every customer needs
to have an inventory item to be served. We believe this
work to be the first in the literature involving an infinite
number of servers in queueing-inventory process. Queueing-
inventory models have been extensively discussed in the lit-
erature. However, most of these deal with a single server

∗A full version of this paper will be submitted elsewhere for
publication

system and with servicing occurring one at a time. Papers
dealing with with two or more servers are scarce in the lit-
erature; one paper in this direction is by Krishnamoorthy
et al. [17]. We refer the reader to Sigman and Simchi-Levi
[28], Berman and Kim [1], Berman and Sapna [2], Schwartz
et al. ([26], [27]), Saffari et al. [25], Krishnamoorthy and
Viswanath [15], Sivakumar and Arivarignan ([29], [30]), Kr-
ishnamoorthy and Anbazhagan [13], Krenzler and Daduna
([10], [11]), and Krishnamoorthy et al. ([14], [16]), for fur-
ther details on single-server queueing-inventory systems. In
the single server case explicit product form solution for the
system state is obtained in ( [10], [11], [14], [15], [16], [25],
[26], [27]) under the condition that no customer joins the
system when the inventory level is zero.

The case of a general bulk service rule in the context of
single-server and with (s, S)-type replenishment policy was
first studied in Chakravarthy et al. [5]. In this paper, the
authors assume that at the beginning of a (batch) service the
inventory level will be decreased by an amount equivalent
to the size of the batch so that each customer will consume
exactly one item from the inventory. Replenishment order is
placed as soon as unattached inventory (see definition below)
level falls to the set {0, 1, 2, ..., s} for the first time after a
replenishment. Thus, in effect the total inventory in the
system can even be 2S in their paper. This is not the case
with the rest of the papers mentioned above.

The infinite-server queueing systems have been investi-
gated extensively in the literature. A sample of this is indi-
cated below: Collings and Stoneman [6], Conolly [7], Eliazar
[8], Foley [9], Keilson and Servi [12], Liu et al. [18], Mira-
sol [19], Newell [22], O’cinneide and Purdue [23], Ramalhoto
[24], Stadje [31].

In the present paper we adopt the policy of attaching an
inventory with every customer entering into the system for
getting a service. We consider an infinite capacity queueing-
inventory system with infinite number of servers to which
customers arrive according to a Markovian arrival process
with representation (D0, D1), the order of these matrices is
m. The service time is exponentially distributed with pa-
rameter µ. Thus, when there are n customers in the system

MAM-9 2016 Budapest, Hungary 3



the rate of departures is given by nµ. We adopt the policy of
attaching inventory with all customers being served (which
is same as all those who are present). Here inventory con-
trol is based on (s, S) policy as described in [5]: whenever
the number of unattached inventory falls to s an order for
replenishment is placed. Upon replenishment the inventory
level will be brought to S. The crucial assumption that we
make in this paper is that no customer joins the system dur-
ing the time period with unattached inventory level equal
to zero. This means that during such period of time if a cus-
tomer walks in, he has to leave the system – lost case. The
lead time for replenishment follows an exponential distribu-
tion with parameter θ. Since we are forbidding a customer
entry during such period we are able to get explicit expres-
sion for the marginal probability of unattached inventory.

Using matrix-analytic methods we study the model as a
level dependent quasi-birth and death process (LDQBD) of
the form:

Q =




A00 A0

A21 A11 A0

A22 A12 A0

A23 A13 A0

. . .
. . .

. . .




, (1)

where A00, A0, A1i, and A2i are of order m(S + 1). We es-
tablish a number of results including deriving expressions
for the marginal excess inventory.

We propose two truncation methods, one based on Neuts-
Rao truncation and the other based on direct truncation,
to arrive at the steady-state solution. A special case of the
model dealing with M/M/∞ is considered. We also provide
an illustrative numerical example to highlight the behavior
of the system under study and a few concluding remarks are
given.
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ABSTRACT
Dynamic speed scaling refers to the continuous adjustment
of the service speed of a server to balance performance and
power consumption. In this paper, we study delay-based
dynamic speed scaling in which the server selects a different
service rate with a certain power consumption for the head-
of-line (HOL) job according to its delay already experienced
in the queue. As an extension, we also study the case where
the jobs have deadlines. In this case, when the delay ex-
ceeds a certain threshold, the HOL job abandons the system
without service in which case the job is said to be blocked.
Under Poisson job arrivals and exponentially distributed job
service times, we propose a multi-regime Markov fluid queue
model to obtain the average power consumption, job block-
ing probabilities, and the distribution of delays experienced
by served jobs. We validate the proposed model by simu-
lations and evaluate the performance of a specific dynamic
speed scaling scheme in terms of job blocking probabilities
and attainable power gain in comparison with a fixed-rate
server.

Keywords
dynmic speed scaling, multi-rate server, Markov fluid queue

1. INTRODUCTION
Speed scaling adapts the speed of a computer or commu-

nications system to tradeoff energy and performance [11].
In static speed scaling, a single speed is employed unless the
system is idle and is put into a sleep mode when idle [11]. In
dynamic speed scaling which is the focus of the current pa-
per, the speed is adapted continuously based on the instan-
taneous state, i.e., number of jobs in the system, delay expe-
rienced by jobs, etc. Modern processors and computer sys-
tems allow dynamic speed scaling which leads the way to in-
vestigate its impact on fairness among jobs, amount of delay
experienced by each job, power efficiency, etc. [3],[5],[6],[8].

The reference [2] studies policies for setting the speed of a
processor towards optimization of the energy used and the
maximum temperature attained. The speed of an Ethernet
link is adapted in [7] by means of dynamic speed scaling for
energy efficiency purposes.

In this paper, we study the performance of a single server
which can be configured to serve a job using one of available
service rates drawn from a finite set. Each service rate is
associated with a distinct power consumption figure during
the service. A service rate (or a power level) is then decided
for the HOL job at the service start epoch according to the
delay already experienced by this job in the queue. Further-
more, as an extension, we also allow the jobs to have strict
delay deadlines as assumed in [12]. Therefore, for such delay
intolerant systems, when the delay experienced by the HOL
job exceeds a certain threshold, the job abandons the system
without service, i.e., the job is blocked. This abandonment
may also take place at the arrival epoch if service times of all
jobs are known a-priori, or exactly when the queuing time
hits the delay deadline while the job is waiting. However, as
far as analysis of abandonment systems are concerned, the
abandonment epoch is immaterial.

For analytical modeling, we assume Poisson job arrivals
and exponentially distributed service times but the frame-
work is amenable to more general distributions which is left
for future research. A multi-regime Markov Fluid Queue
(MRMFQ) model is proposed for this system, the steady-
state solution of which provides expressions for the aver-
age power, job blocking probabilities, and the delays of the
served jobs. The MRMFQ solver that we use is purely
matrix-analytical and relies on ordered Schur decomposi-
tions and Sylvester equation solvers as its main engine. Once
a numerical solution for these performance metrics through
MRMFQs is in hand, one can use this analysis as an in-
strument to obtain sub-optimal dynamic speed scaling poli-
cies that attempt to minimize the power consumption while
meeting delay or blocking performance requirements.

The paper is organized as follows. MRMFQs are briefly
described in Section 2 along with the boundary conditions
necessary to solve their steady-state distribution. The dy-
namic speed scaling model that we propose and its solution
are given in Section 3. Numerical results are presented in
Section 4. Finally, we conclude.

2. MARKOV FLUID QUEUES
In fluid queue models, a fluid acts as the input to and out-

put of a buffer. In particular, Markov Fluid Queues (MFQ)
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are described by a joint Markovian process (X(t), Z(t)) where
X(t) represents the fluid level (or buffer content) and Z(t)
is an underlying finite state-space continuous-time Markov
chain that determines the drift, i.e., the rate at which the
buffer content X(t) changes. The process Z(t) is called the
background (or modulating) process of the MFQ. MRMFQs
are generalizations of single-regime MFQs in the sense that
the buffer space in MRMFQs (also called multi-threshold,
level-dependent, multi-layer, or feedback MFQs) is parti-
tioned into a finite number of non-overlapping intervals which
are called the regimes (or layers) of the MRMFQ [1],[4],[9],[10].
In MRMFQs, the infinitesimal generator of the background
CTMC as well as the drift into the buffer depend on the
regime at which the buffer level resides. The material be-
low for the brief description of infinite-buffer MRMFQs and
their notation is based on [9].

In an infinite-size MRMFQ, the buffer1 is partitioned into
K > 1 regimes with the boundaries 0 = T (0) < T (1) < · · · <
T (K−1) < T (K) = ∞. If T (k−1) < X(t) < T (k), the sys-
tem is said to be in regime k at time t. Let X(t) ∈ [0,∞)
and Z(t) ∈ {0, 1, . . . , N − 1} denote the buffer content and
the background process, respectively, at time t, as in usual
MFQs. We denote the infinitesimal generator and drift ma-
trices associated with regime k by Q(k) and R(k), respec-
tively, for 1 ≤ k ≤ K. The regime-k drift matrix R(k) is the
diagonal matrix

R(k) = diag(r
(k)
0 , r

(k)
1 , . . . , r

(k)
N−1),

where r
(k)
i is the net drift of the buffer at state i and regime

k. Note that Q(k) and R(k) are fixed within a given regime.
Similar to Q(k) and R(k), we define Q̃(k) and R̃(k) as the
infinitesimal generator and drift matrices associated with the
boundary T (k) for 0 ≤ k ≤ K − 1, where the drift of state i

at the boundary T (k) is denoted by r̃
(k)
i . We define the joint

pdf vector f (k)(x) for regime k when T (k−1) < x < T (k) as
follows:

f
(k)
i (x) = lim

t→∞
d

dx
Pr{X(t) ≤ x, Z(t) = i}, (1)

f (k)(x) =
[
f
(k)
0 (x) f

(k)
1 (x) . . . f

(k)
N−1(x)

]
. (2)

Similarly, the steady-state probability mass accumulation
vector c(k) is defined for each boundary point T (k) for 0 ≤
k ≤ K − 1 as follows:

c
(k)
i = lim

t→∞
Pr{X(t) = T (k), Z(t) = i}, (3)

c(k) =
[
c
(k)
0 c

(k)
1 . . . c

(k)
N−1

]
. (4)

Note that probability mass accumulations cannot occur at
T (K) = ∞. Based on [9], the following set of differential
equations holds for the joint pdf vector:

d

dx
f (k)(x)R(k) = f (k)(x)Q(k), (5)

with the following set of boundary conditions:

c
(0)
i = 0, ∀i ∈ S(1)

+ (6)

c
(k)
i = 0, ∀i ∈

(
S

(k)
+ ∩ S(k+1)

+

)
∪
(
S

(k)
− ∩ S(k+1)

−

)
(7)

1Note that the buffer may be of finite or infinite size in the
more general case, the latter of which will be of interest in
this study.

c
(k)
i = 0, ∀i ∈

(
S

(k)
− ∩ S(k+1)

+

)
∩
(
S̃

(k)
+ ∪ S(k)

−

)
(8)

f (1)(0+)R(1) = c(0)Q̃(0) (9)

f (k+1)(T (k)+)R(k+1) − f (k)(T (k)−)R(k) = c(k)Q̃(k) (10)

f
(k)
i (T (k)−) = 0 ∀i ∈ S(k)

− ∪
(
S̃

(k)
0 ∩ S̃(k)

+

)
(11)

f
(k+1)
i (T (k)+) = 0 ∀i ∈

(
S̃

(k)
0 ∩ S̃(k)

−

)
∪ S(k+1)

+ (12)




K∑

k=1

T (k)−∫

T (k−1)+

f (k)(x)dx+

K−1∑

k=0

c(k)


1 = 1 (13)

where 1 denotes a column vector of ones of appropriate
size. Assuming invertibility of the per-regime drift matri-
ces2, the following similarity transformation is applied to

the per-regime matrix A(k) = Q(k)
(
R(k)

)−1

as follows:

A(k)Y (k) = Y (k)




0

A
(k)
−

A
(k)
+


 , (14)

where A
(k)
− and A

(k)
+ have eigenvalues in the open left and

open right half planes, respectively, and Y (k) is partitioned
as:

(
Y (k)

)−1

=



L

(k)
0

L
(k)
−

L
(k)
+


 . (15)

The matrix Y (k) can be obtained in a computationally stable
and efficient way using the ordered Schur decomposition and
a pair of Sylvester equations as shown in [9]. Subsequently,

the joint pdf vector f (k)(x) for each regime k is given by the
following matrix-exponential form:

f (k)(x) = a(k)




L
(k)
0

eA
(k)
− (x−T (k−1))L

(k)
−

e−A
(k)
+ (T (k)−x)L(k)

+


 , (16)

for T (k−1) < x < T (k) and

a(k) =
[
a
(k)
0 a

(k)
− a

(k)
+

]

is the vector of unknown coefficients to be solved for. Since
the regime K is of infinite size, the stability condition

π(K)R(K)1 < 0 (17)

should be satisfied where π(K) is the steady-state vector of
Q(K). In addition to the boundary conditions (6)-(13) and

the stability condition (17), a
(K)
0 = 0 and a

(K)
+ = 0 should

hold since (16) must be bounded in regime K. Finally, one

can solve for the unknowns a(k) and c(k) by re-writing equa-
tions (6)-(13) (using Eqn. (16)) in terms of the unknowns.
This algorithm requires the solution of a linear matrix equa-
tion of at most size N(2K+1). The computational complex-
ity of the proposed algorithm can be reduced to O(N3K) on
the basis of the observation that the linear matrix equation
is in block tridiagonal form [13].
2When there are states with zero drifts, one can follow the
procedure described in [9] to handle the case of singular per-
regime drift matrices.
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3. SYSTEM MODEL
We will now describe the system model for the delay-

based dynamic speed scaling system. For this system, we
assume that the jobs arrive at the server according to a Pois-
son process with rate λ and service times are exponentially
distributed with parameter µk for 1 ≤ k ≤ K + 1 where
{µ1, µ2, . . . , µK+1} is the set of service rates (typically in
ascending order), selected from the interval [µmin, µmax].

Regime boundaries are ordered as 0 = T (0) < T (1) < · · · <
T (K) < T (K+1) = ∞. When T (k−1) ≤ D(t) < T (k), then
the HOL job is served with rate µk where D(t) denotes the
delay already experienced by the HOL job at service start
time t. We let S(t) (sojourn time process) denote the so-
journ time of the job being served by the server. If there are
no jobs being served at time t, then S(t) = 0. Moreover, let
A(t) (unfinished work process) denote the unfinished work
in the system at time t. It is clear that a job arriving at
the system at time t with T (k−1) ≤ A(t) < T (k) is to be
eventually served at rate µk.

The sample paths for the two processes S(t) and A(t)
are given in figures 1a and 1b, respectively, for an example
scenario with two thresholds T (1) = 2 and T (2) = 4 and for
the case of job arrivals occurring at t = 0, 2, 3, 4, 8, 13. For
the sake of convenience, the service times in regimes 1, 2, and
3, are deterministically set to 3, 2, and 1, respectively, in this
example. Due to abrupt jumps in both processes, neither of
the two processes can be represented as an MFQ with finite
drifts. Therefore, we propose a (K+1)-regime MFQ, namely
the joint process (X(t), Z(t)) where the fluid level X(t) is
obtained by replacing abrupt downward jumps in S(t) by
linear decrements corresponding to a drift of minus unity.
Fig. 1c depicts X(t) for the same example.

The sample path followed by X(t) can indeed be mod-
eled by an MRMFQ. Moreover, it is clear from sample path
arguments that the steady-state distribution of the process
S(t) (A(t)) can be derived from that of (X(t), Z(t)) by cen-
soring out the states corresponding to negative (positive)
drifts. Therefore, we will first focus on the MRMFQ model
for X(t). For this purpose, Ik is defined as the service state
in regime k for k = 1, . . . ,K + 1 and in this state, the job
is being served with rate µk and X(t) is increased with a
drift of 1. When the service of the current job completes
in state Ik, the system transits into state D during which
X(t) is decreased with a drift of 1 for an exponentially dis-
tributed amount of time with mean 1/λ so that the delay
of the new HOL job is reduced by an amount correspond-
ing to its inter-arrival time. If T (k−1) ≤ X(t) < T (k) for
some k ≤ K, the system transits into state Ik and so on.
However, if X(t) ≥ T (K), either of the following cases may
follow: i) the HOL job is served with some finite rate µK+1

if the system is delay-tolerant, or ii) the HOL job is blocked
because of the excessive delay. For both cases, we will re-
fer to T (K) as the delay threshold. Moreover, X(t) may hit
zero in state D meaning that there are no jobs waiting in the
queue. When X(t) = 0, once a job arrives at the system, the
server selects a service rate of µ1 for this new job. Hence,
the only transition at the boundary X(t) = 0 occurs out of
state D into state I1 with rate λ. With states D and Ii for
i = 1, . . . ,K + 1, the background process, denoted by Z(t),
has K + 2 states in total. State transitions for the possible
cases are illustrated in Figure 2. Moreover, with the states
ordered as IK+1, IK , . . . , I1,D, the infinitesimal generator
matrix of regime-j, denoted by Q(j), for j = 1, . . . ,K + 1

can be written as follows: Q(j) =




IK+1 · · · Ij+1 Ij Ij−1 · · · I1 D
IK+1 0 · · · 0 0 0 · · · 0 0
...

...
...

...
...

...
...

Ij+1 0 · · · 0 0 0 · · · 0 0
Ij 0 · · · 0 −µj 0 · · · 0 µj
Ij−1 0 · · · 0 0 −µj−1 · · · 0 µj−1

...
...

...
...

. . .
...

...
I1 0 · · · 0 0 0 · · · −µ1 µ1

D 0 · · · 0 λ 0 · · · 0 −λ




Note that since X(t) increases in the service state Ik for
k = 1, . . . , j − 1, there may be transitions from state Ik to
state D in regime j for k ≤ j. We set Q̃(j) = Q(j+1) as the
generator at boundary-j for j = 1, . . . ,K. Q̃(0) is similar to
Q(1) except that there is no transition from state I1 to state
D at boundary-0 and only transition is from state D to state
I1. Moreover, drift matrices at regime-k and boundary-k,
denoted by R(k) and R̃(k), respectively, are written as fol-
lows:

R(k) = diag(I,−1), 1 ≤ k ≤ K + 1, (18)

R̃(k) =

{
R(k+1), 1 ≤ k ≤ K,
max(0, R(1)), k = 0,

(19)

where max is the element-wise operator and I denotes an
identity matrix of appropriate size.

I1
λ(a)



µkµ2

I2 …I1 

µ1

µk-1

Ik-1 Ik

λ
(b)

Figure 2: State transitions (a) for X(t) = 0 and (b)
in regime k for k = 1, ...,K + 1.

3.1 Steady-state Solution
Since the unfinished work process A(t) determines the

amount of delay that newly arriving jobs (which arrive to the
system according to a Poisson process) will experience, the
steady-state probability distribution of state D can be used
to obtain the quantities of interest including the average sys-
tem power, blocking probability, and the delay distribution,
by a direct consequence of the PASTA property. There-
fore, in order to obtain the steady-state distribution of A(t)
from that of the fluid process (X(t), Z(t)), we censor out all
the service states and subsequently normalize the steady-
state distributions. In mathematical terms, we calculate the
steady-state distribution of A(t) from that of (X(t), Z(t)) as

9
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Time t

Time tX(t)

Time t

A(t)

0 2 3 4 8 13
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(1)

=2
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(2)
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(2)

=4

T
(2)

=4

T
(1)

=2

T
(1)

=2

(a)

(b)

(c)

Figure 1: Sample paths of (a) S(t), (b) A(t) and (c) X(t).

follows:

lim
t→∞

Pr{A(t) ≤ x} = lim
t→∞

Pr{Z(t) = D, X(t) ≤ x}
Pr{Z(t) = D} . (20)

We denote the probability that a newly arriving job finds
the system in regime k by pk for k = 1, . . . ,K + 1. Mathe-
matically,

pk = lim
t→∞

Pr{T (k−1) < A(t) < T (k)}, 1 ≤ k ≤ K + 1. (21)

Moreover, we denote the probability that a newly arriving
job finds the queue empty by p0, i.e., p0 = lim

t→∞
Pr{A(t) =

0}. Similarly, we denote the probability that a job is served
with rate µk by qk for k = 1, . . . ,K + 1. Note that qk = pk
for k ≥ 2, with the only exception that q1 = p0+p1; because
even if a job arrives to the system at boundary-0, it will be
served with a rate of µ1. With these definitions, the average
system power Pavg can be written as:

Pavg = p0PI + (1− p0)

K+1∑

k=1

qk
µk

K+1∑
i=1

qi
µi

Pk, (22)

where Pk denotes the operating power associated with rate
µk and PI is the power consumed when the server is idle.
The distribution of the delay that the arriving jobs experi-
ence can also be computed via the steady-state distribution
of A(t). The cumulative distribution function of the steady-
state queuing delay D(t), denoted by FD(x), can be written
as:

FD(x) = lim
t→∞

Pr{D(t) ≤ x} = lim
t→∞

Pr{A(t) ≤ x}, (23)

which can directly be obtained from the steady-state solu-
tion of A(t).

3.2 The Case of Abandonments
For delay intolerant systems, the HOL jobs which have

experienced a delay larger than T (K) will abandon the sys-
tem without service. In that case, such jobs are said to be
blocked. In order to model blocking, we let µK+1 →∞ and
assume that the server does not consume any energy during
this process. Then, we calculate the blocking probability,
denoted by pb, as follows:

pb = lim
µK+1→∞

pK+1 = lim
t→∞

lim
µK+1→∞

Pr{A(t) ≥ T (K)}.
(24)

Note that as µK+1 →∞, qK+1/µK+1 terms in (22) approach
zero. However, in the numerical examples, we set µK+1

to some large value compared to µmax (such as 1e6) and
show that such approximations do not give rise to adverse
effects on the numerical accuracy of the results. In this
case, the identity (22) is slightly modified in order to prevent
numerical errors in the computation of average power:

Pavg = p0PI + (1− p0)
K∑

k=1

qk
µk

K∑
i=1

qi
µi

Pk. (25)

Since the solution to the dynamic speed scaling problem with
or without abandonments has been reduced to the steady-
state solution of an MRMFQ with K + 2 states and K + 1
regimes, the computational complexity of the overall algo-
rithm is O(K4).

4. NUMERICAL EXAMPLES
In the numerical examples, we evaluate the performance

of the dynamic speed scaling system in terms of the average
system power and blocking probability for various values
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of the parameter K, the delay threshold T (K) and the job
arrival rate λ. In average power calculations, we set PI = 0.
Similar to the studies in [2],[3],[5], and [6], we assume that
Pk = cµαk for k = 1, . . . ,K + 1, where α is a scaling factor
and c is a constant. Moreover, as in [3],[6], we fix the power
scaling factor α = 2, and the constant c is set to unity.

4.1 Example 1
In the first example, we consider abandonments. For this

purpose, we fix K = 2, T (1) = 10, T (2) = 20, µ1 = 0.5,
µ2 = 1 and compare the blocking probability pb and average
system power Pavg with simulation results as µ3 is increased
beyond µmax = 1, indicating that HOL jobs with delays
greater than T (2) abandon the system without service. In
the simulations, we run a single instance until 1e7 jobs are
blocked. Four values of µ3, namely 1e2, 1e4, 1e6, and 1e8,
are tested. We define η = λ/µmax as the load on the system
and for η = 0.4, 0.8, which correspond to light and heavy
loads, respectively, the results are tabulated in Table 1. As it
can be observed from Table 1, for both heavy and light load
cases, the blocking probability converges beyond µ3 = 1e6 to
values which have negligible differences from the simulation
results. Hence, for the remaining examples with blocking,
we propose in our MFQ model that µK+1 is set to 1e6.

4.2 Example 2
In the second example, we propose and investigate a spe-

cific rate adjustment policy, which will be referred to as the
Piecewise Linear Rate Adjustment Policy (PiLRAP). In par-
ticular, PiLRAP selects service rates from piecewise linear
functions of the unfinished work process A(t) (or delay D(t)
depending on when the service rate selection is to be made)
from the interval [µmin, µmax]. We assume that the service
rate of regime K is µmax in order to serve the jobs in this
regime more aggressively, and jobs with delays larger than
T (K) are blocked.

We first define the point (x0, y0) such that the rate func-
tion is piecewise linear in the intervals [(0, 0), (x0, y0)] and

[(x0, y0), (T (K), µmax)]. For a given K < ∞, we let x0 =

lT (K)/K and y0 = mµmax/K for 0 ≤ l ≤ K, 1 ≤ m ≤ K.
An example of the service rate function of interest is de-
picted in Figure 3 when µmin = 0, µmax = 1, T (K) = 10,
K = 10 and three different (x0, y0) points.

The point (x0, y0) determines the service rates assigned for
different unfinished work values and K identifies the number
of service rates, or power levels, that the server will use.
Consequently, the PiLRAP system parametersK, x0, and y0
have significant impact on the performance of the system in
terms of average system power Pavg and blocking probability
pb. In the current example, we fix K to 20 and study how

Table 1: Blocking probability pb and average system
power Pavg compared with simulation results for two
values of η = 0.4, 0.8.

µ3
pb (%) Pavg

η = 0.4 η = 0.8 η = 0.4 η = 0.8
1e2 0.1123 3.0429 0.2238 0.6662
1e4 0.1118 3.0196 0.2238 0.6664
1e6 0.1118 3.0193 0.2238 0.6664
1e8 0.1118 3.0193 0.2238 0.6664
Sim 0.1118 3.0185 0.2238 0.6664
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Figure 3: Service rate function (dashed lines)
and actual service rate µk (straight lines) as func-
tions of the unfinished work A(t) for µmin = 0,

µmax = 1, T (K) = 10, K = 10 and (x0, y0) ∈
{(2, 0.8), (5, 0.5), (8, 0.2)}.

Pavg and pb change as a function of x0 and y0 in Figure 4
for λ = 0.6, µmax = 1 and T (K) = 20. In general, lower
blocking probabilities can be obtained by trading off the
average system power. For a given parameter set (including
K), one can obtain from Figure 4 the optimal point (x0, y0)
such that the average power consumption is minimized while
the blocking probability is kept under a certain desired value.

4.3 Example 3
In the final example, we investigate how the number of

available service rates K and load η impact the location of
the optimal point (x0, y0). In order to evaluate the perfor-
mance of PiLRAP in terms of power savings, we define the
percentage power gain G as follows:

G = 100
(Pf − Pavg)

Pf
(26)

where Pf is the average system power of the benchmark
policy which has a fixed service rate, i.e., K = 1 and µ1 =
µmax, which is an M/M/1 queue with a service rate of µmax.
The average power consumption of the M/M/1 server with
a load of ρ = λ/µmax can be written as follows:

Pf = (1− ρ)PI + ρP1 (27)

since the operating power of the server is either P1 or zero
depending on whether the server is busy or not. We also
define (x∗0, y

∗
0) as the optimal (x0, y0) point that minimizes

Pavg while keeping pb below a threshold set to 0.01 in this
example. Similarly, we define the attainable power gain,
denoted by G∗, as the power gain obtained by choosing
(x0, y0) = (x∗0, y

∗
0). We demonstrate how x∗0, y∗0 and G∗

change as functions of K in figures 5, 6 and 7, respectively.
It can be observed from figures 5 and 6 that as K increases,
the optimal point (x∗0, y

∗
0) favors a more aggressive rate ad-

justment policy by reducing x∗0 and assigning high service
rates even for very low unfinished work values. Moreover,
we observe that as the load η increases, y∗0 also increases
so that the server can handle the increased load. However,
there are some exceptional noisy points, which is due to the
fact that the service rates can only by selected from integer
multiples of µmax/K which causes a certain non-monotonic
behavior.

We also observe from Figure 7 that the relative change
in the attainable power gain is only marginal beyond K =
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Figure 4: (a) Average system power Pavg and (b) blocking probability pb as functions of parameters x0 and
y0 for K = 20.
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Figure 5: x∗0 as a function of K for η = 0.4, 0.6, 0.8.
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Figure 6: y∗0 as a function of K for η = 0.4, 0.6, 0.8.
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Figure 7: G∗ as a function of K for η = 0.4, 0.6, 0.8.

20 for all of the three load values tried. Since this is the
case, we now fix K = 20 and plot the attainable power gain
as a function of load η in Figure 8. The attainable power
gain G∗ decreases monotonically as the load η approaches

Load 2
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Figure 8: Attainable power gain G∗ as a function of
the load η for K = 20.

1. This is due to the fact that as η gets closer to 1, the
server tends to select higher service rates which approach
µmax in order to handle high arrival rates and to keep the
blocking probability pb below the threshold. Therefore, we
can conclude that the gain in terms of average system power
is significant especially for lightly and moderately loaded
systems.

5. CONCLUSIONS
In this study, we propose a methodology to model a dy-

namic speed scaling system in which the service rate is to
be chosen from a finite set of values depending on the queue
waiting time of the HOL job at the epoch of service start.
We envision two possible scenarios: HOL jobs with delays
greater than a certain threshold may either be served with a
finite service rate or they abandon the system. In the numer-
ical examples, we focused on the latter case. We proposed
a multi-regime Markov fluid queue model, the steady-state
solution of which is used to calculate the average power con-
sumption, the blocking probability, and the distribution of
queue waiting times. Using the MRMFQ solver as an in-
strument, a specific dynamic speed scaling policy, namely
the Piecewise Linear Rate Adjustment Policy (PiLRAP) is
investigated to find the optimum parameters of this policy
giving rise to minimized power consumption under blocking
probability constraints. Future work will consist of develop-
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ment of stochastic models for more general arrival processes
and service time distributions as well as the investigation of
more general dynamic speed scaling policies (as extensions
of PiLRAP). The case of zero drifts in MRMFQs will also
be investigated for studying dynamic speed scaling systems
with abandonment for dealing with the case µK+1 → ∞
exactly, and not approximately as in Eqn. (24).
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ABSTRACT
We revisit the shift technique applied to Quasi–Birth-and-
Death (QBD) processes (He, Meini, and Rhee, SIAM J. Ma-
trix Anal. Appl., 2001) by bringing the attention to the ex-
istence and properties of canonical factorizations. To this
regard, we prove new results concerning the solutions of the
quadratic matrix equations associated with the QBD. These
results find applications to the solution of the Poisson equa-
tion for QBDs.

Keywords
Quasi-Birth-and-Death processes; Shift technique; Canoni-
cal factorizations; Quadratic matrix equations

1. OUTLINE OF THE MAIN RESULTS
Consider a discrete time Quasi–Birth-and-Death process

(QBD) defined by the transition probability matrix

P =




B A1

A−1 A0 A1

A−1 A0

. . .

. . .
. . .




(1)

where B,A−1, A0 and A1 are square matrices of order m <
∞. Assume that P and A−1 +A0 +A1 are irreducible.

Define the matrix G as the minimal nonnegative solution
of the equation

A−1 + (A0 − I)X +A1X
2 = 0, (2)

and the matrix Ĝ as the minimal nonnegative solution of
the dual equation [13, 2]

A1 + (A0 − I)X +A−1X
2 = 0. (3)

For this class of problems, together with (2) and (3), the

reversed equations

X2A−1 +X(A0 − I) +A1 = 0,

A−1 +X(A0 − I) +X2A1 = 0,

have a relevant interest. These equations have a minimal

nonnegative solution R and R̂, respectively, which can be ex-

plicitly related to G and Ĝ [13, 15]. These solutions have an
interesting probabilistic interpretation and their computa-
tion is a fundamental task in the analysis of QBD processes.
Moreover they provide the factorization

ϕ(z) = (I − zR)K(I − z−1G)

of the Laurent polynomial ϕ(z) = z−1A−1 + A0 − I + zA1,
where K is a nonsingular matrix. A factorization of this
kind is canonical if ρ(R) < 1 and ρ(G) < 1, where ρ denotes
the spectral radius. It is weak canonical if ρ(R) ≤ 1 and
ρ(G) ≤ 1.

We introduce the matrix polynomial

B(z) = A−1 + z(A0 − I) + z2A1 = zϕ(z)

and define the roots of B(z) as the zeros of the polyno-
mial detB(z). If ξ is a root of B(z) we say that v is an
eigenvector associated with ξ if v 6= 0 and B(ξ)v = 0. The
location of the roots of B(z) determines the classification of
the QBD as positive, null recurrent or transient, and governs
the convergence and the efficiency of the available numeri-
cal algorithms for approximating G and R [2]. In particular,
B(z) has always a root on the unit circle, namely, the root
ξ = 1, and the corresponding eigenvector is the vector e of
all ones, i.e., B(1)e = 0.

If the QBD is recurrent, the root ξ = 1 is the eigenvalue
of largest modulus of the matrix G and Ge = e. In the
transient case, that root is the eigenvalue of largest modulus
of R. These facts have been used to improve convergence
properties of numerical methods for computing the matrix
G. The idea, introduced in [11] and based on the results of
[5], is to “shift” the root ξ = 1 of B(z) to zero or to infinity,
and to construct a new quadratic matrix polynomial

Bs(z) = As
−1 + z(As

0 − I) + z2As
1

having the same roots as B(z), except for the root equal to
1, which is replaced with 0 or infinity (the super- or sub-
script s means “shifted”). This idea has been subsequently
developed and applied in [4, 8, 9, 10, 12, 14].

In this talk we revisit the shift technique, and we focus on
the properties of the canonical factorizations. In particular,
we prove new results concerning the existence and properties
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of the solutions of the quadratic matrix equations obtained
after the shift [3].

By following [2], we recall that in the positive recurrent
case the root ξ = 1 can be shifted to zero by multiplying
B(z) to the right by a suitable function (right shift), while
in the transient case the root ξ = 1 can be shifted to infinity
by multiplying B(z) to the left by another suitable function
(left shift). In the null recurrent case, where ξ = 1 is a root
of multiplicity 2, shift is applied both to the left and to the
right so that one root 1 is shifted to zero and the other root 1
is shifted to infinity (double shift). In all the cases, the new
Laurent matrix polynomial ϕs(z) = z−1Bs(z) is invertible
on an annulus containing the unit circle in the complex plane
and we prove that it admits a canonical factorization which
is related to the weak canonical factorization of ϕ(z). As a
consequence, we relate G and R with the solutions Gs and
Rs of minimal spectral radius of the matrix equations

As
−1 + (As

0 − I)X +As
1X

2 = 0,

X2As
−1 +X(As

0 − I) +As
1 = 0,

respectively.
A less trivial issue is the existence of the canonical factor-

ization of ϕs(z−1). We show that such factorization exists
and we provide an explicit expression for it, for the three
different kinds of shifts. The existence of such factorization
allows us to express the minimal nonnegative solutions Ĝ

and R̂ of the matrix equations A−1X
2 +(A0−I)X+A1 = 0

and A−1 +X(A0− I) +X2A1 = 0, in terms of the solutions

of minimal spectral radius Ĝs and R̂s of the equations

As
−1X

2 + (As
0 − I)X +As

1 = 0,

As
−1 +X(As

0 − I) +X2As
1 = 0,

respectively.
The existence of the canonical factorizations of ϕs(z) and

ϕs(z−1) has interesting consequences. Besides providing
computational advantages in the numerical solution of ma-
trix equations, it may improve the numerical conditioning
of the problem. In fact, while null recurrent problems are
ill-conditioned, the shifted counterparts are not. A conve-
nient computational strategy to solve a null recurrent prob-
lem consists in transforming it into a new one, say by means
of the double shift; solve the latter by using a quadratic
convergent algorithm like cyclic reduction or logarithmic re-
duction [2]; then recover the solution of the original problem
from the one of the shifted problem. For this conversion, the
expressions relating the solutions of the shifted equations to
those of the original equations are fundamental.

Another useful application of these results is the solution
of the Poisson problem for QBDs where we are looking for
a vector u such that

(I − P )u = g

where g is a given vector [1], [6]. In fact, using the theory
of matrix difference equations and of resolvent triples of [7],
we can characterize all the solutions in the positive recurrent
and in the transient cases. This theory cannot be applied
directly to null recurrent QBDs. However, by performing
the shift of eigenvalues, we transform the original Poisson
problem into a new one where, unlike in the null recurrent
case, the eigenvalue 1 is simple. For the new problem, the
theory of matrix difference equations can be applied and the

solution of the original problem can be easily related to the
solution of the modified problem.
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ABSTRACT
We give a probabilistic interpretation of the family of algo-
rithms known as doubling, which are the most effective algo-
rithms for computing the return probability matrix Ψ, the
key ingredient in the stationary distribution of a stochastic
fluid queue.
To this end, we first revisit the links presented in [1, 8]

between fluid queues and quasi-birth-death processes. In
particular, we give alternative interpretations for these con-
nections, and then generalize this framework of understand-
ing to give a probabilistic meaning for the initial step of
doubling algorithms. Then, we give an interpretation for
the iterative step of these algorithms.

CCS Concepts
•Mathematics of computing → Probabilistic algo-
rithms; Markov processes;

Keywords
doubling algorithms; stochastic fluid flows; quasi-birth-death
processes; stationary distribution

1. INTRODUCTION
Stochastic fluid queues are two-dimensional Markov pro-

cesses frequently used for modeling real-life applications. In
a fluid queue {Xt, ϕt}t≥0, the phase ϕt is a continuous-time
Markov chain on a finite state space S, and the level Xt
varies linearly at rate ci whenever ϕt = i, i ∈ S. We assume
Xt ∈ [0,∞), that is, there exists a regulated boundary at 0.
The joint stationary distribution of the level and the phase
has been well-analyzed. Asmussen [2], Rogers [15], and
∗N. Bean and G. Nguyen acknowledge the financial support
of the Australian Research Council through the Discovery
Grant DP110101663, and of the ARC Centre of Excellence
for Mathematical and Statistical Frontiers. F. Poloni is par-
tially supported by a PRA research project of the University
of Pisa.

Karandikar and Kulkarni [11] independently derived this
distribution using different approaches: time reversal, the
theory of generators of Markov processes, Wiener-Hopf fac-
torization, and partial differential equations. More recently,
Ramaswami [14] and da Silva Soares and Latouche [8] ob-
tained new representations using matrix-analytic methods.
The key component for obtaining the stationary distribu-

tion is the probability matrix Ψ, of which each entry Ψij is
the probability of the fluid returning, from above, to the ini-
tial level x in phase j, after starting in phase i and avoiding
all levels below x. This matrix Ψ is also the minimal nonneg-
ative solution to a nonsymmetric algebraic Riccati equation
(NARE) of the form

B −AX −XD +XCX = 0. (1)

These probabilistic and algebraic characterizations of Ψ
have led to considerable efforts in developing algorithms for
computing the matrix efficiently. Asmussen [2] presented
three iterative schemes, while Guo [9] analyzed fixed-point
iterations and Newton’s method. Following a different path,
Ramaswami [14] and da Silva Soares and Latouche [8] proved
that one can approximate fluid processes using quasi-birth-
death (QBD) processes, thus allowing quadratically con-
vergent algorithms originally developed for QBDs—such as
Logarithmic Reduction [12] and Cyclic Reduction [6]—to be
used for solving for Ψ. Bean et al. [4] proposed First-Exit
and Last-Entrance and gave probabilistic interpretations for
these two algorithms, as well as for the Newton’s method,
one of Asmussen’s iterative schemes, and the Logarithmic
Reduction applied to the QBD version of fluid processes.
Here, we focus on a family of algorithms for solving (1),

known as doubling, including structure-preserving doubling
algorithm (SDA) [10], SDA shrink-and-shift (SDA-ss) [7],
and alternating-directional doubling algorithm (ADDA) [16].
These algorithms are known to be more computationally ef-
ficient than all the ones treated in [2, 14, 4]. We give these
doubling algorithms a probabilistic interpretation, which to
the best of our knowledge is the first one available. Prob-
abilistic interpretations are useful as they give an intuitive
explanation of how a numerical algorithm works, which in
turn allows for shorter and more elegant proofs, as well as
improvements and generalizations of the algorithm. The
combination of purely linear-algebraic manipulations and
probabilistic understanding has paved ways for many signifi-
cant theoretical developments, as already seen for QBDs [13,
5] and fluid queues [14, 8, 4].
Thus, the aim of this work is twofold. One is to under-

stand doubling algorithms more thoroughly from a proba-
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bilistic point of view, with an eye to possible future gen-
eralizations. The other is to make the algorithms—which
were developed purely from a linear algebra perspective—
more accessible to probabilists who work on stochastic fluid
flows.
In Section 2, we present the doubling algorithms. In Sec-

tion 3, we give alternative interpretations for the links in
[1, 8] between fluid queues and QBD processes, and then
generalize these to give a probabilistic meaning for the ini-
tial starting point of doubling algorithms; we also offer an
interpretation for the iterations of these algorithms.

2. DOUBLING ALGORITHMS
Let S+ := {i ∈ S : ci > 0}, S− := {i ∈ S : ci < 0},

n := |S|, n+ := |S+|, and n− := |S−|. We denote by C the
diagonal rate matrix diag(ci)i∈S for the level Xt, and by T
the generator of the phase process ϕt.
Given a matrix P ∈ Rn×n, we partition P as follows

P =
[
E G
H F

]
, with E ∈ Rn+×n+ , F ∈ Rn−×n− . (2)

We also partition C and T in a similar manner, into sub-
blocks C+, C−, T++, etc. Define

Ê := E(I −GH)−1E, (3a)

F̂ := F (I −HG)−1F, (3b)

Ĝ := G+ E(I −GH)−1GF, (3c)

Ĥ := H + F (I −HG)−1HE. (3d)

Then the function

F(P ) :=
[
Ê Ĝ

Ĥ F̂

]
(4)

is known as the doubling map, which is well-defined when
I −GH and I −HG are nonsingular.
Let

αopt := min
i∈S−

∣∣∣Cii
Tii

∣∣∣, βopt := min
i∈S+

∣∣∣Cii
Tii

∣∣∣, (5)

Next, choose two real constants 0 ≤ α ≤ αopt, 0 ≤ β ≤ βopt,
not both being zero, and define

P0 := Q−1R, (6)

where

Q :=
[
C+ − αT++ −βT+−
−αT−+ |C−| − βT−−

]
, (7)

R :=
[
C+ + βT++ αT+−
βT−+ |C−|+ αT−−

]
. (8)

Applying the doubling map to P0 iteratively gives rise to
the following sequence

Pk :=
[
Ek Gk
Hk Fk

]
:= Fk(P0) for k ≥ 0. (9)

where Fk denotes the composition of F with itself k times.
By [16, Theorem 3.3] when α, β 6= 0, and by [7, Theorem 8]
otherwise, we have Pk > 0, Gk < Gk+1, Hk < Hk+1, and
the limiting behaviour of the sub-blocks of Pk is

lim
k→∞

Ek = 0, lim
k→∞

Fk =: F∞, for some F∞

lim
k→∞

Gk = Ψ, and lim
k→∞

Hk = Ψ̂,

where Ψ and Ψ̂ are the minimal nonnegative solutions to
C−1

+ T+− + Ψ|C−|−1T−− + C−1
+ T++Ψ

+Ψ|C−|−1T−+Ψ = 0, (10)

|C−|−1T−+ + Ψ̂C−1
+ T++ + |C−|−1T−−Ψ̂

+Ψ̂C−1
+ T+−Ψ̂ = 0. (11)

The convergence rate in these limits is known to be quadratic.
The algorithm described above is ADDA. The algorithms

SDA-ss and SDA correspond to letting α := 0, and letting
α = β := min(αopt, βopt), respectively.

3. (RE-)INTERPRETATIONS

3.1 The Return Probability Matrix Ψ
For simplicity, assume the fluid has unit rates, and the

process starts at level 0 in a phase in S+. If we condition on
the time y of the first transition to a phase in S− (which is
also the level where the fluid first changes direction from go-
ing upward to going downward), a standard argument gives

Ψ =
∫ ∞

0
exp(T++y)T+− exp(Uy)dy, (12)

where U := T−− + T−+Ψ is the generator of the downward
record process.
In [8], the authors uniformized the first upward part of

the path, and then the remaining part, with the same rate.
Here, we give a slightly more general version, in which there
are two different uniformization rates λ and µ. In particular,
we uniformize the first upward part of the path with rate λ,
and the remainder with rate µ, obtaining

Ψ =
∫ ∞

0
[
∞∑

k=0

e−λy (λy)k
k! Pλ++]λPλ+−[

∞∑

n=0

e−µy (µy)n
n! Vµ]dy.

with Pλ := I+λ−1T , Pµ := I+µ−1T , and Vµ := I+µ−1U .
Swapping the order of summation and integration gives

Ψ =
∞∑

k,n=0

γk,nP
k
λ++Pλ+−V

n
µ , (13)

where

γkn = (k + n)!
k!n!

λk+1µn

(λ+ µ)k+n+1 .

Da Silva Soares and Latouche [8] gave a probabilistic in-
terpretation for (13): sample paths of the uniformized pro-
cess are decomposed into disjoint sets Ak,n, corresponding
to paths with
• k uniformization events in the time it takes to increase
from 0 to y (which is y, as we assume unit rates),

• an additional event at time y, and then

• n uniformization events in the time it takes the down-
ward record process to decrease from y to 0.

Using probabilistic arguments, we can rearrange the sum
in (13) in different ways, each involving only one summation
variable. Let

W := (I + µ−1U)(I − λ−1U)−1.
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Theorem 3.1.

Ψ =
∞∑

k=0

P kλ++Pλ+−(I − λ−1U)−k−1 (14)

=
∞∑

n=0

(I − µ−1T++)−n−1Pµ+−V
n
µ , (15)

=
∞∑

m=0

(I + λ−1T++)m(I − µ−1T++)−m−1×

(Pλ+−W + Pµ+−)Wm. (16)

The proof of Theorem 3.1, and that of another theorem
stated later, are included in our forthcoming paper [3]. The-
orem 3.1 presents three ways of categorizing returning-to-
zero sample paths of a fluid process, using two Poisson pro-
cesses Uλ and Dµ with rate λ and µ, respectively.

1. For the sum in (14):

We group the sample paths according to the number k
of events of the Poisson process Uλ in [0, y), which provide
k uniformizing steps represented by P kλ++ in the sum. We
denote by ui, 0 < u1 < · · · < uk < y, the sequence of events.
There is also an event at y =: uk+1, represented by Pλ+−.
Let τi := inf{t ≥ y : Xt = ui}, i = 0, . . . , k + 1, be the

first time the fluid reaches level ui on the way down after
the turning point at y, with u0 := 0. Then, y = τk+1 <
τk < · · · < τ0.
For each interval (τi+1, τi), we observe the fluid process

once it reaches a new downward record ui at time τi—this is
indicated by the matrix (1−λ−1U)−1, of which each element
(j1, j2) is the probability that the fluid is in state j2 at time
τi, after starting in state j1 at time τi+1. There are k + 1
intervals, which explains the term (1− λ−1U)−k−1.

2. For the sum in (15):

We group the sample paths in an opposite manner: ac-
cording to the number of n events of the process Dµ in an
interval of length y, which provides n uniformizing steps
of the downward record process (with generator U), repre-
sented by V nµ . We denote by di, i = 1, . . . , n, the sequence
of events, and let d0 := y, and dn+1 := 0.
Then, for the initial upward journey from level 0 to level y,

we simply observe the fluid process at the end of each ex-
ponentially distributed interval (di+1, di). There are n + 1
intervals, which explains the term (1−µ−1T++)−n−1. Once
at level y, there is a switch in direction with matrix Pµ+−.

3. For the sum in (16):

The interpretation of this sum is based on a combination
of the previous two constructions. Let {ui}i≥1 and {di}i≥1
denote the sequences of events of Uλ and of Dµ in [0, y),
respectively. We define a new sequence, based on {ui} and
{di}, as follows

c0 = 0,
c2i+1 = min{di : di > c2i},
c2i+2 = min{ui : ui > c2i+1},

for i ≥ 0.
In this construction, each interval [c2i, c2i+1] contains only

one point of Dµ, which lies at its right endpoint, and has

exponentially distributed length with parameter µ; on the
other hand, each interval [c2i+1, c2i+2] contains only one
point of Uλ, which lies at its right endpoint, and has ex-
ponentially distributed length with parameter λ.

y0

d1

c1

u1

c2

d2

c3

u2

c4

d4

c5

Figure 1: An illustration of the construction for ci

Let N := argmax{cj : cj < y}, then N is the number
of events cj in the interval [0, y). There are two cases: N
is even, and N is odd. For brevity, we consider only the
case when N is odd in this abstract, and analyse both cases
in [3].
If N = 2m + 1 for some integer m ≥ 0, let c2m+2 :=

y. Thus, there are 2m + 2 exponentially distributed inter-
vals, with parameters alternating between µ and λ, starting
with µ and ending with λ. These sample paths contribute
to the following term of the sum (16):

∞∑

m=0

(I + λ−1T++)m(I − µ−1T++)−m−1×

Pλ+−W
m+1.

During the initial upward journey from 0 to y, for the
first 2m intervals, we alternate between observing the fluid
at the end of an interval, represented by (I − µ−1T++)−1,
and doing a uniformization step with I + λ−1T++.
We have another observation at the end of the (2m +

1)th interval, and then a uniformization step with Pλ+−,
signaling a switch from the upward direction to downward
for the fluid, at c2m+2 = y.
Let ρi := inf{t ≥ y : Xt = ci}, i = 1, . . . , 2m + 2, and let

ρ0 := c0 = 0. Then, ρi is the sequence of first hitting times
to level ci from above, and ρi+1 < ρi.
For the 2m+ 2 time intervals (ρi+1, ρi), we alternate be-

tween observing the fluid at the end, represented by (I −
λ−1U)−1, and doing a uniformization step with I + µ−1U .
This implies, that if we observe the fluid over the interval

at the end of which it increases from level ci to level ci+1 for
the first time, then we do a uniformization step for the path
where the fluid decreases from ci+1 to ci for the first time,
and vice versa. This construction for the downward journey
over the time interval [y, c0], explains the term Wm+1 =
(I + µ−1U)m+1(I − λ−1U)−m−1.

3.2 QBDs and Fluid Queues
Based on the aforementioned interpretations, we construct

three QBD processes for which the first downward return
matrices G contains the Ψ as one of its blocks.

Theorem 3.2. Consider three quasi-birth-death processes
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with corresponding groups of probability matrices:

A−1 = 1
2

[
0 0
0 I

]
, A0 = 1

2

[
I Pλ+−
0 Pλ−−

]
, A1 = 1

2

[
Pλ++ 0
Pλ−+ 0

]
;

B−1 = 1
2

[
0 Pµ+−
0 Pµ−−

]
, B0 = 1

2

[
Pµ++ 0
Pµ−+ I

]
, B1 = 1

2

[
I 0
0 0

]
;

C−1 = 1
2

[
0 Pµ+−
0 Pµ−−

]
, C0 = 1

2

[
Pµ++ Pλ+−
Pµ−+ Pλ−−

]
,

C1 = 1
2

[
Pλ++ 0
Pλ−+ 0

]
.

Then, the matrices G recording the first passage probabil-
ities to a lower level of these QBDs, respectively, are

GA =
[

0 Ψ
0 (I − λ−1U)−1

]
, GB =

[
0 Ψ
0 Vµ

]
, GC =

[
0 Ψ
0 W

]
.

We note that the QBD associated with A−1, A0, A1 is
based on our interpretation of the sum (14), and is a modi-
fication of the QBD given in [1]. The QBD associated with
B−1, B0, B1 is based on our interpretation of (15), and is
a modification of the QBD given in [8]. The third process,
associated with C−1, C0, C1, is the most general QBD of the
three, and is based on our interpretation of (16).

3.3 Interpretation of Doubling Algorithms
The interpretation for doubling algorithms involves two

parts:

(a) First, we show that the initial values P0, defined in (6),
are associated to QBDs of the form

D−1 =
[

0 0
0 F

]
, D0 =

[
0 G
H 0

]
, D1 =

[
E 0
0 0

]
, (17)

which are directly linked to the processes constructed
in Theorem 3.2. (We set α = 1/µ and β = 1/λ.) In
particular, the QBDs (17) are obtained by censoring
out intervals during which the QBDs in Theorem 3.2
oscillate between two consecutive levels.

(b) Then, we give an interpretation for the iteration Pk+1 =
F(Pk). A doubling algorithm is equivalent to applying
Cyclic Reduction to the QBD process (17) (as proved
in [7]), so this probabilistic interpretation is similar to
that of Cyclic Reduction.

Note that Cyclic Reduction preserves the zero structure
of (17). This is the underlying reason doubling-based algo-
rithms are more computationally efficient than applying Cy-
cling Reduction directly to the QBDs given in Theorem 3.2.
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ABSTRACT
We present a numerical framework for computing the lim-
iting distribution of a so-called stochastic fluid-fluid model.
Introduced by Bean and O’Reilly (2014), a stochastic fluid-
fluid process is a Markov processes {Xt, Yt, ϕt}t≥0, where
the first level Xt is driven by the Markov chain ϕt, and the
second level Yt is driven by ϕt as well as by Xt. That paper
gave a closed-form expression for the stationary distribution
given in terms of operators acting on measures, which does
not lend itself easily to numerical computations.
In our work, we apply the discontinuous Galerkin method

to numerically obtain the stationary distribution of a stochas-
tic fluid-fluid model, and illustrate it using a specific exam-
ple of a stochastic fluid-fluid.

CCS Concepts
•Mathematics of computing → Probabilistic algo-
rithms; Markov processes;

Keywords
stochastic fluid–fluid processes; stationary distribution; dis-
continuous Galerkin method

1. INTRODUCTION
∗N. Bean, G. Nguyen, and V. Sunkara acknowledge the fi-
nancial support of the Australian Research Council through
the Discovery Grant DP110101663. The first two authors
also acknowledge the support of the ARC Centre of Excel-
lence for Mathematical and Statistical Frontiers.

A stochastic fluid process {Xt, ϕt}t≥0 is a two-dimensional
Markov process, where the phase ϕt is a continuous-time
Markov chain on a finite state space S, and the level Xt

varies linearly at rate ci whenever ϕt = i, i ∈ S. A subset
of Markov additive processes, stochastic fluids have been
well-analysed in the past two decades. There are two re-
cent generalizations of stochastic fluid processes to a higher
dimension: Miyazawa and Zwart [3] analyzed discrete-time
multidimensional Markov additive processes, and Bean and
O’Reilly [1] studied the so-called stochastic fluid-fluid pro-
cess, the latter is our focus in this paper.
A stochastic fluid-fluid is a Markov process {Xt, Yt, ϕt}t≥0,

where the phase ϕt is still a Markov chain on a finite state
space S; Xt ∈ (−∞,∞) is the first fluid, which varies lin-
early at rate ci whenever ϕt = i, i ∈ S; and Yt represents
the second fluid, which varies linearly at rate ri(x) whenever
Xt = x and ϕt = i. Thus, Yt is a Markov process on R×S.
While the analyses in [3] and [1] are markedly different,

both papers drew inspiration from Neuts’ matrix-analytic
approach to obtain limiting behavior of these processes, work-
ing with operators on function spaces instead of matrices.
Thus, their closed-form expressions for the limiting distri-
butions ([3, Theorem 4.1], [1, Theorem 2]) are given in
terms of operators and measures, which are not immediately
amenable to numerical computations for real-life applica-
tions. One standard way to numerically handle operators
on function spaces is to construct approximations of the op-
erators. To this end, there are existing numerical methods,
such as finite differences, finite volume, finite elements, and
the discontinuous Galerkin method.
In this paper, we apply the discontinuous Galerkin method

to compute the stationary distribution of a stochastic fluid-
fluid and illustrate this using a specific example, which is an
on-off bandwidth-sharing system of two processors [2]. In-
puts into the processors are turned on and off by a Markov
chain, and the combined output capacity is fixed and allo-
cated according to the workload of the first, more important,
processor. Latouche et al. [2] computed the bounds for the
marginal limiting distribution of the workload of the second
processor. In our work, we numerically obtain this distri-
bution, and verify the results by using it to compute the
marginal limiting distribution of the workload of the first
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processor, which we then compare with the analytical so-
lution obtained via a classical analysis of stochastic fluid
models. As an additional verification, we also compare our
numerical results against simulations.

2. NUMERICAL FRAMEWORK

2.1 A one-sided stochastic fluid-fluid
We assume there is a regulated boundary at level 0 for the

first fluid, and thus Xt ∈ [0,∞). Furthermore, we assume
positive recurrence, for the existence of the joint stationary
distribution π(y) = (πi(y))i∈S for {Xt, Yt, ϕt}, where for a
given set A

πi(y)(A) = lim
t→∞

∂P(Xt ∈ A, Yt ≤ y, ϕt = i)
∂y

.

An expression for π(y) is given in [1, Thm 2], in terms of
operators acting on measures, with the two most important
ones being B and Ψ: for a set A and a measure vector
µ = (µi)i∈S , µeBt(A) gives the probability of Xt ∈ A, after
starting at time zero according to µ; µΨ(A) gives the prob-
ability of Yt returning to zero and doing so when Xt ∈ A,
given that the initial distribution is µ.

2.2 Discontinuous Galerkin (DG) method
Discontinuous Galerkin methods are used to approximate

the solution to a system of partial differential equations, and
work as follows. Consider a sequence of points called nodal
points, each interval between two consecutive nodal points
is referred to as a mesh.
Within each mesh, we have a finite element approxima-

tion. This method constructs a finite-dimensional smooth
Sobolev space, by choosing appropriate piecewise polyno-
mial basis functions, and then projecting the partial differ-
ential equations onto this space. This projection leads to a
new system of equations, which are referred to as the weak
form of the original PDEs.
There is a flux operator, which moves probability from

one mesh to another, in a manner similar to the underlying
principle of a finite volume approximation: integrating the
PDEs over each mesh, and then constructing a new system
of ordinary differential equations, which describe the change
in the integral over the mesh. This method conserves prob-
ability, and can handle discontinuities like jumps and point
masses.
The discontinuous Galerkin method leads to a global ap-

proximation in the space of piecewise functions. Intuitively,
we relax the continuity between meshes to gain the conser-
vation of probability. The local approximations within a
mesh are as smooth as desired, by appropriate choice of the
basis functions.

2.3 DG applied to a stochastic fluid-fluid
Here, we give a brief description of how to apply the dis-

continuous Galerkin method to approximate the operator B.
Let fi(x, t) be the probability density function of Xt taking
value x at time t, and ϕt being i ∈ S. Then, the functions
fi(x, t) satisfy the system of partial differential equations

∂

∂t
fi(x, t) =

∑

j∈S
Tjifj(x, t)− ci

∂

∂x
fi(x, t), (1)

subject to suitable boundary conditions, where T is the gen-
erator of the Markov chain ϕt.

Denote by {xk}k=1,...,K a sequence of nodal points, and
by {Dk}k=1,...,K−1 the sequence of corresponding meshes.
Let φk

n : Dk 7→ R+, n = 0, . . . , N , be the basis functions
on the kth mesh. The span of our basis functions φk

n forms
our approximation space, Vk := ⊕K−1

k=1 {φk
0 , . . . , φ

k
N}. Then,

a function ui ∈ VK has the form:

ui(x, t) =
K−1∑

k=1

N∑

n=0

αi,k
n (t)φk

n(x) for x ∈ Ω, t ∈ R+.

We can show that the weak form of the evolution of the
probability density fi(x, t) of {Xt, ϕt} is the following sys-
tem of ordinary differential equations:

d
dtα

i(t) =
|S|∑

j=1

TjiIαj(t) +M−1(ciG+ F )αi(t). (2)

where αi,k(t) = (αi,k
n (t))n=0,1,...,N , I is an appropriately-

sized identity matrix, and for the kth mesh,

Mk
m,n =

∫

Dk

φk
n(x)φk

m(x)dx,

Gk
m,n =

∫

Dk

φk
n(x) ∂

∂x
φk

m(x)dx,

F k
m,• = f∗(u, x`

k)φk
m(x`

k)− f∗(u, xr
k)φk

m(xr
k),

with x`
k and xr

k being the respective left and right endpoints
of Dk, n ∈ {0, . . . , N},m ∈ {0, . . . , n}, and f∗ represents
the numerical flux of probability going from Dk−1 into Dk.
Using this weak form, we can construct an approximation

to the operator B, and then the exponential operator eBt,
and so on.
We perform numerical experiments on the on-off system

described briefly in the Introduction. For the first buffer
Xt, which is driven by only the Markov chain ϕt, we find
that our piecewise linear DG approximation is close to the
results of one-million Monte Carlo simulations, and to the
analytical results obtained in [2]. For the second buffer Yt,
driven by ϕt and Xt, we compare the DG approximation
of the return-probability operator Ψ against Monte Carlo
simulations, and find reasonable agreement.
Furthermore, we analyse different choices for the level

of spatial discretisation and the degree of polynomial ba-
sis functions, with respect to the order of convergence in
relevant error terms.
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ABSTRACT
The computation of the steady state distribution of Quasi
Birth-and-Death Markov chains involves the solution of a
matrix equation of the kind X = A−1 +A0X+A1X

2 where
the blocks Ai are m × m nonnegative matrices such that
A−1 +A0 +A1 is irreducible and stochastic. We provide an
effective algorithm for solving quadratic matrix equations
with quasi-separable coefficients. This case comprises all
the applications in which the blocks of the transition matrix
are banded, for example the doubly QBD processes [8].

The algorithm is based on a suitable implementation of
Cyclic Reduction (CR) which relies on the technology of
rank-structured matrices [11]. In fact, we prove that all
the matrices generated by CR have off-diagonal submatri-
ces with small numerical rank so that they are well approx-
imated by rank-structured matrices. This property allows
us to implement CR with a substantially lower cost with
respect to the general case. The results of the numerical
experiments confirm a significant speed up over the general
algorithms, already starting with the moderately small size
m ≈ 102.

Keywords
Markov chains, QBD processes, Cyclic reduction, Matrix
equhtations, Hierarchical matrices, Quasi-separable matri-
ces

1. INTRODUCTION
Cyclic reduction (CR) is an effective tool that can be used

for solving several problems in linear algebra and in poly-
nomial computations [4]. One of its important applications
concerns the computation of the minimal nonnegative solu-
tion of the matrix equation

X = A−1 +A0X +A1X
2, (1)

encountered in Quasi Birth-Death (QBD) Markov chains,
where A−1, A0, and A1 are given m×m nonnegative matri-

ces such that A−1+A0+A1 is irreducible and stochastic and
where X is the matrix unknown [2, 4]. The computation of
the minimal solution allows one to recover the steady state
vector π of the Markov chain [9].

CR computes four sequences of matrices, A
(h)
i , i = −1, 0, 1

and Â
(h)
0 , according to the following equations

A
(h+1)
1 = −A(h)

1 S(h) A
(h)
1 , S(h) = (A

(h)
0 − I)−1

A
(h+1)
0 = A

(h)
0 −A(h)

1 S(h) A
(h)
−1 − A

(h)
−1 S

(h) A
(h)
1 ,

A
(h+1)
−1 = −A(h)

−1 S
(h) A

(h)
−1 ,

Â
(h+1)
0 = Â

(h)
0 −A(h)

1 S(h) A
(h)
−1 ,

(2)

for h = 0, 1, . . ., with A
(0)
i = Ai, i = −1, 0, 1 and Â

(0)
0 =

A0−I. It can be proved [2] that the sequence −(Â
(h)
0 )−1A−1

converges to the minimal nonnegative solution G of the ma-
trix equation (1) as h→∞.

Each step of CR requires one matrix inversion and a small
number of matrix multiplications which, without any further
assumption on the structure of the blocks Ai, costs of O(m3)
arithmetic operations (ops).

There are several models from the applications where the
blocks Ai exhibit special structures. These specific features
of the blocks can be used to decrease the computational
complexity of the iterations by means of ad hoc adaptations
of CR, some examples are treated in [3], [10], [1].

Here, we are interested in analysing the case where the
blocks Ai are quasi-separable matrices. That is, the off-
diagonal submatrices of A−1, A0 and A1, contained in the
upper or in the lower triangular part, have low rank with
respect to m. The maximum of the ranks of the off-diagonal
submatrices is called quasi-separable rank. It is well-known
that the quasi-separable rank is invariant under matrix in-
version and is sub-additive with respect to matrix addition
and multiplication [11]. Moreover, the basic operations like
matrix inversion and matrix multiplication have a low cost
if performed with quasi-separable matrices [11].

A matrix with quasi-separable rank k is said k-quasi-separable.
Observe that k-quasi-separable matrices include banded ma-
trices. In particular, for doubly QBD processes as well as for
bidimensional random walks [8], the matrices Ai are tridi-
agonal and in particular are 1-quasi-separable.

Our goal is to exploit the quasi-separable structure of

the blocks Ai. Unfortunately, the matrices A
(h)
i generated

by CR through (2), do not preserve in general the quasi-
separable structure. However, they remain k-quasi-separable
in an approximate sense.
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2. NUMERICAL PRESERVATION OF THE
QUASI-SEPARABLE RANK

We start with an empirical observation: plotting the sin-

gular values of the off-diagonal blocks of the matrices A
(h)
i

shows an interesting behaviour. The singular values of the

off-diagonal submatrices of any A
(h)
i generated by CR have

an exponential decay. This fact is shown in Figure 1 where
Ai, i = −1, 0, 1 are randomly generated tridiagonal matri-
ces of size m = 1600 and we plot the singular values of

the largest south-western off-diagonal submatrix of A
(h)
0 for

h = 1, 2, . . . , 20.
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Figure 1: Log-scale plot of the singular values of

the largest south-western submatrix of A
(h)
0 con-

tained in the lower triangular part, for m = 1600 and
h = 1, . . . , 20. The horizontal line denotes the ma-
chine precision threshold. Matrices are randomly
generated so that Ai ≥ 0 are tridiagonal matrices
and A−1 +A0 +A1 is stochastic.

It is evident that, even though the number of nonzero sin-
gular values grows at each step of CR, the number of singular
values above the machine precision – denoted by a horizontal
line in Figure 1 – is bounded by a moderate constant. This
fact implies that even if the rank of the off-diagonal subma-
trices grows up to saturation, their numerical rank remains
small, that is, these submatrices are well approximated by
low rank matrices.

Moreover, the singular values seem to stay below a straight-
line which constitutes an asymptotic bound. That is, they
get closer to this line as h → ∞. The logarithm scale sug-

gests that the computed singular values σ
(h)
i , ordered so that

σ
(h)
i ≥ σ(h)

i+1, decay exponentially with i and the basis of the
exponential grows with h but has a limit less than 1.

We will prove this asymptotic property relating this limit
to the spectrum of the solutions of certain quadratic ma-
trix equations strictly related to (1). Then we exploit this
property to design an effective implementation of CR.

2.1 Main properties of CR
Associate the matrices A

(h)
i , i = −1, 0, 1 defined in (2)

with the matrix Laurent polynomial ϕ(h)(z) := −z−1A
(h)
−1 +

(I − A(h)
0 ) − zA(h)

1 , where ϕ(0)(z) = ϕ(z) = z−1A−1 + (I −
A0)−zA1, and define the matrix rational function ψ(h)(z) =

ϕ(h)(z)−1. The following property holds [2]
{
ψ(0)(z) := ψ(z),

ψ(h+1)(z2) := 1
2
(ψ(h)(z) + ψ(h)(−z)),

thus, we deduce that ψ(h)(z2
h

) = 1
2h

2h−1∑
j=0

ψ(0)(ωjNz), where

ωN = e
2π
N

i is a principal N -th root of the unity for N = 2h,
and i denotes the imaginary unit, so that

ϕ(h)(z2
h

) =


 1

2h

2h−1∑

j=0

ψ(0)(ωjNz)



−1

. (3)

Observe that in the case where A−1, A0 and A1 are tridi-
agonal, then ϕ(z) is tridiagonal as well, so that for any
value of z such that detϕ(z) 6= 0, the matrix ψ(z) is quasi-
separable, that is, tril(ψ(z)) = tril(L), triu(ψ(z)) = triu(U),
where L and U are matrices of rank 1 [11] and tril(A),
triu(A) denote the lower and upper triangular matrix, re-
spectively, formed by the entries of A.

Another thing to highlight is that, by performing an inter-

polation on the unit circle, we can retrieve the blocks A
(h)
i

starting from ϕ(h)(z). In fact, if ξ is a primitive 6-th root of
the unity, then one can verify that

A
(h)
−1 =

1

3

(
ξϕ(h)(ξ) + ξ5ϕ(h)(ξ5)− ϕ(h)(−1)

)
, (4)

A
(h)
0 =

1

2

(
ϕ(h)(z) + ϕ(h)(−z)

)
, (5)

A
(h)
1 =

1

3

(
ξ5ϕ(h)(ξ) + ξϕ(h)(ξ5)− ϕ(h)(−1)

)
. (6)

2.1.1 Laurent expansion of ψ(z)

In order to prove the exponential decay of the singular
values of the off-diagonal submatrices, we rely on the Lau-
rent expansion of ψ(z). We recall the following result [2,
Theorem 3.20].

Theorem 2.1. Let ϕ(z) = −z−1A−1 + I−A0− zA1 with
Ai ∈ Rm×m, i = −1, 0, 1 and assume that det(zϕ(z)) has
zeros ξi, i = 1, . . . , 2m which satisfy

|ξ1| ≤ · · · ≤ |ξm| < δ < 1 < δ−1 < |ξm+1| ≤ · · · ≤ |ξ2m|.
(7)

Moreover, suppose that there exist matrices R and R̂ with
spectral radius less than 1 which solve the following equations

A1 +X(A0 − I) +X2A−1 = 0,

X2A1 +X(A0 − I) +A−1 = 0,

respectively. Then expanding ϕ(z)−1 = ψ(z) =
+∞∑
j=−∞

zjHj

we have

Hj =

{
H0R̂

−j j ≤ 0

H0R
j j ≥ 0

. (8)

In the Markovian case, except for the null recurrent scenario
where ξm = 1 = ξm+1, the hypothesis of the previous theo-
rem are satisfied by suitably scaling the variable of ϕ(z).

2.2 Exponential decay of the singular values
We now draw a sketch of the proof of the exponential

decay property in the off-diagonal blocks of the sequences
generated by the CR.

(i) Exploiting the low quasiseparable rank of the starting
blocks, the recurrence relation (3) and the Laurent ex-

pansion (8) we prove the property for ψ(h)(z) with z
on the unit circle.
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(ii) With linear algebra techniques we show how to retrieve

similar bounds for ϕ(h)(z).

(iii) By performing interpolations by means of (4),(5) and
(6) we get bounds for the sequences Ai i = −1, 0, 1.

2.2.1 The property of ψ(h)(z)

Define XC,M,L,k,ρ,δ the set of Laurent matrix polynomials
ϕ(z) = −z−1A−1 + I −A0 − zA1 such that

• the splitting property (7) with radius of the split δ
holds for ϕ(z) and for each matrix polynomial obtained
as the lower right principal submatrix of ϕ(z);

• the coefficients Aj are k-quasiseparable and ‖Aj‖2 ≤
L, j = −1, 0, 1, for a given constant L;

• denoting ϕi(z) = −z−1A−1,i+I−A0,i−zA1,i the ma-
trix function obtained from ϕ(z) by taking the rows
and columns from i tom, assume that the matrix equa-
tions

A1 + (A0 − I)X +A−1X
2 = 0,

A1 +X(A0 − I) +X2A−1 = 0,

A1,i + (A0,i − I)X +A−1,iX
2 = 0,

A1,i +X(A0,i − I) +X2A−1,i = 0

have minimal nonnegative solutions R, R̂, Ri and R̂i
respectively, i = 1, . . . ,m;

• the numerical ranges of the matrices δ−1R, δ−1R̂, δ−1Ri
and δ−1R̂i are included in a compact and connected
set of logarithmic capacity smaller than ρ.

We have the following

Theorem 2.2. For any ϕ(z) ∈ XC,M,L,k,ρ,δ, for any ε >
0 such that ρ + ε < 1, for any h ∈ N, and z ∈ C, |z| = 1,

every off-diagonal block C̃(z) of ψ(h)(z), is such that

σj(C̃(z)) ≤ γ‖ψ(h)(z)‖2 · e−αj ,
where α = 1

12k
| log(ρ+ε)| and σj(·) indicate the j-th singular

value of the argument.

3. AN ALGORITHM USING H-MATRICES
We have provided an implementation of CR, which applies

to matrix functions ϕ(z) having quasi-separable blocks, and
relies on the approximate quasi-separable structure induced
by the decay of the singular values. We relied on the H-
matrix representation of [5, 6, 7].

3.1 H-matrix representation
Here, we give a brief and informal description of the H-

matrix representation that we have implemented. For full
details we refer to [5] where an overview of the definition
and use of hierarchical matrices is given.

Let A ∈ Rn×n be a k-quasiseparable matrix such that
A =

[
A11 A22
A21 A22

]
, A11 ∈ Rn1×n1 , A22 ∈ Rn2×n2 , with n1 :=

bn
2
c and n2 := dn

2
e. Observe that the antidiagonal blocks

A12 and A21 do not involve any element of the main diago-
nal of A, hence they are representable as a sum of at most
k rank-1 matrices. Moreover the diagonal blocks A11 and
A22 are square matrices with the same rank structure of A.

Therefore these diagonal blocks are recursively represented
with a similar partitioning. If blocks become small enough,
they are stored as full matrices.

Figure 2: The H-matrix representation. The blocks
filled with grey are represented as sum of a few rank-
1 matrices, the diagonal blocks in the last step are
stored as full matrices.

3.2 Quasiseparable CR
If the quasiseparable rank of the H-matrices is small if

compared to the dimension m, then the algorithms which
perform the arithmetic operations have almost linear com-
plexity [5]. In particular, we can achieve asymptotic com-
plexity O(m logm) for matrix addition and O(m log2m) for
matrix multiplication and inversion. This is almost optimal,
provided that the rank remains sufficiently low.

In order to fully exploit the numerical quasiseparable struc-
ture we perform the arithmetic operations (2) of CR adap-
tively with respect to the rank of the blocks. This means
that the result of an arithmetic operation (eg. matrix mul-
tiplication) will be an H-matrix with the same partitioning,
where each low rank block is a truncated reduced SVD of
the corresponding block of the exact result. Hence the rank
is not a priori fixed but depends on a threshold ε at which
the truncation is done. The parameter ε can be regarded as
the desired accuracy (for us, it is close to the machine pre-
cision 2.22× 10−16) and can be crucial for the performance
of the algorithm.

In Figure 3 we report the CPU time, in seconds, required
by our implementation and by the general implementation
of CR for several values of the size m and for the values
ε = 10−8, 10−12, 10−16 in the case of tridiagonal blocks, and
in the case of banded blocks with variable bandwidth.

4. CONCLUSIONS
We have experimentally observed the exponential decay of

the singular values of certain off-diagonal submatrices gen-
erated by cyclic reduction applied to certain QBD stochastic
processes of practical interest. We have formally related the
rate of decay to geometric features of sets regarding the ma-
trix function ϕ(z) associated with the QBD.

We have provided a software implementation of CR, for
QBD with banded blocks encountered in the analysis of bidi-
mensional random walks, which relies on this decay property.
The speed up that we get with respect to standard CR is
substantial even with moderately large size of the blocks.
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Figure 3: Timings of CR. Above, CR is applied to
tridiagonal blocks with increasing size. Below, CR
is applied to band blocks with increasing band and
size fixed to 1600.
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ABSTRACT
We construct a generalised reward matrix Z(s), which is an
extension of the fluid generator Q(s) of a stochastic fluid
model (SFM). We classify the generators that are projec-
tions of Z(s), including the generator Q(s), and discuss the
application of the resulting generators in different contexts.

As one application example, for the case with nonzero
mean drift, we derive a new Riccati equation for the key
matrix Ψ, which records the probabilities of the first return
to the original level.

The Riccati equation has the form Ψ+ΨM−+Ψ = M+−,
where parameters M+− and M−+ are block matrices in the
matrix M, which records the expected number of visits to
the original level, before the unbounded fluid drifts to ±∞.

Finally, we derive the explicit form Ψ = M+−(I+M−−)−1.

1. INTRODUCTION
Consider the stochastic fluid model (SFM) [2, 3, 4, 10, 11,

12, 13, 16, 17], denoted {(ϕ(t), X(t)) : t ≥ 0}, with phase
variable ϕ(t) ∈ S = {1, . . . , n} and level variable X(t) ≥ 0
with a lower boundary at zero, such that:

• {ϕ(t) : t ≥ 0} is an irreducible continuous-time Markov
chain (CTMC) with state space S and generator T =
[Tij ]i,j∈S ;

• X(t) changes at rate cϕ(t) = dX(t)/dt at time t when-
ever X(t) > 0, and at rate max{cϕ(t), 0} whenever
X(t) = 0.

These models have been used in the analysis of a vari-
ety of real-life situations, including telecommunications sys-
tems [16], risk assessment [6], power generation systems [9]
and congestion control [15]. A classical application example
is modelling a telecommunications buffer, using phase ϕ(t)
to represent a switch active at time t, and the fluid level
X(t) to represent the amount of data in the buffer at time t.
The rate of change ci of the level in the buffer will depend on

∗The second author would like to thank the Australian Re-
search Council for funding this research through Linkage
Project LP140100152.

whether the switch i that is active at time t, lets the data
into or out of the buffer, which corresponds to a positive
or negative rate, respectively. The analytical expressions
for the stationary and transient analysis of this model have
been derived in the literature, and powerful algorithms exist
for the numerical evaluations of various performance mea-
sures [2, 3, 4, 5, 10, 11, 12, 17].

A key matrix in the theory of SFMs is the fluid generator
Q(s) introduced in [11], where s is some complex number.
This matrix appears in the expressions for a variety of quan-
tities, including the probability matrices Ψ and Ξ defined
in [11].

In this paper, we consider the following generalisation of
Q(s). Suppose that while in phase i, a reward is accumu-
lated at some constant real-valued rate ri per unit of time
spent in i. Further, suppose that we wish to track the accu-
mulation of the reward for different phases individually. In
order to model this situation, we construct the generalised
reward generator, denoted Z(s), where s is some complex
vector. The details of the construction are given in Sec-
tion 2.

We note that Q(s) is a one-dimensional projection of the
multi-dimensional LST generator Z(s), corresponding to the
case when the reward is simply time, with ri = 1 for all i.
The details of this and other projections of Z(s) are given
in Section 3.

In Section 4 we classify the generators that are derived
from Z(s), and discuss their physical interpretations and
applications.

In Section 5, using a particular projection of Z(s), de-
noted Z+(s), we derive a new Riccati equation for Ψ and
an explicit form of Ψ with the parameters, for both, be-
ing derived from the blocks of Z+(0). Conclusions follow in
Section 6.

2. GENERATOR Z(s)
In this section we introduce the matrix Z(s) and derive

the results that describe its physical interpretation as a gen-
erator of the SFM. Matrix Z(s) is a generalisation of the
fluid generators Q(s) introduced in [11] and W(s) intro-
duced in [8].

The set S and generator T are partitioned depending on
the sign of the rates ci. That is, we partition the set S as
S = S+ ∪ S− ∪ S0, where S+ = {i ∈ S : ci > 0}, S− = {i ∈
S : ci < 0}, and S0 = {i ∈ S : ci = 0}. Further, we partition
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the generator T according to the partition of S, as

T =




S+ S− S0
S+ T++ T+− T+0

S− T−+ T−− T−0

S0 T0+ T0− T00


. (1)

Also, we define diagonal matrices C+ = diag(ci)i∈S+ and
C− = diag(|ci|)i∈S− . This notation has been adopted since
the various quantities calculated in the analysis of the SFMs
appear in a similar block matrix form.

Let I(·) denote the indicator function. For any i ∈ S, let
ri ∈ R be some fixed real constant, and define the random
variable Wi(z, t) such that

Wi(z, t) =

∫ t

u=z

riI(ϕ(u) = i)du, (2)

which we interpret as the total i-type reward earned during
the time interval [z, t], assuming the reward is earned at a
rate ri per each unit time spent in i.

Also, define diagonal matrices to collect the rates ri, R0 =
diag(ri)i∈S0 , R+ = diag(ri)i∈S+ , and R− = diag(ri)i∈S− .

Let s = [si] be a (row) vector with si ∈ C, and de-
note D+ = diag(si)i∈S+ , D− = diag(si)i∈S− , and D0 =
diag(si)i∈S0 .

Assume that s1, s2, . . . , sn are such that

χ(T00 −D0R0) < 0, (3)

where χ(A) denotes the eigenvalue with maximum real part
of the matrix A. This condition guarantees that the integral∫∞
y=0

e(T00−D0R0)ydy is well defined and then equal to the

inverse (T00 −D0R0)−1. We define the matrix Z(s) as

Z(s) =

[
Z++(s) Z+−(s)
Z−+(s) Z−−(s)

]
, (4)

where

Z++(s) = C−1
+ [T++ −D+R+ −T+0(T00 −D0R0)−1T0+],

Z−−(s) = C−1
− [T−− −D−R− −T−0(T00 −D0R0)−1T0−],

Z+−(s) = C−1
+ [T+− −T+0(T00 −D0R0)−1T0−],

Z−+(s) = C−1
− [T−+ −T−0(T00 −D0R0)−1T0+]. (5)

Now, define the random variable

h(t) =

∫ t

u=0

|cϕ(u)|du, (6)

interpreted as the total amount of fluid that has entered
or left the buffer X(·) during the time interval [0, t], and
referred to as the in-out fluid [11] of the process X(·). Also,
define the random variable, for y > 0,

ω(y) = inf{t > 0 : h(t) = y}, (7)

interpreted as the first time at which the in-out fluid of the
process X(·) reaches level y.

Next, as a generalisation of a similar quantity in [8], for
any i, j ∈ S+∪S−, any y > 0, t > 0, and w1, w2, . . . , wn ≥ 0,
we define

δyi (j, t;w1, w2, . . . , wn) = P (ϕ(ω(y)) = j, ω(y) ≤ t,
Wk(0, ω(y)) ≤ wk, k = 1, . . . , n | X(0) = 0, ϕ(0) = i),

(8)

which we interpret as the joint probability mass/distribution
function that, given the process {(ϕ(t), X(t)) : t ≥ 0} starts
from level 0 in phase i, the in-out fluid of the process X(·)
reaches level y for the first time at the time ω(y) ≤ t, does
so in phase ϕ(ω(y)) = j, and the k-type rewards at time
ω(y) satisfy Wk(0, ω(y)) ≤ wk for all k = 1, . . . , n.

Also, define the corresponding multi-dimensional Laplace-
Stieltjes transform (LST) matrix ∆̃y(s) such that, for any
y > 0, any vector s = [si] satisfying condition (3), and any
i, j ∈ S+ ∪ S−,

[∆̃y(s)]ij = E
(
e−(s1W1(0,ω(y))+...+snWn(0,ω(y)))

× I(ϕ(ω(y)) = j) | ϕ(0) = i
)
, (9)

=

∫ ∞

t=0

∫ r1t

w1=0

. . .

∫ rnt

wn=0

e−(s1w1+...+snwn)

×dδyi (j, t;w1, w2, . . . , wn). (10)

is the LST of the distribution of (W1(0, ω(y)), . . . ,Wn(0, ω(y)))
and ϕ(ω(y)) = j, given ϕ(0) = i.

Further, for i, j ∈ S0, t > 0, and w1, w2, . . . , wn ≥ 0, let

βti (j;w1, w2, . . . , wn) = P (ϕ(t) = j, ϕ(u) ∈ S0, 0 ≤ u ≤ t,
Wk(0, t) ≤ wk, k = 1, 2, . . . , n | ϕ(0) = i), (11)

which we interpret as the joint probability mass/distribution
function that the phase remains in the set S0 at least for the
duration of time t, the phase at time t is ϕ(t) = j, and
the k-type rewards at time t satisfy Wk(0, t) ≤ wk for all
k = 1, . . . , n, given the process {(ϕ(t), X(t)) : t ≥ 0} starts
from level 0 in phase i.

Also, define matrix B̃t(s) such that

[B̃t(s)]ij =

∫ r1t

w1=0

· · ·
∫ rnt

wn=0

e−(s1w1+...+snwn)

× dβti (j, x;w1, w2, . . . , wn), (12)

is the LST of the distribution of (W1(0, t), . . . ,Wn(0, t)),
ϕ(t) = j and the phase process remains in the set S0 at
least for the duration of time t, given ϕ(0) = i.

Theorem 1 proves that the matrix (T00 − D0R0) is the

generator of B̃t(s).

Theorem 1. B̃t(s) is well defined for all t > 0, and all
si ∈ C, and

B̃t(s) = e(T00−D0R0)t. (13)

Proof: To prove this result we closely follow the method-
ology developed in [8, Theorem 1]. The difference is that
here, we track the i-type rewards of the possible states i ∈ S
separately.

First, note for all a, b ≥ 0, and k = 1, . . . , n, that

Wk(0, a+ b) = Wk(0, a) +Wk(a, a+ b),

and that by conditioning on the state of all the random
variables at time a the behaviour of the process during the
interval [0, a) is independent of the behaviour of the process
during the interval (a, a+ b]. Therefore, by the law of total
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probability,

[B̃(a+b)(s)]ij =

∫ r1(a+b)

w1=0

· · ·
∫ rn(a+b)

wn=0

e−(s1w1+...+snwn)

×dβ(a+b)
i (j;w1, . . . , wn)

=
∑

k∈S0

∫ r1a

u1=0

· · ·
∫ rna

un=0

e−(s1u1+...+snun)

×dβ(a)
i (k;u1, . . . , un)

×
∫ r1b

h1=0

· · ·
∫ rnb

hn=0

e−(s1h1+...+snhn)

×dβ(b)
k (j;h1, . . . , hn)

=
∑

k∈S0
[B̃(a)(s)]ik[B̃(b)(s)]kj ,

and so

B̃(a+b)(s) = B̃(a)(s)B̃(b)(s). (14)

Also, denoting B̃0(s) = limt→0+ B̃y(s), we have

B̃0(s) = I, lim
y→0+

||B̃y(s)− I|| = 0. (15)

By (14) and (15), {B̃t(s), t > 0} is a strongly continuous

semigroup and so B̃t(s) must be of the form eV(s)t, where

V(s) =
d

dh
B̃h(s)

∣∣∣∣
h=0+

. (16)

Consider the case when the process starts in phase i ∈ S0
at time zero and is observed at some time h > 0 in phase
j ∈ S0. Given h is small, there are only two possible events
that could occur with probability greater than o(h).

1. The phase process remains in phase i until time h. This
event occurs with probability e−λih with λi = −Tii.
The corresponding i-type reward is rih, k-type reward
for k 6= i is zero, and so the LST of the rewards condi-
tional on this event occurring is esi(rih). We multiply
the probability by the conditional LST, and store the
result in a diagonal matrix B̃t

1(s) with the (i, i)-th en-
try given by

[B̃h
1 (s)]ii = e−(siri+λi)h.

It follows that,

d

dh
[B̃h

1 (s)]ii

∣∣∣∣
h=0+

= −(siri + λi),

and so

d

dh
B̃h

1 (s)

∣∣∣∣
h=0+

= −(D0R0 + Λ0), (17)

where Λ0 is a diagonal matrix with [Λ0]ii = λi for all
i ∈ S0.

2. The phase process makes a single transition from i to
phase j 6= i ∈ S0 at some time u ∈ (0, h] and remains
there until time h. The process undergoes the following
set of steps:

• First, the process leaves phase i at some time
u ∈ (0, h] and does so with probability density
(λi)e

−λiu.

• Next, the process makes a transition from phase
i to phase j with probability Tij/λi.
• Further, the process remains in phase j for the

remaining (h−u) time with probability e−λj(h−u).

Therefore, the probability of this type of event oc-
curring is λie

−λiu(Tij/λi)eλj(h−u). The correspond-
ing i-type reward is riu, j-type reward is rj(h − u),
k-type reward for k 6= i, j is zero, and so the LST
of the rewards conditional on this event occurring is
e−siriu−sjrj(h−u). We multiply the probability by the
conditional LST and integrate over all u ∈ (0, h], be-

fore finally storing the result in a matrix B̃t
2(s) with

the (i, j)-th entry, for i 6= j, given by

[B̃h
2 (s)]ij =

∫ h

u=0

e−siriu−sjrj(h−u)λie
−λiu Tij

λi
e−λj(h−u)du.

It follows that,

d

dh
[B̃h

2 (s)]ij

∣∣∣∣
h=0+

(18)

=
d

dh

[
Tije−h(sjrj+λj)

∫ h

u=0

e−u(λi+siri−λj−sjrj)du

]

h=0+

= Tij ,
and so

d

dh
B̃h

2 (s)

∣∣∣∣
h=0+

= T00 + Λ0. (19)

Consequently, for all i, j ∈ S0, we have

[V(s)]ij =

[
d

dh

(
B̃h

1 (s) + B̃h
2 (s)

)∣∣∣∣
h=0+

]

ij

= [T00 −D0R0]ij . (20)

The result follows.
The theorem below proves that Z(s) is the generator of

∆̃y(s).

Theorem 2. For any y > 0, ∆̃y(s) exists and

∆̃y(s) = eZ(s)y. (21)

Proof: To prove this result we closely follow the method-
ology developed in [8, Theorem 2]. The difference is that
here, we track the i-type rewards of the possible states i ∈ S
separately.

Suppose that the process starts in level 0 from some phase
i ∈ S+∪S− at time 0, and the in-out fluid hits level y+v for
the first time at some time ω(y + v), and does so in phase
j ∈ S+ ∪ S−. In order for this to occur,

• first the in-out fluid of the process X(·) must hit level
y at time ω(y), in some phase ` ∈ S+ ∪ S−, and

• next, the in-out fluid of the process X(·) must hit level
y + v at time ω(y + v), in phase j.

Since ω(y) ≤ ω(y + v) for y, v > 0, it follows by (2) that
for all k = 1, . . . , n,

Wk(0, ω(y + v)) = Wk(0, ω(y)) +Wk(ω(y), ω(y + v)).

(22)

As in the previous proof, by conditioning on the state of
all random variables at the time ω(y), the behaviour of the
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process during the interval [0, ω(y)) is independent of the
behaviour of the process during the interval (ω(y), ω(y+v)],
by the memoryless property of the Markov chain, for all
y, v > 0. By (9), (22), and the law of total probability,

[∆̃y+v(s)]ij = E
(
e−(s1W1(0,ω(y+v))+...+snWn(0,ω(y+v)))

× I(ϕ(ω(y + v)) = j)|ϕ(0) = i
)

=

∫ ∞

t=0

∫ r1t

w1=0

· · ·
∫ rnt

wn=0

× e−(s1w1+...+snwn)dδy+vi (j, t;w1, . . . , wn)

=
∑

`∈S+∪S−

[ ∫ ∞

z=0

∫ r1z

v1=0

· · ·
∫ rnz

vn=0

× e−(s1v1+...+snvn)dδyi (`, z; v1, . . . , vn)

]

×
[ ∫ ∞

u=0

∫ r1u

h1=0

· · ·
∫ rnu

hn=0

× e−(s1h1+...+snhn)dδv` (j, u;h1, . . . , hn)

]

=
∑

`∈S+∪S−

[∆̃y(s)]i`[∆̃
v(s)]`j .

Therefore, for all y, v > 0,

∆̃y+v(s) = ∆̃y(s)∆̃v(s). (23)

Also, denoting ∆̃0(s) = limy→0+ ∆̃y(s), when j = i,

[∆̃0(s)]ii =

∫ ∞

t=0

∫ r1t

w1=0

· · ·
∫ rnt

wn=0

× e−(s1w1+...+snwn)dδ0i (i, t;w1, w2, . . . , wn)

= 1,

and when j 6= i,

[∆̃0(s)]ij =

∫ ∞

t=0

∫ r1t

w1=0

· · ·
∫ rnt

wn=0

× e−(s1w1+...+snwn)dδ0i (j, t;w1, w2, . . . , wn)

= 0,

and so

∆̃0(s) = I, lim
y→0+

||∆̃y(s)− I|| = 0. (24)

By (23) and (24), {∆̃y(s), y > 0} is a strongly continuous

semi-group, and so ∆̃y(s) = eU(s)y, where

U(s) =
d

dh
∆̃h(s)

∣∣∣∣
h=0

. (25)

We consider the case i, j ∈ S+. The proof for the other
cases follow by an analogous argument. We will show that

[U(s)]ij = [Z++(s)]ij .

Assume the process starts from level X(0) = 0 in phase
i ∈ S+ and the in-out fluid hits level h, for some small h ≥ 0,
at time ω(h), and does so in phase j ∈ S+. Since h is small,
there are only three possible events that could occur with a
probability greater than o(h).

1. The process remains in phase i ∈ S+ until the in-out
fluid reaches level h. In this case, ω(h) = h/|ci| and

the probability of this occurring is e−λi(h/|ci|). The
corresponding i-type reward is rih/|ci|, k-type reward
for k 6= i is zero, and so the LST of the rewards con-
ditional on this event occurring is e−si(rih/|ci|). We
multiply the probability by the conditional LST, the
result of which is stored in a diagonal matrix ∆̃h

1 with
the (i, i)-th entry given by

[∆̃h
1 (s)]ii = e−si(rih/|ci|)e−λi(h/|ci|).

It follows that

d

dh
[∆̃h

1 (si)]ii

∣∣∣∣
h=0+

= −siri + λi
|ci|

,

and so

d

dh
[∆̃h

1 (si)]ii

∣∣∣∣
h=0+

= −C−1
+ (D+R+ + Λ+), (26)

where Λ+ = diag(λi)i∈S+ .

2. The process makes a single transition from state i to
state j 6= i ∈ S+ when the in-out fluid hits some level
u ∈ (0, h] (at time u/|ci|) and remains there until time
ω(h), that is for a further (h− u)/|cj |. Therefore, the
probability of this type of event occurring is

(
λi
|ci|

)e−λi(u/|ci|) Tij
λi
e−λj((h−u)/|cj |). (27)

It follows that ω(h) = riu/|ci|+rj(h−u)/|cj |, and the
corresponding LST of the rewards conditional on this
event occurring is

e−siriu/|ci|+sjrj(h−u)/|cj |. (28)

By multiplying (27) and (28), and integrating over all

u ∈ (0, h], we obtain the (i, j)th entry of ∆̃h
2 , given by,

[∆̃h
2 (s)]ij =

∫ h

u=0

e−siriu/|ci|−sjrj(h−u)/|cj |(
1

|ci|
)

× e−λi(u/|ci|)Tije−λj((h−u)/|cj |)du.

(29)

Therefore, for i 6= j,

d

dh
[∆̃h

2 (s)]ij

∣∣∣∣
h=0+

=
d

dh

[ ∫ h

u=0

e−siriu/|ci|−sjrj(h−u)/|cj |(
1

|ci|
)

× e−λi(u/|ci|)Tije−λj((h−u)/|cj |)du

]

h=0+

=
Tij
|ci|

, (30)

and so

d

dh
∆̃h

2 (s)

∣∣∣∣
h=0+

= C−1
+ (T++ + Λ+). (31)

3. The process transitions from state i into some ` ∈ S0,
and then, after spending some time t in S0, transitions
into j ∈ S+ and remains there until time ω(h).

• First, the process leaves phase i when the in-out
fluid hits level u at time u/|ci|, with probability

density (λi/|ci|)e−λi(u/|ci|).
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• Next, the process makes a transition from i ∈ S+
to ` ∈ S0 with probability [T+0]i`/λi.

• Further, the process remains in set S0 for the du-
ration of time t and then makes a transition to
phase j ∈ S+, with probability density [eT00tT0+]ij .

• Finally, the process remains in phase j until the
in-out fluid reaches level h, with probability
e−λj((h−u)/|cj |).

It follows that ω(h) = u/|ci| + t + (h − u)/|cj |, the
probability of this occurring is

1

|ci|
e
−λi(

u
|ci|

)
[T+0e

T00tT0+]ije
−λj(

(h−u)
|cj |

)
, (32)

and the corresponding LST components of the rewards
conditional on this event occurring is

e
−(si

u
|ci|

)
, eD0R0t, e

(sj
h−u
|cj |

)
. (33)

By multiplying the terms in (32) and (33) in an ap-
propriate order, and integrating over all u ∈ (0, h],

and t ∈ (0,∞), we obtain the (i, j)-th entry of ∆̃3,
given by

[∆̃h
3 (s)]ij =

∫ h

u=0

1

|ci|
e
−(si

riu
|ci|

+sj
rj(h−u)

|cj |
)
e
−λi(

u
|ci|

)

× [T+0

∫ ∞

t=0

eD0R0teT00tdtT0+]ij

× e−λj(
(h−u)
|cj |

)
du. (34)

Since s satisfies the condition (3), the inner integral
exists and is given by −(T00 −D0R0)−1, and so

d

dh
[∆̃h

3 (s)]ij

∣∣∣∣
h=0+

= − 1

|ci|
[T+0(T00−D0R0)−1T0+]ij ,

and

d

dh
∆̃h

3 (s)

∣∣∣∣
h=0+

= −C−1
+ T+0(T00 −D0R0)−1T0+.

(35)

By above,

[U(s)]ij

=

[
d

dh
∆̃h(s)

∣∣∣∣
h=0+

]

ij

=

[
d

dh
(∆̃h

1 (s) + ∆̃h
2 (s) + ∆̃h

3 (s))

∣∣∣∣
h=0+

]

ij

= [C−1
+ {(T++ −D+R+ −T+0(T00 −D0R0)−1T0+}]ij

= [Z++(s)]ij . (36)

In a manner analogous to the argument above, we prove
the expression for Z+−(s) (which clearly must have a zero
contribution from Case 1). By symmetry, the expressions

for Z−+(s) and Z−−(s) also follow.

3. PROJECTIONS OF Z(s)
Below, we study a range of projections of the generalised

reward matrix Z(s) to generators of one-dimensional LSTs,
and discuss their applications.

To do this, we define the random variable

W (z, t) =
∑

i∈S
Wi(z, t), (37)

interpreted as the total reward earned in all states during the
time interval [z, t], and replace e−(s1W1(z,t),...,snWn(z,t)) with

a function of the scalar s ∈ C, e−sW (z,t), in the definitions of
the multi-dimensional LSTs. The resulting projections are
generators of the one-dimensional LSTs of the distribution
of the total reward (37). For example, we replace (9) with

[∆̃y(s)]ij = E
(
e−sW (0,ω(y))I(ϕ(ω(y)) = j) | ϕ(0) = i

)
,

(38)

and make associated changes accordingly.
The first example is the fluid generator Q(s) defined in [11],

Q(s) =

[
Q++(s) Q+−(s)
Q−+(s) Q−−(s)

]
, (39)

where

Q++(s) = C−1
+ [T++ − sI−T+0(T00 − sI)−1T0+],

Q−−(s) = C−1
− [T−− − sI−T−0(T00 − sI)−1T0−],

Q+−(s) = C−1
+ [T+− −T+0(T00 − sI)−1T0−],

Q−+(s) = C−1
− [T−+ −T−0(T00 − sI)−1T0+]. (40)

This generator is a projection of Z(s) obtained by setting
all reward rates in (37) to ri = 1, so that the amount of the
reward earned in i is equal to the time spent in i.

The physical interpretation of Q(s) established in [11] is

that [eQ(s)y]ij records the LST of the distribution of time
for the process to first reach in-out fluid level y and do so in
phase j, assuming the process starts from level 0 in phase i.
The generator Q(s) was used in [10, 11, 12] to evaluate the
key matrices Ψ(s), Ξ(s), and related quantities of the SFM
{(ϕ(t), X(t)) : t ≥ 0}.

A projection of Z(s) with any real reward rates ri is the
generator W(s) derived in [8],

W(s) =

[
W++(s) W+−(s)
W−+(s) W−−(s)

]
,

with

W++(s) = C−1
+ [(T++ − sR+)−T+0(T00 − sR0)−1T0+],

W−−(s) = C−1
− [(T−− − sR−)−T−0(T00 − sR0)−1T0−],

W+−(s) = C−1
+ [T+− −T+0(T00 − sR0)−1T0−],

W−+(s) = C−1
− [T−+ −T−0(T00 − sR0)−1T0+]. (41)

Generator W(s) was used to analyse the coupled evolution
of two fluids: the fluid {(ϕ(t), X(t)) : t ≥ 0} with a lower
boundary zero, as defined in Section 1, and the unbounded
fluid {(ϕ(t), Y (t)) : t ≥ 0} with rates ri. As shown in [8],

[eW(s)y]ij is the LST of the distribution of the total shift in
the fluid Y (·), expressed as Y (ω(y))−Y (0), accumulated at
the time ω(y) when the in-out fluid of the process X(·) first
reaches level y, and ϕ(ω(y)) = j, given ϕ(0) = i. In this
sense, the amount of the reward earned in i is equal to the
shift in Y (·) accumulated while in i.

In this paper, of particular interest is the following pro-
jection of Z(s), denoted Z+(s). For a stochastic fluid model
{(ϕ(t), X(t)), t ≥ 0} with level variable X(t) unbounded
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above, we define

h+(t) =

∫ t

u=0

cϕ(u)I(i ∈ S+)du, (42)

interpreted as the total amount of fluid that has flowed into
the buffer X(·) during the time interval [0, t], referred to as
the upward shift, since it records the total shift in the fluid
during the times the fluid level was increasing.

Suppose that we want to track only this upward shift in
the fluid {(ϕ(t), X(t)) : t ≥ 0}. To achieve this, we consider
the projection with W (0, t) = h+(t), let R+ = C+, R− = 0,
and R0 = 0 in (4)-(5), resulting in the matrix

Z+(s) =

[
Z+

++(s) Z+
+−(s)

Z+
−+(s) Z+

−−(s)

]
, (43)

where Z+
++(s) = Q++(0)−sI, Z+

−−(s) = Q−−(0), Z+
+−(s) =

Q+−(0), and Z+
−+(s) = Q−+(0).

Here, we establish the following physical interpretation of
Z+(s). By Theorem 2, for any i, j ∈ S and y > 0,

[eZ
+(s)y]ij = E(e−sh+(ω(y))I(ϕ(ω(y)) = j) | ϕ(0) = i) (44)

is the LST of the distribution of the total upward shift in
X(·) accumulated by the time the in-out fluid of the process
X(·) first reaches level y and does so in phase j, given that
the process starts in phase i at time zero.

In [16], Z+(s) is used to calculate various loss rates for a
doubly-bounded SFM, corresponding to the fluid lost during
periods of congestion when the buffer collecting the fluid is
full.

By symmetry, for a stochastic fluid model {(ϕ(t), X(t)), t ≥
0} with level variable X(t) unbounded below, we define

h−(t) =

∫ t

u=0

|cϕ(u)|I(i ∈ S−)du, (45)

interpreted as the total amount of fluid that has flowed out
of the buffer X(·) during the time interval [0, t], referred to
as the downward shift, since it records the total shift in the
fluid during the times the fluid level was decreasing.

In order to track the downward shift in the fluid, we define
matrix Z−, given by

Z−(s) =

[
Z−++(s) Z−+−(s)

Z−−+(s) Z−−−(s)

]
, (46)

where Z−++(s) = Q++(0), Z−−−(s) = Q−−(0)−sI, Z−+−(s) =

Q+−(0), and Z−−+(s) = Q−+(0).
By Theorem 2, for any i, j ∈ S,

[eZ
−(s)y]ij = E(e−sh−(ω(y))I(ϕ(ω(y)) = j) | ϕ(0) = i) (47)

is the LST of the distribution of the total downward shift in
X(·) accumulated by the time the in-out fluid of the process
X(·) first reaches level y and does so in phase j, given that
the process starts in phase i at time zero.

Note that, in a stochastic fluid model {(ϕ(t), X(t)), t ≥ 0}
with unbounded level variable X(t) ∈ (−∞,+∞), we have
h(t) = h+(t) + h−(t) and X(t) = X(0) + h+(t)− h−(t).

4. GENERATORS DERIVED FROM Z(s)
In this section we discuss useful applications of generators

that are expressed in terms of Z(s).

First, consider the following generalisation of matrices
Ψ(s), Ξ(s), G(x,y)(s), and H(x,y)(s) discussed in [7, 11],

denoted Ψ(s), Ξ(s), G(x,y)(s), and H(x,y)(s), respectively.
Let θ(x) = inf{t > 0 : X(t) = x} be the first time the
process hits level x.

Matrix Ψ(s) = [Ψ(s)ij ]i∈S+,j∈S− is such that, for all i ∈
S+ and j ∈ S−,

Ψ(s)ij = E(e−(s1W1(0,θ(0))+...+snWn(0,θ(0)))I(ϕ(θ(0)) = j)

| ϕ(0) = i,X(0) = 0) (48)

is the LST of the distribution of (W1(0, θ(0)), . . . ,Wn(0, θ(0)))
and ϕ(θ(0)) = j, given ϕ(0) = i and X(0) = 0.

Matrix Ξ(s) = [Ξ(s)ij ]i∈S−,j∈S+ is symmetrical to Ψ(s)
for an unbounded fluid, in which cϕ(t) = dX(t)/dt always, so
that X(t) ∈ (−∞,+∞). That is, for all i ∈ S− and j ∈ S+,
Ξ(s)ij is defined by the right-hand side of (48).

Note that, with 0 denoting a vector of zeros of appropriate
size, matrices Ψ̂(0) and Ξ̂(0) are equivalent to matrices Ψ
and Ξ, respectively, defined in [11].

Matrix G(x,y)(s) = [G(x,y)(s)ij ]i,j∈S+∪S− is such that, for
all i, j ∈ S+ ∪ S− and 0 < x < y,

G(x,y)(s)ij = E(e−(s1W1(0,θ(0))+...+snWn(0,θ(0)))

×I(ϕ(θ(0)) = j, θ(0) < θ(y))

| ϕ(0) = i,X(0) = x) (49)

is the LST of the distribution of (W1(0, θ(0)), . . . ,Wn(0, θ(0)))
and ϕ(θ(0)) = j under the taboo θ(0) < θ(y), given ϕ(0) = i

and X(0) = x. Denote G(0,y)(s) = limx→0+ G(x,y)(s).

Conversely, matrix H(x,y)(s) = [H(x,y)(s)ij ]i,j∈S+∪S− is
such that, for all i, j ∈ S+ ∪ S− and 0 < x < y,

H(x,y)(s)ij = E(e−(s1W1(0,θ(y))+...+snWn(0,θ(y)))

×I(ϕ(θ(y)) = j, θ(y) < θ(0))

| ϕ(0) = i,X(0) = x) (50)

is the LST of the distribution of (W1(0, θ(y)), . . . ,Wn(0, θ(y)))
and ϕ(θ(y)) = j under the taboo θ(y) < θ(0), given ϕ(0) = i

and X(0) = x. Denote H(x,x)(s) = limy→x+ H(x,y)(s).
We can show by using techniques similar to [11] that when

si ≥ 0 for all i ∈ S, Ψ(s) is the minimum nonnegative
solution of the Riccati equation

Z+−(s)+Ψ̂(s)Z−+(s)Ψ̂(s)+Z++(s)Ψ̂(s)+Ψ̂(s)Z−−(s) = 0,

with similar results for Ξ(s), and algorithms in [12] can be
used for finding these solutions. Further, we can derive ex-
pressions for G(x,y)(s) and H(x,y)(s) using methodology sim-
ilar to [7].

Now, we introduce generators J1(s) and J2(s), which are
generalisations of similar quantities in [10, 11, 12],

J1(s) = Z−−(s) + Z−+(s)Ψ(s), (51)

J2(s) = Z++(s) + Z+−(s)Ξ(s). (52)

These are useful in constructing algorithms for the numerical
evaluation of Ψ(s) and Ξ(s), as shown in [12].

The physical interpretation of J1(s) is that, for i, j ∈ S−,

[eJ1(s)y]ij = E(e−(s1W1(0,θ(0))+...+snWn(0,θ(0)))I(ϕ(θ(0)) = j)

| ϕ(0) = i,X(0) = y) (53)

is the LST of the distribution of (W1(0, θ(0)), . . . ,Wn(0, θ(0)))
and ϕ(θ(0)) = j, given ϕ(0) = i and X(0) = y.
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The physical interpretation of J2(s) follows by symmetry
for the unbounded fluid X(t) ∈ (−∞,+∞).

Further, we define generators J3(s) and J4(s), which are
generalisations of K(s) in [18],

J3(s) = Z++(s) + Ψ(s)Z−+(s), (54)

J4(s) = Z−−(s) + Ξ(s)Z+−(s). (55)

The physical interpretation of J3(s) is that for i, j ∈ S+,

[eJ3(s)y]ij =

∫ ∞

w1=0

· · ·
∫ ∞

wn=0

e−(s1w1+...+snwn)

γi(y, j;w1, . . . , wn)dw1 · · · dwn (56)

is the Laplace transform of the density γi(y, j;w1, . . . , wn)
with respect to the rewards, that the process crosses level y
in phase j, while avoiding level zero, when the rewards are
(w1, . . . , wn), and given ϕ(0) = i.

The physical interpretation of J4(s) follows by symmetry
for the unbounded fluid X ∈ (−∞,+∞).

We also define generators J5(s) and J6(s), which are gen-

eralisations of
(
Q++ + Q+−H(b,b)(0)

)
used in [14],

J5(s) = Z++(s) + Z+−(s)H(b,b)(0), (57)

J6(s) = Z−−(s) + Z−+(s)G(0,b)(0). (58)

To establish the physical interpretation of J5(s), define,
for a doubly-bounded fluid X(t) ∈ [0, b],

ĥ(t) =

∫ t

u=0

|cϕ(u)|I(X(u) = b)du, (59)

Ŵi(z, t) =

∫ t

u=z

riI(ϕ(u) = i,X(u) = b)du, (60)

interpreted as censored in-out fluid and i-type rewards, re-
spectively, accumulated only during periods of congestion
when the buffer is full.

Let δ(y) = inf{t > 0 : ĥ(t) = y} be the first time the
censored in-out fluid reaches level y. Then, for all i, j ∈ S+,

[eJ5(s)y]ij = E(e−(s1Ŵ1(0,δ(y))+...+snŴn(0,δ(y)))

×I(ϕ(δ(y)) = j, δ(y) < θ(0))

| ϕ(0) = i,X(0) = b) (61)

is the LST of the distribution of (Ŵ1(0, δ(y)), . . . , Ŵn(0, δ(y)))
and ϕ(δ(y)) = j under the taboo δ(y) < θ(0), given ϕ(0) = i
and X(0) = b.

The physical interpretation of J6(s) follows by symmetry,
for the rewards earned only when the buffer is empty.

5. NEW RICCATI EQUATION FOR Ψ
In this section, we derive a new Riccati equation for Ψ

and an explicit expression for Ψ in terms of appropriately
defined matrix M. We are currently investigating whether
this new matrix M can be computed efficiently.

Consider a stochastic fluid model {(ϕ(t), X(t)), t ≥ 0}
with unbounded level variable X(t) ∈ (−∞,+∞). Through-
out this section, we assume that the process is transient.
(Note that the only other alternative is null-recurrence).

For 0 ≤ x ≤ y, define fy(x) = [fy(x)ij ]i,j∈S+∪S− such
that, for all i, j ∈ S+ ∪S−, fy(x)ij is the inverse of the LST

[eZ
+(s)y]ij so that

fy(x)ij =
d

dx
P (h+(ω(y)) ≤ x, ϕ(ω(y)) = j

| X(0) = 0, ϕ(0) = i), (62)

is the probability density that the total upward shift in X(·)
at the time ω(y) is h+(ω(y)) = x and the phase is ϕ(ω(y)) =
j, given that the process starts in phase i at time zero. It
follows that

∑
j

∫ y
x=0

fy(x)ijdx = 1.

Note that by using the method of Abate and Whitt [1],

we can obtain fy(x) by numerically inverting eZ
+(s)y.

Theorem 3. Let M = [Mij ] be a matrix defined by

Mij =

∫ ∞

y=0

fy(y/2)ijdy, (63)

and partitioned according to S+ ∪ S− as

M =

[
M++ M+−
M−+ M−−

]
. (64)

Then M has the form

M =

[
ΨM−+ (I−ΨΞ)−1Ψ

Ξ(I−ΨΞ)−1 ΞM+−

]
. (65)

Proof: First, note that by (63), the quantity Mij is the
expected number of visits to state (j, 0) given that the pro-
cess starts in state (i, 0), for all i, j ∈ S+ ∪ S−. This follows
from the facts that:

(i). fy(y/2)ij is the density that given the process started
from level 0 in phase i, it will be on level 0 in phase
j when the total in-out fluid is y (in which case the
total upward shift is y/2); and

(ii). integrating the density fy(y/2)ij gives the expected
number of visits to (j, 0) given start in (i, 0), by stan-
dard results in probability theory.

Consider M+− = [Mij ]i∈S+,j∈S− , the analysis for the re-
maining block matrices is analogous.

Assume i ∈ S+, j ∈ S− and ϕ(0) = i, X(0) = 0. Denote
θ0 = θ(0), and let θn = inf{t > θn−1 : X(t) = 0, ϕ(t) ∈ S−}
for n = 1, 2, . . .. We interpret θn as the time of the nth

crossing of level zero from above, for all n = 0, 1, 2 . . ..
Define matrix P(n) = [P (n)ij ]i∈S+,j∈S− such that, for

i ∈ S+, j ∈ S−,

P (n)ij = P (θn <∞, ϕ(θn) = j | ϕ(0) = i,X(0) = 0) (66)

is the probability that the nth crossing of level zero from
above occurs in finite time and that the process is in phase j
at the time of the nth crossing of level zero from above, given
that the process starts with ϕ(0) = i, X(0) = 0.

By the standard theory of discrete-time Markov chains,

[M+−]ij =
∞∑

n=0

[P(n)]ij . (67)

Now, for n = 0, 1, 2, . . .,

[P(n)]ij = [(ΨΞ)nΨ]ij , (68)

and so

[M+−]ij =
∞∑

n=0

[(ΨΞ)nΨ]ij

= [(I−ΨΞ)−1Ψ]ij , (69)
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where the inverse (I − ΨΞ)−1 exists since the process is
transient. Therefore,

M+− = (I−ΨΞ)−1Ψ. (70)

The other block matrices in M can be constructed in an
analogous manner.

Below, we state new results for Ψ.

Corollary 1. Ψ is a solution to the Riccati equation

M+− = Ψ + ΨM−+Ψ. (71)

Proof: By (65),

ΞM+− = M−+Ψ.

Since the process is transient, we can write

Ψ = (I−ΨΞ)(I−ΨΞ)−1Ψ

= (I−ΨΞ)M+−

= M+− −ΨM−+Ψ,

and so the result follows.

Corollary 2. Ψ can be explicitly written as

Ψ = M+−(I + M−−)−1. (72)

Proof: By (65),

M+− = (I−ΨΞ)−1Ψ,

⇒ M+− −ΨM−− = Ψ, since M−− = ΞM+−,

⇒ Ψ = M+−(I + M−−)−1.

To justify the existence of (I + M−−)−1, note that by (65),

M−− = Ξ(I−ΨΞ)−1Ψ =
∞∑

n=1

(ΨΞ)n,

and

I + M−− =
∞∑

n=0

(ΨΞ)n = (I−ΨΞ)−1,

for all transient processes.

6. CONCLUSION
We have constructed a generalised reward generator Z(s)

for the stochastic fluid model useful for tracking the accu-
mulation of reward for different phases individually.

We have considered various projections of Z(s), including
the fluid generators Q(s) [11] and W(s) [8].

We constructed the generator Z+(s) which tracks the up-
ward shift in the fluid. We applied Z+(s) to construct the
matrix M which records the expected number of visits to the
original level before the unbounded fluid drifts off to ±∞.

We used the elements of M and its physical interpretation
to derive a new Riccati equation and an explicit solution for
the matrix Ψ, which is a key building block to many other
performance measures. Work on the algorithmic techniques
resulting from this equation is in progress.
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ABSTRACT
We consider a Markov-modulated fluid flow with infinite
buffer. The lower bound zero is a reactive bound: every time
the process hits this boundary, it makes an instantaneous
jump to a fixed level b. We use the regenerative approach
to calculate the stationary distribution of this model.
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•Mathematics of computing → Markov processes;

Keywords
Fluid flow; regenerative process; reactive boundaries

1. INTRODUCTION
A fluid flow model represents the evolution of the fluid

content in a buffer, where the level is regulated by a continuous-
time Markov process. This is a well-known model, which has
been studied in the past by mean of different techniques. In
the classical infinite fluid flow, the evolution of the buffer
content is level-independent, and the unique bound in level
0 is generally an absorbing bound, which means that every
time the buffer is empty, it remains empty until new fluid
starts to enter in the buffer. We want to introduce here a
reaction of the system every time the bound is reached. In
a model with a reactive bound, the evolution of the buffer
content does not depend anymore on the Markov process
only, but also on the effective level reached by the buffer
content. In particular we consider a fluid flow which makes
a jump every time the buffer becomes empty.

2. THE MODEL
We define an infinite fluid flow model as a two-dimensional

stochastic process {X(t), φ(t)}t≥0. The first dimension X(t)
represents the level of the fluid in the buffer at time t; as
we are dealing with an infinite buffer, X(t) takes values in
R+. The second dimension is called the phase process, it is

an irreducible continuous-time Markov process taking values
in a finite set S, and it controls the evolution of the level.
When X(t) > 0, the level evolves in the following way:

dX(t)

dt
= ci if φ(t) = i at time t.

As soon as the buffer becomes empty, we have a reaction
of the system: the level X(t) makes a jumps and goes in-
stantaneously to a fixed level b. At the same time, there
may be an instantaneous change of phase.

This fluid flow with a reactive bound may be used to
model the buffer content of a particular type of servers. Jobs
are accumulated in the buffer, while waiting to be processed
by the server. Once the buffer is empty, a fixed load of b ser-
vices from neighboring servers is instantaneously put into it.
This policy prevents the server from being inactive.

Depending on the sign of the rates ci, we can partition the
state space S into S+ ∪ S−, where S+ = {i ∈ S : ci > 0},
and S− = {i ∈ S : ci < 0}.

In order to study this fluid flow, we need to know three
matrices describing its evolution. When X(t) > 0, the
phase process φ(t) evolves following the generator T . When
X(t) hits the lower boundary 0, the phase instantaneously
changes accordingly to the probability transition matrix W .
Both matrices can be partitioned following the partition of
the state space S:

T =

[
T++ T+−
T−+ T−−

]
, and W =

[
W−+ W−−

]
.

Finally, we have the rate matrix C, which collects all the
rates ci in the diagonal. It can also be partitioned in the
following way:

C =

[
C+ 0
0 C−

]
.

We suppose that the initial level X(0) is 0, and the initial
phase φ(0) has stationary distribution α (which means that
αT = α and α1 = 1). We make the assumption that the
process has a negative mean drift, that is, αC1 < 0.

The aim when studying this system is to calculate the
joint stationary distribution, defined as follows:

Πj(x) = lim
t→∞

P [X(t) < x, φ(t) = j] .

In order to do it, we use a Markov-regenerative approach.

2.1 Markov-regenerative approach
We define a sequence of random times {hn}n≥0 as the
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epochs when the buffer becomes empty:

h0 = 0,

hn+1 = inf {t > hn|X(t) = 0} .

This is a sequence of regeneration points. Let us define in
the following way the phases in the regeneration points and
just after the jump:

φn = lim
t→h−

n

φ(t) and φ∗n = lim
t→h+

n

φ(t).

Where φn ∈ S−, as the only way to hit the level 0 is with a
negative phase, and φ∗n ∈ S+ ∪ S−, as the process can leave
level b either in a negative or in a positive phase.

By Çinlar [?], we know that the stationary distribution
Π(x) in a regenerative process, can be expressed with the
following formula:

Π(x) = (νm)−1νM(x). (1)

The vector ν is the stationary distribution of the phases at
the regeneration times, and it is defined as:

νH = ν, where

Hij = P [φ(hn+1) = j|φ(hn) = i], i, j ∈ S−.

The vector m is the mean sojourn time between two re-
generation points, given the phase at the beginning of the
interval. Finally, M(x) records the mean sojourn time in
([0, x], j) during the renewal interval.

2.2 Stationary distribution
Looking at the physical properties of the model, we can

calculate all the quantities that we need. First of all we
calculate the transition matrix of the phases between two
regeneration points:

H =
[
W−+ W−−

] [ Ψ
I

]
eUb.

Matrices Ψ and U are well known in the theory of fluid flows:
the matrix Ψ gives the probability of the first return to the
initial level, and the matrix U is the generator of a Markov
process in the negative state space S−, defined by

U = T−− + T−+Ψ.

Its exponential eUx gives the probabilities, starting from a
fixed level x, that the process reaches level 0 in a finite time.
The details may be found in [?] or [?]. By solving the system
νH = ν we can obtain the vector ν.

In order to calculate M(x), the mean sojourn time in
([0, x], j), between two regeneration points, we can write

M(x) =
[
W−+ W−−

]
M̃(x).

The component
[
M̃(x)

]
ij

is the mean sojourn time in [0, x]

in a phase j, given that the process starts from level b in a
phase i ∈ S+ ∪ S−, before the first return to level 0. Note
that the passage from level 0 to level b is instantaneous, so

there is no probability mass in 0. The matrix M̃(x) can be
partitioned, depending on the initial phase, in two parts:

M̃(x) =

[
M̃+(x)

M̃−(x)

]
.

In order to calculate M̃(x), we first need to define the
quantity Hb

−(x). This is the mean sojourn time in (0, x)
starting from level b in a negative phase, before the first re-
turn either to the initial level b or to level 0. We calculate it
by following the idea in [?]: we define two continuous-time
processes, a lower-bounded {L(t), φ(t)}t≥0, with L(t) ∈ R+,

and an upper-bounded {U(t), φ(t)}t≥0, with U(t) ∈ (−∞, b].
Both these processes have the same transition matrix T and
rate matrix C than our fluid flow, but no reaction in the

boundaries. We introduce the two quantities Γ(x) and Γ̂(x),
related to these processes: the matrix Γ(x) is the mean so-
journ time in (0, x), starting from level 0, until the first re-

turn to the initial level, for the lower-bounded process; Γ̂(x)
is the mean sojourn time in (0, x), starting from level b, un-
til the first return to the initial level, for the upper-bounded
process. These two quantities are calculated by taking the
following integrals:

Γ(x) =

∫ x

0

eKudu
[
C−1

+ Ψ|C−1
− |

]
, and

Γ̂(x) =

∫ b

b−x

eK̂udu
[

Ψ̂C−1
+ |C−1

− |
]
.

The matrix Ψ̂ is the matrix of first return probabilities to the
initial level, starting from level b. The matrix K is defined
as

K = C−1
+ T++ + Ψ|C−|−1T−+,

and its exponential eKx gives the expected number of cross-
ing of level x, starting from level 0 before the first return to

0. Similarly, the matrix K̂ is defined as

K̂ = |C−|−1T−− + Ψ̂C−1
+ T+−,

and its exponential eK̂x gives the expected number of cross-
ing of level x, starting from level b before the first return to
b. As the process has strictly negative mean drift, then all
the eigenvalues of the matrix K have a strictly negative real
part and solving the first integral is straightforward:

∫ x

0

eKudu = (−K)−1
(
I − eKx

)
.

For the matrix K̂, things are different since K̂ has one eigen-
value equal to 0, so the integral becomes

∫ b

b−x

eK̂udu =
(
−K̂#

(
eK̂(b−x) − eK̂b

)
+ xvu

)
,

where K̂# is the group inverse of K̂, v and u are respectively

the right and left eigenvectors of K̂ for the eigenvalue 0.

The quantities Γ(x) and Γ̂(x) are also given by the system:
[

Γ(x)

Γ̂(x)

]
=

[
I eKbΨ

eK̂bΨ̂ I

] [
Hb

+(x)
Hb
−(x)

]
,

where Hb
+(x), similar to Hb

−(x) is the mean sojourn time in
(0, x) starting from level 0 in a positive phase, before the
first return either to the initial level b or to level 0.

Solving the system, we obtain the quantity we are inter-
ested in:

Hb
−(x) = (I − eK̂bΨ̂eKbΨ)−1

(
Γ̂(x)− eK̂bΨ̂Γ(x)

)
.

We need to separate two cases: when 0 < x < b, and
x ≥ b. In the first case, when 0 < x < b, we have the
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following system:
{
M̃+(x) = ΨM̃−(x)

M̃−(x) = Hb
−(x) + Ψ̂bM̃+(x)

Where Ψ̂b is the matrix of first return probabilities to the
initial level, starting from level b, and without hitting the
level 0. The first equation is straightforward, as we need
the mean sojourn time in (0, x), when 0 < x < b, so the
time spent above b doesn’t have to be counted in. For the
second equation, we first count the time spent starting from
b before touching either level 0 or b, and if we touch level

b before 0, then we have to consider again M̃+(x). Solving
the system, gives the following equations:

{
M̃+(x) = Ψ(I − Ψ̂bΨ)−1Hb

−(x)

M̃−(x) = (I − Ψ̂bΨ)−1Hb
−(x).

In the second case, when x ≥ b, M̃(x) is given by:
{
M̃+(x) = Γ(x− b) + ΨM̃−(x)

M̃−(x) = Hb
−(b) + Ψ̂bM̃+(x).

For M̃−(x) the equation is the same than before, for M̃+(x)
is similar, but we also have to count the time spent below
level x, starting from level b, before coming back to level b,
which is given by Γ(b − x). The solution of the system is
given by:

{
M̃+(x) = (I −ΨΨ̂b)−1

(
Γ(x− b) + ΨHb

−(b)
)

M̃−(x) = (I − Ψ̂bΨ)−1
(

Ψ̂bΓ(x− b) +Hb
−(b)

)
.

We have seen how to calculate the vector ν and the matrix
M(x) for different values of x. The vector m being the
mean sojourn time between two regenerative points, given
the initial phase, can be calculated by taking the limit when
x tends to infinite, and summing the columns:

m =
(

lim
x→∞

M(x)
)

1.

These vectors and matrix together in the formula (??), give
us the stationary distribution we were looking for.
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1. INTRODUCTION
Not many results exist for fluid queues with multi-type

jobs. Among the existing results the fluid queues with prior-
ity service have been studied the most, due to their practical
relevance in the performance evaluation of various telecom-
munication systems.

In the system considered in this paper the fluid input
rates of the jobs are modulated by a Markov chain, and the
service rate is constant. The same model has been studied
in [10], where the partial differential equations for the joint
distribution of the queue lengths are derived. However, these
differential equations, especially the boundary functions are
difficult to solve. [10] is able to provide the mean, the
variance and the covariance of the queue lengths only in case
of two-state Markov chains. In [3] the LST of the stationary
joint distribution of the buffer contents is obtained in a
closed form, from which the tail distributions and the queue
length moments are derived. [9] follows a different approach
to obtain the LST of the joint distribution based on the
analysis of the idle and busy periods of the high priority
queue.

The (matrix-analytic) approach presented in this paper
is based on the workload process analysis, just like in [5]
for the discrete case. While the main steps of the analysis
are the same, adapting the method of [5] to continuous
queues is not straight forward at all, since the specialties of
continuous systems require different solutions in many steps
of the procedure. Various performance measures are derived,
including the Laplace-Stieltjes transforms (LST) and the
moments of the stationary queue length distribution and
the waiting time of the fluid drops. An Erlangization-based
numerical method is also provided to approximate the queue
length and the waiting time distributions up to an arbitrary
precision.

The numerical behavior is the main focus throughout the
paper. All performance measures are formulated as reward
accumulation problems during busy periods of simple Marko-
vian fluid flow models, for which matrix-analytic solutions

are provided. The computation bottlenecks are the solutions
of Riccati- and Sylvester-type equations, for which efficient
implementations exist. As a result, the presented procedure
can solve large models up to many hundreds of phases, while
the past solutions mentioned above are less tractable.

2. MARKOVIAN FLUID FLOW MODELS
Both the queue length and the waiting time analysis are

translated to the analysis of the amount of reward accumu-
lated over the busy period of special Markovian fluid flow
models, thus we start the paper by reviewing the related
results and extend them where needed.

Formally, fluid models are two dimensional Markov pro-
cesses {X (t),J (t), t > 0}, where X (t) is the fluid level and
J (t) is the state of a CTMC (the background process) at
time t. The Markov chain is assumed to be irreducible with
state space S, the number of states is N = |S|. The gen-
erator matrix is denoted by F = [fij , i, j ∈ S]. A fluid
rate is associated to each state of the background process,
ci, i ∈ S, that determines the rate at which the level of the
fluid buffer changes. The evolution of the fluid level X (t)
can be described as

d

dt
X (t) =

{
cJ (t), if X (t) > 0,

max{0, cJ (t)}, if X (t) = 0.
(1)

2.1 The distribution of the fluid level
The size N row vector π(x) denotes the stationary density

of the fluid level, whose ith entry is defined by πi(x) =
limt→∞ d

dx
P (X (t) < x,J (t) = i). At level 0 probability

mass can accumulate as well. The ith entry of row vector
p represents the probability mass at level 0, pi = P (X (t) =
0,J (t) = i).

Several numerical methods are available to obtain the
stationary solution of the fluid level. For the analysis of
fluid priority queues we follow the matrix-analytic solution
approach ([7]). For the matrix-analytic method the state
space of the Markov chain has to be partitioned into three
sets, S = S+ ∪ S− ∪ S0, according to the sign of the fluid
rates, i.e. S+ = {i ∈ S, ci > 0}, S− = {i ∈ S, ci < 0} and
S0 = {i ∈ S, ci = 0}. From now on, it is assumed that
matrices F and C are partitioned, thus

F =




F++ F+− F+0

F−+ F−− F−0

F0+ F0− F00


 , C =




C+

C−
0


 . (2)

Furthermore, let us introduce matrix F• as the generator of
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J (t) restricted to non-zero states, hence

F• =

[
F++ F+−
F−+ F−−

]
+

[
F+0

F−0

]
(−F00)−1 [F0+ F0−

]
. (3)

According to [7] the density function of the stationary fluid
level has a matrix-exponential form if the drift of the queue
is negative, hence

π(x) = κ eKx
[
I Ψ

] [C+

|C−|

] [
I 0 F+0(F00)−1

0 I F−0(F00)−1

]

︸ ︷︷ ︸
A

,

where matrix Ψ is the minimal non-negative solution of the
non-symmetric algebraic Riccati equation (NARE)

Ψ|C−|−1F•−+Ψ + Ψ|C−|−1F•−−

+ C+
−1F•++Ψ + C+

−1F•+− = 0,
(4)

and matrix K is obtained by K = C+
−1F•+++Ψ|C−|−1F•−+.

The probability mass at level zero is p =
[
0 p− p0

]
. Vec-

tors κ, p− and p0 are the solutions of the linear equations

[
κ p− p0

]


[

−A
]

F−+ F−− F−0

F0+ F0− F00


 = 0, (5)

and the normalization condition

[
κ p− p0

]


−K−1A1

1

1


 = 1. (6)

2.2 Reward accumulation in the busy period
The busy period of Markovian fluid flow models has been

characterized before in the literature. The LST of the busy
period duration starting from x > 0 amount of fluid is
derived in [1]. An Erlangization based numerical method has
been introduced in [8] to obtain the approximation of the
distribution function of a busy period length.

In this section we consider a more general problem. To each
state of the background process a reward rate is assigned, and
the accumulated reward over the busy period is characterized.
While this study might seem exotic, it turns out that the
main performance measures of the fluid priority queue can
be related to the accumulated reward over the busy period.

The introduction of reward accumulation makes the sys-
tem three-dimensional, {X (t),Y(t),J (t), t ≥ 0}, where Y(t)
represents the reward accumulated up to time t. The reward
accumulation is linear, thus Y(t) =

∫ τ
0
dJ (t)dt, where di de-

notes the reward rate associated with state i. This system is
called a stochastic two-dimensional fluid model in [2].

Let us introduce the diagonal matrix of reward rates
D = diag〈di〉. If the random variable representing the busy
period is denoted by τ = inf(t > 0 : X (t) = 0), then the
joint distribution of the accumulated reward and the state
transitions over the busy period are given by matrix Φ(y)

(whose LST is denoted by Ψ̂X(s) in [2]) defined as

[Φ(y)]ij =P (Y(τ)<y,J (τ)=j|X (0)=0,Y(0)=0,J (0)= i),

for i ∈ S+, j ∈ S−, and, if the fluid level is x > 0 initially, the
distribution of the accumulated reward is given by matrix
B(y, x) (LST denoted by Ĝy

X(s) in [2]) where

[B(y, x)]ij =P (Y(τ)<y,J (τ)=j|X (0)=x,Y(0)=0,J (0)= i)

for i ∈ S, j ∈ S−.

The following two theorems provide the LST of matrices
Φ(y) and B(y, x).

Theorem 1 ([2], Theorem 4, extended with 0 states).
For x>0 the blocks of matrix B∗(v, x)=

∫∞
0
e−vy dB(y, x) are

B∗+−(v, x) = Φ∗(v)B∗−−(v, x),

B∗−−(v, x) = eH
∗
B(v)x,

B∗0−(v, x) = (vD0−F00)−1F0+B∗+−(v, x)

+ (vD0−F00)−1F0−B∗−−(v, x),

where matrix H∗B(v) is given by

H∗B(v) = −C−1
−
(
F−− − vD− + F−0(vD0 − F00)−1F0−

+ (F−+ + F−0(vD0 − F00)−1F0+)Φ∗(v)
)
.

Theorem 2 ([2], Theorem 3). Matrix Φ∗(v) describ-
ing the LST of the accumulated reward over a busy period
starting from empty buffer satisfies the NARE

0 =C−1
+

(
F++ − vD+ + F+0(vD0 − F00)−1F0+

)
Φ∗(v)

+ Φ∗(v)(−C−)−1 (F−− − vD− + F−0(vD0 − F00)−1F0−
)

+ Φ∗(v)(−C−)−1 (F−+ + F−0(vD0 − F00)−1F0+

)
Φ∗(v)

+ C−1
+

(
F+− + F+0(vD0 − F00)−1F0−

)
.

Observe that Φ∗(v)|v→0 = Ψ.
To obtain the moments of the performance measures of

the fluid priority queue the derivatives of matrix Φ∗(v) will

be required at v → 0, that is, Φ(n) = dn

dvn
Φ∗(v)|v→0. It is

possible to derive recursive formulas for Φ(n), where Φ(0) =
Ψ and for n > 1 matrix Φ(n) is obtained by the solution of
a Sylvester equation involving matrices Φ(k), k < n. The
details are omitted due to space limitations.

The rest of this section focuses on the distribution of the
reward accumulated over the busy period. The Erlangization
based numerical method published in [8] is extended in two
aspects: first, [8] obtains the duration of the busy period,
while we need the accumulated reward in this paper, second,
zero rates are excluded in [8], while we need them here.

According to the Erlangization algorithm the order-n ap-
proximation of matrix Φ(t) is

Φn(t) =

∫ ∞

0

fE(n,n/t)(u) ·Φ(u) du, (7)

where fE(n,n/t)(u) is an order-n Erlang density with rate
parameter ν = n/t. As n tends to infinity, Φn(t) tends
to Φ(t). Matrix Φn(t) has a probabilistic meaning as well:
it is the probability that the accumulated reward in the
busy period is less than an Erlang(n, ν) variable. Hence,
matrix Φn(t) is evaluated as follows. The state space of
the background process is extended such that it does not
only keep track of the state of J (t), but also the number of
completed stages of the Erlang distribution. At the end of
the busy period, the probabilities of those states where this
counter is less that n contribute to Φn(t). Thus, Φn(t) can
be expressed as a sum

Φn(t) =

n−1∑

k=0

Ψk,

where Ψk contains the probabilities that the Erlang random
variable is in stage k when the reward accumulation (and
hence the busy period) ends.
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It can be proven that Ψ0 = Φ∗(ν) with ν = n/t, and that
for k > 0 matrices Ψk can be obtained recursively as the
solutions of Sylvester equations.

3. THE MARKOV-MODULATED FLUID
PRIORITY QUEUE

3.1 The description of the system
In the system considered in the paper K different (fluid)

job types are distinguished, where class 1 has the lowest, and
class K the highest priority. The rates at which the fluid
belonging to various job types enter the system are modulated
by a continuous time Markov chain (CTMC, also referred
to as the background process) with generator denoted by
Q (assumed to be irreducible). The stationary probability
vector of the CTMC is π, hence πQ = 0, π1 = 1 hold (1
denotes the column vector of ones of appropriate size). The
rate at which class k fluid flows into the queue in state i is

r
(k)
i ≥ 0. Matrix R(k) is a diagonal matrix composed by the

class k incoming fluid rates, R(k) = diag〈r(k)i 〉. For simplicity,
we denote the input rates of classes having priority equal to

or higher than k by r
(k+)
i . The rate at which fluid can leave

the queue is denoted by d.
Using the notation introduced above, the mean arrival rate

of class k fluid can be obtained by λ(k) = πR(k)1, and the
total input rate is λ =

∑K
k=1 λ

(k). The system is assumed to
be stable, hence λ < d.

3.2 Concept of the solution
The solution is based on the ”tagged customer” approach.

When a class k fluid drop arrives into the queue, it finds
a given amount of class k+ workload in the system. This
amount of workload has to be served before the tagged fluid
drop can leave the system. The workload of lower priority
classes can be neglected. While the tagged fluid drop waits
for its service in the queue, further class (k + 1)+ fluid can
arrive, which has to be served before the tagged one.

The waiting time of the tagged fluid drop is the time the
workload found in the system at arrival, increased by the
higher priority workload brought to the system while waiting,
is processed by the server.

The class k queue length at the fluid drop departure instant
is the amount of class k fluid arriving while the tagged fluid
drop waits in the system.

3.3 The workload at fluid drop arrivals
As the first step of the analysis, the distribution of the

total workload of classes ≥ k is determined at class k fluid
drop arrival instants.

Let us denote the workload of classes ≥ k at time t by
V(t). The joint density function of the workload and the
state of the background process at time t is denoted by row
vector v(t, x), defined by vi(t, x) = d

dx
P (V(t) < x,J (t) = i).

The joint probability that the workload of the system is 0
and the state of the background process is i is stored by row
vector α(t), thus αi(t) = P (V(t) = 0,J (t) = i).

Theorem 3. Vector v(t, x) is determined by the differen-
tial equation

∂

∂t
v(t, x) +

∂

∂x
v(t, x)(R(k+)/d− I) = v(t, x)Q, (8)

with boundary condition

d

dt
αi(t) =

∑

j:rj<d

αj(t)qji − vi(t, 0)(r
(k+)
i /d− 1), (9)

for i : r
(k+)
i ≤ d, and αi = 0 for i : r

(k+)
i > d.

Theorem 3 has an important corollary: the workload pro-
cess behaves like an ordinary Markovian fluid flow model
with parameters

F = Q, C = R(k+)/d− I, (10)

thus its stationary density, v(x) = limt→∞ v(t, x), and
probability mass at zero, α = limt→∞ α(t), are given by
v(x) = κeKxA, α = p, where vectors κ, p and matrices K,A
are obtained as described in Section 2.1 with parameters
(10). Hence, the density of the workload and the probability
mass at zero embedded at class k fluid drop arrival instants
are

vA(x) =
1

λ(k)
κeKxAR(k), αA =

1

λ(k)
pR(k). (11)

3.4 The properties of the sojourn time
In order to analyze the sojourn time, a special fluid flow

model and appropriate reward rates are introduced, such
that the accumulated reward over a busy period of this fluid
model is equal to the sojourn time of class k fluid drops.

The generator of the background process, the fluid rates,
and the reward rates of this special fluid flow model are

F =

[
K AR(k)

λ(k)

Q

]
,C =

[
I

R((k+1)+)

d
− I

]
,D =

[
0

I

]
.

(12)

The role of the first state group of the background process
is solely the accumulation of the workload a class k fluid
drop finds in the system upon its arrival. The workload is
increased with rate 1 and during this period no reward is
accumulated, since it is not part of the sojourn time. Note
that it is the matrix-exponential form of the initial workload
(given by (11)) that allowed to apply this trick (see [4]).

When the appropriate workload level is reached, a tran-
sition occurs to the second group of states. In this part,
the fluid level in this special model represents the workload
of the system ahead of the tagged class k fluid drop. The
workload brought by class (k + 1)+ fluid flows increase the
workload ahead of the tagged class k fluid drop. The rates at
which the workload changes during this period are given by
the diagonal elements of R((k+1)+)/d− I. The reward rate
is 1 in each state of the modulating CTMC, thus the reward
measures the time spent in this part of the state space. The
time spent till the workload ahead of the tagged drop reaches
level 0 is identical to the sojourn time.

Hence, the sojourn time is given by the amount of reward
accumulated during the busy period, with initial vector κ′ =[
κ 0

]
. If the random variable representing the sojourn time

is denoted by T , the LST of the distribution function f∗T (s)
and its kth moment E(T k) are expressed by

f∗T (s) = κ′Φ∗(s)1, (13)

E(T k) = (−1)kκ′Φ(k)
1, k > 0, (14)
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and the order-n approximation of the distribution function

F
(n)
T (t) is

F
(n)
T (t) = αA1+ κ′Φn(t)1, (15)

where matrices Φ∗(s),Φ(k) and Φn(t) are given by the reward
analysis of the fluid model defined by matrices (12) (see
Section 2.2). If the workload is zero when the fluid drop
arrives (term αA1), the sojourn time is zero as well.

3.5 Queue length at fluid drop departures
The approach used to characterize the amount of class k

fluid in the system at class k fluid drop departures is very
similar to the one presented in Section 3.4. A special Markov-
modulated fluid model is constructed such that the reward
accumulated during its busy period is equal to the queue
length at departures. The matrices defining this special fluid
model are

F =

[
K AR(k)

λ(k)

Q

]
,C =

[
I

R((k+1)+)

d
−I

]
,D =

[
0

R(k)

]
.

Observe that these matrices are similar to (12), and the
interpretation is similar as well. The first state group sets
the initial workload seen by a class k drop arrival. The second
state group follows the workload ahead of the fluid drop till
it leaves the system. The given reward rate matrix D is such
that the reward measures the amount of class k fluid arriving
till the tagged fluid drop leaves, hence it provides the class
k queue length at the departure of the tagged class k fluid
drop.

Denoting the class k queue length at departures by X , the
LST of the distribution function by f∗X (s), its kth moment
by E(X k) and the order-n approximation of its distribution

function F
(n)
X (x), we again have that

f∗X (s) = κ′Φ∗(s)1, (16)

E(X k) = (−1)kκ′Φ(k)
1, k > 0, (17)

F
(n)
X (x) = αA1+ κ′Φn(x)1. (18)

The queue length is zero at the departure when the work-
load is zero at drop arrival (covered by term αA1).

3.6 Queue length at random point in time
Let Y denote the class k queue length at random point

in time. The distribution function, the probability mass at
level 0 and the LST of the distribution function are denoted
by FY(x), pY and f∗Y(s), respectively. Before establishing the
relationship between X and Y, we introduce the vector form
of these quantities that include the state of the background
process as well, hence characterizing limt→∞{Y(t),J (t)}.
These row vectors are denoted by FY(x), pY and f∗Y(s).

Theorem 4. The relation between f∗X (s) and f∗Y(s) is

f∗Y(s)(sR(k) −Q) = λ(k) s f∗X (s). (19)

The moments of the queue length are obtained by taking
the derivatives of the LST, i.e.,

E(Yn) = (−1)n
dn

dsn
f∗Y(s)|s→0

︸ ︷︷ ︸
y(n)

1. (20)

Following [6, Section 4.1] it is possible to derive a recursive

algorithm to compute vectors y(n), based on y(n−1) and the
queue length moments at departure instants.

Finally, it remains to obtain the order-n approximation of
the class k queue length distribution at random point in time.
We managed to find a recursive relation between the order-n
approximations of the queue length at the departures and
the queue length at arbitrary points in time.

Theorem 5. The order-n approximation of the distribu-

tion function FY(x) is F
(n)
Y (x) = F

(n)
Y (x)1, where row vectors

F
(n)
Y (x) are defined recursively by

F
(n)
Y (x) = ν

(
λ(k)κ′Ψn−1 + F

(n−1)
Y (x)R(k)

)
(νR(k) −Q)−1

for n > 1, and

F
(1)
Y (x) = νλ(k)(αA + κ′Ψ0)(νR(k) −Q)−1

for n = 1, where ν = n/x.
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ABSTRACT
We consider regular perturbations of positive recurrent Markov
modulated fluid models, that is, given an infinitesimal gen-
erator A and a perturbation matrix Ã, we define the in-
finitesimal generator A(ε) as A(ε) = A + εÃ, where ε de-
notes a small number. The perturbation performed on A
is such that its effect on the performance measures of the
model dissipates as ε goes to zero. For a Markov modulated
fluid model, in addition to the infinitesimal generator of the
phases, we may also perturb the rate matrix, and analyze
the effect of those perturbations on performance measures
of the model. In both cases, the key matrix to analyze is
the matrix of first return probabilities to the initial level,
denoted as Ψ. We show that the analysis of perturbations
on the infinitesmial generator follows the usual path while
the analysis for perturbations on the rate matrix is more
involved. In the later case, the comparison between Ψ and
its perturbed counterpart requires some re-definition. Our
main contribution is the construction of a substitute for the
matrix of first return probabilities, which enables us to an-
alyze the effect of the perturbation under consideration.

Keywords
Markov modulated fluid models; Perturbation analysis; First
return probabilities

1. INTRODUCTION
Most mathematical models have input parameters that

are typically estimated from the real world data. Since the
parameters in the modeled system represent quantities that
can suffer from small errors, it is natural to analyze how the
performance measures are affected by small changes in the
parameters. Using the structural properties of the model,
it becomes possible to assess the impact of perturbations
on the key matrices of the underlying process by providing
computationally feasible solutions along with probabilistic

interpretation.
Markov modulated fluid models appeared in the 1960s

to study the continuous-time behavior of queues and dams,
an early paper being Loynes [11]. In the eighties, Marko-
vian fluid models started to be more extensively investi-
gated, in particular their stationary density, see for instance
Rogers [14] and Asmussen [2]. The importance of the ma-
trix of first return probabilities has been demonstrated in
Ramaswami [13] and its computation has attracted much
attention, see Bean et al. [3] and Bini et al. [4]. One may
derive from Ψ, the matrix of first return probabilities form
above, important performance measures of the model, such
as the stationary density of the level of the fluid model.

The model {(X(t), ϕ(t)) : t ∈ R+} is described as follows:
ϕ(t) is a Markov chain, with finite state space S, it is called
the phase process; X(t) is a continuous function, called the
level. The evolution of the level is continuous and may be
expressed as

X(t) = Y (t) + sup
0≤s≤t

{max (0,−Y (s))}

where Y (t) = Y (0) +

∫ t

0

cϕ(s)ds, (1)

so that it varies linearly with rate ci when ϕ(t) = i, i ∈ S.
We partition S into S+∪S0∪S− with S+ = {i ∈ S : ci > 0},
S0 = {i ∈ S : ci = 0} and S− = {i ∈ S : ci < 0}. The
infinitesimal generator of the phase process is denoted by
A and is written, possibly after permutation of rows and
columns, as

A =



A++ A+0 A+−
A0+ A00 A0−
A−+ A−0 A−−


 , (2)

and the rate matrix is denoted by

C =



C+

C0

C−


 (3)

with C+ = diag(ci : i ∈ S+), C− = diag(ci : i ∈ S−) and
C0 is a null matrix. Throughout the paper, we make the
following assumption.

Assumption 1. The Markov modulated fluid model is pos-
itive recurrent, that is, ξC1 < 0, where ξ is the stationary
probability vector defined for i, j ∈ S by

ξi = lim
t→∞

P [ϕ(t) = i|ϕ (0) = j] , (4)
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and is the unique solution of the equation ξA = 0 such that
ξ1 = 1.

A key matrix for Markov modulated fluid models is the
matrix Ψ of first return probabilities to the initial level from
above, with dimensions |S+| × |S−|, and components

Ψij = P [τ− <∞, ϕ (τ−) = j|Y (0) = 0, ϕ (0) = i] , (5)

where τ− = inf{t > 0 : Y (t) < 0}, i ∈ S+ and j ∈ S−.
By Rogers [14, Theorem 1], Ψ is the minimal nonnegative
solution of the Riccati equation

C−1
+ Q+−+C−1

+ Q++X+X
∣∣C−1
−
∣∣Q−−+X

∣∣C−1
−
∣∣Q−+X = 0,

(6)
where |C−1

− | denotes the entrywise absolute value of C−1
−

and
[
Q++ Q+−
Q−+ Q−−

]
=

[
A++ A+−
A−+ A−−

]
(7)

+

[
A+0

A−0

] (
−A−1

00

) [
A0+ A0−

]
.

Similarly, the matrix Ψ̂ of first return probabilities to the
initial level from below has components

Ψ̂ij = P [τ+ <∞, ϕ (τ+) = j|Y (0) = 0, ϕ (0) = i] ,

where τ+ = inf{t > 0 : Y (t) > 0}, i ∈ S− and j ∈ S+,
it satisfies a Riccati equation similar to (6). The present
article focuses on the perturbation analysis of Ψ only, as the
analysis for Ψ̂ is similar.

Two other important matrices are

U = |C−1
− |Q−− + |C−1

− |Q−+Ψ, (8)

K = C−1
+ Q++ + Ψ|C−1

− |Q−+. (9)

The matrix U is the infinitesimal generator of the process
of downward record and is such that for i, j ∈ S−, (eUx)ij
is the probability that, starting from (y, i), for any y, the
process reaches level y − x in finite time and that (y − x, j)
is the first state visited in level y−x. The matrix K defined
in (9) is also an important matrix for Markov modulated
fluid models and appears in the sationary density of the
fluid model, see Section 4.

For a long time there has been a recurrent interest in
perturbation analysis, see for instance Cao and Chen [5],
Heidergott, et al. [7], Antunes et al. [1]. In this paper, we
analyze the perturbation of Markov modulated fluid mod-
els. When the infinitesimal generator (2) of the phases is

perturbed into A(ε) = A+εÃ, the analysis follows the usual
path: the perturbed first return probability matrix Ψ(ε) is
shown to be analytic, and computable equations are readily
obtained for the derivatives of Ψ(ε). We focus on the first
order derivative

Ψ(1) =
dΨ(ε)

dε

∣∣∣∣
ε=0

of a perturbed Markov modulated fluid model as it pro-
vides a good approximation of the effect of the perturbation
on the system when compared to the unperturbed system.
Furtermore, we are interested in the structures and going
beyond the first derivative is rather computational and does
not bring much more information.

We also analyze the effect on Ψ of perturbations of the rate
matrix (3). When C is perturbed as C(ε) = C + εC̃, phases
of S0 may be transformed into phases of S+ or S− in the

perturbed model, with the consequence that a perturbation
of the rates ci appearing in (1) may modify the structure
of Ψ(ε) as the dimensions are not the same as those of Ψ.
Clearly, the comparison between the matrices Ψ(ε) and Ψ
requires more care.

We do not consider cases where both the generator A and
the rate matrix C are perturbed, as our results show that
this may be done, at the cost of increased complexity in the
expressions obtained.

In Section 2, we analyze perturbations of the infinitesimal
generator of the phases. In Section 3, we analyze perturba-
tions on the rate matrix C in four different cases. In Section
3.1 we assume that the phases of S0 are unaffected by the
perturbation. In Sections 3.2–3.4 we examine what happens
when the phases of S0 are affected by the perturbation. We
propose an adapted version of Ψ which enables the analysis
of the effect of the perturbation under consideration. We
decompose the analysis in three subsections for the sake of
clarity: firstly, we assume that all the phases in S0 become
phases of S+ after perturbation, next, we assume that they
all become phases of S− after perturbation, finally, we as-
sume that the phases in S0 are split between S+ and S−.
As an application, we derive in Section 4 the first order ap-
proximation of the stationary density of a perturbed fluid
model.

2. PERTURBATION OF THE INFINITESI-
MAL GENERATOR

In this section, the infinitesimal generator A is perturbed
and becomes

A(ε) = A+ εÃ, (10)

where

Ã =



Ã++ Ã+0 Ã+−
Ã0+ Ã00 Ã0−
Ã−+ Ã−0 Ã−−


 , (11)

Ã1 = 0, and we assume that A(ε) is an irreducible infinitesi-
mal generator for ε sufficiently small in a neighborhood of 0.

The matrix Ψ(ε) of first return probabilities for the per-
turbed model is the minimal nonnegative solution of the
Riccati equation

C−1
+ Q+−(ε) + C−1

+ Q++(ε)X

+X
∣∣C−1
−
∣∣Q−−(ε) +X

∣∣C−1
−
∣∣Q−+(ε)X = 0, (12)

where Q(ε) is defined by (7), with A(ε) replacing A. We
write

[
Q++(ε) Q+−(ε)
Q−+(ε) Q−−(ε)

]

=

[
Q++ + εQ̃++ Q+− + εQ̃+−
Q−+ + εQ̃−+ Q−− + εQ̃−−

]
+O(ε2).

Theorem 1. The matrix Ψ(ε) of first return probabili-
ties, minimal nonnegative solution to (12), for the perturbed
model is analytic in a neighbourhood of zero. Furthermore,
Ψ(1) is the unique solution of the Sylvester equation

KX +XU =− C−1
+ Q̃+− − C−1

+ Q̃++Ψ

−Ψ|C−1
− |Q̃−− −Ψ|C−1

− |Q̃−+Ψ (13)

where K and U are defined in (9) and (8).
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Proof. Define the continuous operator

F (ε,X ) = C−1
+ Q+−(ε) + C−1

+ Q++(ε)X
+ X

∣∣C−1
−
∣∣Q−−(ε) + X

∣∣C−1
−
∣∣Q−+(ε)X .

We have F (0,Ψ) = 0 and ∂XF (ε,X ) exists in a neighbor-
hood of (0,Ψ) and is continuous at (0,Ψ). For Y,H ∈
R|S+|×|S−|, the equation

∂XF (ε,X )|ε=0,X=Ψ (Y ) = H,

is equivalent to the Sylvester equation

KY + Y U = H. (14)

From Rogers [14] and Govorun et al. [6], we have sp(K) ∈
{z ∈ C : Re(z) < 0} and sp(−U) ∈ {z ∈ C : Re(z) ≥ 0}.
Thus, K and −U have no common eigenvalue and, by Lan-
caser and Tismenetsky [10, page 414], (14) has a unique
solution, so that ∂XF (ε,X )|ε=0,X=Ψ(0) is a nonsingular op-

erator. We conclude that Ψ(ε) is analytic at zero by the
Implicit Function Theorem.

Remark 1. It immediately results from Xue et al. [15,
Theorem 2.2] that small relative changes to the entries of Q
induce small relative differences between Ψ and Ψ(ε). The
bounding coefficient matrix in [15, Eqn. (2.12)] is the so-
lution of a Sylvester equation with the same coefficients K
and U as in (13) and a different right-hand side.

3. PERTURBATION OF THE RATE MATRIX
Define

C(ε) = C + εC̃ (15)

with

C̃ =



C̃+

C̃0

C̃−


 (16)

where the orders of C̃+, C̃0 and C̃− are equal to those of C+,
C0 and C−, respectively. Assume that ε is small enough so
that the diagonal elements of C+(ε) are strictly positive and
those of C−(ε) strictly negative.

We analyze separately the cases C̃0 = 0 (in Section 3.1)

and C̃0 6= 0. If C̃0 6= 0, the perturbation has the effect of
changing null phases into non-null phases. To simplify the
presentation, we suppose at first that all phases of S0 become
phases of the same non-null subset S+ after perturbation.
This is analyzed in Section 3.2. In Section 3.3, we treat the
case where all the phases of S0 become phases of S− after
perturbation. Finally, we assume in Section 3.4 that the
phases in S0 are split partially into S+ and into S−.

Clearly, Section 3.4 covers the cases analyzed in Sections 3.2
and 3.3. It is useful, nevertheless, to proceed through the
special cases first, for which the results are easier to follow.
In various remarks, we emphasize the unity of treatment.

The Implicit Function Theorem applies in all cases to
prove the analyticity of Ψ(ε), although details become more
involved as we proceed from the simplest to the most gen-
eral case. We show this in Theorem 3 and Theorem 4 and
we omit the details for Theorem 5.

3.1 Phases in S0 unaffected
Assume that C̃0 = 0 so that C0(ε) = 0 as well. The matrix

Ψ(ε) of first return probabilities for the perturbed model is
the minimal nonnegative solution of the Riccati equation

C−1
+ (ε)Q+− + C−1

+ (ε)Q++X

+X
∣∣C−1
− (ε)

∣∣Q−− +X
∣∣C−1
− (ε)

∣∣Q−+X = 0. (17)

The next Theorem is proved by applying to (17) the same
argument as in Theorem 1.

Theorem 2. Assume C(ε) = C + εC̃, with C̃0 = 0. The
matrix Ψ(ε) of first return probabilities for the perturbed
model is analytic at zero and may be written as

Ψ(ε) = Ψ + εΨ(1) +O(ε2),

where Ψ is the minimal non-negative solution to (6) and

Ψ(1) is the unique solution of the Sylvester equation

KX +XU = −Ψ|C−1
− |C̃−U − C−1

+ C̃+ΨU, (18)

where K and U are defined in (9) and (8) respectively. �

3.2 Migration of S0 to S+

Assume that C̃i > 0 for all i in S0, this means that all
phases of S0 become phases of fluid increase after perturba-
tion. To make this explicit in our equations, we write S⊕
instead of S0 and the infinitesimal generator of the phase
process is written as

A =



A++ A+⊕ A+−
A⊕+ A⊕⊕ A⊕−
A−+ A−⊕ A−−


 . (19)

After perturbation, it is partitioned as

A =



A++ A+⊕ A+−
A⊕+ A⊕⊕ A⊕−
A−+ A−⊕ A−−


 (20)

and the set of phases with positive rates is S+ ∪ S⊕. The
dimensions of the first return probability matrix become
(|S+| + |S⊕|) × |S−| after perturbation and Ψ may not be
directly compared to Ψ(ε), the matrix of first return proba-
bilities of the perturbed model, which is partitioned as

Ψ(ε) =

[
Ψ+−(ε)
Ψ⊕−(ε)

]
. (21)

The matrix Ψ(ε) is the minimal nonnegative solution of the
Riccati equation

[
C+ + εC̃+

εC̃⊕

]−1([
A+−
A⊕−

]
+

[
A++ A+⊕
A⊕+ A⊕⊕

]
X

)

+X
∣∣∣C− + εC̃−

∣∣∣
−1 (

A−− +
[
A−+ A−⊕

]
X
)

= 0. (22)

As we show in the next theorem, comparisons are never-
theless possible, as Ψ is immediately recognised in the limit
Ψ = limε→0 Ψ(ε).

Theorem 3. The matrix (21) of first return probabili-
ties for the perturbed model, minimal nonnegative solution
of (22), is analytic near zero and may be written as

Ψ(ε) = Ψ + εΨ(1) +O(ε2),
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where

Ψ =

[
Ψ

Ψ⊕−

]
and Ψ(1) =

[
Ψ

(1)
+−

Ψ
(1)
⊕−

]
, (23)

where Ψ is given in (6), Ψ⊕− = (−A−1
⊕⊕)(A⊕− + A⊕+Ψ),

Ψ
(1)
+− is the unique solution of the Sylvester equation

KX +XU = −Ψ|C−1
− |C̃−U − C−1

+ C̃+ΨU + P⊕U, (24)

and

Ψ
(1)
⊕− = (−A−1

⊕⊕)C̃⊕Ψ⊕−U + (−A−1
⊕⊕)A⊕+Ψ

(1)
+−. (25)

The matrices K and U are defined in (9) and (8), and

P⊕ = K+⊕(−A−1
⊕⊕)C̃⊕(−A−1

⊕⊕)(A⊕− +A⊕+Ψ)

with K+⊕ = C−1
+ A+⊕ + Ψ|C−1

− |A−⊕.

Proof. To remove the effect of ε−1 in the left-most co-
efficient of (22), we pre-multiply both sides by diag(I, εI).

For X =

[
X+−
X⊕−

]
, we define the operator

F (ε,X ) =

[
(C+ + εC̃+)−1(A+− +A++X+− +A+⊕X⊕−)

C̃−1
⊕ (A⊕− +A⊕+X+− +A⊕⊕X⊕−)

]

+

[
X+−
εX⊕−

]
|C− + εC̃−|−1(A−− +A−+X+− +A−⊕X⊕−).

The equation

∂XF (ε,X )|ε=0,X=Ψ

[
Y+−
Y⊕−

]
=

[
H+−
H⊕−

]

is equivalent to the set of equations

Y+−U +KY+− = H+− +K+⊕(−A−1
⊕⊕)C̃⊕H⊕−,

Y⊕− = A−1
⊕⊕C̃⊕H⊕− + (−A−1

⊕⊕)A⊕−Y+−.

This is a non-singular system, so that Ψ(ε) is analytic, by
the Implicit Function Theorem. From (22), we obtain the
two equations:

Ψ+−(ε)|C− + εC̃−|−1 (A−− +A−+Ψ+−(ε) +A−⊕Ψ⊕−(ε))

+ (C+ + εC̃+)−1 (A+− +A++Ψ+−(ε) +A+⊕Ψ⊕−(ε)) = 0,
(26)

and

εΨ⊕−(ε)|C− + εC̃−|−1 (A−− +A−+Ψ+−(ε) +A−⊕Ψ⊕−(ε))

+ C̃−1
⊕ (A⊕− +A⊕+Ψ+−(ε) +A⊕⊕Ψ⊕−(ε)) = 0, (27)

in which we take the limit for ε → 0. The second equation
gives

Ψ⊕−(0) = (−A⊕⊕)−1 (A⊕− +A⊕+Ψ+−(0)) (28)

and the first equation gives Ψ+−(0) as the solution of (6),
so that Ψ+−(0) = Ψ. This proves (23).

Taking the coefficients of ε in (27) and using (28) leads
directly to (25). To prove (24), we note that limε→0 U(ε) =
U so that, taking in (26) the limit for ε→ 0 and using (23),
we obtain

−ΨU = C−1
+ (A+− +A++Ψ +A+⊕Ψ⊕−). (29)

We take the coefficient of ε in (26) and we use (29) to obtain

K++Ψ
(1)
+−+K+⊕Ψ

(1)
⊕−+Ψ

(1)
+−U = −Ψ|C−1

− |C̃−U−C−1
+ C̃+ΨU

with K++ = C−1
+ A++ + Ψ|C−1

− |A−+. Using (25) and (9)
gives then (24).

Remark 2. The components of the block Ψ in Ψ are those
defined in (5), for which one has a clear interpretation. The
components of the second block have a probabilistic inter-
pretation as well: the ijth entry, for i ∈ S⊕ and j ∈ S−, is
the sum of

• [(−A−1
⊕⊕)A⊕−]ij , the probability that the phase pro-

cess eventually goes from phase i to phase j, after some
time spent in S⊕ and

• [(−A−1
⊕⊕)A⊕+Ψ]ij , the probability that the phase pro-

cess leaves S⊕ for a phase in S+ and later returns to
the initial level in phase j.

Remark 3. The Sylvester equations (18) and (24) for Ψ
(1)
+−

are nearly identical. The only difference is the last term in
the right-hand side of (24), reflecting the migration of all
phases of S0 to phases of fluid increase.

3.3 Migration of S0 to S−
Assume that C̃i < 0 for all i in S0, so that all the phases

of S0 become phases of S− after perturbation. The set of
such phases is written S	 and the infinitesimal generator of
the phases is written as

A =



A++ A+	 A+−
A	+ A		 A	−
A−+ A−	 A−−


 .

The matrix of first return probabilities of the perturbed
model is partitioned as

Ψ(ε) =
[

Ψ+	(ε) Ψ+−(ε)
]
,

and it is the minimal nonnegative solution of a Riccati equa-
tion which we rewrite as the two equations

(C+ + εC̃+)−1(A+	 +A++Ψ+	(ε))

+ Ψ+	(ε)|εC̃	|−1(A		 +A	+Ψ+	(ε))

+ Ψ+−(ε)|C− + εC̃−|−1(A−	 +A−+Ψ+	(ε)) = 0, (30)

(C+ + εC̃+)−1(A+− +A++Ψ+−(ε))

+ Ψ+	(ε)|εC̃	|−1(A	− +A	+Ψ+−(ε))

+ Ψ+−(ε)|C− + εC̃−|−1(A−− +A−+Ψ+−(ε)) = 0. (31)

Theorem 4. The matrix Ψ(ε) of first return probabili-
ties, minimal nonnegative solution to (30) and (31) is near
zero and may be written as

Ψ(ε) = Ψ + εΨ(1) +O(ε2), (32)

where

Ψ =
[

0 Ψ
]
, (33)

Ψ(1) =
[

Ψ
(1)
+	 Ψ

(1)
+−

]
. (34)

The matrix Ψ is given in (6), Ψ
(1)
+− is the unique solution of

the Sylvester equation

KX +XU = −Ψ|C−1
− |C̃−U − C−1

+ C̃+ΨU +KP	 (35)

and

Ψ
(1)
+	 = (C−1

+ A+	 + Ψ|C−1
− |A−	)

(
−A−1
		
)
|C̃	|, (36)
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the matrices K and U are defined in (9) and (8) and

P	 = Ψ
(1)
+	
(
−A−1
		
)

(A	− +A	+Ψ).

Proof. Here, to remove the effect of ε−1 as a coefficient
of |C̃−1

	 | in (30) and (31), we define Γ(ε) = ε−1Ψ+	(ε). We

define the operator, for X =
[
X+	 X+−

]
,

F (ε,X )

= (C+ + εC̃+)−1 [ A+	 + εA++X+	 A+− +A++X+−
]

+
[
X+	|C̃−1

	 | X+−|C− + εC̃−|−1
]

×
[
A		 + εA	+X+	 A	− +A	+X+−
A−	 + εA−+X+	 A−− +A−+X+−

]

One shows that
[

Ψ
(1)
+	 Ψ

]
is a solution of F (ε,X ) = 0,

where Ψ
(1)
+	 is defined in (36). Next, we take the derivative of

F with respect to X , evaluated at ε = 0, X =
[

Ψ
(1)
+	 Ψ

]
.

The system is equivalent to the set of equations

Y+−U +KY+− = H+− +H+	(−A−1
		)(A	− +A	+Ψ),

Y+	 = Y+−|C−1
− |A−	(−A−1

		)|C̃	|+H+	A
−1
		|C̃	|,

where, by (7), (8), (9),

U =
∣∣C−1
−
∣∣ (A−− +A−	

(
−A−1
		
)
A	−)

+
∣∣C−1
−
∣∣ (A−+ +A−	

(
−A−1
		
)
A	+)Ψ, (37)

K = C−1
+ (A++ +A+	

(
−A−1
		
)
A	+)

+ Ψ
∣∣C−1
−
∣∣ (A−+ +A−	

(
−A−1
		
)
A	+). (38)

The system is non-singular so that
[

Γ(ε) Ψ+−(ε)
]

is an-
alytic.

The block components of Ψ are obtained as follows. As
εΓ(ε) = Ψ+	(ε), we find that Ψ+	(0) = 0. Next, define

W = lim
ε→0

Γ(ε)|C̃	|−1 (39)

which is finite since Γ(ε) is analytic. We rewrite (30) and
find that

W = C−1
+ A+	(−A		)−1

+ lim
ε→0

Ψ+−(ε)|C−|−1A−	(−A		)−1. (40)

Taking the limit as ε → 0 in (31) and replacing W by (40)
leads to (6). Thus, limε→0 Ψ+−(ε) = Ψ, and (33) is proved.

The block components of Ψ(1) are obtained as follows.
Taking the coefficients of ε0 in (30) gives directly (36). To
show (35), we take the coefficients of ε2 in (31) and get the

equation

Ψ
(2)
+	|C̃−1

	 |(A	− +A	+Ψ) = C−1
+ C̃+C

−1
+ (A+− +A++Ψ)

− (Ψ
(1)
+−|C−1

− |+ Ψ|C−1
− |C̃−|C−1

− |)(A−− +A−+Ψ)

− (C−1
+ A++ + Ψ|C−1

− |A−+ + Ψ
(1)
+	|C̃−1

	 |A	+)Ψ
(1)
+−. (41)

We equate the coefficients of ε in (30) and get

Ψ
(2)
+	|C̃−1

	 | = −C−1
+ C̃+C

−1
+ A+	(−A−1

		)

+ (C−1
+ A++ + Ψ|C−1

− |A−+ + Ψ
(1)
+	|C̃−1

	 |A	+)Ψ
(1)
+	(−A−1

		)

+ (Ψ|C−1
− |C̃− + Ψ

(1)
+−)|C−1

− |A−	(−A−1
		) (42)

By the Riccati equation (6) and the definition (37) of U , we
have

−ΨU = C−1
+ (A+− +A+	

(
−A−1
		
)
A	−)

+ C−1
+

(
A++ +A+	

(
−A−1
		
)
A	+

)
Ψ.

We replace the first coefficient Ψ
(1)
+	 in (42) by its expression

(36), then we replace Ψ
(2)
+	|C̃−1

	 | in (41) by the modified
right-hand side of (42). We put together the coefficients of

Ψ
(1)
+−, use (37), (38) and eventually obtain (35).

Remark 4. The physical justification of Ψ+	(0) = 0 goes
as follows: (Ψ+	(ε))ij is the probability that the level moves
to 0 in phase j ∈ S	, given that the initial level is 0 and
the phase is i ∈ S+, in the limit, when ε approaches 0, this
probability tends to 0 because the fluid can only return to
level zero in a phase of S−.

3.4 General case
Assume C̃i 6= 0 for i in S0, so that all the phases of S0 dis-

seminate in S+ and S− after perturbation. The infinitesimal
generator becomes

A =




A++ A+⊕ A+	 A+−
A⊕+ A⊕⊕ A⊕	 A⊕−
A	+ A	⊕ A		 A	−
A−+ A−⊕ A−	 A−−


 . (43)

We find here a superposition of the effects observed in the
two special cases examined in Sections 3.2 and 3.3. The ma-
trix of first return probabilities from above of the perturbed
system takes the form

Ψ(ε) =

[
Ψ+	(ε) Ψ+−(ε)
Ψ⊕	(ε) Ψ⊕−(ε)

]
, (44)

it is the unique solution of the usual Riccati equation which
may be rewritten as the following set of four equations:

(C+ + εC̃+)−1(A+	 +A++Ψ+	(ε) +A+⊕Ψ⊕	(ε)) + Ψ+	(ε)|εC̃	|−1(A		 +A	+Ψ+	(ε) +A	⊕Ψ⊕	(ε))

+ Ψ+−(ε)|C− + εC̃−|−1(A−	 +A−+Ψ+	(ε) +A−⊕Ψ⊕	(ε)) = 0, (45)

(C+ + εC̃+)−1(A+− +A++Ψ+−(ε) +A+⊕Ψ⊕−(ε)) + Ψ+	(ε)|εC̃	|−1(A	− +A	+Ψ+−(ε) +A	⊕Ψ⊕−(ε))

+ Ψ+−(ε)|C− + εC̃−|−1(A−− +A−+Ψ+−(ε) +A−⊕Ψ⊕−(ε)) = 0, (46)

(εC̃⊕)−1(A⊕	 +A⊕+Ψ+	(ε) +A⊕⊕Ψ⊕	(ε)) + Ψ⊕	(ε)|εC̃	|−1(A		 +A	+Ψ+	(ε) +A	⊕Ψ⊕	(ε))

+ Ψ⊕−(ε)|C− + εC̃−|−1(A−	 +A−+Ψ+	(ε) +A−⊕Ψ⊕	(ε)) = 0, (47)

(εC̃⊕)−1(A⊕− +A⊕+Ψ+−(ε) +A⊕⊕Ψ⊕−(ε)) + Ψ⊕	(ε)|εC̃	|−1(A	− +A	+Ψ+−(ε) +A	⊕Ψ⊕−(ε))

+ Ψ⊕−(ε)|C− + εC̃−|−1(A−− +A−+Ψ+−(ε) +A−⊕Ψ⊕−(ε)) = 0. (48)
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We show below that Ψ(ε) is analytic, thus we may write
the matrices U(ε) and K(ε) as

U(ε) =
∞∑

n=−1

εnUn with Un =

[
U

(n)
		 U

(n)
	−

U
(n)
−	 U

(n)
−−

]
, (49)

K(ε) =
∞∑

n=−1

εnKn with Kn =

[
K

(n)
++ K

(n)
+⊕

K
(n)
⊕+ K

(n)
⊕⊕

]
, (50)

in particular, the blocks

U
(−1)
		 = |C̃−1

	 |A		 + |C̃−1
	 |A	⊕Ψ⊕	, (51)

K
(−1)
⊕⊕ = C̃−1

⊕ A⊕⊕ + Ψ⊕	|C̃−1
	 |A	⊕. (52)

play an important role in what follows.

Theorem 5. The matrix Ψ(ε) of first return probabili-
ties, minimal nonnegative solution to (45-48) for the per-
turbed model is near zero and may be written as

Ψ(ε) = Ψ + εΨ(1) +O(ε2),

where

Ψ =

[
0 Ψ

Ψ⊕	 Ψ⊕−

]
. (53)

The block Ψ is given in (6),

Ψ⊕− = (−K(−1)
⊕⊕ )−1(C̃−1

⊕ (A⊕− +A⊕+Ψ)

+ Ψ⊕	|C̃−1
	 |(A	− +A	+Ψ)

)
, (54)

Ψ⊕	 is the minimal nonnegative solution to the Riccati equa-
tion

C−1
⊕ A⊕	+C−1

⊕ A⊕⊕X+X
∣∣C−1
	
∣∣A		+X

∣∣C−1
	
∣∣A	⊕X = 0.

(55)
Furthermore,

Ψ(1) =

[
Ψ

(1)
+	 Ψ

(1)
+−

Ψ
(1)
⊕	 Ψ

(1)
⊕−

]
, (56)

with

Ψ
(1)
+	 =

(
C−1

+ (A+	 +A+⊕Ψ⊕	)

+ Ψ|C−1
− |+A−⊕Ψ⊕	)

)
(−U (−1)

		 )−1, (57)

Ψ
(1)
⊕	 is the unique solution of the Sylvester equation

K
(−1)
⊕⊕ X +XU

(−1)
		 = −(C̃−1

⊕ A⊕+ + Ψ⊕	|C−1
	 |A	+)Ψ

(1)
+	

−Ψ⊕−|C−1
− |(A−	 +A−+Ψ+	 +A−⊕Ψ⊕	), (58)

and with

Ψ
(1)
⊕− = (−K(−1)

⊕⊕ )−1(K(−1)
⊕+ Ψ

(1)
+−

+ Ψ⊕	|C−1
− |U (−1)

	− −Ψ⊕−U
(0)
−−
)
, (59)

and Ψ
(1)
+− is the unique solution of the Sylvester equation

(C−1
+ A++ + Ψ|C−1

− |A−+)Ψ
(1)
+− + Ψ

(1)
+−U

(0)
−−

+ (C−1
+ A+⊕ + Ψ|C−1

− |A−⊕)Ψ
(1)
+⊕ + Ψ

(2)
+	U

(−1)
	−

= C−1
+ C̃+C

−1
+ (A+− +A++Ψ +A+⊕Ψ⊕−)

−Ψ|C−1
− |C̃−U (0)

−−, (60)

where

Ψ
(2)
+	 =

(
− C−1

+ C+C
−1
+ (A+	 +A+⊕Ψ⊕	)

+ C−1
+ (A++Ψ

(1)
+	 +A+⊕Ψ

(1)
⊕	)

+ (Ψ(1) + Ψ|C−1
− |C̃−)U

(0)
−	

+ Ψ|C−1
− |(A−+Ψ

(1)
+	 +A−⊕Ψ

(1)
⊕	)

)
(−U (0)

		)−1. (61)

Proof. To remove the effect of ε−1 as ε→ 0, we need to
combine the transformations of the previous two theorems.
We pre-multiply the Riccati equation by diag(I, εI) and we
use the matrix Γ(ε) = ε−1Ψ+	(ε). We obtain a new fixed-
point equation, from which we eventually prove, by following
the same steps as in Theorem 3 and Theorem 4, that the
solutions are matrices of analytic functions.

Observe the terms in ε−1 in the equations (45) to (48):

• we conclude from (45) that Ψ+	 = 0 by a similar ar-
gument to the proof of Theorem 4;

• multiply (47) by ε and let ε tend to zero to obtain the
Riccati equation (55) satisfied by Ψ⊕	;

• multiply (48) by ε and let ε tend to zero, gives (54),
taking into account that limε→0 Ψ(ε) = Ψ, an equality
that is proved below.

To determine Ψ+−(0) is more involved. We proceed as fol-
lows. First, from (45), we take the terms in ε0 and we find

the expression (57) for Ψ
(1)
+	 that we replace in (46). From

(46), we take the terms in ε0 and obtain Ψ+−, after a reor-
ganization of the terms, as the minimal nonnegative solution
to

C−1
+ T+− + C−1

+ T++X +X|C−1
− |T−− +X|C−1

− |T−+X = 0,

with
[
T++ T+−
T−+ T−−

]
=

[
A++ A+−
A−+ A−−

]

+

[
A+⊕ A+	
A−⊕ A−	

] [
D⊕⊕ D⊕	
D	⊕ D		

] [
A⊕+ A⊕−
A	+ A	−

]
.

where

D⊕⊕ = (−K(−1)
⊕⊕ )−1C̃−1

⊕ + Ψ⊕	D	⊕

D	⊕ = (−U (−1)
		 )−1|C̃−1

	 |A	⊕(−K(−1)
⊕⊕ )−1C̃−1

⊕

D⊕	 = (−K(−1)
⊕⊕ )−1Ψ⊕	|C̃−1

	 |+ Ψ⊕	D		

D		 = (−U (−1)
		 )−1|C̃−1

	 |(I +A	⊕(−K(−1)
⊕⊕ )−1Ψ⊕	|C̃−1

	 |)
To prove that the matrix T is identical to the matrix Q
defined in (7), we only need to show that the matrix made
up of the four blocks labeled with Ds is equal to (−A−1

00 ),
partitionned according to (43), as

(−A−1
00 ) =

[
B⊕⊕ B⊕	
B	⊕ B		

]
(62)

where

B⊕⊕ = −(A⊕⊕ +A⊕	(−A−1
		)A	⊕)−1

B	⊕ = (−A−1
		)A	⊕B⊕⊕

B⊕	 = B⊕⊕A⊕	(−A−1
		)

B		 = −(A		 +A	⊕(−A−1
⊕⊕)A⊕	)−1
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By (55), we have

A⊕	 = −C̃⊕K(−1)
⊕⊕ Ψ⊕	 − C̃⊕Ψ⊕	|C̃−1

	 |A		

so that

B⊕⊕ = −
(
A⊕⊕ − C̃⊕K(−1)

⊕⊕ Ψ⊕	(−A−1
		)A	⊕

+ C̃⊕Ψ⊕	|C̃−1
	 |A	⊕

)−1

= (I −Ψ⊕	(−A−1
		)A	⊕)−1(−K(−1)

⊕⊕ )−1C̃−1
⊕ ,

using (52). We write

(I −Ψ⊕	(−A−1
		)A	⊕)−1

= I + Ψ⊕	(I − (−A−1
		)A	⊕Ψ⊕	)−1(−A−1

		)A	⊕

= I + Ψ⊕	(−U (−1)
		 ))−1|C̃−1

	 |A	⊕,

so that B⊕⊕ = D⊕⊕.
Next, we have

B	⊕ = (−A−1
		)A	⊕(I +A	⊕Ψ⊕	(−U (−1)

		 )−1|C̃−1
	 |)

× (−K(−1)
⊕⊕ )−1C̃−1

⊕

= (−A−1
		)(−|C̃	|U (−1)

		 ) +A	⊕Ψ⊕	)(−U (−1)
		 )−1)|C̃−1

	 |
×A	⊕(−K(−1)

⊕⊕ )−1C̃−1
⊕ .

By (51), −|C̃	|U (−1)
		 +A	⊕Ψ⊕	 simplifies to −A		 so that

B	⊕ = D	⊕.
Then, we have

B⊕	 = (−K(−1)
⊕⊕ )−1C̃−1

⊕ A⊕	(A−1
		)

+ Ψ⊕	(−U (−1)
		 )−1|C̃−1

	 |A	⊕(−K(−1)
⊕⊕ )−1C̃−1

⊕ A⊕	(A−1
		),

and we use (55) to replace C̃−1
⊕ A⊕	 in the first term to write

B⊕	 = (−K(−1)
⊕⊕ )−1(−Ψ⊕	|C̃−1

	 |A		 −K(−1)
⊕⊕ Ψ⊕	)(−A−1

		)

+ Ψ⊕	(−U (−1)
		 )−1|C̃−1

	 |A	⊕(−K(−1)
⊕⊕ )−1C̃−1

⊕ A⊕	(−A−1
		)

= (−K(−1)
⊕⊕ )−1Ψ⊕	|C̃−1

	 |
+ Ψ⊕	

(
I + (−U (−1)

		 )−1|C̃−1
	 |A	⊕(−K(−1)

⊕⊕ )−1C̃−1
⊕ A⊕	

)
(−A−1

		)

We use (51), to write the second term as

Ψ⊕	(−U (−1)
		 )−1|C̃−1

	 |
(
A	⊕(−K(−1)

⊕⊕ )−1C̃−1
⊕ A⊕	

+ (−A		 −A	⊕Ψ⊕	)
)
(−A−1

		)

= Ψ⊕	(−U (−1)
		 )−1|C̃−1

	 |
×
(
I −A	⊕(−K(−1)

⊕⊕ )−1(C̃−1
⊕ A⊕	 −K(−1)

⊕⊕ Ψ⊕	)(−A−1
		)

)

= Ψ⊕	(−U (−1)
		 )−1|C̃−1

	 |
(
I −A	⊕(−K(−1)

⊕⊕ )−1Ψ⊕	|C̃	|
)

were we used (55) to replace K
(−1)
⊕⊕ Ψ⊕	. We find thus

B⊕	 = D⊕	.

Finally, we use the definition of U
(−1)
		 to write

B		 = −(A		 +A	⊕Ψ⊕	 −A	⊕(−A−1
⊕⊕)C̃⊕Ψ⊕	U

(−1)
		 )−1

= (−U (−1)
		 )−1|C̃−1

	 |(I −A	⊕(−A−1
⊕⊕)C̃⊕Ψ⊕	|C̃−1

	 |)−1

We write

(I −A	⊕(−A−1
⊕⊕)C̃⊕Ψ⊕	|C̃−1

	 |)−1

= I +A	⊕
(
I − (−A−1

⊕⊕)C̃⊕Ψ⊕	|C̃−1
	 |A	⊕

)−1

× (−A−1
⊕⊕)C̃⊕Ψ⊕	|C̃−1

	 |
= I +A	⊕

(
−A⊕⊕ − C̃⊕Ψ⊕	|C̃−1

	 |A	⊕
)−1

× C̃⊕Ψ⊕	|C̃−1
	 |

= I +A	⊕(−K(−1)
⊕⊕ )−1Ψ⊕	|C̃−1

	 |
by (52), so that B		 = D		.

We find the block Ψ
(1)
⊕− of Ψ(1) given in (59) by observing

the terms in ε0 in (48). From (47), we obtain the Sylvester

equation (59) for Ψ
(1)
⊕	. Taking the terms in ε in (45) and

(47) leads respectively to (60) and (61).

Remark 5. Not surprisingly, Ψ+	 = 0, as we found in
(33).

As in Section 3.2, (54) is a function of Ψ but also of
the supplementary component Ψ⊕	. This generalizes Ψ⊕−
given in (23). There is a probabilistic interpretation similar
to the one given in (23), with, here, a correction term due
to the introduction of S	: [Ψ⊕−]ij is the sum of

• [(−K(−1)
⊕⊕ )−1C̃−1

⊕ A⊕−]ij , the probability that the phase
process goes from i to j, after some time spent in
phases of S⊕ or S	,

• [(−K(−1)
⊕⊕ )−1C̃−1

⊕ A⊕+Ψ]ij , the probability that the pro-
cess leaves i for a phase in S+ and later returns to the
initial level in j,

• [(−K(−1)
⊕⊕ )−1Ψ⊕	|C̃−1

	 |A	−]ij the probability that the
process comes back to the initial level in a phase of S	
and goes to j,

• [(−K(−1)
⊕⊕ )−1Ψ⊕	|C̃−1

	 |A	+Ψ]ij the process comes back
to the initial level in a phase of S	, goes to a phase of
S+ and later returns to the initial level in j,

for i ∈ S⊕, j ∈ S−.

Remark 6. Higher order terms (in particular, the coeffi-
cients of ε2) may be of interest in some cases. It is clear that
the principal difficulty lies in the necessity to deal with cal-
culations that are steadily more cumbersome, but no more.
We expect that coefficients of Ψ+	 or Ψ⊕− will be given
explicitly and that each successive coefficients of Ψ+− and
Ψ⊕	 will be solutions of Sylvester equations.

4. IMPACT ON THE STATIONARY PROB-
ABILITY

For j ∈ S and x ∈ R+, we define the joint distribution
function of the level and the phase at time t, Fj(x, t) =
P [X (t) ≤ x, ϕ (t) = j] , and its density by

fj(x, t) =
∂

∂x
Fj(x, t), with fj(0, t) = lim

x→0
fj(x, t).

The stationary density vector π(x) = (πj(x) : j ∈ S) of the
fluid model, where, for j ∈ S, πj(x) = limt→∞ fj(x, t), exists
if and only if the mean stationary drift is negative, that is,
if and only if

∑
i∈S ξici < 0, where ξi is defined in (4) for
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all i. When the mean stationary drift of the fluid model is
negative, from Govorun et al. [6], we have, for x > 0,

π (x) = qeKx [
C−1

+ ; Ψ |C−|−1 ; Θ
]
, (63)

and the mass at zero is [0 ;p− ;p0] where

K = C−1
+ Q++ + Ψ |C−|−1 Q−+, (64)

Θ =
(
C−1

+ A+0 + Ψ |C−|−1 A−0

)
(A00)−1 , (65)

q = p−A−+ + p0A0+ (66)

and [p− ;p0] is the unique solution of the system

[
p− ;p0

] [A−− +A−+Ψ A−0

A0− +A0+Ψ A00

]
= 0 (67)

[p− ;p0]1 + q−(−K)−1(C−1
+ + Ψ |C−|−1 + Θ)1 = 1. (68)

Expression (63) is numerically stable and has a physical in-
terpretation (da Silva Soares [38, Chapter 1, Section 1.3]).
Furthermore, it appears clearly that all the quantities ap-
pearing in the expression of the stationary density are func-
tions of Ψ.

The stationary density of (10) may be formulated as

π (x, ε) = q(ε)eK(ε)x [
C−1

+ ; Ψ(ε) |C−|−1 ; Θ(ε)
]
, (69)

where K(ε), Θ(ε) and q(ε) are defined similary to (64),(65)
and (66) respectively. It is well known that the stationary
density vector π(x, ε) is differentiable (see Kato [9, Section
2]) and such that π(x, ε) may be written as

π(x, ε) = π(x) + επ(1)(x, 0) +O(ε2),

where

π(1)(x, 0) = lim
ε→0

π(x, ε)− π(x, 0)

ε
, (70)

for all x ∈ R+. We find

π(1)(x, 0) = qeKx [
0 ; Ψ(1)

∣∣C−1
−
∣∣ ; Θ(1)

]

+ (q(1)eKx + qL(1)(x))
[
C−1

+ ; Ψ |C−|−1 ; Θ
]
,

where Ψ(1) is given in Theorem 1 and

Θ(1) = (C−1
+ A+0 + Ψ|C−1

− |A−0)(−A−1
00 )Ã00A

−1
00

+ C−1
+ Ã+0 + Ψ(1)|C−1

− |A−0 + Ψ|C−1
− |Ã−0.

The vector q(ε) is differentiable by Kato [9, Section 2] and

q(1) = p
(1)
− A−+ + p

(1)
0 A0+ + p−Ã−+ + p

(1)
0 Ã0+

with
[
p

(1)
− ;p

(1)
0

]
= −

[
p− ;p0

] [Ã−− + Ã−+Ψ +A−+Ψ(1) Ã−0

Ã0− + Ã0+Ψ +A0+Ψ(1) Ã00

]

[
A−− +A−+Ψ A−0

A0− +A0+Ψ A00

]#

+ cπ(x), (71)

where M# denotes the group inverse of the matrix M . We
find (71) by solving the Poisson equation (see Meyer [12])

satsified by [p
(1)
− ;p

(1)
0 ], deduced from (67), where c is a

normalisation found through (68). Finally,

L(1)(x) =

∫ x

0

eK(x−s)K(1)eKsds,

where K(1) = C−1
+ Q̃++ + Ψ(1)|C−1

− |Q−+ + Ψ|C−1
− |Q̃−+. In

order to actually compute L(1)(x), we refer the reader to
Higham [8, Theorem 10.13, Equation (10.17a)].
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ABSTRACT
In this paper, we extend the kernel method (for scalar ran-
dom walks in the quarter plane) to study exact tail asymp-
totic properties in the stationary distribution for a Markov
modulated random walk in the quarter plane. Specifically,
we demonstrate how the extended kernel method works by
a Markov modulated two-demand queueing model, or a two-
demand model with a Markovian arrival process. The key
ideal in this extension is to decompose the block-form fun-
damental form to a scalar one, for which the asymptotic
property is the same as that for the modulated walk that
can be obtained through recently developed kernel method
techniques. We should point it out that research in this pa-
per is not complete and only contains preliminary results.
It is our plan to continue our study on this extension of the
kernel method and to make the study more comprehensive.

Keywords
random walks in the quarter plane; Markov modulated ran-
dom walks in the quarter plane; stationary distribution; gen-
erating function; kernel method; singularity analysis; exact
tail asymptotics

1. INTRODUCTION
The standard kernel method was originated from analytic

combinatorics [10, 2], which is a very efficient approach
to study tail asymptotic properties in a sequence of non-
negative numbers, including stationary probability sequences
in one-dimensional models. This method deals with a func-
tional equation for the unknown generating functions through
analysis of the so-called kernel equation using one branch of
an algebraic function determined by the kernel equation.
Analytic continuation and singularity analysis are two key
components in the method before one can finally obtain ex-
act tail asymptotic properties (through a Tauberian-like the-

orem, for example Theorem 4.1 or Theorem 4.2 in [14], a con-
sequence of Corollary VI.1 or Theorem VI.5, respectively, in
[5]). For one-dimensional models, this is relatively simple
since the resulting functional equation defined by the kernel
equation contains only one unknown generating function.

However, when the key idea in the kernel method applies
to two-dimensional queueing models, the functional equa-
tion defined by the kernel equation contains two unknown
generating functions. The tail asymptotic analysis becomes
much more challenging. A few successful methods, includ-
ing the kernel method, are now available for so-called exact
stationary tail asymptotics (for example, see the review pa-
per [16]). As indicated above, in the kernel method, before
we can apply the Tauberian-like theorem, analytic contin-
uation of the unknown generating functions has to be es-
tablished, and singularity analysis of the unknown functions
at their dominant singulatiries has to be carried out. For
two-dimensional models, readers may refer to [13, 14, 11]
for more details.

In this paper, we further extend the kernel method to
study exact tail asymptotic properties for Markov modu-
lated random walks, i.e. the random walks in the quarter
pane modulated by a finite-state Markov chain. Recall that
for the (scalar) random walk in the quarter plane, the tran-
sitions from a state in the interior region, on the horizontal
boundary, on the vertical boundary, and at the origin are

characterized by the distributions pi,j and p
(k)
i,j for k = 1, 2, 0,

respectively, to a state with increments i, j = 0, ±1 in hori-
zontal and vertical directions subject to the reflective bound-
ary constrain. For the Markov modulated random walk, we
can formulate the model as a Markov chain in such a way

that pi,j and p
(k)
i,j are now generalized to square matrices

Ai,j and A
(k)
i,j , respectively. Under a stability condition, let

πm,n;k be the unique stationary probability vector. Our pur-
pose is to study exact tail asymptotic properties in πm,n,k

in terms of the kernel method. The same problem (with
the focus on logarithmic asymptotics) has been studied by
Ozawa [20] and Miyazawa [17] using a geometric method
developed by Miyazawa [15] (also refer to Kobayashi and
Miyazawa [8]). Tail asymptotic properties for specific cases
of a Markov modulated random walks have also been con-
sidered using other methods, for example, Li and Zhao [12],
Sakuma, Miyazawa and Zhao [21], Avrachenkov, Nain and
Yechiali [1], and Song, Liu and Zhao [22].

The main contributions made in this paper include: (1) a
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set up of the key components (in block-form or vector-form)
in the kernel method for the Markov modulated random
walk; (2) in terms of matrix-analytic methods, convert the
vector-form fundamental form to a scalar one (that has the
same tail asymptotic properties as that for the vector-form
model) such that results for (scalar) random walks can be
used here; and (4) demonstrate how the extended kernel
method works by a Markov modulated two-demand queue-
ing model.

The rest of the paper is organized as follows: In Sec-
tion 2, the Markov modulated random walk is introduced as
discrete-time Markov chain; Section 3 establishes the block-
form fundamental form for the modulated random walk, and
obtain a decomposition result by converting the block-form
fundamental form to a scalar form. We claim that the exact
tail asymptotic properties for the probability sequences in-
volved in the scalar fundamental form and in the block-form
fundamental form are the same. Section 4 demonstrates how
this extended kernel method works in terms of a Markov
modulated two-demand model. The final section contains
concluding remarks.

2. MARKOV MODULATED RANDOM WALKS
The model studied in this paper is a Markov modulated

random walk, which is a discrete-time Markov chain with
state space S = {(m, n; l) : m, n = 0, 1, . . . ; l = 1, 2, . . . , M}.
The Markov modulated random walk can be considered as
a generalization of the (scalar) random walk in the quar-
ter plane, or random walks with two reflective boundaries.
Specifically, the one-step transition probability distributions

pi,j and p
(k)
i,j (k = 0, 1, 2) (for the scalar random walk) are

now generalized to blocks Ai,j and A
(k)
i,j of transition prob-

abilities (for the modulated one), where Ai,j and A
(k)
i,j are

all nonnegative matrices of size M × M , and
∑

i,j Ai,j and
∑

i,j A
(k)
i,j are stochastic. The transition diagram for the

modulated random walk is depicted in Figure 1.
If we use the state variable m as level and n as background

or phase, then the transition matrix P is given by:

P =




B0 B1

A−1 A0 A1

A−1 A0 A1

. . .
. . .

. . .


 ,

where

Bi =




A
(0)
i,0 A

(0)
i,1

A
(2)
i,−1 A

(2)
i,0 A

(2)
i,1

A
(2)
i,−1 A

(2)
i,0 A

(2)
i,1

. . .
. . .

. . .




and

Ai =




A
(1)
i,0 A

(1)
i,1

Ai,−1 Ai,0 Ai,1

Ai,−1 Ai,0 Ai,1

. . .
. . .

. . .


 .

Similarly, if we use n as level and m as background, the

A1,1

A0,-1 A1,-1A-1,-1

A-1,1

A-1,0

m

A0,0

A0,1

A1,0

(1)
A0,0

(1)
A1,1

(1)
A0,1

(1)
A1,0

(1)
A-1,1

(1)
A-1,0

(2)
A0,0

(2)
A0,1

(2)
A0,-1

(2)
A1,1

(2)
A1,0

(2)
A1,-1

(0)
A0,0

(0)
A0,1

(0)
A1,1

(0)
A1,0

n

Figure 1: Transition diagram for Markov modulated
random walks

transition matrix P̃ is given by:

P̃ =




B̃0 B̃1

Ã−1 Ã0 Ã1

Ã−1 Ã0 Ã1

. . .
. . .

. . .


 ,

where

B̃i =




A
(0)
0,i A

(0)
1,i

A
(1)
−1,i A

(1)
0,i A

(1)
1,i

A
(1)
−1,i A

(1)
0,i A

(1)
1,i

. . .
. . .

. . .




and

Ãi =




A
(2)
0,i A

(2)
1,i

A−1,i A0,i A1,i

A−1,i A0,i A1,i

. . .
. . .

. . .


 .

Our purpose is to study this model with the main focus on
the exact tail asymptotic property in the stationary proba-
bility distribution πm,n;k under the stability condition of the
system.

3. FUNDAMENTAL FORM AND KERNEL
METHOD

It is well-known that the fundamental form (for exam-
ple, (1.3) on page 151 in Cohen [3], or (1.3.6) in Fayolle,
Iasnogorodski and Makysheve [4]) plays a key role in the
analysis of a (scalar) random walk. Similarly, the following
vector-form fundamental form plays a fundamental role in
the analysis of a Markov modulated random walk.

For the Markov modulated random walk, we have the
following (vector-form) fundamental form: for |x| ≤ 1 and
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|y| ≤ 1,

−Π(x, y)H(x, y) = Π1(x)H1(x, y)+Π2(y)H2(x, y)+Π0H0(x, y),
(3.1)

where

H(x, y) =xy

(
I −

1∑

i=−1

1∑

j=−1

xiyjAij

)
,

H1(x, y) =x

(
I −

1∑

i=−1

1∑

j=0

xiyjA
(1)
ij

)
,

H2(x, y) =y

(
I −

1∑

i=0

1∑

j=−1

xiyjA
(2)
ij

)
,

H0(x, y) =

(
I −

1∑

i=0

1∑

j=0

xiyjA
(0)
ij

)
,

Π(x, y) =

( ∞∑

i=1

∞∑

j=1

πi,j;1x
i−1yj−1,

∞∑

i=1

∞∑

j=1

πi,j;2x
i−1yj−1, . . . ,

∞∑

i=1

∞∑

j=1

πi,j;Mxi−1yj−1

)

1×M

,

Π1(x) =
( ∞∑

i=1

πi,0;1x
i−1,

∞∑

i=1

πi,0;2x
i−1, . . . ,

∞∑

i=1

πi,0;Mxi−1

)

1×M

,

Π2(y) =
( ∞∑

j=1

π0,j;1y
j−1,

∞∑

j=1

π0,j;2y
j−1, . . . ,

∞∑

j=1

π0,j;Myj−1

)

1×M

,

Π0 =(π0,0;1, π0,0;2, . . . , π0,0;M )1×M .

Remark 3.1. When M = 1, (3.1) is reduced to the (scalar)
fundamental form (for example, (1.3) on page 151 in [3],
which is the same as that in (1.3.6). In this case, ΠH = 0
for Π finite is equivalent to the kernel equation H = 0. In
the following, we establish the kernel equation for the vector
case.

We also mention here an analogous result to Theorem 1.3.1
of [4], which is used in Remark 3.2.

Theorem 3.1. For the irreducible aperiodic Markov mod-
ulated random walk to be ergodic, if and only if there exist
Π(x, y), Π1(x) and Π2(y) holomorphic in |x|, |y| < 1, and
a constant vector Π0, satisfying the fundamental form (3.1)
together with the l1-condition

∑
m,n,j |πm,n;k| < ∞. In this

case, these functions are unique.

In the standard kernel method, we study the kernel equa-
tion: h = 0. For the modulated model, we study the equa-
tion defined by det H(x, y) = 0. For this purpose, we define

C(x, y) =

1∑

i=−1

1∑

j=−1

xiyjAi,j .

It is clear that if χk(x, y) is an eigenvalue of C(x, y) then
xy(1−χk(x, y) is an eigenvalue of H(x, y). For our purpose,
let us consider the Perron-Frobenius eigenvalue, denoted by

χ(x, y). Define Γ = {(s1, s2) ∈ R2 : χ(es1 , es2) = 1}. We
provide the following decomposition lemma.

Lemma 3.1. For many enough (x, y) (containing a region
in |x| < 1 and |y| < 1), det H(x, y) = 0 can be factored as

det H(x, y) =[a(x)y2 + b(x)y + c(x)]q(x, y)

=[ã(y)x2 + b̃(y)x + c̃(y)]q(x, y) = 0,

where a(x) (ã(y)), b(x) (b̃(y)) and c(x) (c̃(y)) are polynomi-
als of degree at most two, and q(x, y) is a polynomial of x
and y.

Furthermore, let h(x, y) = a(x)y2+b(x)y+c(x) = ã(y)x2+

b̃(y)x + c̃(y), which corresponds to the kernel function of a
(scalar) random walk, and let x2 = min(x,y)∈Γ x and x3 =
max(x,y)∈Γ x, then x2 and x3 are two branch points (or zeros

of D1(x) = b(x)2 − 4a(x)c(x)) satisfying 0 < x2 < 1 <
x3 if the scalar random walk is non-singular (or h(x, y) is
irreducible and quadratic in both x and y). Similarly, let
y2 = min(x,y)∈Γ y and y3 = max(x,y)∈Γ y, then y2 and y3 are

two branch points (or zeros of D2(y) = b̃(y)2 − 4ã(y)c̃(y))
satisfying 0 < y2 < 1 < y3 if the scalar random walk is
non-singular.

Proof. First based on the results proved in [20], Γ̄ =
{(s1, s2) ∈ R2 : χ(es1 , es2) ≤ 1} is convex, and notice that
χ(x, y) is continuous, we can conclude that Γ defines a simple
closed curve. Furthermore, we conclude that for each x2 <
x < x3, there are exactly two points on the curve Γ, while
for x = x2 and x = x3 respectively, there is only one point
on the curve. It means that

det H(x, y) = xy(1 − χ(x, y)q̃(x, y) = 0,

or for a fixed x, det H(x, y) = 0, as a polynomial of y, has
exactly two solutions since χ(x, y) is the Perron-Frobenius
eigenvalue of C(x, y). Therefore, we can write det H(x, y) =
h(x, y)q(x, y) = 0, where both h(x, y) and q(x, y) are poly-
nomial. Furthermore, for each x2 < x < x3, h(x, y) = 0 has
exactly two roots, denoted by (x, Y0(x)) and (x, Y1(x) where
Y0 has the smaller modulus and Y1 has the bigger modulus,
and for x = xi (i = 2, 3), h(x, y) = 0 has only one root,
or Y0(xi) = Y1(xi) for i = 2, 3. It concludes that h(x, y) is
a polynomial of degree two and x2 and x3 are two branch
points, or zeros of the discriminant D1(x). If the scalar ran-
dom variable is non-singular, then both x2 ̸= 1 and x3 ̸= 1.
We know (1, 1) is on Γ, which leads to 0 < x2 < 1 < x3.

Remark 3.2. Consider pairs of (x, Y0(x)) defined by h(x, y)
= 0 given in the above lemma. We can argue that there
are plenty of pairs (x, y) such that Π(x, y)H(x, y) = 0. To
see it, we start with Π2(y) which is analytic in |y| < 1.

Consider the function Π̃1(x) defined by Π1(x)H1(x, Y0(x))+
Π2(Y0(x))H2(x, Y0(x))+Π0H0(x, Y0(x)), which can be proved
analytic in some region. We can then consider the function
Π̃(x, y) defined through the fundamental form and prove,

through using Theorem 3.1 that Π̃(x, y) = Π(x, y) and Π̃1(x) =
Π1(x). It implies that there are plenty of pairs (x, y) such
that Π(x, y)H(x, y) = 0.

Based on the above discussion, let us consider Π(x, y)H(x, y) =
0, for (x, y) such that Π(x, y) ̸= 0. By linear algebra, we
have det H(x, y) = 0 for enough many (x, y). In this case,
if |Π(x, y)| < ∞, we then obtain a relationship between
two unknown vector-form functions Π1 and Π2. Therefore,
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det H = 0 plays a similar role to that played by h = 0 in the
kernel method for scalar random walks. It leads to

Π1(x)H1(x, y) = −[Π2(y)H2(x, y) + Π0H0(x, y)]. (3.2)

Similarly,

Π2(y)H2(x, y) = −[Π1(x)H1(x, y) + Π0H0(x, y)].

For the first equation, based on the fact that Y0(x) is ana-
lytic in the cut plane (for example, see [4]), Π1(x) can be
analytically continued to a region with its dominant sin-
gularity equal to the minimum of x3, the dominant sin-
gularity of Π2(Y0(x)) and the smallest zero in (1, x3] of
det H1(x, Y0(x)). For det H1(x, y) = 0, we establish the fol-
lowing decomposition property (similarly for det H2 = 0).

Lemma 3.2. det H1(x, y) = 0 can be factored as

det H1(x, y) =[b1(x)y + c1(x)]q1(x, y)

=[ã1(y)x2 + b̃1(y)x + c̃1(y)]q1(x, y),

or h1(x, y) = b1(x)y + c1(x) = ã1(y)x2 + b̃1(y)x + c̃1(y) is a
polynomial of degree one in y and degree two in x. Similarly,

det H2(x, y) =[a2(x)y2 + b2(x)y + c2(x)]q2(x, y)

=[b̃2(y)x + c̃2(y)]q2(x, y),

or h2(x, y) = a2(x)y2 + b2(x)y + c2(x) = b̃2(y)x + c̃2(y) is a
polynomial of degree one in x and degree two in y.

Proof. The proof follows from a similar argument to
Lemma 3.1. Specifically, define

C1(x, y) =

1∑

i=−1

1∑

j=0

xiyjA
(1)
i,j ,

and denote by χ1(x, y) the Perron-Frobenius eigenvalue of
C1(x, y). Then, it follows from a similar argument to that
in [20] that the region Γ̄1 = {(s1, s2) ∈ R2 : χ1(e

s1 , es2) ≤
1} is convex. Furthermore, we can show that for each x
there is only one point on the curve Γ1 = {(s1, s2) ∈ R2 :
χ1(e

s1 , es2) = 1} and for each y there are exactly two points
on the curve, which implies that det H1(x, y) = h1(x, y)q1(x, y)
= 0. The other result in the lemma can be proved in paral-
lel.

Now, consider the asymptotic property of the kth compo-
nent function in Π1(x) defined by equation (3.2). Based on
the above discussion, its asymptotic property as x goes to
its dominant singularity is either the branch point x3, or a
pole, which is the smallest zero of det H1(x, Y0(x)), or the
smallest one of the dominant singularities of all component
functions in Π2(Y0(x)). A similar argument applies to Π2(y)
to conclude that the dominant singularity of the kth com-
ponent function in Π1(x) is independent of k and the same
as that for the function π1(x), determined by:

h1(x, y)π1(x) = −[Π2(y)H2(x, y) + Π0H0(x, y)]
∣∣
i
, (3.3)

where the right hand side is the ith component of the right
hand side vector in (3.2) for any i. For this component
function, its asymptotic property at its dominant singularity
is the same as as that for the function π2(y), determined by:

h2(x, y)π2(y) = −[h1(x, y)π2(y) + h0(x, y)π0,0],

where h0(x, y)π0,0 is the ith component of Π0H0(x, y) that
will not impact on the asymptotic property of π2(y). As a

summary, the above discussion convert the tail asymptotic
problem for Π1(x) and Π2(y) (and therefore for Π(x, y)) to
the tail asymptotic problem for π1(x) and π2(y) (and there-
fore for π(x, y)), respectively, defined by the following scalar
fundamental form for a random walk in the quarter plane:

h(x, y)π(x, y) = h1(x, y)π1(x)+h2(x, y)π2(y)+h0(x, y)π0,0.
(3.4)

As a consequence, the modulated walk and the above scalar
walk have the same stability condition.

4. A MARKOV MODULATED TWO-DEMAND
QUEUEING MODEL

In this section, we consider a Markov modulated two-
demand model to demonstrate how the extended kernel method
works.

4.1 Model description
The Markov modulated two-demand model considered here

is a generalization of the (standard) two-demand model stud-
ied in Flatto and Hahn [6]. This model differs from the
standard one in its arrival process. Instead of the Poisson
process in the standard model, we assume that the arrival
rate is λk when the modulating Markov chain is in state k.
For convenience, we only consider a two-state Markov chain
(state 0 and state 1) with the transition matrix given by

J =

[ 0 1

0 p p̄
1 q̄ q

]
,

where ā = 1 − a, and 0 < p, q < 1 to avoid triviality. Equiv-
alently, this is a model with a Markovian arrival process,
each arrival creates simultaneously two jobs to two parallel
queues served by two exponential servers with rates µ1 and
µ2, respectively. The Markovian arrival process is charac-
terized by

D1 =

[
λ0p λ0p̄
λ1q̄ λ1q

]
, D0 =

[
−λ0 0
0 −λ1

]
.

Let Qi(t) be the number of jobs in queue i for i = 1, 2,
including the job in service if there is any, and let J(t) be the
phase of the Markovian arrival process. Then, {(Q1(t), Q2(t); J(t)) :
t ≥ 0} is a continuous-time Markov chain. Upon uniformiza-
tion (assuming that λ0 +λ1 +µ1 +µ2 = 1), the discrete-time
Markov chain is an example of the Markov modulated ran-
dom walk considered in this paper. Specifically, we have

A1,1 =

[
λ0p λ0p̄
λ1q̄ λ1q

]
, A0,−1 = µ2

[
p p̄
q̄ q

]
,

A−1,0 = µ1

[
p p̄
q̄ q

]
, A0,0 =

[
λ1 0
0 λ0

]
,

and

A
(0)
0,0 =

[
1 − λ0 0

0 1 − λ1

]
, A

(1)
0,0 =

[
λ1 + µ2 0

0 λ0 + µ2

]
,

A
(2)
0,0 =

[
λ1 + µ1 0

0 λ0 + µ1

]
,

A
(0)
1,1 = A

(1)
1,1 = A

(2)
1,1 = A1,1, A

(1)
−1,0 = A−1,0 and A

(2)
0,−1 =

A0,−1.
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4.2 Stability condition
For a stability condition, solve

πD = 0, π0 + π1 = 1,

to have

π0 =
λ1q̄

λ1q̄ + λ0p̄
, π1 =

λ0p̄

λ1q̄ + λ0p̄
.

The fundamental arrival rate for the arrival process is given
by λ∗ = πD1e. When p = q = 1/2,

λ∗ = πD1e =
2λ0λ1

λ0 + λ1
.

By standard stability analysis for queues, we obtain the fol-
lowing assertion.

Theorem 4.1. The Markov modulated two-demand queue-
ing model is stable if and only if λ∗ < min{µ1, µ2}. When
p = q = 1/2, the condition is simplified to

2λ0λ1

λ0 + λ1
< min{µ1, µ2}.

4.3 Reduced to a scalar random walk
We first calculate det H(x, y).

H(x, y) =

[
xy
(
I −

∑

i

∑

j

xiyjAi,j

)
]

=

[
xy(1 − λ1) − pg0(x, y) −p̄g0(x, y)

−q̄g1(x, y) xy(1 − λ0) − qg1(x, y)

]
,

where

g0(x, y) = x2y2λ0 + xµ2 + yµ1

and

g1(x, y) = x2y2λ1 + xµ2 + yµ1.

For simplicity, assume p = q = 1/2, which leads to

det H(x, y) =

(
1

2

)2

det

[
2xy(1 − λ1) − g0(x, y) −g0(x, y)

−g1(x, y) 2xy(1 − λ0) − g1(x, y)

]

= − x2y2

2
h(x, y),

where

h(x, y) =[λ0(1 − λ0) + λ1(1 − λ1)]x
2y2 − 2(1 − λ0)(1 − λ1)xy

+ [(1 − λ0) + (1 − λ1)](µ2x + µ1y).

Remark 4.1. If λ0 = λ1, then det H(x, y) = 0 becomes
λ0x

2y2 − (1 − λ0)xy + (µ2x + µ1y) = 0, which degenerates
to the kernel equation for the standard two-demand model
(by noticing the difference of the normalizing constant: here
λ0 + λ1 + µ1 + µ2 = 1 is assumed instead of λ + µ1 + µ2 = 1
for the standard two-demand model, where λ is the arrival
rate for the standard two-demand model).

Remark 4.2. To see how xy(1−χ(x, y)) = 0 and h(x, y) =
0 are related, we calculated the two eigenvalues for C(x, y),
which are given by

χ(x, y), ϕ(x, y) =
(a + d) ±

√
∆(x, y)

2
,

where a = xyλ1+g0(x, y)/2, b = −g0(x, /2), c = −g1(x, y)/2,
d = xyλ0 + g1(x, y)/2, and ∆(x, y) = (a + d)2 − 4(ad − bc).
We can observe that xy(1 − χ(x, y) is not a polynomial and
h(x, y) = 2xy(1 − χ(x, y))(1 − ϕ(x, y)).

We then calculate det H1(x, y).

H1(x, y) =
[

x(λ0 + µ1) − (λ0x
2y + µ1)p −(λ0x

2y + µ1)p̄
−(λ1x

2y + µ1)q̄ x(λ1 + µ1) − (λ1x
2y + µ1)q

]

with

det H1(x, y) =

(pq − p̄q̄)λ0λ1y
2x4 −

[
q(λ0 + µ1)λ1 + p(λ1 + µ1)λ0

]
yx3

+
[
(λ0 + µ1)(λ1 + µ1) + (pq − p̄q̄)µ1(λ+λ1)y

]
x2

−
[
q(λ0 + µ1) + p(λ1 + µ1)

]
µ1x + µ2

1(pq − p̄q̄).

When p = q = 1/2, we have

det H1(x, y) =
(
−x

2

)
h1(x, y),

where

h1(x, y) =
[
(λ0 + µ1)λ1 + (λ1 + µ1)λ0

]
yx2 − 2(λ0 + µ1)(λ1 + µ1)x

+
[
(λ0 + µ1) + (λ1 + µ1)

]
µ1.

Finally, we calculate det H2(x, y).

H2(x, y) =
[

y(λ0 + µ2) − (λ0xy2 + µ2)p −(λ0xy2 + µ2)p̄
−(λ1xy2 + µ2)q̄ y(λ1 + µ2) − (λ1xy2 + µ2)q

]

with

det H2(x, y) =

(pq − p̄q̄)λ0λ1x
2y4 −

[
q(λ0 + µ2)λ1 + p(λ1 + µ2)λ0

]
xy3

+
[
(λ0 + µ2)(λ1 + µ2) + (pq − p̄q̄)µ2(λ+λ1)x

]
y2

−
[
q(λ0 + µ2) + p(λ1 + µ2)

]
µ2x + µ2

2(pq − p̄q̄).

When p = q = 1/2, we have

det H2(x, y) =
(
−y

2

)
h2(x, y),

where

h2(x, y) =
[
(λ0 + µ2)λ1 + (λ1 + µ2)λ0

]
xy2 − 2(λ0 + µ2)(λ1 + µ2)y

+
[
(λ0 + µ2) + (λ1 + µ2)

]
µ2.

The exact tail asymptotic property for the Markov mod-
ulated walk is equivalent to the property of the following
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(scalar) walk given in (3.4) defined by

p1,1 =λ0(1 − λ0) + λ1(1 − λ1),

p0,−1 =[(1 − λ0) + (1 − λ1)]µ2,

p−1,0 =[(1 − λ0) + (1 − λ1)]µ1,

p0,0 =1 − 2(1 − λ0)(1 − λ1),

p
(1)
1,1 =λ0(λ1 + µ1) + λ1(λ0 + µ1),

p
(1)
−1,0 =[(λ1 + µ1) + (λ0 + µ1)]µ1,

p
(1)
0,0 =1 − 2(λ0 + µ1)(λ1 + µ1)

p
(2)
1,1 =λ0(λ1 + µ2) + λ1(λ0 + µ2),

p
(2)
0,−1 =[(λ0 + µ2) + (λ1 + µ2)]µ2,

p
(2)
0,0 =1 − 2(λ0 + µ2)(λ1 + µ2).

4.4 Exact tail asymptotic property
Based on the decomposition results, for fixed k, πm,0;k and

π0,n;k (for the modulated model|) have the same exact tail
asymptotic property for πm,0 and π0,n (for the scalar random
walk obtained based on the decomposition result), respec-
tively. Let us consider the exact tail asymptotic property for
πm,0 (the tail asymptotic property for π0,n can be considered
in parallel), which is determined based on the asymptotic
property of the generating function π1(x) at it dominant
singularity (through the Tauberian-like theorem). For a gen-
eral scalar random walk, this dominant singularity xdom can
be a pole, either x∗ or x̃1, or a branch point x3, where x∗

is a zero of h1(x, Y0(x), x̃1 is such that h2(X0(y), y) = 0
with y = Y0(x̃1). There are two important steps involved
in the analysis: the first one to determine the existence of a
finite solution x∗ > 1 (x̃1 > 1), and the next step is deter-
mine which candidate is the smallest one (or which ones are
smallest).

Towards this end, for the modulated two-demand model,
recall

a(x) = [λ0(1 − λ0) + λ1(1 − λ1)] x
2, (4.1)

b(x) = µ1(2 − λ0 − λ1) − 2(1 − λ0)(1 − λ1)x, (4.2)

c(x) = µ2(2 − λ0 − λ1)x, (4.3)

and the discriminant D1(x) = b2(x) − 4a(x)c(x), which is a
cubic polynomial. We an first show:

Lemma 4.1. D1(x) has three zeros: 0 < x1 < x∗ < x2 <
1 < x3 < +∞, i.e.

D1(xi) = 0, i = 1, 2, 3. (4.4)

Moreover, D1(x) > 0 in (−∞, x1)
∪

(x2, x3) and D1(x) < 0
in (x1, x2)

∪
(x3, +∞). Here,

x∗ =
µ1(2 − λ0 − λ1)

2(1 − λ0)(1 − λ1)

is the unique solution to b(x) = 0.

We are then expected to show (following a similar process
to that in [13, 14]):

1. h1(x, Y0(x)) has a unique zero x∗ that is greater than
one;

2. h2(X0(y), y) does not have any zero y such that y =
X0(x̃1) for some x̃1 > 1.

Finally, based on which one is the dominant singularity,
there are three types of tail asymptotic properties for πm,0:

Type one: If x∗ < x3, then πm,0 ∼ c(1/x∗)m;

Type two: If x3 < x∗, then πm,0 ∼ cm−3/2(1/x3)
m;

Type three; If x∗ = x3, then πm,0 ∼ cm−1/2(1/x∗)m =

cm−1/2(1/x3)
m.

Unfortunately, there is no simple characterization for the
three regions, on which type 1, 2 or 3 tail asymptotic prop-
erty holds. However, for a specific set of system parameters,
a simple numerical calculation will always tell the type of
the tail property.

To end this section, we demonstrate how to show h1(x, Y0(x))
has a unique zero x∗ that is greater than one. To convert
h1(x, Y0(x)) to a polynomial, calculate:

λ̄h1(x, Y0(x))h1(x, Y1(x)) = µ2(x−1)
[
Ax2 + (A + B)x + C

]
,

where

λ̄ =p1,1 = λ0(1 − λ0) + λ1(1 − λ1)

A =
[
λ0(λ1 + µ1) + λ1(λ0 + µ1)

]2
(2 − λ0 − λ1),

B = − 4
[
λ0(1 − λ0)(λ1 + µ1) + λ1(1 − λ1)(λ0 + µ1)

]
(λ0 + µ1)(λ1 + µ1),

C = −
[
(λ0 + µ1) + (λ1 + µ1)

]
(λ0 − λ1)

2µ2
1.

The rest is now routine and tedious.

5. CONCLUDING REMARKS
In this paper, we demonstrated how to extend the ker-

nel method to study tail asymptotic properties of a Markov
modulated random walk, in terms of a modulated two-demand
queueing model. It is interesting to compare this method to
other available methods. Also, we should remark here that
this paper contains results from our preliminary studies. It
is our plan to continue this research to provide a compre-
hensive study of the extended kernel method with all details
of the proof.
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ABSTRACT
We consider asymptotic problems for large queues in the
steady state. There are two types of asymptotics. One is
large deviations for a fixed model. Another is weak con-
vergence of a sequence of stationary distributions in heavy
traffic, called heavy traffic approximation. In this paper, we
focus on large deviations, and study tail asymptotic behav-
iors of the stationary joint queue length distribution of a
generalized Jackson network. For this, we use an approach
using martingale in [6].

1. INTRODUCTION
Asymptotic analyses have been actively studied in the re-

cent queueing theory. This is because queueing models, par-
ticularly, queueing networks, become very complicated and
their exact analyses are getting harder. We focus on asymp-
totic analyses for large queues, and aim to understand their
limiting behaviors through their modeling primitives.

There are two different types of asymptotic analyses for
large queues. One is large deviations, which is typically stud-
ied for a fixed model. Another is the limit of a sequence of
queueing models in heavy traffic under appropriate scaling
of time, space and/or modeling primitives. This gives a the-
oretical support for the limiting model, which is called heavy
traffic approximation. In this paper, we focus on the large
deviations. Among them, we are particularly interested in
the tail asymptotic behaviors for the stationary distribution
of a generalized Jackson network, GJN for short. Its heavy
traffic approximation has been studied in [1].

Those two asymptotic problems have been studied sep-
arately in the literature. Recently, the author [6] studied
a unified approach which is applicable to both asymptotic
analyses. We use this unified approach, which uses a piece-
wise deterministic Markov process, PDMP for short, is used
to describe queueing models.

A sample path of the PDMP is composed of two parts, de-
terministic continuous part and discontinuous part, called
jumps, by which randomness is created. This PDMP is

widely applicable, but known to be hard to analysis. Be-
cause of this, PDMP is often used for describing models,
but rarely used for analytical study. So, other methods have
been employed for analysis. Using phase type distributions,
the state space can be discretized, and Markov chains are
applicable for asymptotic analysis, which may be most pop-
ular in queueing theory.

Contrary to the analytical difficulty, the PDMP has a sim-
ple sample path. Its time evolution is easily presented by
a stochastic integral equation using a test function, which
maps the states of the PDMP to real values (see (3)). In
this stochastic equation, randomness is created at its jump
instants due to arrivals and service completions. This causes
difficulty for analysis. Davis [2] who introduced PDMP re-
places them by a martingale, imposing the so called bound-
ary condition on the test function. However, it is not easy
to find a class of the test functions which characterize a dis-
tribution on the state space of the PDMP.

A basic idea in [6] is to choose a smaller class of test
functions to overcome those difficulties. We then have a
martingale, which will be used for change of measure. They
can not characterize a distribution on the state space, but
still retains full information to study large queues under the
stationary distribution.

In this paper, we focus on the tail decay rates of the sta-
tionary distribution of the joint queue length in the GJN.
This problem has been solved for a two node GJN assuming
phase-type distributions in [5]. We derive upper and lower
bounds for them for the GJN with any d ≥ 2 and general
inter-arrival and service time distributions, which may have
heavy tails, but those bounds may not be sharp for d ≥ 3.

2. PIECEWISE DETERMINISTIC MARKOV
PROCESS, PDMP

We introduce a piecewise deterministic Markov process
{X(t); t ≥ 0}. For each t ≥ 0, X(t) has two components
Z(t) and C(t), namely,

X(t) = (Z(t), C(t)), t ≥ 0,

where Z(t) is a state to be interested, and C(t) is a time
counter for the next jump. As always, X(t) is assumed to
be right-continuous and has the left-hand limit at each time
t. Its state space has the following structure.

(a) Z(t) takes values in a complete and separable topolog-
ical space S1.

(b) For each Z(t), there is a finite set K(Z(t)), and C(t)

takes values in RK(Z(t))
+ which is the set of all vectors
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y whose entry yi takes values in R+ for i ∈ K(Z(t)),
where R+ is the set of all nonnegative real numbers.
The entry of C(t) with index i is denoted by Ci(t).

The state space S1 which we use is the d-dimensional non-
negative integer orthant Zd

+ with discrete topology, where
Z+ is the set of all nonnegative integers.

Let S = {(z, y); z ∈ S1, y ∈ RK(z)
+ }, which is the state

space of X(t). We assume the following dynamics.

(c) X(t) is a continuously differentiable deterministic func-
tion of t except for jump instants, which are denoted by
an increasing sequence {tn; n = 1, 2, . . .}, with t0 = 0.

(d) There is a set M(S) of continuous functions from S to
R such that

(d1) The distribution of X(t) is determined by
E(f(X(t))) < ∞ for f ∈ M(S).

(d2) For t ∈ (tn−1, tn), f(X(t)) has a continuous deriva-
tive Af(X(t)) for f ∈ M(S), where A is an oper-
ator on M(S), that is, Af ∈ M(S) for f ∈ M(S).

(d3) For t ∈ (tn−1, tn), K(t) is unchanged, and Ci(t)
is non-increasing in t for each i ∈ K(t).

(e) For s > 0 and n ≥ 1, tn > tn−1 + s if and only if
Ci((tn−1 + u)−) > 0 for all u ∈ [0, s] and all i ∈
K(tn−1), where Ci(t−) = limϵ↓0 Ci(t − ϵ).

(f) The conditional distribution of X(tn) given {X(s); s <
tn} is a function of X(tn−) for n ≥ 1, which is char-
acterized by the transition kernel Q given below.

Qf
(
X(t−)

)
= E

(
f(X(t))|X(t−)

)
, X(t−) ∈ Γ, (1)

for f ∈ M(S), where Γ is the subset of S such that
some entries of y vanish for (z, y) ∈ S. This Γ is
referred to as a terminal set, while Q is referred to as
a jump kernel.

Obviously, {X(t); t ≥ 0} satisfying the conditions (a)–
(f) is a Markov process, whose dynamics is specified by A
and Q. This process is essentially the same as a piecewise
deterministic Markov process, PDMP for short, introduced
by Davis [2]. We refer to it as the same name. It is noticed
that we exclude jumps generated by the main component
Z(t), but they may be included in C(t).

2.1 Martingale decomposition of the PDMP
Let X(·) be a PDMP satisfying the conditions (a)–(f).

We consider its evolution in time by a stochastic integral
equation. Let Ft = σ(X(s); s ≤ t), where σ(·) stands for
the minimal σ-field. {Ft; t ≥ 0} is called a filtration. Then,
X(·) is a strong Markov process with respect to {Ft; t ≥ 0}.
Define the counting process N(·) ≡ {N(t); t ≥ 0} for the
jump instants of this PDMP as

N(t) =

∞∑

n=1

1(ti ≤ t), t ≥ 0. (2)

Then, we obviously have a stochastic integral equation.

f(X(t)) =f(X(0)) +

∫ t

0

Af(X(s))ds

+

∫ t

0

∆f(X(s))dN(s), f ∈ M(S), (3)

where ∆f(X(s)) = f(X(s))−f(X(s−)). Note that ∆N(s) >
0 if and only if X(s−) ∈ Γ, which causes a jump.

Our arguments will be based on the following fact due to
Davis [2].

Lemma 2.1 (A special case of Theorem 5.5 of [2]).
For f ∈ M(S), if

M(t) ≡f(X(t)) − f(X(0)) −
( ∫ t

0

Af(X(s))ds

+

∫ t

0

(Qf(X(s−)) − f(X(s−)))dN(s)
)

(4)

satisfies that E(|M(t)|) < ∞, then M(·) ≡ {M(t); t ≥ 0} is
an Ft-martingale. In particular, if f satisfies that

Qf(x) = f(x), ∀x ∈ Γ, (5)

then the Ft-martingale M(t) is simplified to

M(t) = f(X(t)) − f(X(0)) −
∫ t

0

Af(X(s))ds. (6)

Although Davis [2] refers to (5) as a boundary condition,
we refer to (5) as a terminal condition following the termi-
nology of [6]. Note that (6) can be written as

f(X(t)) = f(X(0)) +

∫ t

0

Af(X(s))ds + M(t). (7)

Apart from the terminal condition (5), this representation is
standard for a Markov process which has A as an extended
generator.

3. GENERALIZED JACKSON NETWORK
We first introduce this network model, then describe it by

a PDMP. Let d be a positive integer, and consider a d-node
queueing network with single servers at nodes in which ex-
ogenous customers arrive at each node subject to a renewal
process and service times at each node are independent and
identically distributed which are independent of everything
else. Each node has an infinite buffer, customers are served
in the FCFS manner, and they are routed to the next nodes
or leave the network according to a given probability which
only depends on the current node when their service com-
pleted. We refer this queueing network as a generalized Jack-
son network, GJN for short.

3.1 Notations and assumptions
Let J = {1, 2, . . . , d}, and let E be the set of nodes which

have exogenous arrivals. For time t and node i ∈ J , let Li(t)
be the number of customers, and let Rs,i(t) be the residual
service times, respectively, where we set Rs,i(t) = 0 when
Li(t) = 0. For i ∈ E , let Re,i(t) be the residual time to the
next exogenous arrival at node i. Let pij be the probability
that a customer completing service at node i is routed to
node j for i, j ∈ J , where those customer leave the outside
of the network with probability:

pi0 ≡ 1 −
∑

i∈J
pij .

For each node i, let Fe,i be the interarrival time distribu-
tion of exogenous customers, and let Fs,i be the service
time distribution. Denote the vectors whose i-th entries are
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Li(t), Re,i(t) for i ∈ E , Rs,i(t) by L(t), Re(t), Rs(t), respec-
tively, and define X(t) as

X(t) = (L(t), Re(t), Rs(t)), t ≥ 0.

Then, {pij ; i, j ∈ J }, {Fe,i; i ∈ E} and {Fs,i; i ∈ J } are the
modeling primitives, and it is not hard to see that X(t) is a
PDMP. The state space S is given by

S = {(z, ye, ys); z ∈ Zd
+, ye ∈ RE

+, ys ∈ RK(z)
+ }.

Let F̂e,i and F̂s,i be the moment generating functions,
MGF for short, of the distributions Fe,i and Fs,i, respec-
tively. We define βw,i and θw,i for w = e, s as

βw,i = sup{θ ∈ R; F̂w,i(θ) < ∞}. (8)

Note that βw,i may be infinite. If βw,i = 0, then the distri-
bution Fw,i is said to have a heavy tail. Otherwise, it is said
to have a light tail.

3.2 Terminal condition for the GJN
We consider a test function for the martingale decomposi-

tion in Lemma 2.1 to be available. For this, we first truncate
distribution Fw,i for w = e, s. It will turn out that this is
not only for handling heavy tailed distributions but also for
well controlling Re(t) and Rs(t).

Let Te,i and Ts,i be the random variables subject to the
distributions Fe,i and Fs,i. For v > 0, we denote the dis-

tributions of Te,i ∧ v and Ts,i ∧ v by F
(v)
e,i and F

(v)
s,i , where

a ∧ b = min(a, b) for a, b ∈ R. Let

ti(θ) = e−θi

( ∑

j∈J
pije

θj + pi0

)
, θ ∈ Rd, i ∈ J .

Using parameters θ, ζ ∈ Rd and η ∈ RE , we choose the
following test function for v > 0,

fu,v,θ(z, ye, ys) = e⟨θ,z∨1⟩+⟨η(u,θ),ye∧u⟩+⟨ζ(v,θ),ys∧v⟩,

where z ∨ 1 is the d-dimensional vector whose i-th entry is
max(zi, 1), y∧u is the d-dimensional vector whose i-th entry
is min(yi, ui), and η(u, θ) and ζ(v, θ) are the solutions of
η ≡ {ηi; i ∈ E} and ζ ≡ {ζi; i ∈ J }, respectively, of the
following equations.

eθi F̂
(ui)
e,i (ηi) = 1, i ∈ E , ti(θ)F̂

(vi)
s,i (ζi) = 1, i ∈ J ,

where F̂
(ui)
e,i and F̂

(vi)
s,i are the MGF’s of F

(ui)
e,i and F

(vi)
s,i ,

respectively. Because of the truncations, η(u, θ) and ζ(v, θ)
are well defined, and the terminal condition (5) is satisfied
for all θ ∈ Rd (see Lemma 2.3 of [6]). Let

ηR
u,θ(s) =

∑

i∈E
ηi(ui, θi)1(Re,i(s) > ui),

ζR
v,θ(s) =

∑

i∈E
ζi(vi, θ)1(Rs,i(s) > vi),

γu,v(θ) = −
∑

i∈E
ηi(ui, θi) −

∑

i∈J
ζi(vi, θ).

Then, we have the following martingale under the assump-

tion E(|X(t)|) < ∞ for all t ≥ 0.

Mu,v,θ(t) ≡ fu,v,θ(X(t)) − fu,v,θ(X(0))

−
∫ t

0

(
γu,v(θ) + ηR

u,θ(s) + ζR
v,θ(s)

+
∑

i∈J
ζi(vi, θ)1(Li(s) = 0)

)
fu,v,θ(X(s))ds. (9)

We now consider ηi(ui, θi) and ζi(vi, θ). For this, we first
consider a nonnegative random variable T with distribution

F . Denote the MGF of its truncation by F̂ (u).

Lemma 3.1. Let h(θ) be a positive valued function such
that log h(θ) is convex in θ ∈ Rd. Define ξ(u, θ) as the
solution of ξ of the following equation.

h(θ)F̂ (u)(ξ) = 1,

then ξ(u, θ) is concave in θ for each fixed u > 0, and is
negative and increasing (positive and decreasing) in u > 0
for each fixed θ satisfying h(θ) > 1 (< 1, respectively).

Using the fact that log F̂ (u)(s) is convex in s ∈ R, this lemma
can be proved in the same way as Lemma 2.4 of [6].

Lemma 3.1 enables us to define

ξ(△, θ) = lim
u↑∞

ξ(u, θ), θ ∈ Rd. (10)

We also define ξ(θ) = ξ(∞, θ) as long as it is well defined and
finite for θ. It is notable that ξ(θ) may not equal ξ(△, θ).

Since log ti(θ) is convex in θ, we can take it or eθi for
h(θ) in Lemma 3.1, and therefore ηi(△, θi) and ζi(△, θ) can
be defined in the same way as in (10). ηi(θi) and ζi(θ) are
similarly defined. Similar to Lemma 2.5 of [6], we have the
following lemma.

Lemma 3.2. (a) ηi(△, θi) and ζi(△, θ) are finite and con-
cave for all θi ∈ R and θ ∈ Rd. (b) ηi(△, θi) ≤ βe,i for all
θi ∈ R with equality for θi ≤ θ∗

e,i, and ηi(△, θi) = ηi(θi) for

θi > θ∗
e,i, where θ∗

e,i = − log F̂e,i(βe,i). (c) ζi(△, θ) ≤ βs,i for

all θ ∈ Rd with equality for θ satisfying ti(θ)F̂s,i(βs,i) ≤ 1,

and ζi(△, θ) = ζi(θ) for for θ satisfying ti(θ)F̂s,i(βs,i) > 1.

(d) F̂ (ηi(△, θi)) < ∞ for all θi ∈ R, and F̂ (ζi(△, θ)) < ∞
for all θ ∈ Rd.

For J ⊂ E , uJ is the vector in R|E|
+ whose i-th entry is

ui if i ∈ J and otherwise is △. Similarly, vK is defined for
K ⊂ J . For convenience, u∅ and v∅ are denoted by ▲.

γuJ ,vK (θ) = lim
uj↑∞,j ̸∈J,vk↑∞,k ̸∈K

γu,v(θ).

In particular, γ△(θ) = γ▲,▲(θ). By Lemma 3.2, γ△(θ),
γu,v(θ) and γuJ ,vK (θ) are all convex in θ ∈ Rd.

3.3 Bounds for the tail decay rates
We consider the tail asymptotic problem for the GJN.

Denote the means of Te,i, Ts,i by me,i and ms,i, respectively.
Let λe,i = 1/me,i for i ∈ E . Let αi for i ∈ J be the solutions
of the following traffic equation.

αi = λi1(i ∈ E) +
∑

j∈J
αjpji, i ∈ J .

It is easy to see that the solutions uniquely exist if the d ×
d matrix P ≡ {pij ; i, j ∈ J } is strictly substochastic and
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if P ≡ {pij ; i, j ∈ {0} ∪ J } is irreducible, where p00 =
0, and p0i = λi1(i ∈ E)/

∑
j∈E λj for i ∈ J . We assume

these conditions. Let ρi = αimi, and assume the stability
condition that ρi < 1 for all i ∈ J .

We present a main result of this paper. For K ⊂ J , let

Γ+
K = {θ ∈ Rd; γ△(θ) < 0, ζj(△, θ) < 0, ∀j ∈ K},

Γ−
K = {θ ∈ Rd; γ△(θ) ≥ 0, ζj(△, θ) ≥ 0, ∀j ∈ K}.

Lemma 3.3. Assume that the GJN is stable, and let φi(θ) =

E(e⟨θ,L⟩1(Lj = 0)) for θ ∈ Rd, i ∈ J . Then, we have for
K ⊂ J satisfying |K| ≥ d − 1, where |K| is the number of
elements of K,

lim sup
n→∞

1

n
log P(L ≥ nc)

≤ − sup{⟨c, θ⟩; θ ∈ Γ+
K , φi(θ) < ∞, ∀i ̸∈ K}, (11)

lim inf
n→∞

1

n
log P(L ≥ nc)

≥ − inf{⟨c, θ⟩; θ ∈ Γ−
K , φi(θ) < ∞, ∀i ̸∈ K}. (12)

Outline of proof. We first construct an exponential martin-
gale for change of measure. Let ν be the distribution of
X(0), and denote the probability measure under this ini-

tial distribution by Pν . Assume that Eν(e⟨θ,L(0)⟩) < ∞,
from which it can be proved that Eν(fu,v,θ(X(t))) < ∞ for
t ≥ 0. Let

Y (t) =
1

fu,v,θ(X(0))
exp

(
−

∫ t

0

Afu,v,θ(X(s))

fu,v,θ(X(s))
ds

)
,

which is obviously continuous in t, so Ft−-measurable. Then,

Y · Mu,v,θ(t) ≡ 1 +

∫ t

0

Y (s)Mu,v,θ(ds)

is a Ft-martingale under Pν (see Section 4d of Chapter I of
[3] and [7] for PDMP). Denote Y ·Mu,v,θ(t) by Efu,v,θ , then

Efu,v,θ (t) =
fu,v,θ(X(t))

fu,v,θ(X(0))
exp

(
−

∫ t

0

Afu,v,θ(X(s))

fu,v,θ(X(s))
ds

)
.

Since Efu,v,θ (t) is positive and Efu,v,θ (0) = 1, we can

define a new probability measure P̃(u,v,θ)
ν by

dP̃(u,v,θ)
ν

dPν

∣∣∣
Ft

= Efu,v,θ (t), t ≥ 0.

This implies that

dPν = (Efu,v,θ (t))−1dP̃(u,v,θ)
ν on Ft. (13)

To choose the initial distribution ν, let τ+
A , τ−

A be the first
exit and return times of L(t) to A ⊂ S1 such that τ+

A < τ−
A .

Let ν+
A the distribution of X(t) at time τ+

A given that X(0) is
subject to the normalized stationary distribution νA limited
on {(z, y) ∈ S; z ∈ A}. Denote a random vector subject
to the stationary distribution of X(t) by X ≡ (L, Re, Rs).
Then, the cycle formula yields, for measurable B ⊂ S1 \ A,

P(L ∈ B) = c(A)E
ν+

A

( ∫ τ−
A

0

1(L(s) ∈ B)ds
)
, (14)

where c(A) = P(L ∈ A)/E
ν+

A
(τ−

A − τ+
A ). For K ∈ 2J , let

FK = ∪i∈J \K{z ∈ S1; zi = 0}.

For c ∈ S1 \ FK and n ≥ 1, let A = FK and let

τ+
c,n = inf{t > 0; L(t) ≥ nc},

Y
τ+

c,n−= E
ν+

A

( ∫ τ−
FK

τ+
c,n

1(L(s) ≥ nc)ds
∣∣∣Fτ+

c,n−

)
1(τ+

c,n < τ−
FK

),

and applying (13) with ν = ν+
FK

, we have

P(L ≥ nc) = c(FK)Ẽ(u,v,θ)

ν+
FK

(
fu,v,θ(X(0))Y

τ+
c,n−e−⟨θ,L(τ+

c,n−)⟩

× eγu,v(θ)τ+
c,n−⟨η(u,θ),Re(τ+

c,n−)∧u⟩−⟨ζ(v,θ),Rs(τ+
c,n−)∧v⟩

× e
∫ τ

+
c,n

0 [ηR
u,θ(s)+ζR

v,θ(s))+
∑

i∈K ζi(vi,θ)1(Li(s)=0)]ds). (15)

To prove (11) for K ∈ 2J , we take the following steps.

(a) Choose θ ∈ Rd such that θ ∈ Γ+
K , φi(θ) < ∞, ∀i ̸∈ K,

and sufficiently large vi for all i ∈ K such that ζi(vi, θ)
and ζi(△, θ) have the same sign.

(b) For all j ∈ J \ K such that ζi(△, θ) > 0, let vj → ∞
in (15). Then, ⟨θ, c⟩n + log P(L ≥ nc) is bounded by
a function of u, v, θ not depending on n.

(c) Divide both sides of the above inequality by n and let
n → ∞, then take the supremum on θ.

Similarly, (12) is obtained, and the proof is completed.

The condition that |K| ≥ d − 1 may be too strong for
d ≥ 3, but is needed to verify (b). We conjecture that it
can be removed. Note that the upper bound (11) is similar
to those for the d-dimensional reflecting random walk (see
Theorem 6.1 and (6.9) of [4]). We expect that the decay
rate in an arbitrary direction can be obtained from (11) and
(12) in a similar way as Theorem 6.1 of [4] if the condition
that |K| ≥ d − 1 is unnecessary in Lemma 3.3.

References
[1] Braverman, A., Dai, J. and Miyazawa, M. (2015).

Heavy traffic approximation for the stationary distri-
bution of a generalized jackson network: the BAR ap-
proach. Submitted for publication.

[2] Davis, M. H. A. (1984). Piecewise deterministic Markov
processes: a general class of non-diffusion stochastic
models. Journal of Royal Statist. Soc. series B, 46 353–
388.

[3] Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems
for stochastic processes. 2nd ed. Springer, Berlin.

[4] Miyazawa, M. (2011). Light tail asymptotics in multi-
dimensional reflecting processes for queueing networks.
TOP, 19 233–299.

[5] Miyazawa, M. (2015). A superharmonic vector for a
nonnegative matrix with QBD block structure and its
application to a Markov modulated two dimensional re-
flecting process. Queueing Systems, 81 1–48.

[6] Miyazawa, M. (2017). A unified approach for large
queue asymptotics in a heterogeneous multiserver queue.
Advances in Applied Probability (to appear).

[7] Palmowski, Z. and Rolski, T. (2002). A technique of
the exponential change of measure for Markov processes.
Bernoulli, 8 767–785.

62



Stability criterion of a MAP/PH-multiserver model with
simultaneous service

A. Rumyantsev
Institute of Applied Mathematical Research,

Karelian Research Centre of RAS
11 Pushkinskaya Str.

Petrozavodsk, Russian Federation
ar0@krc.karelia.ru

E. Morozov
Institute of Applied Mathematical Research,

Karelian Research Centre of RAS
11 Pushkinskaya Str.

Petrozavodsk, Russian Federation
emorozov@karelia.ru

ABSTRACT
In this paper, we study the stability conditions of the mul-
tiserver system in which each customer requires a random
number of servers simultaneously and a random (but iden-
tical) service time at all occupied servers. We call it clus-
ter model, because this model describes the dynamics of
multicore high performance clusters. Stability criteria of
an M/M/s cluster model has been found earlier. In this
work we, again using the matrix-analytic approach, show
that the stability criteria of an MAP/M/s cluster model
has the same form as for M/M/s system. We believe, that
the result holds true for a more general MAP/PH/s clus-
ter model. However, the proof is still in progress, and we
illustrate the result with simulations.
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1. INTRODUCTION
A major pivot from frequency scaling of a Central Pro-

cessing Unit (CPU) to the massive use of multicore and
multi-CPU architectures [15] caused a rebirth of interest in
studying of stochastic models of modern multiserver sys-
tems. A separate class of multiserver models that allow a
single customer to be served simultaneously by a number of
servers, is practically motivated by computing systems such
as high performance clusters (as well as cloud/distributed
computing) containing a huge number of servers working in
parallel. According to [16], the class of systems with simul-
taneous service has two major subclasses: i) systems with

independent service (service times of a given customer are in-
dependent) and ii) systems with concurrent service (service
times of a customer are identical through all the occupied
servers). The key feature of the systems ii) is that there
is a possibility to have idle servers and a non-empty queue
simultaneously, which significantly complicates the stability
analysis. While for the subclass i), the stability conditions
in an explicit form have been obtained in a number of pa-
pers, see e.g. [3, 5], the subclass ii) requires a more delicate
analysis. In the work [1] the stationary distribution of class-
dependent delay has been obtained by the system point ap-
proach, however the stability problem for the general multi-
server system has not been addressed there. The stability
condition obtained in [8] requires a numerical solution of a
large dimension matrix equation, while the corresponding
matrices are not explicitly defined. In recent works [4, 2],
a two-server system is investigated by means of the matrix-
analytic method (more on this method see [10, 9, 7, 6]), and
the stability condition (earlier stated with no proof in the
paper [1]) has been strictly proven. The work [4] deals with
exponential distributions, whereas the work [2] extends the
stability condition from [4] to the MAP input. The stability
criterion of the exponential model with arbitrary number of
servers and arbitrary distribution of the required number of
servers has been obtained in [14] by means of matrix-analytic
approach. Moreover, a computationally effective verification
of the stability criterion has been proposed in [13].

The main contribution of this paper is the extention of
the stability criterion to the cluster model with MAP input.

The paper is organised as follows. In Section 2, we de-
scribe general MAP/PH/s cluster model. Then, in Sec-
tion 3.2, we sketch the proof of the stability condition of a
MAP/M/s cluster model. We show that the earlier found
stability criteria of M/M/s model (described briefly in Sec-
tion 3.1) holds true for the MAP arrivals as well. In Sec-
tion 3.3 we demonstrate by simulation that (an appropri-
ately modified) condition obtained earlier allows to delimit
the stability/instability zones of the MAP/PH/s model.

2. DESCRIPTION OF THE MODEL
In this section we describe the MAP/PH/s cluster model.

For more details on MAP input and PH distributions see [6,
9].

We consider a FCFS s-server simultaneous service queue-
ing system with input flow driven by a MAP (D0, D1) with
k states. Customer i occupies Ni servers simultaneously for
the same service time Si having a PH distribution (τ, T )
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with l states (and l + 1 being the absorbtion state). It is
assumed that τ1 = 1 (where 1 is a vector of ones), implying
Si > 0. Denote λ = θD11 the fundamental rate of the MAP,
where vector θ satisfies the following equations

{
θD = 0,
θ1 = 1,

(1)

with matrix D := D0 + D1. Let µ :=
(
−τT−11

)−1
be the

service rate of PH distribution, and define the l-dimensional
vector π = µ(τT−1). It is known that the vector π is the
stationary distribution of the PH (renewal) process [9].

We call customer i class-j one if Ni = j. The sequence
{Ni} is assumed to be i.i.d. with a given distribution

pj := P(N = j), j = 1, . . . , s (
s∑

j=1

pj = 1). (2)

(We omit the serial index to denote a generic element of an
i.i.d. sequence.)

Let ν(t) be the number of customers in the system at in-
stant t, t > 0. Following [17], we call the vector m(t) =
(m1(t), . . . ,ms(t)) a macrostate, where mi(t) is the class of
the ith oldest customer in the system (if ν(t) < s, then
mi(t) := 0 for i > ν(t)). Let ϕ(t) ∈ {1, . . . , k} be the phase
of the MAP at instant t. Denote ψ(t) = (ψ1(t), . . . , ψs(t)),
where ψi(t) is the phase of the ith oldest customer being
served (we put ψi(t) := 0 if the i-th oldest customer is wait-
ing in the queue). Note that ψ(t) ∈ {0, . . . , l}s.

Denote the set of macrostates M = {1, . . . , s}s, and let
Z+ := {1, 2, . . .}. For a fixed m ∈M, define

σ(m) := max

{
i :

i∑

j=1

mj 6 s

}
6 s (3)

the number of customers being served in the macrostate m,
and let

Ψ(m) := {ψ : ψk > 0, k 6 σ(m), ψk = 0, k > σ(m)}. (4)

Then the setΨ :=
⋃

m∈MΨ(m) contains l(ls−1)/(l−1) com-
binations of PH phases of customers being served. Finally,
let Ω := Z+×M×Ψ×{1, . . . , k}. For convenience, we use the
lexicographical order to enumerate the phases (m,ψ, ϕ) ∈
M × Ψ × {1, . . . , k}, and use this multi-dimensional index
to refer to the components of matrices.

As we show below, the process
{

Θ(t) :=
(
ν(t),m(t), ψ(t), ϕ(t)

)
∈ Ω; t ≥ 0

}
, (5)

is a QBD process living in Ω, where ν(t) is called the level
of the process.

Consider a fixed state (n,m, x, y) of the process and one-
step transitions (n,m, y, x)→ (n′,m′, y′, x′). The following
events (transitions) are possible for levels n > s:

1. A change of MAP phase with no arrivals: n′ = n,m′ =
m, y′ = y and x′ 6= x.

2. The phase of service time of the ith oldest customer
being served is changed with no completion of service:
n′ = n, m′ = m, x′ = x, yi 6= y′i < l + 1, and y′j =
yj , j 6= i.

3. An arrival to the system: n′ = n+ 1,m′ = m, y′ = y.

4. Departure of the ith oldest customer : n′ = n− 1, x′ =
x,

m′j = mj , j < i,m′j−1 = mj , j > i,

and m′s is chosen from (2). Moreover,

y′j = yj , j < i, y′j−1 = yj , i < j 6 σ(m),

whereas, for σ(m) < j 6 σ(m′) (if any), y′j is chosen
from the initial distribution τ . We also set y′j = 0 for
j > σ(m′), if any.

The infinitesimal generator of the QBD process {Θ(t)}
with a finite number of phases d := sskl(ls − 1)/(l − 1) has
the following block-tridiagonal form [9]:




B1 B0 0 0 . . .
B2 A1 A0 0 . . .
0 A2 A1 A0 . . .
0 0 A2 A1 . . .
...

...
...

...
. . .



, (6)

where Ai, i = 0, 1, 2 are the square matrices of order d, which
contain the intensity of transitions of {Θ(t)} caused by event
3, events 1 and 2, and event 4 defined above, respectively.
The matrices Bi, i = 0, 1, 2 are related to the initial con-
ditions (for levels n 6 s) and are not used in the stability
analysis (for more details see [9]).

Recall also the basic property of the infinitesimal genera-
tor of the QBD process

A1d = 0d, (7)

where the matrix A := A0 +A1 +A2.

3. STABILITY ANALYSIS
Below we use the Kronecker product ⊗ and Kronecker

sum ⊕, which is defined as A⊕B := A⊗ I + I ⊗B for two
matrices A,B and the identity matrix I of the appropriate
size. We also use the following property of the Kronecker
product. Let A,B,C,D be the matrices of such a size, that
AC and BD are possible. Then

(A⊗B)(C ⊗D) = (AC)⊗ (BD). (8)

The basic result for stability analysis is the following Neuts
condition for ergodicity of a QBD process with finite number
of states (see [9], theorem 7.2.4, also [6, 10]). The QBD is
positive recurrent if and only if

αA21 > αA01, (9)

where α is the unique solution of the system

αA = 0,
α1 = 1.

(10)

3.1 M/M/s cluster model
In this case the QBD process (5) becomes two-dimensional,

Θ(t) := {ν(t),m(t)}, t > 0. with d = ss phases. It has
been shown in [14], that the QBD process {Θ(t)} has the
infinitesimal generator of block-tridiagonal form. Moreover,
the intensity of transitions caused by an arrival/departure
at levels ν(t) > s is governed by the square matrices of size
ss × ss. Let Q0 be the matrix of transitions caused by an
arrival, that is, the component Q0(m,m′) is the intensity
of transition from a macrostate m to a macrostate m′ (at
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some instant t). Note that Q0(m,m′) = λ for m = m′, and 0
otherwise (since an arrival does not change the macrostate).
Let matrix Q2 contain the intensities of transitions caused
by a departure. It was shown in [14], that the knowledge of
the detailed structure of Q2 is not required for the stability
analysis. Finally, a diagonal matrix Q1 contains the rates of
holding times of the process. It was proved in [14], that the
solution of the system

γ(Q0 +Q1 +Q2) = 0,
γ1 = 1,

has the following form:

γm =
1

C

∏s
i=1 pmi

σ(m)
, m ∈M. (11)

Note that the vector γ = (γm,m ∈M) can be interpreted as
an approximation for distribution of the macrostates for high
levels of ν(t), see [6]. The following result has been proved
in [14] for M/M/s cluster model (that is, for k = l = 1).

Theorem 1. The irreducible continuous-time QBD pro-
cess (5) is positive recurrent if and only if

ρ :=
λ

µ
C < 1, (12)

where

C =
∑

m∈M

∏s
i=1 pmi

σ(m)
. (13)

It is null recurrent if ρ = 1 and transient if ρ > 1.

3.2 MAP/M/s cluster model
In this section we assume that PH distribution has a single

state, that is, the service times are exponential with rate µ.
Consider the process Θ(t) := {ν(t),m(t), ϕ(t)}, t > 0, with
d = ssk phases.

Now we define the matrices Ai explicitly. Indeed, the
matrix A0 corresponds to the arrivals into the system at
high levels ν(t) > s. Then the arrivals do not change the
macrostate (since the macrostate is defined only by the s old-
est customers). However, an arrival may change the MAP-
phase ϕ(t) according to the intensity matrix D1. As a result,
we obtain

A0 := Oss ⊕D1 = Iss ⊗D1, (14)

where Oi (Ii) is the square zero (identity) matrix of size i.
Consider the matrix A2, which corresponds to a depar-

ture. Since the MAP-phase is not changed at the departure
epoch, and the change of a macrostate is still described by
the matrix Q2, then we obtain

A2 := Q2 ⊕Ok = Q2 ⊗ Ik. (15)

Denote by 1kss the kss-dimensional vector of ones. It
follows from the properties of matrix Q2, definition (15) and
property (8), that

A21kss = (Q2 ⊗ Ik)(1ss ⊗ 1k) = µσ ⊗ 1k, (16)

where the m-th component of column vector σ is defined
as σ(m), and the equality Q21ss = µσ is proved in [14]
(see equality (11) there). To explain the equality, we recall
that, for each fixed macrostate m, there are exactly σ(m)
customers being served, with exponential service times (with
intensity µ).

The matrix A1 corresponds to the transitions of QBD pro-
cess, which do not change the level. There is the only possi-
bility for this transition, namely, the MAP-phase ϕ(t) may
change with no changes of the macrostate m(t). The corre-
sponding transition of the MAP-phase is governed by matrix
D0. Define the square matrix J := diag(σ) of order ss. Then
it follows from the balance condition (7) and equality (16),
that the matrix A1 has the following form:

A1 := −µJ ⊕D0. (17)

Then it follows from (14) and (17), that

A0 +A1 = −µJ ⊕D. (18)

Now we are ready to find a solution of the system of equa-
tions (10). By (15) and (18), the first equation of the sys-
tem (10) is equivalent to

α(Q2 ⊗ Ik) = µα(J ⊕D). (19)

Recall (1), (11) and define vector

α := γ ⊗ θ. (20)

It is easily seen (e.g. by property (8)), that α satisfies the
second equation of the system (10).

Using (1) and (8), we obtain

µα(Iss ⊗D) = µ(γ ⊗ θ)(Iss ⊗D) = µγ ⊗Ok = Okss . (21)

Then, using (20), (21), we can rewrite (19) as

(γ ⊗ θ)(Q2 ⊗ Ik) = µ(γ ⊗ θ)(J ⊗ Ik + Iss ⊗D).

By the property (8), it now follows that

(γQ2 ⊗ θIk) = µ(γJ ⊗ θIk + γIss ⊗ θD).

Finally, a simplification of both parts of the last equality
yields

γQ2 ⊗ θ = µγJ ⊗ θ. (22)

It was proved in [14], that γQ2 = µγJ . Then (22) is also
true, that is, the vector α defined in (20) is the solution of
system (10).

It follows from (14) and (20), that

αA01 =(γ ⊗ θ)(Iss ⊗D1)1kss

=(γIss1ss)⊗ (θD11k) = θD11k =: λ. (23)

Note that the equations (16), (23), (11) together with (1)
give

αA21 = (γ ⊗ θ)(µσ ⊗ 1k) = µγσ =
µ

C
, (24)

where the last equality follows since

γσ =
1

C

∑

m∈M

∏s
i=1 pmi

σ(m)
σ(m) =

1

C
.

Thus, theorem 1 holds for MAP/M/s cluster model.

3.3 Simulation results of MAP/PH/s model
To illustrate the applicability of result (12) to theMAP/PH/s

model, we perform a simple numerical experiment. We set
s = 50 and observe 5000 customers. First, we consider an
underloaded system with ρ = 0.9. We generate the inter-
arrival times {Ti} by means of a two-phase MAP process
with matrices

D0 =

(
−4.44 2

1 −1.49

)
, D1 =

(
2.44 0

0 0.49

)
,
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Figure 1: Comparison of the delays for 5000 cus-
tomers of a MAP/PH/s cluster model, when the sta-
bility condition holds (green), and is violated (red).

and generate the service times {Si} by a three-phase PH
distribution with τ = (0.2, 0.4, 0.4) and

T =



−4 2 0
2 −5 1
1 0 −1


 .

It then follows, that λ = 1.14 and µ = 0.909. Next, we
generate the values pk in such a way to obtain C = 0.717.
It implies ρ = λC/µ = 0.9. To obtain the delay of each
customer, we apply the hpcwld package [12].

Next, we consider the overloaded system, with ρ = 1.1.
The interarrival times {Ti} follow the two-phase MAP with
matrices

D0 =

(
−4.99 2

1 −1.6

)
, D1 =

(
2.99 0

0 0.6

)
.

We generate service times {Si} from the same three-phase
PH distribution defined above. We also use the same values
{pk}. Then λ = 1.39, which implies ρ = 1.1.

The resulting delays shown on Fig. 1 demonstrate the
(approximate) linear growth of the overloaded system, and
a stable behavior of the underloaded system. It indicates
that condition (12) allows to delimit the stability/instability
zones of the MAP/PH/s cluster model.
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ABSTRACT
I will survey a series of results over recent years on the com-
putational complexity of key analysis problems for several
families of infinite-state structured Markov chains (MCs)
and structured Markov decision processes (MDPs).

A key aspect of our results is algorithmic bounds for com-
puting the least fixed point (the least non-negative solution)
for monotone systems of nonlinear (min/max)-polynomial
equations which arise for these stochastic models and MDPs.

In particular, I will describe algorithms based on New-
ton’s method, combined with P-time preprocessing steps,
which yield polynomial time algorithms (in the standard
Turing model of computation) for computing, to arbitrary
desired accuracy, the G matrix of quasi-birth death pro-
cesses (QBDs), and the vector of extinction probabilities of
multi-type branching processes (or Markovian trees).

We then consider extensions of these purely stochastic
models to MDPs. We describe a Generalized Newton’s
Method (GNM), which employs linear programming in each
iteration, and we use GNM to obtain a P-time algorithm
for computing, to desired accuracy, the vector of optimal
(maximum or minimum) extinction probabilities for a given
Branching MDP.

We also study one-counter MDPs, which generalize
discrete-time QBDs with control, and we give algorithms
and complexity bounds for both qualitative and quantitative
analysis of optimal termination probabilities for one-counter
MDPs.

Finally, we consider a model more general than the above
stochastic models and MDPs, called recursive Markov chains
(RMCs) and Recursive MDPs (RMDPs). RMCs are closely
related to probabilistic pushdown systems and to tree-like-
QBDs. We show that, in the worst-case, any non-trivial
approximation of the termination probabilities of a RMC (or
tree-like-QBD) is PosSLP-hard, and thus approximation in

NP would already yield a breakthrough in exact numerical
computation. For RMDPs (or tree-like-QBD-MDPs), we
show that computing any non-trivial approximation of their
optimal termination probability is not even computable at
all (with any complexity).

(This talk describes a series of results together with Alis-
tair Stewart and Mihalis Yannakakis, as well as some older
results with other co-authors.)

Keywords
quasi-birth death processes (QBDs), Markovian trees, Re-
cursive Markov decision processes (RMDPs).
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ABSTRACT
We consider the extinction events of Galton-Watson pro-
cesses with countably infinitely many types. In particular,
we construct truncated and augmented Galton-Watson pro-
cesses with finite but increasing sets of types. A pathwise
approach is then used to show that, under some sufficient
conditions, the corresponding sequence of extinction prob-
ability vectors converge to the global extinction probability
vector of the Galton-Watson processes with countably in-
finitely many types. This gives rise to a number of iterative
methods for the computation of the global extinction prob-
ability vector.

Keywords
Multi-type branching process; extinction probability; itera-
tive methods

1. INTRODUCTION
Consider a multi-type Galton-Watson process with type

set S ⊆ N. Let {Zn : n ∈ N} be such that Zn is a vector
whose ith entry, Zn,i, contains the number of type i indi-
viduals in generation n. We assume the branching process
initially contains a single individual, whose type will be de-
noted by ϕ0. The process then evolves according to the
following rules:

(i) each individual lives for a single generation, and

(ii) at death it gives birth to r = (r1, r2, ...) offspring, that
is, r1 individuals of type 1, r2 individuals of type 2,
etc., where the vector r is chosen independently of all
other individuals according to a probability distribu-
tion, pi(·), specific to the parental type i ∈ S.

From the set of probability distributions {pi(·)}i∈S we define
the progeny generating function G : [0, 1]S → [0, 1]S , which
has entries,

Gi(s) =
∑

r∈(N0)S
pi(r)sr =

∑

r∈(N0)S
pi(r)

∞∏

k=1

s
rk
k . (1)

The mean progeny matrix M is an infinite matrix whose
entries are given by

Mij =
∂Gi(s)

∂sj

∣∣∣∣
s=1

, for i, j ∈ S,

where Mij can be interpreted as the expected number of
type j children born to a parent of type i. We say there is a
path from type i to j if there exists ` such that (M `)ij > 0.
We assume that the row sums of M are finite, that is, the
expected total number of direct offspring of an individual of
any type is finite.

The branching process, {Zn}, is then an infinite dimen-
sional Markov-chain in which the state 0 is absorbing. We
say that {Zn} becomes globally extinct once it reaches the
absorbing state and we define the global extinction proba-
bility vector q, with entries

qi = P( lim
n→∞

Zn = 0
∣∣ϕ0 = i).

The global extinction probability vector is the minimal non-
negative solution to the fixed point equation

s = G(s). (2)

In all but a few special cases this fixed point equation cannot
be solved analytically. When the set of types is finite, (2)
describes a finite system of equations, which can be used to
compute q algorithmically, for instance through functional
iteration. It is then natural to question whether a similar
computational technique exists when the set of types be-
comes countably infinite, S = {1, 2, 3, ...}. However, little
work had been done in this area until [1], of which this pa-
per is a continuation.

Importantly, to allow the set of types to become infinite
gives rise to a second kind of extinction event, which we
refer to as partial extinction. This corresponds to the event
that every type becomes extinct. We denote by q̃ the partial
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Figure 1: Simulation of the evolution of the popula-
tion size of different types and the total population
size of a branching process with q < q̃ = 1. Sourced
from [1].

extinction probability vector, with entries,

q̃i = P(∀l ∈ S, lim
n→∞

Zn,l = 0
∣∣ϕ0 = i).

Although it is clear that global extinction implies partial
extinction and thus q ≤ q̃, it is indeed possible for every type
to become to eventually disappear while the total number of
individuals approaches infinity so we may have q < q̃ (see
Figure 1).

To calculate q̃ and q the authors of [1] considered two
sequences of branching processes which were constructed
by modifying the offspring distributions of {Zn}. The first

sequence of branching processes, {Z̃(k)
n }, was modified by

making all types strictly greater than k produce no offspring.
We refer to these individuals as sterile. The second sequence

of branching processes, {Z(k)
n }, was modified by instanta-

neously replacing each individual with type greater than k
by a type-∆ individual, which at death has a single type-∆
offspring with probability 1. These type-∆ individuals can
be thought of as immortal. The extinction probability vec-
tors of these sequences of branching processes are denoted
by q̃(k) and q(k), respectively. Through application of the
monotone convergence theorem it was shown that

q̃(k) ↘ q̃ and q(k) ↗ q,

pointwise as k → ∞. It was observed that the vectors q̃(k)

and q(k) can be calculated using established methods for
Galton-Watson processes with finitely many types and con-
sequently, by taking k → ∞ one can then compute q̃ and
q.

The objective of the present paper is to investigate the
intermediate case where, rather than replacing by a sterile
or immortal type, we replace all types larger than k with
a type randomly selected from the set {1, . . . , k} according

to some probability distribution α(k); this defines a new se-
quence {q̄(k)}k≥1 of extinction probability vectors that can
again be computed using established methods for branching
processes with finitely many types. In particular, through
Theorem 1 we provide sufficient conditions on the branching
process {Zn} and on the sequence of replacement distribu-

tions {α(k)} for

q̄(k) → q (3)

pointwise as k → ∞. Observe that when this convergence
occurs it is not necessarily monotone. To establish (3) we
therefore employ a different method of proof to that of [1].
The statement of Theorem 1 and an outline of the main
steps of the proof is given in Section 2. In Section 3 a
numerical example is provided. In particular, we give an
example where q̄(k) 9 q when {α(k)} does not satisfy the
sufficient condition of Theorem 1. The example is also used
to compare the rate at which q(k) and q̄(k) converge to q.
For a more detailed account of the material covered in the
remainder of this paper we refer the reader to [2].

2. RANDOM REPLACEMENT
In Theorem 1 we impose two primary conditions:

Assumption 1. There exists β > 0 such that

inf
i
qi ≥ β.

Assumption 2. There exist constants N1, N2 ≥ 1 and
a > 0, all independent of k, such that

min{N1,k}∑

i=1

α
(k)
i ≥ a for all k ≥ N2.

Assumption 1 is a commonly applied sufficient condition for
|Zn| :=

∑∞
i=1 Zn,i to satisfy the dichotomy property. That

is, with probability 1, either |Zn| → 0 or |Zn| → ∞ as
n→∞. When Assumption 1 is not satisfied (but Assump-
tion 2 is satisfied) one can construct examples in which

q < limn→∞ q̄
(k) < q̃, however we do not go into detail

here. Assumption 2 can be viewed as a more general ver-
sion of tightness on the sequence of probability distributions
{α(k)}. It ensures that for k ≥ N2 with at least probability
a an individual is replaced by a type in the set {1, . . . , N1}.
Note that Assumption 2 is satisfied if we replace by type 1,
α(k) = e1, for example. We consider replacement distribu-
tions that do not satisfy Assumption 2 in Section 3.

Theorem 1. Suppose Assumptions 1 and 2 hold. In ad-
dition, assume that there exists N1 such that either

(i) q̃j < 1 for all j ∈ {1, . . . , N1}, or
(ii) q̃j = 1 for all j ∈ {1, . . . , N1}, and there is a path from

any j ∈ {1, . . . , N1} to the initial type i.

Then

lim
k→∞

q̄
(k)
i → qi,

for any initial type i.

Observe that either (i) or (ii) is satisfied if M is irreducible.
However, the more general conditions also apply to many
reducible cases.

We now give a sketch of the main steps in the proof of
Theorem 1.

Step 1. For each k ≥ 1, we place {Z̃(k)
n }, {Z(k)

n } and

{Z̄(k)
n } on a common probability space by constructing each

process from the same outcome of {Zn}. More specifically,

we construct {Z̃(k)
n } from {Zn} by removing all descendants
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Figure 2: A realisation of {Zn} and the correspond-

ing outcomes of {Z̃(k)
n }, {Z(k)

n } and {Z̄(k)
n } when k = 2.

from individuals with type greater than k (which therefore

become sterile). The process {Z(k)
n } is then constructed

from {Z̃(k)
n } by replacing each sterile individual by an infi-

nite line of descent of type-∆ individuals. Similarly, {Z̄(k)
n }

is constructed from {Z̃(k)
n } by replacing each sterile individ-

ual by an independent copy of {Z̄(k)
n } whose root is ran-

domly selected using the probability distribution α(k). A
visualisation of each branching process for an outcome on
this probability space is given in Figure 2.

Step 2. We define {Sk : k ∈ N} to count the number

of sterile individuals produced over the lifetime of {Z̃(k)
n }

(these are illustrated in black in the top right of Figure 2)
for different truncation points k. To ensure Sk < ∞ with

probability 1, we let Sk = 0 if {Z̃(k)
n } does not become

extinct. That is, we let

Sk =

{∑∞
n=1

∑∞
i=k+1(Z̃n)i, if {Z̃(k)

n } becomes extinct

0, otherwise.

Each member of Sk can be thought of as giving {Z̄(k)
n } an

i.i.d chance to survive. We therefore have,

q̄
(k)
i − q(k)i = Ei



(

k∑

`=1

α
(k)
` q̄

(k)
`

)Sk

− 1{Sk = 0}


 , (4)

where Ei(·) ≡ E(·|ϕ0 = i). Under Assumption 1 we then
show that Sk also satisfies the dichotomy property. That is,

Pi(Sk → 0 or ∞) = 1. (5)

Step 3. We prove that under Assumption 2 and the ad-
ditional conditions of Theorem 1 that,

Pi(Sk →∞) > 0

implies that there exists ε > 0 and N ∈ N such that

k∑

`=1

α
(k)
` q̄

(k)
` < 1− ε (6)

for all k > N .

Step 4. From Equation (4) for any K ∈ N,

q̄
(k)
i − q(k)i ≤

Ei



(

k∑

`=1

α
(k)
` q̄

(k)
`

)Sk
∣∣∣∣∣∣
0 < Sk < K


Pi(0 < Sk < K)

(7)

+

(
k∑

`=1

α
(k)
` q̄

(k)
`

)K

Pi(Sk ≥ K). (8)

Using Equations (5) and (6), we then show that for any
ε2 < 0 there exists K and N(K) such that for all k > N(K)

we have q̄
(k)
i − q(k)i < ε2. This concludes the proof.

3. NUMERICAL EXAMPLE
Theorem 1 proves that q̄(k) → q for a large class of re-

placement distributions {α(k)}. For instance it implies con-

vergence when replacement is made by type 1, α(k) = e1.
In the following example we also consider replacement dis-
tributions that do not satisfy Assumption 2. These are re-
placement by type k, α(k) = ek, and replacement by a type
uniformly distributed on {1, . . . , k}, α(k) = 1/k.

We consider a modified version of the example of [1, Sec-
tion 5.1]. That is, we assume a, c > 0, d > 1 and define

G1(s) =
cd

t
st2 + 1− cd

t
,

and for i ≥ 2,

Gi(s) =





cd

u
sui+1 +

ad

u
sui−1 + 1− d(a+ c)

u
when i is odd,

c

dv
svi+1 +

a

dv
svi−1 + 1− (a+ c)

dv
when i is even,

where t = ddce+1, u = dd(c+a)e+1 and v = d(c+a)/de+1.
When i ≥ 2 the mean progeny matrix M has entries,

Mi,i−1 = ad and Mi,i+1 = cd

for i odd and

Mi,i−1 = a/d and Mi,i+1 = c/d

for i even. In this sense one can think of the odd types as
stronger than the even types.

In Figure 3 we plot q̃
(k)
1 (black dashed), q

(k)
1 (grey dashed)

and q̄
(k)
1 for α(k) = e1 (solid grey bold), α(k) = 1/k (solid

black bold) and α(k) = ek (solid fine). In the top two plots
we let a = 1/6 and c = 7/8, and choose d−1 = 0.95 (panel
(a)) and d−1 = 0.93 (panel (b)). We observe that for these
values q1 < q̃1 = 1. In panel (a) we see that for each

sequence {α(k)}, q̄(k)1 → q1, with α(k) = 1/k having the
fastest rate of convergence. Similar behaviour is displayed
in panel (b) except that in this case, when α(k) = ek, we

have q̄
(2k+1)
1 → q1 < 1 and q̄

(2k)
1 → q̃1 = 1. In panel (c) we

let a = 1/3 and c = 13/16, in which case q1 = q̃1 < 1 and in
panel (d) we let a = 1/6, c = 13/16 and d = 2 in which case

q1 = q̃1 = 1. In both panels (c) and (d) q̄
(k)
1 with α(k) = e1

and α(k) = 1/k perform similarly and again converge to q1

at a faster rate than q
(k)
1 .

This example demonstrates that when α(k) = ek, the
limit of the sequence q̄(k) does not necessarily exist. How-
ever, one can prove that, in this particular example, for any
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(a)

(b)

(c)

(d)

Figure 3: Sequences of extinction probabilities q̃
(k)
1 ,

q
(k)
1 and q̄

(k)
1 for different replacement distributions

and different parameters values, corresponding to
the example given in Section 3. Details are given
the text.

values a, c > 0 and d > 1,

lim inf
k→∞

q̄(k) = q.

Under Assumption 1 we believe this to be true in general
but we are yet to formally prove this claim. Similarly, when
α(k) = 1/k one may question whether limk→∞ q̄

(k) = q,
however in this case we can construct an example satisfying
Assumption 1 in which q < limk→∞ q̄

(k) = q̃.
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ABSTRACT
Service rate control is a classical optimization problem of
queueing theory. There are considerable research efforts on
this topic, from the simple M/M/1 queue, to tandem queue,
cyclic queue, and closed Jackson networks. The objective of
the service rate control is to identify the optimal values of
service rates of every server at every state such that the sys-
tem average performance (cost) is maximized (minimized).

In this paper, we study the service rate control problem
in a MAP/M/1 queue. The arrival process is a Markovian
arrival process (MAP). The service rate is allowed to be
state-dependent, i.e. we can adjust the service rate accord-
ing to the queue length and the phase of the MAP. The
cost function consists of holding cost and operating cost.
We use the matrix-analytic methods (MAM) together with
the sensitivity-based optimization (SBO) theory to study
this problem. A performance difference formula is derived,
which can quantify the difference of the long-run average
total cost under any two different settings of service rates.
Based on the difference formula, we show that the long-run
average total cost is monotone in the service rate and the
optimal control is a bang-bang control. We also show that,

∗This work was supported in part by the National Nat-
ural Science Foundation of China (61573206, 61203039,
U1301254), the National 111 International Collaboration
Project (B06002), the Specialized Research Fund for the
Doctoral Program of Higher Education (20120002120009).
†A full version of this paper is under review of the IEEE
Transactions on Automatic Control as a regular paper.

under some mild conditions, the optimal control policy of
service rates is of a quasi threshold-type. By utilizing the
MAM theory, we propose a recursive algorithm to compute
the value function related quantities. An iterative algorithm
to efficiently find the optimal policy, which is similar to pol-
icy iteration, is proposed based on the SBO theory. Nu-
merical examples demonstrate the main results and explore
the impact of the MAP phase on the optimization in the
MAP/M/1 queue.

This paper shows the potentials of combining MAM and
SBO theories to study the performance optimization of queue-
ing systems. For future work, we may further consider the
server assignment problem, optimization with constraints
such as finite buffer or resource constraint, and load-dependent
service rate control, etc.

Keywords
Queueing system, Markov decision process, matrix-analytic
methods, sensitivity-based optimization, service rate control
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Introduction
This short note provides an overview of the motivation and
results of the ongoing research devoted to the development of
analytic methods for the steady-state analysis of one class of
queueing systems: queueing systems with hysteretic control
of arrivals. In fact queueing systems with different types of
hysteretic control have been a subject of extensive research
for many years and a plenty of models and results are avail-
able in the literature. But, to our knowledge, among them
the least concern queueing systems with hysteretic control of
arrivals. As it will be mentioned further such systems can be
used for performance evaluation of network signalling nodes
(like SIP-servers). Here consideration is given to one of
representatives of this class – finite-capacity MAP/PH/1/r
queueing system with bi-level hysteretic control of arrivals.
The system consists of a single server and a queue of finite
capacity r. The arrival process is a MAP with representation
(D0,D1) of order N . We assume that an arrival, whenever
it occurs, can be of one of the two types: either a priority
arrival or a non-priority. Thus the matrix D1 is assumed
to have the form D1 = D1,1 + D1,2, where D1,1 (D1,2)
describes state transitions with an arrival of priority (non-
priority) customer. Bi-level hysteretic control of arrivals is
assumed to be implemented in the system. It operates as
follows (see Fig.1). There are three operation modes for the
system: “normal”, “overload”, “blocking”. Let L and H be
arbitrary whole numbers such that 0 < L < H < r + 1.
The system starts empty and as long as the total number of
customers in the system remains below H, the system is con-
sidered to be in“normal“ mode and accepts all arrivals (both
priority and non-priority). When the total number of cus-
tomers reaches H for the first time, the system changes its
mode to“overload“ and stays in it as long as the total number
of customers remains between L and r. When overloaded,
the system accepts only priority customers (non-priority cus-

Figure 1: Sketch of the bi-level hysteretic control of
arrivals in the MAP/PH/1/r system.

tomers are lost) till the total number of customers either
drops down below L after which it changes its mode back
to “normal“, or exceeds r after which it changes its state
to “blocking“. In the “blocking“ mode the system does not
accept newly arriving customers until the total number of
customers drops down below (H+1), after which the system
changes mode back to “overload“ and the process goes on.
The service time of both priority and non-priority customers

is PH distributed with representation (~f,G) of order M and

~g = −G~1. We are interested in the development of the an-
alytic method, which allows the efficient calculation of the
steady-state characteristics of the system such as blocking
probability, moments of the sojourn times in different modes
etc.

The impulse for this research was initially given by two
observations. The first one is the application of such models
for the performance evaluation of network signalling nodes,
which suffer from overloads. In a number of recent papers
it is being reported that overload protection of the essential
components of telecommunication networks (like SIP-servers
handling signalling messages) is crucial in next and future
generation networks. For the detailed description of the SIP-
server overload problem and methods of its solution one can
refer to IETF RFC’s and several research papers, for exam-
ple, [1–9]. One of the approaches towards the solution of the
overload problem in SIP-servers is the use of the thresholds
and specifically hysteretic control of arrivals. Our contri-
bution into this field is that we consider an analytic model
of SIP-server based on the same (technical) assumption as
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in a series of papers (see, for example, [13, 14]), but under
more general assumptions about the incoming flow and ser-
vice times, which are justified by the results of our recent
experimental research (see [15]).

The second observation concerns the analytical methods
used for the analysis of the queueing models of SIP-servers
with hysteretic control of arrivals. For many of the consid-
ered queuing models one can use well-known general tech-
niques (like matrix-analytical methods for QBD, see [16]
and [17] specifically related to the problem under considera-
tion). Despite the presence of hysteretic loops the methods
are applicable and from the theoretical point of view the
problem can be considered (to a large extent) solved. But
having looked a little deeper into the hysteretic mechanism
and models considered by other authors, A. Pechinkin1 sug-
gested a new general method which allows the steady-state
analysis of the whole class of systems with such hysteretic
control in a unified way. It is easy implementable and allows
the computation of the steady state distribution (and related
quantities) for relatively high values of thresholds and not
only in purely markovian systems. Below we present the
idea of method by applying it to the MAP/PH/1/r system
introduced above. Of course, due to MAP arrivals and PH
service times the method utilizes matrix analytic techniques
and thus possesses the disadvantages inherent to matrix al-
gebra.

Idea of the method
The idea of the method is based on the general property of
the restricted Markov chains which says that if the Markov
chain, say X(t), with state space, say X , is positive recur-
rent, then the stationary distribution of the same Markov
chain but restricted to subset F ⊆ X differs from the sta-
tionary distribution of the original chain by a constant.

The operation of theMAP/PH/1/r queueing system with
bi-level hysteretic control of arrivals can be completely de-
scribed by continuous-time Markov chain

X (t) = (a(t); s(t);m(t);n(t))

with four components: a(t) — MAP generation phase at
time t, s(t) — PH service phase at time t, m(t) — system’s
mode at time t, n(t) — total number of customers in the sys-
tem at time t. Clearly, when n(t) = 0 the second component
s(t) is omitted. The state space of X (t) can be represented
as X = X0∪X1∪X2, where X0 is the set of states of ”normal”
mode, X1 is the set of states of ”overload” mode, and X2 is
the set of states of ”blocking” mode i.e.

X0 = {(k, 0, 0) : 1 ≤ k ≤ N} ∪
{(k, 0, n) : 1 ≤ k ≤ NM, 1 ≤ n ≤ H − 1} ,

X1 = {(k, 1, n) : 1 ≤ k ≤ NM,L ≤ n ≤ r} ,
X2 = {(k, 2, n) : 1 ≤ k ≤ NM,H+1 ≤ n ≤ r+1} .

Here k represents the state of the background (arrival and
service) processes. Indeed the state (k,m, n), n > 0 means
that there are n customers in the system, system’s mode is
m, and arrival and service phases are i and j, but such that
(i − 1)M + j = k; the state (k, 0, 0) means that the sys-
tem is empty and the arrival phase is k. Let pk,m,n be the
1Alexander Vladimirovich Pechinkin (1948-2014), professor,
doctor of Sciences in Physics and Mathematics, principal sci-
entist at the Institute of Informatics Problems of the Russian
Academy of Sciences.

stationary probability of the state (k,m, n). Introduce the
row vectors ~p0,0 = (p1,0,0, . . . , pN,0,0) and ~pm,n = (p1,m,n,
. . . , pNM,m,n). The idea of the method is to use the property
of the restricted Markov chains for the sequential computa-
tion of probabilities ~pm,n which is based only on the previ-
ously computed values of ~pk,l, 0 < k < m, 0 < l < n. This
can be done as follows. Consider another MAP/PH/1/0
queueing system with bi-level hysteretic control of arrivals
working in parallel and fed with completely the same MAP
flow and PH service times but with no queue. This means
that the state set of this new system is

F = {(k, 0, 0) : 1 ≤ k ≤ N} ∪
{(k, 0, 1) : 1 ≤ k ≤ NM} , F ⊂ X .

Assume also that in the new system the following rule ap-
plies: whenever a new customers arrives and sees server
busy, it pre-empts the customer which is in service and oc-
cupies the server. Its service phase remains the same as
of the pre-empted customer but the pre-empted customer
leaves the system. Denote by qk,0,n the stationary distri-
bution of the state (k, 0, n), n = 0, 1, of the new system
and introduce vectors ~q0,0 = (q1,0,0, . . . , qN,0,0) and ~q0,1 =
(q1,0,1, . . . , qNM,0,1). Note now that in order to apply the
property of the restricted Markov chains which guarantees
that the stationary distributions ~q0,n and ~pm,n differ only
by a constant one must make sure that the behaviour of the
chains is probabilistically the same. This means that when-
ever there is an arrival at the new system when it is busy,
the arrival and service phases must take the same values as
the arrival and service phases of the original system some-
time in the future, when the number of customers in it drops
down back to 1. Indeed, assume that at instant when both
systems are in the state (i1, 0, 1) an arrival occurs. Denote

by A1 the matrix of size NM ×NM . The (i, j)th entry of
A1 is the probability that at the moment of time when the
total number of customers in the system equals 1 for the
first time, the state of the background processes is j, given
that at initial moment of time it was i and there were 2 cus-
tomers in the system. In other words the entries of A1 are
the taboo probabilities, i.e.

[A1](i,j) = P{X (τ) = (j, 0, 1);

X (t) /∈ ∪k (k, 0, 1) , t ∈ (0, τ)|X (0) = (i, 0, 2)},
where τ = inf{t > 0 : n(t) = 1}. Then in the original sys-
tem we have a transition to some state (i2, 0, 2), but in the
new system the transition happens to the state, (i2, 0, 1). It
is clear that the number of customers in the original system
will evolve somehow and eventually the original system will
come back to some state (i3, 0, 1) (without being empty in
the meanwhile). Thus the two chains will behave probabilis-
tically the same if and only if the state (i3, 0, 1) of the origi-
nal system turns out to be the same as the state (i2, 0, 1) of
the new system. This event has a probability, which in the
described case is exactly equal to [A1](i2,i2). Now we can
write the balance equations for ~q0,1 from rate-in-rate-out
principle. Denoting by E the identity matrix, and noting
that ~q0,n and ~pm,n differ only by a constant, we have:

0 = ~p0,0(D1 ⊗ ~f) +

+ ~p0,1(D0 ⊗E + E⊗G) + ~p0,1(D1 ⊗E)A1.

The next step is to sequentially increase the queue capacity
of the new system each time by 1. Thus one considers step-

76



by-step MAP/PH/1/j queueing systems but with queue of
size j = 1, 2, . . . , L− 3. The set of states of such j-system is

F = {(k, 0, 0) : 1 ≤ k ≤ N} ∪
{(k, 0, n) : 1 ≤ k ≤ NM, 1 ≤ n ≤ j + 1} , F ⊂ X .

Clearly the probability, which was denoted above by A1, will
be different now for each system MAP/PH/1/j. Denote it
by Aj+1. Then applying the same argumentation as above
we find that

0 = ~p0,j(D1 ⊗ ~f) +

+ ~p0,j+1(D0 ⊗E + E⊗G) + ~p0,j+1(D1 ⊗E)Aj+1,

for each 1 ≤ j ≤ L − 3. Starting from j = L − 2 the ar-
gumentation becomes a little more complicated due to the
fact that hysteretic loops allows additional transitions (see
Fig.1). But the argumentation remains the same. Matrices
Aj (as well as other matrices which are needed to compute
all the stationary probabilities) can be calculated in a recur-
sive manner (requiring multiple matrix inversions) using the
first step analysis.

We note that the proposed method is also suitable for the
calculation of such performance characteristics like moments
of system’s sojourn time in different modes.

Coming back to the application side of the problem, one
should mention that hysteretic control has already been in-
troduced and successfully used in the Signalling System No.7
protocols. Its main objective was to reduce the number
of times the control system switches between the operat-
ing modes (see [11, 12]). The problem was solved by the
choice of thresholds (similar to L and H) in order to mini-
mize the mean time it takes system to switch from the ”over-
load” mode to the ”normal” mode. Of independent interest
is the problem of the analysis of a queueing network with
hysteretic arrival control implemented in the nodes.
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ABSTRACT
Recently, [1] proposed a computationally efficient and sta-
ble numerical algorithm to calculate the steady-state ac-
tual waiting time distribution for an infinite-capacity single-
server semi-Markov queue with the auto-correlation in inter-
arrival and service times modeled by a Markov Renewal
Process with a Matrix Exponential kernel, called the MRP-
ME process. In this paper, we study the distribution of the
waiting time arising in a BMAP/BMAP/1 queue by writing
a BMAP as an MRP-ME process, and subsequently using
the same numerical algorithm of [1]. Moreover, we general-
ize a BMAP by GBMAP (Generalized BMAP) by allowing
batch sizes to be of more general discrete PH-type as op-
posed to finite batch sizes. A GBMAP is also shown to be
a MRP-ME process through which the waiting times for a
GBMAP/GBMAP/1 queue may also be obtained using the
same numerical algorithm.

Keywords
BMAP, waiting times, ordered Schur decomposition

1. INTRODUCTION
The Batch Markovian Arrival Process (BMAP) is rep-

resented with parameter matrices Dk, 0 ≤ k ≤ K of size
m × m where the matrix D0 has negative diagonal ele-
ments and nonnegative off-diagonal elements, and the ma-
trices Dk, k 6= 0 have non-negative elements; see [2],[7],[8].
A MAP (Markovian Arrival Process) is a special case of
BMAP with Dk = 0, k > 1 corresponding to the case of a
single arrival at a given epoch. BMAPs are known for their
versatility and have been used effectively in modeling arrival
processes; see the references [2]. If the same structure is
used for modeling a service process, we then call it a BMAP
(Batch Markovian Service Process). A BMAP can be gener-
alized to a GBMAP (generalized BMAP) if the batch sizes
are not finite but instead governed by a discrete PH-type
distribution. A GBMAP can be defined accordingly.

In this paper, we provide an all matrix-analytical numer-
ical algorithm to find the distribution of the waiting time
in a GBMAP/GBMAP/1 queue. The idea is to represent a
GBMAP as a Markov renewal process with matrix exponen-
tial kernels and then use the numerical algorithm proposed
in [1] based on these representations to obtain the waiting
time distribution. Actually, the waiting time can be written
in matrix exponential form through which the moments of
the waiting time can be obtained in a straightforward man-
ner. The conventional approach for this line of problems
is the matrix-analytical approach pioneered by Neuts which
does not rely on calculating polynomial roots or eigenvec-
tors. In this approach, the queue occupancy is observed at
certain embedded epochs and a structured Markov chain (of
M/G/1 or G/M/1 type) is constructed for the queue length
[7],[8]. The most computation intensive part of the matrix
analytical approach is the solution to a nonlinear matrix
equation. Once a solution is obtained for this equation, one
can find the queue length distribution recursively [9]. Given
the steady-state queue length probabilities, the waiting time
distribution and its moments can be obtained although not
in a very compact form [6]. The current paper aims at prov-
ing an alternative, still matrix-analytical, algorithm to write
the waiting time distribution in a BMAP/BMAP/1 queue
in a compact matrix-exponential form.

2. MARKOV RENEWAL PROCESSES
OF ME-TYPE

We first define a Markov renewal process based on [5]. We
define, for each k ∈ N, a random variable Xk taking values
in a finite set E = {1, 2, . . . , n} and a random variable Tk

taking values in R+ = [0,∞) such that 0 = T0 ≤ T1 ≤ T2 ≤
· · · . The stochastic process (X,T ) = {Xk, Tk; k ∈ N} is
called a Markov renewal process (MRP) with state space E
provided that

P{Xk+1 = j, Tk+1 − Tk ≤ t |X0, . . . , Xk;T0, . . . , Tk}

= P{Xk+1 = j, Tk+1 − Tk ≤ t |Xk},
for all k ∈ N, 1 ≤ j ≤ n, and t ∈ R+. The time-homogeneous
case is te focus of this paper for which the probability

Fij(t) = P{Xk+1 = j,∆k ≤ t |Xk = i}

is independent of the customer number k. The matrix F (t) =
{Fij(t)} is called the semi-Markov kernel of the MRP. Defin-
ing Fij = limt→∞ Fij(t), Fij = P{Xn+1 = j |Xn = i) is the
state transition probability from state i to j and we assume
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F = {Fij} is irreducible. Let π be the stationary solution of
this discrete-time Markov chain (DTMC) such that

πF = π, πe = 1. (1)

We also note that the quantity

Fij(t)/Fij = P{Tk+1 − Tk ≤ t |Xk+1 = j,Xk = i} (2)

is the sojourn time distribution in state i when the next state
is j. An MRP is of ME-type, or shortly MRP-ME, if F (t)
can be written in the following matrix-exponential form:

F (t) = V et TU + F, t ≥ 0, (3)

and equals zero elsewhere. Here, T is square and of size m
and all its eigenvalues have negative real parts. Moreover,
V and U are n × m and m × n, respectively. The kernel
density G(t), t ≥ 0 is defined as follows:

G(t) =
d

dt
F (t) = V et TTU + (F + V U)δ(t), (4)

= V et TH +Dδ(t), t ≥ 0 (5)

where δ(t) is the Dirac delta function and H = TU and
D = F + V U . We also define the Laplace transform G∗(s)
of the kernel density matrix:

G∗(s) =

∫ ∞

0−
e−tsG(t)dt = V (sI − T )−1H +D. (6)

An MRP-ME is then characterized by the quadruple (V, T,H,D).
In general, one uses the sojourn times of the MRP, i.e.,
Tk+1 − Tk, k ∈ N, to model inter-arrival or service times in
queueing systems. We note that the moments of the sojourn
times satisfy

E[(Tk+1 − Tk)i] = (−1)i+1 i! πV T−(i+1)He, i > 0. (7)

It is clear that a phase-type renewal process is MRP-ME
with one state, i.e., n = 1, but with multiple modes, i.e.,
m ≥ 1. On the other hand, the Markovian Arrival Process
(MAP) is characterized with two square matrices D0 and D1

with D0 having negative diagonal elements and non-negative
off-diagonal elements, D1 being non-negative, and D = D0+
D1 being an irreducible infinitesimal generator [8]. This
MAP is actually an MRP-ME process with a kernel

F (t) = (eD0t − I)D−1
0 D1

and is therefore characterized by the quadruple (I,D0, D1, 0)
[6]. If the above model is used to describe a service pro-
cess, then we refer to that as a Markovian Service Process
(MSP). The Rational Arrival Process (RAP) of [3] may also
be viewed as an MRP-ME characterized by the quadruple
(I,D0, D1, 0) similar to a MAP but the matrices D0 and D1

do not necessarily possess the probabilistic interpretation
available for MAPs.

3. MRP-ME/MRP-ME/1 QUEUE
The following Lindley equation in continuous-time is rel-

evant to the current paper:

Wk+1 = (Wk +Bk −Ak)+ = max(0,Wk +Bk −Ak), k ≥ 0,
(8)

where Ak and Bk are MRP-MEs and a numerical method to
algorithmically obtain the distribution of W = limk→∞Wk

when it exists is proposed in [1]. Relating (8) to a queuing
system, Bk and Ak denote the service time of customer k

and the inter-arrival times between customers k and k +
1, respectively, and Wk denotes the kth customer’s waiting
time in the queue. The sojourn times of MRP-MEs are used
to model the processes Ak and Bk. The MRP-ME for the
arrival process is characterized with the quadruple

(VA, TA, HA, DA),

where TA is square of size mA and DA is square of size nA.
Similarly, the MRP-ME for the service process is character-
ized with the quadruple

(VB , TB , HB , DB),

with TB being square of size mB and DB being square of size
nB . Let the steady-state waiting time density be denoted
by fW (t). The reference [1] shows that W has a matrix-
exponential density in the form

fW (t) = vet Th+ dδ(t), (9)

with T being square of size nAmB and all the factors of this
expression can be obtained with a matrix-analytical algo-
rithm. The most computation intensive part of the proposed
numerical algorithm in [1] is the ordered Schur decomposi-
tion of a coupling matrix of size nAmB + mAnB . We note
that obtaining the ordered Schur form is known to be back-
ward stable and has a complexity of O(n3) [4].

4. (G)BMAP AS AN MRP-ME
A BMAP with characterizing matrices Dk, 0 ≤ k ≤ K

of size m each can be shown to an MRP-ME characterized
with the quadruple

(V, T,H,D)

where

V =

[
Im×m

0m(K−1)×m(K−1)

]
, H =

[
D1 D2 · · · DK

]
,

and

T = D0, D =

[
0m×m(K−1) 0m×m

Im(K−1)×m(K−1) 0m(K−1)×m

]
.

In a BMAP, an event corresponding to the parameter matrix
Dk is bound to a batch arrival with size k. In a GBMAP, we
allow an event corresponding to Dk, k ≥ 1 is a batch arrival
corresponding to class-k traffic and we further assume that
the batch size governed by class-k arrivals is discrete PH-
type distributed with matrix pair (αk, S) where the sub-
stochastic matrix S of size n×n is shared by all classes. We
show that this GBMAP has the quadruple representation
(V, T,H,D) where

V =

[
Im×m

0mn×m

]
, H =

[∑K
k=1Dkγk

∑K
k=1 βk ⊗Dk,

]

T = D0, D =

[
0m×m 0mn×m

s⊗ Im S ⊗ Im

]
,

and

s = (I − S)1n×1, γk = αks, βk = αkS.

It is clear that, BMAP is a special case of GBMAP. More-
over, once the MRP-ME characterization is available for a
GBMAP, then the steady-state waiting time distribution of
a GBMAP/GBMAP/1 queue can be obtained in matrix ex-
ponential form by employing the algorithm provided in [1].
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[5] E. Çınlar. Introduction to Stochastic Processes. Prentice
Hall, 1975.

[6] A. Heindl. Traffic-Based Decomposition of General
Queueing Networks with Correlated Input Processes.
Shaker Verlag, Aachen, Germany, 2001. Ph. D. Thesis.

[7] D. M. Lucantoni. The BMAP/G/1 queue: A tutorial.
In L. Donatiello and R. Nelson, editors, Models and
Techniques for Performance Evaluation of Computer
and Communication Systems, pages 330–358.
Springer-Verlag, 1993.

[8] M. F. Neuts. Structured Stochastic Matrices of M/G/1
Type and TheirApplications. Marcel Dekker, Inc., New
York, 1989.

[9] V. Ramaswami. A stable recursion for the steady state
vector in Markov chains of M/G/1 type. Commun.
Statist.- Stochastic Models, 4:183–263, 1988.

81



82



An MAP/PH/K Queue with Constant Impatient Time 

Qi-Ming He 
University of Waterloo 

200 University Avenue West 
Waterloo, Ontario, Canada 
1-519-888-4567 x. 35907 

q7he@uwaterloo.ca 

ABSTRACT
In this paper, we describe the formatting guidelines for ACM SIG 
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ABSTRACT
We consider a model consisting of two fluid queues driven by
the same background continuous-time Markov chain, such
that the rates of change of the fluid in the second queue de-
pend on whether the first queue is empty or not. We analyse
this tandem model using operator-analytic methods.
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1. INTRODUCTION
Stationary distributions of Markov-modulated fluid queues

have been studied extensively, first using spectral meth-
ods [3], later via more efficient matrix-analytic methods [8,
9, 10, 11, 13, 17]. The analysis of networks of fluid queues is
much harder, and only for a few special two-node cases the
stationary joint distribution of both queue contents and the
regulating Markov chain could be obtained.

However, a promising approach to find further results is
the use of operator-analytic methods, studied in Bean and
O’Reilly [4, 5], where a tandem model is considered, and also
in Margolius and O’Reilly [16], where a time-varying queue
is analysed. The operator-analytic methods generalise the
matrix-analytic methods for single queues. In this work we
show that this can indeed lead to good results.

The main difference with the tandem model in [4] is that
here we consider fluid queues that have a lower bound, i.e.,
they can become empty but the content cannot become neg-
ative. The tandem model in [5] also considers queues with a
lower bound, but the assumptions are slightly different and
the results derived there are largely theoretical. Here, we
derive numerical methods for a generalization of the tan-
dem model in [14], for which the analytical results could be
obtained by considering an embedded M/G/1 queue.

2. TANDEM FLUID QUEUE: MODEL AND
PRELIMINARIES

In this section we first describe the model of interest and
then give the stability condition. We end with some prelim-
inary statements about the sample paths that can be taken

∗This research is supported by Australian Research Council
Linkage Project LP140100152.

by the model, and the implications for the shape (in partic-
ular the support) of the stationary distribution.

2.1 Model description
We consider two fluid queues, collecting fluid in buffers X

and Y , with level variables recording the content at time t
denoted byX(t) and Y (t), respectively, that are being driven
by the same background continuous-time Markov chain {ϕ(t) :
t ≥ 0} with some finite state space S and irreducible gener-
ator T. The first queue behaves as a standard fluid queue
{(ϕ(t), X(t)) : t ≥ 0} studied in [10], with a lower bound-
ary at level 0, and real-valued fluid rates ri collected in a
diagonal matrix R = diag(ri)i∈S . Thus, the content X(t)
increases at rate ri when ϕ(t) = i, unless ri is negative and
X(t)=0. More precisely,

d

dt
X(t) = rϕ(t) when X(t) > 0,

d

dt
X(t) = max(0, rϕ(t)) when X(t) = 0.

We partition the state space S as S = S+ ∪ S− ∪ S#,
where ri > 0 when i ∈ S+ (states in S+ will be called
upstates), ri < 0 when i ∈ S− (states in S− will be called
downstates), and ri = 0 when i ∈ S# (states in S# will
be called zero-states). With the behaviour at X(t) = 0 in
mind it will sometimes be helpful to use additional notation
S	 = S− ∪S# for the set of “zero-states at X(t) = 0”. After
appropriately ordering the states in S we can write T as
3× 3 block matrix,

T =




T++ T+− T+#

T−+ T−− T−#
T#+ T#− T##


 . (1)

Further, we assume that the behaviour of the second fluid
queue depends on both ϕ(t) and X(t) in the following way.
Assuming fluid rates ĉi > 0 and

̂
ci < 0 for all i ∈ S, collected

in Ĉ = diag(ĉi)i∈S and

̂
C = diag(

̂
ci)i∈S , we have

d

dt
Y (t) = ĉϕ(t) > 0 when X(t) > 0,

d

dt
Y (t) =

̂
cϕ(t) < 0 when X(t) = 0, Y (t) > 0,

d

dt
Y (t) = ĉϕ(t) · 1{ϕ(t) ∈ S+} when X(t) = 0, Y (t) = 0.

Thus, the fluid level Y (t) increases when X(t) > 0, and
decreases when X(t) = 0, unless both levels are at 0; in the
latter case Y (t) (and X(t)) increases as soon as ϕ(t) makes
a transition from S	 to S+.
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Throughout we denote by 1, 0, I and O a column vector
of ones, a row vector of zeros, an identity matrix, and a
zero matrix of appropriate sizes, respectively. Also, for any
matrix A = [Aij ], we use notation |A| for a matrix collecting
absolute values of the elements of A, with |A| = [ |Aij | ].

2.2 Stability condition
The stability condition for the first queue, {(ϕ(t), X(t)) :

t ≥ 0}, is well-known to be

∑

i∈S
riP (ϕ = i) < 0, (2)

where the random variable ϕ is distributed according to the
stationary distribution of ϕ(t). Assuming this condition is
satisfied, the second queue (buffer Y ) will be stable when
the expected increase rate of Y (t) is less than the expected
decrease rate, i.e.,

∑

i∈S
ĉiP (ϕ = i,X > 0) <

∑

i∈S	

|
̂
ci|P (ϕ = i,X = 0), (3)

where the random vector (ϕ,X) is distributed according to
the stationary distribution of (ϕ(t), X(t)).

2.3 Qualitative behaviour
In this subsection we give a short discussion of how the

process {(ϕ(t), X(t), Y (t)) : t ≥ 0} behaves and what the
stationary distribution looks like. Here, and in the sequel,
we will sometimes write e.g. ‘the process hits x = 0’, which
will be short for ‘the process (ϕ(t), X(t), Y (t)) hits the set
S × {0} × [0,∞)’, or we will speak of ‘the probability mass
at x = 0, y > 0’ meaning ‘the stationary probability that
the process (ϕ(t), X(t), Y (t)) is in the set S ×{0}× (0,∞)’.

Typically the process alternates, between:

(i) periods on x = 0, with Y (t) decreasing, possibly being
halted at x = 0, y = 0, and ϕ(t) in S	; such a period
starts at x = 0, y > 0, with ϕ(t) in S− and ends at
x = 0, y > 0 or at x = 0, y = 0 as soon as ϕ(t) makes
a transition from S	 to S+;

(ii) periods on x > 0, with Y (t) increasing, while X(t)
can either increase and decrease. Such a period starts
where the previous type (i) period ended with ϕ(t) ∈
S+ and X(t) increasing, and ends at x = 0, y > 0 with
ϕ(t) in S− as soon as X(t) decreases to 0.

Note that in stationarity, the process can not be at y = 0,
x > 0, since Y (t) = 0 implies X(t) = 0 (or alternatively,
X(t) > 0 implies Y (t) > 0). In fact when a type (ii) period
starts from x = 0, y = 0, due to a transition of ϕ(t) to
some phase i ∈ S+, the process will move with d

dt
X(t) =

ri > 0 and d
dt
Y (t) = ĉi > 0, so it will stay on the line

{(x, y) : y = xĉi/ri} until some future transition of ϕ(t) to
some other state i′. Note that the slope of any such path
leaving the origin is at least mini∈S+{ĉi/ri}, and also after
the path has been left, the slope of the ensuing path can
never be less than this value (assuming i′ ∈ S+, otherwise
X(t) will not increase). Thus, after the process has hit the
origin for the first time (which it will, due to stability), the
set {(x, y) : y < x ·mini∈S+{ĉi/ri}} can never be reached.

As a consequence of the above, the stationary distribution
will have the following form.

• Corresponding to (i), there will be a (one-dimensional)
density at x = 0, y > 0, denoted by π(0, y), and a
probability point mass at (0, 0), denoted by p(0, 0).

• Corresponding to (ii), there will be a two-dimensional
density on {(x, y) : x > 0, y > x · mini∈S+{ĉi/ri}},
denoted as π(x, y), and there will be one-dimensional
densities on each of the lines y = xĉi/ri, i ∈ S+, de-
noted as πi(x, xĉi/ri). Also, define πj(x, xĉj/rj) =
[δijπ

j(x, xĉj/rj)]i∈S for all j ∈ S. There will be no
other probability masses or densities, in particular there
is no density at y = 0, x > 0.

It is important to realize that the one- and two-dimensional
densities just mentioned, as well as the point mass at (0,0),
are all vectors with |S| components, where the i-th compo-
nent corresponds to ϕ(t) = i. Some of these components will
be zero; in particular for i ∈ S+ we will have [p(0, 0)]i = 0
and [π(0, y)]i = 0. Also [πj(x, xĉj/rj)]i = 0 for all i 6= j.

In the next section we show how to proceed to find the
stationary distribution.

3. TANDEM FLUID QUEUE: ANALYSIS
Roughly speaking, our analysis is based on the alterna-

tion between (i) stages during which X(t) = 0 and hence
Y (t) decreases, and (ii) stages during which X(t) > 0 and
hence Y (t) increases, as detailed in Section 2.3. For (parts
of) both of these stages we will apply ideas from [4, 18], in
order to keep track of the amount by which Y (t) increases
(or decreases), in much the same way as we can keep track of
the amount of time that passes. We will review this in Sec-
tion 3.1. In Section 3.2 we will look at the state (ϕ(t), X(t))
when the process hits the line x = 0, so that with these
building blocks we can in Section 3.3 establish expressions
for the stationary distribution.

3.1 Replacing time by shift
We are interested in certain behaviour of buffer X, not

during some amount of time, but while buffer Y experiences
a certain (downward/upward, virtual) shift. For a moti-
vation of the expressions below we refer to [4], where the
concept of shift was introduced, as well as to [18], where a
generalization of this idea is discussed. We will consider two
cases.

(i) The behaviour at x = 0, when the level in buffer Y is

strictly decreasing, according to the rates in

̂
C;

(ii) The behaviour at x > 0, when the level in buffer Y is

strictly increasing, according to the rates in Ĉ.

First, consider the behaviour at x = 0, when the level in

buffer Y is strictly decreasing, according to the rates in

̂
C.

Below we define matrices

̂
Q		 and Q	+ which are the key

components of the analysis for this case.
Suppose X(0) = 0 and ϕ(u) ∈ S	 for 0 ≤ u ≤ t. Define

the random variable D(t),

D(t) =

∫ t

u=0

|
̂
cϕ(u)|du, (4)

interpreted as the total downward shift Y (0)−Y (t) in buffer
Y at time t when Y (t) > 0. Also, for any z > 0 define

tz = inf{t > 0 : D(t) = z}, (5)
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which we interpret, for any y ≥ 0, as the first time at which
the level in the buffer Y shifts from level Y (0) = y+ z to y.

Denote

T		 =

[
T−− T−#
T#− T##

]
(6)

and

T	+ =

[
T−+

T#+

]
, T±# =

[
T+#

T−#

]
, (7)

and let

̂
C	 = diag(

̂
ci)i∈S	 be a diagonal matrix partitioned

according to S	 = S− ∪ S#.
We define the generator matrix̂

Q		 = (|
̂
C	|)−1T		, (8)

which has the following physical interpretation. By the anal-
ysis in [10, Lemmas 1-2], for i, j ∈ S	, and z > 0, we have

[e

̂
Q		z]ij = P (ϕ(tz) = j, ϕ(u) ∈ S	, 0 ≤ u ≤ tz

| ϕ(0) = i,X(0) = 0), (9)

which, for any y > 0, we interpret as the probability that
the process is in phase j at time tz and the phase remains
in the set S	 at least until time tz, given the process starts
from phase i with empty buffer X and level y+z in buffer Y .

Also, define ̂
Q	+ = (|

̂
C	|)−1T	+, (10)

which by [10, Lemma 2], is a matrix of transition rates,
w.r.t. level, to phases in S+, corresponding to the moments
at which the level in buffer Y begins to increase.

Second, consider the behaviour at x > 0, when the level

in buffer Y is strictly increasing according to the rates in Ĉ.

The key components of the analysis are matrices Q̂(s) and

Ψ̂(s) to be defined below and interpreted afterwards.
Let

θ = inf{t > 0 : X(t) = 0}, (11)

be the first time at which the level in buffer X reaches 0.
Suppose X(0) > 0, or X(0) = 0 and ϕ(0) ∈ S+; and t ≤ θ.

Define the random variable U(t),

U(t) =

∫ t

u=0

ĉϕ(u)du, (12)

interpreted as the total upward shift Y (t)−Y (0) in buffer Y
at time t.

We define the key generator matrix Q̂(s),

Q̂(s) =

[
Q̂(s)++ Q̂(s)+−
Q̂(s)−+ Q̂(s)−−

]
, (13)

with

Q̂(s)++ = (R+)−1
(
T++ − sĈ+ −T+#(T## − sĈ#)−1T#+

)
,

Q̂(s)+− = (R+)−1
(
T+− −T+#(T## − sĈ#)−1T#−

)
,

Q̂(s)−+ = (|R−|)−1
(
T−+ −T−#(T## − sĈ#)−1T#+

)
,

Q̂(s)−− = (|R−|)−1
(
T−− − sĈ− −T−#(T## − sĈ#)−1T#−

)
,

Ĉ+ = diag(ĉi)i∈S+ , Ĉ− = diag(ĉi)i∈S− , Ĉ# = diag(ĉi)i∈S# .

The physical interpretation of Q̂(s) was established in [4,
Theorem 2]. For completeness, we state this result in Theo-
rem 1 below. Now, for any s > 0, we can find the minimum

nonnegative solution Ψ̂(s) of the Riccati equation

Q̂(s)+−+Q̂(s)++Ψ̂(s)+Ψ̂(s)Q̂(s)−−+Ψ̂(s)Q̂(s)−+Ψ̂(s) = O,
(14)

which has the following interpretation, by the analysis in [4,
Theorem 3]. For all i ∈ S+ and j ∈ S−,

[Ψ̂(s)]ij = E(e−sU(θ)1{ϕ(θ) = j} | ϕ(0) = i,X(0) = 0),
(15)

is the Laplace-Stieltjes transform of the distribution of the
upward shift in buffer Y at the moment the level in buffer X
first returns to 0 and does so in phase j, given start from
phase i and empty buffer X. We can write

Ψ̂(s) =

∫ ∞

z=0

e−szψ̂(z)dz, (16)

where the entry [ψ̂(z)]ij , for i ∈ S+ and j ∈ S−, is the
corresponding probability density, which can be derived by

numerically inverting [Ψ̂(s)]ij using the algorithm by Abate

and Whitt [1], for any z > 0. That is, the matrix ψ̂(z) is
an |S+| × |S−| matrix of densities, the (i, j)-th component
of which records the density of an upward shift of z in the
buffer Y , from some y to y + z, during a busy period of the
buffer X, ending in phase j ∈ S−, starting at phase i ∈ S+.

In the remainder of this section we will give a slightly en-
hanced proof of Theorem 2 in [4]. This theorem gives the
matrix recording the Laplace-Stieltjes transforms of the dis-
tribution of the shift in buffer Y , during the time that an
amount x has flown into or out of the buffer X, ending up
in phase j given that it starts in i. In [4] this matrix was

called1 ∆̃y(s), while in the current paper we will write it as

U(x)(s). But more importantly, we will modify its definition
somewhat, to reflect the fact that the value of the shift in
buffer Y does not only depend on the initial phase i, the
ending phase j, and the time duration, but on the whole
sample path of ϕ(t) in between. For the moment we will
assume that, in our current context, Y (t) can only increase,
so that the shift in buffer Y , expressed as Y (t) − Y (0), is
always nonnegative2.

Let, as in [4], f(t) =
∫ t

0
|rϕ(u)|du be the total amount

of fluid that flowed into or out of buffer X during (0, t),
referred to as the in-out fluid of X, and let ω(x) = inf{t >
0 : f(t) = x} be the first time this in-out fluid reaches level x.
Moreover, let now V x = {ϕ(u), 0 ≤ u ≤ ω(x)} denote the
whole path of ϕ(t) during this interval, and let V xi be the set
of all such paths that can be taken, starting from ϕ(0) = i,
such that the total in-out fluid in buffer X is precisely x.

Denoting the duration of any path v by |v|, let U(|v|) be
the total shift in the second buffer during (0, |v|); note that
this random variable is completely determined by the path v.
Then we formally define the matrix U(x)(s) via its (i, j)-th

1with superscript y rather than x, since unfortunately the
monotonously increasing (or decreasing) buffer, in which the
shift is measured, was there called X, so the notations for
X and Y are interchanged.
2i.e. we only consider the case X(t) > 0; the case X(t) = 0
is similar, except that we should replace the word ‘shift’ by
‘virtual shift’, as if the buffer Y had no lower boundary at 0.
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entry as follows,

[U(x)(s)]ij =

∫

v∈V x
i

e−sU(|v|)1{ϕ(|v|) = j}dP (V = v),

(17)
where the integral incorporates the (countable) number of
all possible successive states that ϕ(t) visits, as well as all
the corresponding sojourn times during all of these visits
(adding up to ω(x)). Using this definition we can prove the
following result.

Theorem 1. (Theorem 2 in Bean and O’Reilly [4])

U(x+h)(s) = U(x)(s)U(h)(s),

from which it follows that

U(x)(s) = eQ̂(s)x.

Proof. First note that any path v ∈ V x+h
i can be seen

as a concatenation of two paths, v1 ∈ V xi , ending in some
phase k, and v2 ∈ V hk representing the in/outflow increase
in buffer X from x to x + h. Due to the Markov property
these paths are independent, conditional on v2 starting in
the same phase k as where v1 finished. Since in that case
clearly we also have U(|v|) = U(|v1|) +U(|v2|), we arrive at

e−sU(|v|)1{ϕ(|v|) = j}dP (V = v)

=
∑

k

e−sU(|v1|)1{ϕ(|v1|) = k}dP (V = v1)

×e−sU(|v2|)1{ϕ(|v2|) = j}dP (V = v2),

from which we find∫

v∈V x+h
i

e−sU(|v|)1{ϕ(|v|) = j}dP (V = v)

=
∑

k

∫

v∈V x
i

e−sU(|v|)1{ϕ(|v|) = k}dP (V = v)

×
∫

v∈V h
k

e−sU(|v|)1{ϕ(|v|) = j}dP (V = v),

and hence the first statement follows. For the proof of the
second statement we can simply refer to [4].

3.2 Embedded discrete-time Markov chain
Let θk be the k-th time that (ϕ(t), X(t), Y (t)) hits the

line x = 0, and let the discrete-time Markov chain Jk =
(ϕ(θk), Y (θk)) with discrete/continuous state space S− ×
(0,∞), record the position of (ϕ(t), Y (t)) at time θk. Also,
let τk > θk be the k-th time the process leaves the boundary
x = 0.

Lemma 1. The transition kernel of Jk is given by

Pz,y =

∫ z

u=[z−y]+

[
I O

]
e

̂
Q		u

̂
Q	+ψ̂(y − z + u)du

+
[

I O
]
e

̂
Q		z(−

̂
Q		)−1

̂
Q	+ψ̂(y). (18)

where [x]+ denotes max(0, x), and
[

I O
]

is a |S−|×|S	|
matrix.

Proof. We apply the physical interpretations of the quan-
tities analysed in Section 3.1. Essentially, the process Jk
satisfies a Lindley-type recursion, since for its second com-
ponent Y (θk) we can write

Y (θk+1) = [Y (θk)−Dk]+ + Uk, (19)

where

Dk =

∫ τk

u=θk

|
̂
cϕ(u)|du, Uk =

∫ θk+1

u=τk

ĉϕ(u)du (20)

are appropriately chosen random variables. More precisely,
starting from time θk, with X(θk) = 0 and ϕ(θk) = i ∈ S−,
we recall the two consecutive stages described in Section 2.3.

First, (i) the process Y (t) will make a negative shift of size
−D, say, as long as ϕ(t) ∈ S	 (while X(t) remains at zero
during this stage). Then, after a transition of ϕ(t) from S	
to S+, the second stage (ii) commences, during which the
process Y (t) will make a positive shift of size U , say, during
a busy period of the first queue (i.e., during a first return
time of X(t) back to level zero, starting at level zero).

There are two alternatives. The first alternative is that
the chain Jk transitions from (i, z) to (j, y) without the level
in the buffer Y returning to 0 during time interval (θk, θk+1).
Assume y ≥ z. In this case,

• first the phase remains in the set S	 at least until
the level in buffer Y shifts down by u units (from z
to z − u), for some u with 0 ≤ u ≤ z; this occurs

according to the probability matrix e

̂
Q		u;

• then the process makes a transition to some phase in
S+, which starts the busy period in buffer X; this oc-

curs according to the rate matrix

̂
Q	+;

• finally, the busy process in buffer X ends and the level
y is observed in buffer Y ; this occurs according to the

density matrix ψ̂(y− z+ u) since the shift in buffer Y
during the busy period in X must be exactly y − (z −
u) = y − z + u.

The transition kernel of the first alternative, when y ≥ z, is
therefore

I(y ≥ z)
[

I O
] ∫ z

u=0

e

̂
Q		u

̂
Q	+ψ̂(y − z + u)du, (21)

and by analogous argument, when y < z,

I(y < z)
[

I O
] ∫ z

u=z−y
e

̂
Q		u

̂
Q	+ψ̂(y− z+u)du. (22)

The second alternative is that the chain Jk transitions
from (i, z) to (j, y) with the level in the buffer Y returning
to 0 some time during time interval (θk, θk+1). In this case,

• first the phase remains in the set S	 at least until
the level in buffer Y shifts down by z units (from z
to 0); this occurs according to the probability matrix∫∞
u=z

e

̂
Q		udu = e

̂
Q		z(−

̂
Q		)−1;

• then the process makes a transition to some phase in
S+, which starts the busy period in buffer X; this oc-

curs according to the rate matrix

̂
Q	+;

• finally, the busy process of buffer X ends at level y;

this occurs according to the density matrix ψ̂(y).

The transition kernel of the second alternative is
[

I O
]
e

̂
Q		z(−

̂
Q		)−1

̂
Q	+ψ̂(y), (23)

and so the result follows by summing (21)–(23).
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We could work with the above directly, but in Section 4
we prefer to determine the following Laplace-Stieltjes trans-
forms, which can then be inverted using the algorithm in
Abate and Whitt [1]. We note that Pz,y is continuous
w.r.t. y > 0, and it is easy to check that

∫∞
y=0

Pz,ydy1 = 1.

Corollary 1. The Laplace-Stieltjes transform of Pz,y

w.r.t. y is given by the matrix

Pz,·(s) =
[

I O
]
e−sz

(̂
Q		 + sI

)−1 (
e(
̂
Q		+sI)z − I

)

×
̂
Q	+Ψ̂(s)

+
[

I O
]
e

̂
Q		z(−

̂
Q		)−1

̂
Q	+Ψ̂(s). (24)

Proof. By straightforward computation of
∫∞
y=0

e−syPz,ydy,

or by using (19) directly as follows. Letting Yk = Y (θk) and
ϕk = ϕ(θk) for notational convenience, we have

E[e−sYk+11{ϕk+1 = j} | Yk = z, ϕk = i]

= E[e−s(z−Dk+Uk)1{ϕk+1 = j}1{Dk ≤ z} | Yk = z, ϕk = i]

+ E[e−sUk1{ϕk+1 = j}1{Dk > z} | Yk = z, ϕk = i].

By conditioning on the phases m and ` just before and after
the time when the process leaves x = 0, we rewrite the first
term as

E[e−s(z−Dk+Uk)1{ϕk+1 = j}1{Dk ≤ z} | Yk = z, ϕk = i]

=
∑

m∈S	

∑

`∈S+

e−sz · E[esDk1{ϕ(τk−) = m}

×1{Dk ≤ z} | Yk = z, ϕk = i]

×E[1{ϕ(τk) = `} | ϕ(τk−) = m]

×E[e−sUk1{ϕk+1 = j} | ϕ(τk) = `]

=
∑

m∈S	

∑

`∈S+

e−sz
∫ z

u=0

[[
I O

]
e

̂
Q		u

]
im

×esudu [

̂
Q	+]m` [Ψ̂(s)]`j

=
[ [

I O
]
e−sz

(̂
Q		 + sI

)−1

×
(
e(
̂
Q		+sI)z − I

) ̂
Q	+Ψ̂(s)

]
ij
.

A similar expression can be given for the second term, by
which the statement follows.

We denote the stationary distribution of Jk by a row vec-
tor ξz = [ξi,z]i∈S− of densities, satisfying





∫∞
z=0

ξzPz,ydz = ξy
∫∞
y=0

ξydy1 = 1,
(25)

and proceed in the next section to express the stationary
distribution of the process (ϕ(t), X(t), Y (t)) at level x = 0
in terms of ξz.

Remark 1. Instead of (19) we could also have worked
with the true Lindley recursion

Y (τk+1) = [Y (τk) + Uk −Dk+1]+. (26)

This is the approach that was followed in [14]. There, the
stationary distribution of the chain, embedded at these times,
in fact gave immediately also the stationary distribution of
the whole process at x = 0, due to a PASTA-like argument

related to the workload in an M/G/1 queue. However, in the
more general model at hand, with possibly multiple phases
being visited while X(t) = 0, this need not be true; e.g.
there may be phases in S	 from which it is impossible to
jump to a state in S+. Moreover, one disadvantage would
be that the stationary distribution of the embedded Markov
chain besides having a density for y > 0, also has a mass at
y = 0. Hence we decided to embed at hitting times of x = 0,
in a manner similar to the analysis in [5].

3.3 Stationary distribution
In the following subsections we show how to find the var-

ious densities and probability masses that define the joint
stationary distribution of the process.

3.3.1 Density at x = 0,y > 0 and mass at x = 0,y = 0

Recall from Section 2.3 that we need expressions for the
vectors π(0, y) and p(0, 0), which we give in the following.

Lemma 2. We have π(0, y) =
[

0 π(0, y)	
]
, where

π(0, y)	 = α

∫ ∞

z=y

[
ξz 0

]
e

̂
Q		(z−y)(|

̂
C	|)−1dz, (27)

and p(0, 0) =
[

0 p(0, 0)	
]
, where

p(0, 0)	 = α

∫ ∞

z=0

[
ξz 0

]
e

̂
Q		zdz(−T		)−1. (28)

Here, α is a normalization constant that satisfies

1 = p(0, 0)1 +

∫ ∞

y=0

π(0, y)dy1 +
∑

j∈S+

∫ ∞

x=0

πj(x, xĉj/rj)dx

+

∫ ∞

x=0

∫ ∞

y=0

π(x, y)dydx1, (29)

given by

α =

{
[
ξ 0

]
(−T		)−1

(
1

+T	+K−1 [ (R+)−1 Ψ(|R−|)−1
]

×
(
1 + T±#(−T##)−11

)
)}−1

, (30)

where, ξ =
∫∞
z=0

ξzdz, Ψ = Ψ̂(s)|s=0 and K = K̂(s)|s=0

with

K̂(s) = Q̂(s)++ + Ψ̂(s)Q̂(s)−+. (31)

Proof. In (i)–(iii) we prove (27)–(30) respectively.
(i) Observe the process whenever the level in buffer X hits

0. Denote by α the corresponding rate such that E∗ = α−1

is the average time between two hits.
Let E∗z,i(j, 0, u) be the derivative w.r.t. y of the expected

time in phase j, x = 0 and y ≤ u until the next hit given
start from state (i, 0, z).

Consider the process {(ϕ(t), X(t), Y (t)) : t ≥ 0} in sta-
tionarity. By the argument analogous to [15, Theorem 4.1],

P (φ = j,X = 0, Y ∈ dy) = α
∑

i∈S−

∫ ∞

z=y

ξz,iE
∗
z,i(j, 0, y)dz · dy,

(32)

where the integral starts at y since for z < y it is not pos-
sible to reach (j, 0, y) from (i, 0, z) without leaving x = 0 in
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between. Since, by adapting the argument in [2, Theorem
3.2.1] to the analysis here,

E∗z,i(j, 0, y) = 1 · [e
̂
Q		(z−y)]ij/|

̂
cj |, (33)

equation (27) for π(0, y) follows.
(ii) Similar arguments show the expression for (28); for

ending up in (j, 0, 0) from (i, 0, z) with i ∈ S− and z ≥ 0,
the process ϕ(t) now needs to stay in S	 for an amount of
‘shift’ (rather than time) of z + w for some w ≥ 0, and end
up in phase j ∈ S	. We have

[p(0, 0)]j = α
∑

i∈S−

∫ ∞

z=y

ξz,i

∫ ∞

w=0

[e

̂
Q		(z+w)]ij/

̂
cjdwdz

= α
∑

i∈S−

∫ ∞

z=y

ξz,i[e

̂
Q		z(−T		)−1]ijdz.

(34)

(iii) To find α, since this is a constant that does not de-
pend on buffer Y , we only need to consider the process
(ϕ(t), X(t)), together with the distribution of {ϕ(t)} upon
hitting x = 0, which is ξ =

∫∞
z=0

ξzdz. The vector ξ is
the stationary distribution of the corresponding discrete-
time Markov chain with state space S− which records the
position of ϕ(t) at time θk. The vector ξ is is the unique
solution of the set of equations

[
ξ 0

]
(−T		)−1 T	+Ψ = ξ,

ξ1 = 1. (35)

The stationary distribution for the SFM has been derived
in the literature in [5, 6, 11, 13, 15, 17] in slightly different
contexts. For completeness, we summarize here the results
required for the derivation of the stationary distribution of
(ϕ(t), X(t)), including the probability mass vector at level
zero, p =

[
0 p− p#

]
, and the probability density vec-

tor, π(x) =
[
π(x)+ π(x)− π(x)#

]
, for all x > 0. By

conditioning on the last time the SFM (ϕ(t), X(t)) hits level
zero from above, in a manner similar to [5, Theorem 2],

[
p− p#

]
= α

[
ξ 0

]
(−T		)−1 , (36)

and

[
π(x)+ π(x)−

]
=

[
p− p#

]
T	+e

Kx

×
[

(R+)−1 Ψ(|R−|)−1
]
,

π(x)# =
[
π(x)+ π(x)−

]
T±#

×(−T##)−1. (37)

Alternatively, (36) can be found by integrating (27) w.r.t. y
and adding to (28). Similarly, (37) can be found by inte-
grating π(x, y) w.r.t. y and adding

∑
j∈S+ π

j(x, xĉj/rj);

the expressions for these quantities will be derived in sec-
tions that follow.

Since α is a normalizing constant that solves

p1 +

∫ ∞

x=0

π(x)dx1 = 1, (38)

we have

α−1 =
[
ξ 0

]
(−T		)−1

(
1

+T	+K−1 [ (R+)−1 Ψ(|R−|)−1
]

×
(
1 + T±#(−T##)−11

)
)
, (39)

and so the expression (30) for α follows.
Note that α can also be interpreted as the total (station-

ary) rate of leaving x = 0, since by (36),
[

p− p#
]
T	+1 = −

[
p− p#

]
T		1

= α
[
ξ 0

]
1

= α, (40)

and also as the total (stationary) rate of hitting x = 0, since
by (37) and Ψ1 = 1,

lim
x→0+

π(x)−|R−|1 =
[

p− p#
]
T	+1

= α, (41)

with the two forms equivalent, as expected in stationarity.
For the Laplace-Stieltjes transform vector of the density

part, denoted as π(0, ·)(s) =
∫∞
z=0

e−syπ(0, y)dy, we have
the following.

Corollary 2. We have π(0, ·)(s) =
[

0 π(0, ·)(s)	
]
,

where

π(0, ·)(s)	 = α

∫ ∞

z=0

[
ξz 0

]
e

̂
Q		z(

̂
Q		 + sI)−1

×
(
I− e−(

̂
Q		+sI)z

)
(|
̂
C	|)−1dz. (42)

Proof. Since

π(0, ·)(s)	 =

∫ ∞

y=0

e−syα

∫ ∞

z=y

[
ξz 0

]

×e
̂
Q		(z−y)(|

̂
C	|)−1dzdy

= α

∫ ∞

z=0

[
ξz 0

]
e

̂
Q		z

×
∫ z

y=0

e−(

̂
Q		+sI)y(|

̂
C	|)−1dydz

= α

∫ ∞

z=0

[
ξz 0

]
e

̂
Q		z

×


−e−(

̂
Q		+sI)y(

̂
Q		 + sI)−1

∣∣∣∣∣

z

y=0


 (|

̂
C	|)−1dz,

the result follows.

3.3.2 Density at x > 0,y > 0

We now proceed to the density vector π(x, y) as a function
of y for fixed value of x.

Define the Laplace-Stieltjes transform π(x, ·)(s) such that,
[π(x, ·)(s)]i =

∫∞
y=0

e−sy[π(x, y)]idy for i ∈ S	, and [π(x, ·)(s)]i =∫∞
y=0

e−sy[π(x, y)]idy + e−sxĉi/riπi(x, xĉi/ri) for i ∈ S+.

Lemma 3. We have

π(x, ·)(s) =
[
π(x, ·)(s)+ π(x, ·)(s)− π(x, ·)(s)#

]
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with
[
π(x, ·)(s)+ π(x, ·)(s)−

]
= (π(0, ·)(s)	 + p(0, 0)	)

×T±#e
K̂(s)x ×

[
(R+)−1 Ψ̂(s)(|R−|)−1

]
, (43)

and

π(x, ·)(s)# =
[
π(x, ·)(s)+ π(x, ·)(s)−

]

×T±#(sĈ# −T##)−1. (44)

Proof. The result follows immediately by a partitioning
of the sample paths argument, analogous to the one used in
the derivation of (37).

Corollary 3. Letting π(·, ·)(v, s) =
∫∞
x=0

e−vxπ(x, ·)(s)dx,
we have

π(·, ·)(v, s) =
[
π(·, ·)(v, s)+ π(·, ·)(v, s)− π(·, ·)(s)#

]

with
[
π(·, ·)(v, s)+ π(·, ·)(v, s)−

]
= (π(0, ·)(s)	 + p(0, 0)	)

×
[

T−+

T#+

]
(−K̂(s) + vI)−1 [

(R+)−1 Ψ̂(s)(|R−|)−1
]
,

(45)

and

π(·, ·)(s)# =
[
π(·, ·)(s)+ π(·, ·)(s)−

]
T±#

×(sĈ# −T##)−1. (46)

3.3.3 Density at y = xĉi/ri

Finally, we state the result for the one-dimensional densi-
ties on each of the lines y = xĉi/ri, i ∈ S+.

Lemma 4. For all i ∈ S+,

πi(x, xĉi/ri) =
∑

j∈S	

pj(0, 0)Tji exp(−(Tii/ri)x)/ri. (47)

Proof. This result essentially follows by arguments analo-
gous to the proof of the first equation in (37), in a slightly
different environment.

By conditioning on the most recent time the process leaves
the point (0, 0), in order to observe the process in station-
arity at the point (x, xĉi/ri), the following must occur.

• First, the process starts from state (j, 0, 0) for some
j ∈ S	, with probability pj(0, 0), and instantaneously
transitions to phase i at a rate Tji.

• Next, the process remains in phase i at least for the du-
ration of time x/ri, with probability exp(−(Tii/ri)x).

Denote by E(i, x, xĉi/ri) the expected number of visits to
state (i, x, xĉi/ri) given the process starts in state (i, 0, 0)
and avoids returning to level 0 in both buffer X and Y .
Clearly, E(i, x, xĉi/ri) = 1 · exp(−(Tii/ri)x).

Further, we note that, by [2, Theorem 3.2.1],

πi(x, xĉi/ri) =
∑

j∈S	

pj(0, 0)TjiE(i, x, xĉi/ri)/ri, (48)

and the result (47) follows.

3.4 Main Result
We now summarize the results for the stationary distri-

bution of the process {(ϕ(t), X(t), Y (t)) : t ≥ 0}.

Theorem 2. The probability mass components of the sta-
tionary distribution, corresponding to x = 0, are

π(0, y) and p(0, 0),

given in Lemma 2. The Laplace-Stieltjes transforms of π(0, y)
w.r.t. y are given in Corollary 2.

The one-dimensional density components of the stationary
distribution, corresponding to y = xĉj/rj, are

πj(x, xĉj/rj) = [δijπ
j(x, xĉj/rj)]i∈S , j ∈ S+,

given in Lemma 4.

The Laplace-Stieltjes transforms of the two-dimensional
density components of the stationary distribution, π(x, y),
corresponding to x > 0, w.r.t. y, are

[π(x, ·)(s)]i, i ∈ S	
and

[π(x, ·)(s)]i − e−sxĉi/riπi(x, xĉi/ri), i ∈ S+,

given in Lemma 3. The corresponding Laplace-Stieltjes trans-
forms w.r.t. x and y are given in Corollary 3.

4. TANDEM FLUID QUEUE: NUMERICAL
TREATMENT

In order to evaluate the stationary distribution of the
model using the theoretical results of Section 3, we apply
discretization and truncation with appropriate parameters
∆u, and L, ` = 0, 1, 2, . . . L. The key points of the method-
ology are summarized below.

Step 1. Construct discretized version of the process Jk
discussed in Section 3.2, with a truncated level variable as
follows.

Fix some small ∆u > 0 and some large integer L > 0, and
consider a discrete-time Markov chain {J̄k : k = 0, 1, 2, . . .}
with state space {(i, `) : i ∈ S−, ` = 0, 1, 2, . . . L}, with
the interpretation that when Jk = (j, z) for some z with
`∆u ≤ z < (` + 1)∆u, ` = 0, 1, 2, . . . (L − 1), then we have
J̄k = (j, `), and when Jk = (j, z) with z ≥ L∆u, we let
J̄k = (j, L).

(i). Approximate the corresponding one-step transition
probabilities Pi,`;j,m = P (J̄k+1 = (j,m)|J̄k = (i, `)), which
are collected in matrix P = [P`m]`,m=0,1,2,...,L made of block
matrices P`m = [Pi,`;j,m]i,j∈S−as follows.

First, for `,m = 0, 1, 2, . . . L, evaluate

P̃`m =

∫ (m+1)∆u

y=m∆u

P`∆u,ydy, (49)

and then normalize P̃`m to obtain P`m so that

L∑

m=0

P`m1 = 1. (50)

(ii). Next, with the notation limk→∞ P (J̄k = (j, `)) =
ξ̄j;` whenever the limits exist, denote by ξ̄ = [ξ̄`]`=0,1,2,...L,
ξ̄` = [ξ̄j;`]j∈S− , the stationary distribution vector of the
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process {J̄k : k = 0, 1, 2, . . .}. Derive ξ̄ by solving the set of
equations, using standard methods,

ξ̄P = ξ̄, ξ̄1 = 1. (51)

Step 2. Approximate the values of stationary distribu-
tion of the process {(ϕ(t), X(t), Y (t)) : t ≥ 0} as follows.

(i). For any z with `∆u ≤ z < (`+1)∆u, ` = 0, 1, 2, . . . L,
approximate

ξz ≈
ξ̄`
∆u

. (52)

(ii). Using (28), apply

p(0, 0)	 = α

∫ ∞

z=0

ξze

̂
Q		zdz(−T		)−1

= α
∞∑

`=0

∫ (`+1)∆u

z=`∆u

ξze

̂
Q		zdz(−T		)−1

≈ α
L∑

`=0

∫ (`+1)∆u

z=`∆u

ξ̄`
∆u

e

̂
Q		zdz(−T		)−1

≈ α
L∑

`=0

ξ̄`e

̂
Q		`∆u(−T		)−1. (53)

Apply analogous approximation idea to calculating π(0, y),
y > 0, and π(x, y), x > 0, y > 0, using (42), (45)-(47) and
the inversion method of Abate and Whitt in [1].

Work on the numerical application of the above method-
ology is in progress.

5. CONCLUSION
We considered a tandem fluid queue model consisting of

two queues, in which the first queue, {(ϕ(t), X(t)) : t ≥ 0},
is a standard stochastic fluid model with a finite buffer and
real rates ri, and the second queue, {(ϕ(t), Y (t)) : t ≥ 0}, is
a stochastic fluid model with a finite buffer and rates ĉi > 0
and

̂
ci < 0, such that the rates of change of level depend

on whether the first queue is empty or not. Specifically, we
assumed that the rates of change of level in the second queue
are negative (dY (t)/dt =

̂
ci) when the first queue is empty,

and positive (dY (t)/dt = ĉi) otherwise.
We derived theoretical results for the stationary analysis

of such tandem fluid queue, and summarized the key points
of the methodology for the numerical evaluation of the sta-
tionary distribution of the process based on these results.

As future work we are also interested in the analysis of
a dual tandem fluid queue model, with the difference that
the rates of change of level in the second queue are positive
(dY (t)/dt = ĉi) when the first queue is empty, and negative
(dY (t)/dt =

̂
ci) otherwise. Work on the theoretical analysis

of the dual model is in progress.
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ABSTRACT
We consider the queue lengths of a tandem queueing
network. The number of customers in the system can
be modelled as QBD with a doubly-infinite state-space.
Due to the infinite phase-space, this system does not
have a product-form solution. A natural approach to
find a numerical solution with the aid of matrix analytic
methods is by truncating the phase-space; however,
this approach imposes approximation errors. The goal
of this paper is to study these approximation errors
mathematically, using large deviations and extreme
value theory. We obtain a simple asymptotic error
bound for the approximations that depends on the
truncation level. We test the accuracy of our bound
numerically.

Keywords
Matrix-analytic methods; tandem queues; batch ar-
rivals; queue length approximations; asymptotic error
bound; large deviations theory; renewal theory; ex-
treme value analysis

1. INTRODUCTION
The algorithmic evaluation of performance measures

in stochastic networks is a central topic in applied
probability. Indeed, many processes of interest can
be modelled as Markov chains on a product space of
the form N × P ; the main coordinate of the Markov
chain, called the level, is integer-valued and the phase-
space P carries supplementary information. This par-
titioning is one of the key underlying ideas connecting
phase-type distributions with algorithms that are often
summarised as Matrix-Analytic Methods (MAM).

MAM are widely studied in the literature (see for ex-
ample [7, 8, 14, 16, 24, 26, 27, 28]) and can be effective
when the phase-space P is a finite set. This restriction
on P limits the applicability of MAM. For example,
it prevents the usage of heavy-tailed distributions as

,

models for service times and it prevents the analysis of
queueing networks with infinite waiting rooms that do
not have a product form solution. Though the mathe-
matics behind MAM can be extended to this setting
using connections with the general theory of Markov
additive processes [2, 25], this does not seem to lead
to concrete numerical algorithms.

A natural idea to overcome this issue is simply the
truncation of the phase-space P so MAM become ap-
plicable. In the examples mentioned above, this en-
tails the approximation of heavy-tailed distributions by
phase-type distributions, truncating the waiting room
of a station in a queueing network, or approximat-
ing output processes by Markovian arrival processes.
These ideas have in fact been applied in many engi-
neering-oriented studies, a small sample of references
being [1, 10, 13, 17, 19, 20, 30].

Somewhat surprisingly, the impact of such approxi-
mations on the accuracy of the resulting numerical al-
gorithms is not well investigated mathematically. Clas-
sical bounds on truncation errors in Markov chains,
as in [32], do not offer much insight. They are not
aimed at the type of structured Markov chains encoun-
tered in queueing networks, where, for example, there
is no reason to truncate the level space. The goal of
this paper is to analyse mathematically the impact of
truncation by means of a rigorous analysis.

Motivated by this, we consider the queue lengths
of the MX/M/1→ •/M/1 tandem queueing network,
where customers arrive in batches in the first queue
(abbreviated as Q1). This tandem network is a useful
example of a non-product form queueing network (for
non-trivial batch sizes). The number of customers
in the system can be modelled as a two-dimensional
Markov chain, where the marginal distribution of the
number of jobs in the downstream queue (Q2) is the
hardest to obtain. For this reason, this coordinate will
be chosen to be the level. A numerical solution for
this model can be found by using MAM only if the
buffer size of either queue is finite. For this specific
model, we shall derive error bounds, with a particular
emphasis on the regime where the truncation level is
large, so that the resulting error is (hopefully) small.

Within the MAM literature, there have been several
related works. The model we consider in this paper
can be modelled as a Quasi-Birth and Death process
(QBD) with infinite phase-space. Formally, the invari-
ant distribution of such processes can be written as
πi = π0R

i, with R an infinite matrix [33]. A natural
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question is whether truncating the phase-space to a
size N leads to a matrix RN with the property that
RN → R. This is also related to the question how the
phase-space should be truncated: the transition prob-
abilities of the approximating Markov chain should be
augmented in such a way that the transition matrix
becomes stochastic. Background on this procedure
can be found in [6]. In our paper, we consider the
Partial Batch Acceptance Strategy (PBAS), which is
called last-column augmentation in [6]. Remarkably,
this procedure does not always imply that the invariant
distribution of the approximating Markov chain con-
verges to the original one, as illustrated by Example 4.1
of [6].

Even when the invariant distribution of the approxi-
mating Markov chain converges to the original invariant
distribution, one would like to know more, such as the
speed of convergence. Ideally, one would like to have
analytical guidelines on choosing the truncation level
in such a way that a pre-described accuracy level is
met. We are not aware of any analytic result in this
domain. The results that seem to come closest relate
to the robustness of large deviations approximations,
which are in turn related to the spectral radius ν(N) of
the matrix RN . There are studies showing that ν(N)
does not always converge to the spectral radius ν of
R [22, 31] and that the way the model is truncated
actually plays a role [23].

The question examined in the present paper is closest
to [6], which is to analyse the accuracy of the invariant
distribution after the truncation and analyse how the
error decreases when the truncation level increases.
Unlike the above-mentioned works, our asymptotic
techniques are based on large-deviations theory and
extreme value theory, as well as Markov renewal the-
ory. We believe that such asymptotic techniques are
promising and natural to consider in this domain and
have the potential to provide useful insight in the qual-
ity of numerical algorithms. This has been observed
and exploited in the simulation literature (especially
rare event simulation), but less so in the literature on
MAM.

Specifically, our approach is as follows. Using uni-
formisation, we model our tandem network as a discrete
time Markov chain, of which the state (0, 0) will be
taken as regeneration point. Let T(0,0) be the length

of a cycle and let MT(0,0) be the maximum number of
customers in the first queue during a cycle. Our first
step is to show that

0 ≤ P
(
X∞ ≥ x, Y∞ ≥ y

)
−P

(
X(N)
∞ ≥ x, Y (N)

∞ ≥ y
)

≤ E
[
T(0,0)

∣∣MT(0,0) ≥ N
]P
(
MT(0,0) ≥ N

)

ET(0,0)

, (1)

where X∞ and Y∞ denote the number of customers in
the upstream and downstream queue in steady state,

while P
(
X∞ ≥ x, Y∞ ≥ y

)
, P
(
X

(N)
∞ ≥ x, Y

(N)
∞ ≥ y

)

are the steady-state probabilities of the original and
the truncated system, respectively. The first inequality
is derived using a so-called Markov reward approach.
The second inequality is based on arguments from
regenerative process theory and essentially exploits
that the original and approximating process only differ
in cycles where the first queue has at least N customers.
These are rather standard arguments. The main work
is to analyse the asymptotic behaviour of each of the
three factors on the right hand side as N →∞.

The behaviour of P
(
MT(0,0) ≥ N

)
can be reduced

to studying the maximum queue length during a small
cycle, corresponding to the busy period of the first
queue in isolation. This reduction is possible using
extreme value theory for regenerative processes, as
surveyed in [3]. We show that we are allowed to do
this by relying on ideas that date back to [18], which we
adapt to the lattice case. Moreover, the term ET(0,0)

is treated in conjunction with P
(
MT(0,0) ≥ N

)
.

The behaviour of E
[
T(0,0)

∣∣ MT(0,0) ≥ N
]

is more
challenging to derive. In this paper, we give a heuris-
tic treatment, using intuition from large deviations
theory. For a formal proof we have to decompose
T(0,0) into several (up to four) pieces, each of which we
analyse using different methods. Key ingredients are
optional stopping, the key Markov renewal theorem
(for Markov additive processes with countable back-
ground state space) and various estimates of stopped
(Markov) random walks; see e.g. [12]. Details of the
proof, which is omitted for space considerations, can
be found in the PhD thesis [34].

Our analysis results in a simple asymptotic estimate
of the error of the form KNe−γN , where K and γ can
be described explicitly in terms of the basic parameters
of the model. The error is sharp, in the sense that our
expression for γ in the leading term e−γN is optimal,
though we do not exclude that the linear term N may
be removed using different arguments that are beyond
the scope of this study. A numerical investigation
shows that our bound may be overly conservative. Still
our study seems the first to establish an asymptotic
error estimate in this context.

The rest of the paper is organised as follows. In
Section 2, we introduce the model under consideration
and we present some additional preliminary results. In
Section 3, we derive the error bounds. Furthermore, in
Section 4, we derive a Cramér-Lundberg approximation
for the probability P

(
MT(0,0) ≥ N

)
, which we treat

together with the mean cycle length ET(0,0). We ex-
plain intuitively in Section 5 its asymptotic behaviour.
Furthermore, in Section 6, we perform numerical ex-
periments to check the quality of the asymptotic error
bound and we summarise our conclusions.

2. MODEL DESCRIPTION AND PRE-
LIMINARIES

We consider an MX/M/1→ •/M/1 tandem queueing
network. Customers arrive in batches according to a
Poisson stream with rate λ and join Q1. A customer
that finishes service in Q1 moves to Q2. The service
times for each queue are exponential with rates µ1 and
µ2, respectively. The customer leaves the system after
finishing his service in Q2. We describe the system by
a two-dimensional Markov chain (Xn, Yn) ∈ N2, where
Xn and Yn are the queue lengths at the nth jump
epoch of Q1 and Q2, respectively, including customers
in service in either queue. For this system, we are
interested in evaluating the distribution of its weak
limit (X∞, Y∞).

We denote by B a generic r.v. of the batch sizes
and we assume its mean EB =

∑∞
i=1 ibi <∞, where

bi = P(B = i), i = 1, 2, . . . Furthermore, for stability
reasons, we assume that λEB/µi < 1, i = 1, 2. In
addition, w.l.o.g., we consider a uniformised version
of this chain: λ + µ1 + µ2 = 1 and we denote the
netput between the (n− 1)st and the nth jump epoch
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in the 1st and 2nd queue as Zn and Wn, respectively.
Namely,

Zn =





0, w.p.µ2,

−1, w.p. µ1,

m, w.p. λbm,m = 1, 2, . . . ,

(2)

and

Wn =





−1, if Zn = 0,

1, if Zn = −1 and Xn−1 > 0,

0, otherwise.

(3)

Recall that due to uniformisation, λ, µ1, µ2 < 1 and
the rates λ, µ1, µ2 can be seen as probabilities.

The number of customers Xn in Q1 satisfies the
following Lindley recursion

X0 = 0, Xn+1 =
(
Xn +Zn+1

)+
, n = 0, 1, . . . (4)

Thus, {Xn}n=0,1,... evolves as a reflected at 0 discrete
version of a random walk with increments Z1, Z2, . . .
Similarly, the number of customers Yn in Q2 satisfies

Y0 = 0, Yn+1 =
(
Yn +Wn+1

)+
, n = 0, 1, . . . (5)

The initial state of the system is (X0, Y0) = (0, 0)
and we define the first return time to the origin as
T(0,0) = inf{n ≥ 1 : Xn = Yn = 0 | X0 = Y0 = 0},
which is also called cycle length. Therefore, since we
have a two-dimensional positive recurrent irreducible
Markov chain, it is known that

P
(
X∞ ≥ x, Y∞ ≥ y

)

=
1

ET(0,0)

E

[ T(0,0)∑

n=1

1 (Xn ≥ x, Yn ≥ y)

]
.

From Eqs. (2) and (3), we can easily verify that the
two-dimensional Markov chain (Xn, Yn) is a QBD with
an infinite phase-space P = {0, 1, . . . }, which does not
admit a product form solution according to Theorem
15.1.1 of [24] unless B = 1.

State space truncation
As we mentioned in Section 1, the number of customers
in Q1 and Q2 correspond to the phase and level, re-
spectively, of the QBD introduced earlier. Thus, we
truncate the buffer size of Q1 at level N , which we call
truncation level. More precisely, the arriving customers
are admitted in the system by applying the PBAS; i.e.
if the batch size is larger than the number of available
free positions in the buffer (which has capacity N − 1),
then we accept only so many customers until there are
in total N customers waiting in front of Q1 and we
dismiss the remaining ones.

Moreover, we denote by
(
X

(N)
n , Y

(N)
n

)
∈ (NN ×N)

the approximate Markov chain associated with the

truncation level N and by
(
Z

(N)
n ,W

(N)
n

)
the corre-

sponding netput process, where Nn = {0, 1, . . . , n}
⊂ N. Observe that definitions (3)–(5) are still valid
(but with the notation adapted to the truncated sys-

tem) for the processes X
(N)
n , Y

(N)
n , and W

(N)
n , respec-

tively. However, the definition of Z
(N)
n+1 takes two alter-

native forms depending on the value of X
(N)
n . More

precisely, if X
(N)
n = N , then

Z
(N)
n+1 =

{
0, w.p. λ+ µ2,

−1, w.p. µ1,
(6)

while in case X
(N)
n = N −m, m ∈ {1, . . . , N}

Z
(N)
n+1 =





0, w.p. µ2,

−1, w.p. µ1,

k, w.p. λbk for k < m,

m, with probability λ
∑∞
i=m bi.

(7)

We also define T
(N)

(0,0) = inf{n ≥ 1 : X
(N)
n = Y

(N)
n = 0 |

X
(N)
0 = Y

(N)
0 = 0} as the first return time to the

origin for the truncated system. Finally, we denote
by m = (m1,m2) the two-dimensional states of the
Markov chain (Xn, Yn), where m1 and m2 are non-
negative integers. If P is the transition probability
matrix of the Markov chain and P (N) its truncation,
then ∀m,n with m1, n1 ∈ NN−1 we have that

P (N) (m,n) = P (m,n) . (8)

In other words, the entries in the two matrices P (N)

and P coincide as long as both two-dimensional Markov
chains (original and truncated) live within the bound-
aries. This property is very useful in Section 3, where
our error bounds for the approximation of the joint
queue length distribution stem from this truncation.

Note that to analyse the terms P
(
MT(0,0) ≥ N

)

and E
[
T(0,0)

∣∣ MT(0,0) ≥ N
]

(see Sections 4–5), an
exponential change of measure is first required. Thus,
we conclude this section by providing some results with
respect to such an exponential change of measure.

Exponential change of measure
We define the cumulant generating function (c.g.f.) of
the r.v.’s Z1, Z2, . . . as

κ(α) : = lnEeαZ1 = ln
(
µ2 + µ1e

−α + λEeαB
)

= ln
(
µ2 + µ1e

−α + λMB(α)
)
, (9)

whereMB(α) is the moment generating function (m.g.f.)
of the batch sizes. We assume that there exists a solu-
tion γ > 0 to the Lundberg equation κ(γ) = 0 such that
κ′(γ) <∞. The parameter γ is called the adjustment
coefficient and conditions for its existence can be found
in [5].

If F is the distribution of the Z
D
= Zn, we define F̆ to

be the probability distribution with density eγx w.r.t.
F , i.e. F̆ (dx) = eγxF (dx) (obvious notations like κ̆(α),

P̆, Ĕ, etc, are used for quantities under the exponential
change of measure). It can easily be verified that, under
this exponential change of measure, the arrival rate of
the batches is equal to λ̆ = λ+ (1− e−γ)µ1, the batch
size distribution is equal to

P̆(B = n) =
eγn

MB(γ)
P(B = n), n = 1, 2, . . . , (10)

and the customers are served with rates µ̆1 = e−γµ1

and µ̆2 = µ2 in each server, respectively. In addition,
it holds that ĔZ = λ̆ĔB − µ̆1 > 0.

We continue in the next section by providing the
main results of the paper.

3. MAIN RESULTS
In this section, we present error bounds for the prob-

ability P
(
X∞ ≥ x, Y∞ ≥ y

)
. In particular, we prove

the two inequalities in Eq. (1). The left hand side of

Eq. (1) shows that P
(
X

(N)
∞ ≥ x, Y

(N)
∞ ≥ y

)
always
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underestimates the exact probability. We formulate
this result in the following proposition.

Proposition 1. If N is the truncation level of the
buffer size of Q1, then ∀(x, y) ∈ N2 it holds:

P
(
X

(N)
∞ ≥ x, Y

(N)
∞ ≥ y

)
≤ P

(
X∞ ≥ x, Y∞ ≥ y

)
. (11)

Proof. The proof is based on Markov reward tech-
niques and is omitted for space considerations, for
details see Section 5.3 of [34].

To prove the right hand side of Eq. (1), we split the
steady state probability as follows

P
(
X∞ ≥ x, Y∞ ≥ y

)
=

1

ET(0,0)

(
I + II

)
, (12)

I = E

[ T(0,0)∑

n=1

1 (Xn ≥ x, Yn ≥ y) · 1
(

max
1≤l≤T(0,0)

Xl < N

)]
,

II = E

[ T(0,0)∑

n=1

1 (Xn ≥ x, Yn ≥ y) · 1
(

max
1≤l≤T(0,0)

Xl ≥ N

)]
.

Let MT(0,0) = max1≤n≤T(0,0)
Xn be the maximum

queue length of the first queue before the first return
time to the state (0, 0). We show in Proposition 2

that term I is related to P
(
X

(N)
∞ ≥ x, Y

(N)
∞ ≥ y

)
,

while term II evolves in some sense like MT(0,0) . With
the aid of Eq. (12), we derive an upper bound for
P
(
X∞ ≥ x, Y∞ ≥ y

)
.

Proposition 2. An upper bound for the probability
P
(
X∞ ≥ x, Y∞ ≥ y

)
is as follows:

P
(
X∞ ≥ x, Y∞ ≥ y

)
≤ P

(
X(N)
∞ ≥ x, Y (N)

∞ ≥ y
)

+E
[
T(0,0)

∣∣MT(0,0) ≥ N
]P
(
MT(0,0) ≥ N

)

ET(0,0)

.

Proof. We discuss the terms I and II separately.
Term I: If we set ζ = inf{n ≥ 0 : Xn ≥ N} and ζ(N) =

inf{n ≥ 0 : X
(N)
n ≥ N}, then from Eq. (8) it holds that

(Xn : n < ζ)
D
= (X

(N)
n : n < ζ(N)). Observe that

T(0,0) = T
(N)

(0,0) when 1
(

max1≤l≤T(0,0)
Xl < N

)
= 1.

Thus, since term I contains the sample paths of the
truncated system, we obtain:

I =E

[ T (N)
(0,0)∑

n=1

1
(
X

(N)
n ≥ x, Y

(N)
n ≥ y

)

× 1


 max

1≤l≤T (N)
(0,0)

X
(N)
l < N



]

≤E
[ T (N)

(0,0)∑

n=1

1
(
X

(N)
n ≥ x, Y

(N)
n ≥ y

)]

=ET
(N)
(0,0)

P
(
X

(N)
∞ ≥ x, Y

(N)
∞ ≥ y

)
. (13)

Term II: For the second term, we have

II = E

[ T(0,0)∑

n=1

1 (Xn ≥ x, Yn ≥ y) · 1
(

max
1≤l≤T(0,0)

Xl ≥ N

)]

≤ E

[
T(0,0) · 1

(
max

1≤l≤T(0,0)

Xl ≥ N

)]

= E
[
T(0,0) · 1

(
MT(0,0) ≥ N

) ]

= E
[
T(0,0)

∣∣MT(0,0) ≥ N
]
P
(
MT(0,0) ≥ N

)
. (14)

Combining Eqs. (12), (13), and (14), we obtain

P
(
X∞ ≥ x, Y∞ ≥ y

)
≤
ET

(N)

(0,0)

ET(0,0)

P
(
X(N)
∞ ≥ x, Y (N)

∞ ≥ y
)

+
P
(
MT(0,0) ≥ N

)

ET(0,0)

E
[
T(0,0)

∣∣MT(0,0) ≥ N
]
. (15)

Finally, we need to show that ET(0,0) ≥ ET
(N)

(0,0).

Observe that ET(0,0) and ET
(N)

(0,0) are by definition the

expected first return times to the state (0, 0) in the
original and the truncated system, respectively. By
the strong law of large numbers for ergodic Markov

chains [21], ET
(N)

(0,0) = 1/P
(
X

(N)
∞ = 0, Y

(N)
∞ = 0

)

and ET(0,0) = 1/P
(
X∞ = 0, Y∞ = 0

)
. Therefore, it

is sufficient to show that the inequality P
(
X

(N)
∞ =

0, Y
(N)
∞ = 0

)
≥ P

(
X∞ = 0, Y∞ = 0

)
holds. This

inequality follows from a cost structure approach; for
details see Section 5.5 of [34].

Observe that the term E
[
T(0,0)

∣∣ MT(0,0) ≥ N
]
×

P
(
MT(0,0) ≥ N

)
/ET(0,0) is involved in the upper

bound of the steady state probability, according to
Proposition 2. All factors involved in this term are
hard to evaluate exactly. Instead, we examine the
behaviour of these factors as N →∞.

With the aid of the exponential change of mea-
sure presented in the previous section, in Section 4,
we provide asymptotic results for P

(
MT(0,0) ≥ N

)
,

which is treated in conjunction with the factor ET(0,0).
Asymptotic results for the conditional expectation
E
[
T(0,0)

∣∣ MT(0,0) ≥ N
]

are derived in Section 5.
The expression for the asymptotic upper bound is then
formulated in Theorem 1. With f(N) . g(N) we
denote lim supN→∞ f(N)/g(N) ≤ 1.

Theorem 1. As N →∞,

P
(
X∞ ≥ x, Y∞ ≥ y

)
−P

(
X(N)
∞ ≥ x, Y (N)

∞ ≥ y
)

. KNe−γN ,

where

K =

(
1

µ2 − λEB
·
( (µ̆1 − µ2)+

λ̆ĔB − µ̆1

+
(µ1 − µ2)+

µ1 − λEB
)

+
1

λ̆ĔB − µ̆1

+
1

µ1 − λEB

)
×NC1e

γ

(
1− λEB

µ1

)
,

and C1 is a constant calculated from Proposition 3.

We devote Sections 4–5 to the proof of Theorem 1.

4. ASYMPTOTIC APPROXIMATION
FOR THE MAXIMUM

In this section, we derive an asymptotic approxi-
mation for P

(
MT(0,0) ≥ N

)
with the aid of extreme

value theory. Observe that the number of customers in
the first queue {Xn}n=0,1,... forms a one-dimensional
Markov chain on its own. Therefore, we denote as
T0 = inf{n ≥ 1 : Xn = 0 | X0 = 0} the return time
to the origin of the first queue only and we define
MT0 = max1≤n≤T0 Xn. We show that the probability
P
(
MT(0,0) ≥ N

)
exhibits a similar tail behaviour with
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the probability P
(
MT0 ≥ N

)
. Thus, we first discuss

the behaviour of P
(
MT0 ≥ N

)
as N →∞.

We define τ1 = inf{n : Xn ≥ N}. Observe that
P
(
MT0 ≥ N

)
= P(τ1 < T0). Moreover, the Lindley

process Xn has the same transition mechanism as the
random walk Un = Z1 + · · ·+ Zn, with U0 = 0, until
T0, because Xn does not hit zero before T0. Thus,
it also holds that {τ1 < T0} = {τ(N − 1) < τ−},
and consequently P

(
MT0 ≥ N

)
= P(τ(N − 1) < τ−),

where τ(N) = inf{n ≥ 1 : Un > N} is the time of first
passage to level N ≥ 0 and τ− = inf{n ≥ 1 : Un ≤ 0}
is the first (weak) descending ladder epoch. We also
denote the first (strict) ascending ladder epoch as τ+ =
inf{n ≥ 1 : Un > 0}. If B(N) = Uτ(N) − N is the
overshoot of N , then a variant of the Cramér-Lundberg
approximation is already known for the probability
P
(
MT0 ≥ N

)
by Corollary XIII.5.9 in [4]. Therefore,

we provide the following lemma without proof.

Lemma 1. If B(N) converges in P̆ as N →∞, say
to B(∞), then

eγ(N−1)
P
(
MT0 ≥ N

)
= Ĕe−γB(N−1)

1 (τ1 < T0)→ C1,

where C1 = P̆(τ− =∞)C0 and C0 = Ĕe−γB(∞).

We continue by showing that the tail behaviour of
P
(
MT(0,0) ≥ N

)
is similar to the tail behaviour of

P
(
MT0 ≥ N

)
. For this purpose, note that both T(0,0)

and T0 are regeneration cycles for the Markov chain

Xn. Thus, if we denote MT0
i

D
= MT0 as the maximum

of Xn in the ith cycle T0, where MT0 is the generic

cycle maximum, and similarly M
T(0,0)

i

D
= MT(0,0) as

the maximum of Xn in the ith cycle T(0,0), we have
that [3, 18, 29]

max
i=1,..., n

ET(0,0)

M
T(0,0)

i ≈ max
i=1,...,n

Xi ≈ max
i=1,..., n

ET0

MT0
i .

(16)
We now make this precise. From Lemma 1, we

know the tail behaviour of MT0 . Therefore, we can
derive asymptotics for the maximum maxi=1,...,nXi.
As such, Eq. (16) indicates that in order to study the
asymptotic behaviour of MT(0,0) , we first need to study
the asymptotics of maxi=1,...,nXi, as n→∞.

Classically, extreme value theory focuses on finding
constants an, bn, such that

maxi=1,...,nXi − an
bn

D→ H, (17)

where H is some non-degenerate r.v. and
D→ denotes

convergence in distribution. This is equivalent to show-
ing that the probability P

(
maxi=1,...,nXi ≤ anx+ bn

)

has a limit, for any x. In our case, we prove that given
the tail behaviour of MT0 from Lemma 1, there exist
constants an, bn, such that (17) holds with H following

the Gumbel function Λ(x) = e−e
−x

, x ∈ R [15].
The asymptotic behaviour of P

(
MT(0,0) ≥ N

)
is

given in the following theorem. To establish this asymp-
totic result, we use Eq. (16) to first derive the asymp-
totics of maxi=1,...,nXi, as n→∞, and later connect
these asymptotics with P

(
MT(0,0) ≥ N

)
.

Theorem 2. It holds that

P
(
MT(0,0) ≥ N

)
∼ ET(0,0)

ET0
C1e

−γ(N−1), N →∞,

where C1 is defined in Lemma 1.

Proof. The proof is based on the above-mentioned
approach and is omitted for space limitations; see
Section 5.5 of [34] for details.

Observe that only the constants C0 and C1 are miss-
ing in order to find a closed-form asymptotic relation
for the fraction P

(
MT(0,0) ≥ N

)
/ET(0,0) that appears

in Eq. (1). We can find explicit expressions for these
constants by using properties of lattice random walks.
Thus, we conclude this section by providing explicit
expressions for C0 and C1. We also calculate ET0.

Observe that both C0 and C1 require the evaluation
of the limiting distribution of the overshoot B(∞),
which can be found through the ladder height distribu-
tion with respect to the probability measure P̆.

Let now H̆+ be the distribution function of the as-
cending ladder height with respect to P̆ and l̆+ be its
corresponding mean. In addition, we denote by H̆−
the (weak) descending ladder height distribution with

respect to P̆. We have the following result.

Lemma 2. For a discrete-time lattice random walk,
B(∞) exists with respect to P̆. In this case, C0 is given
in terms of the ladder height distributions by

C0 = Ĕe−γB(∞) =

(
1− ‖H+‖

)(
1− ‖H̆−‖

)

(eγ − 1)κ′(γ)
,

where ‖H+‖ = P(τ+ <∞) and ‖H̆−‖ = P̆(τ− <∞).

Proof. To prove this lemma, we need the limiting
distribution of the overshoot, which can be obtained
by adapting the renewal theorem to the lattice case,
and we use Wald’s equation; see Section 5.5 of [34] for
details.

Proposition 3. For a downward skip-free (or left-
continuous) random walk, the constant C1 in Lemma 1
is equal to

C1 = −EZ
ĔZ

(1− e−γ)e−γµ1 = −κ
′(0)

κ′(γ)
(1− e−γ)e−γµ1.

Proof. From Lemma 2, it is evident that we need
to find exact values for 1−‖H+‖ and 1−‖H̆−‖. Observe
that Un is downward skip-free random walk.

We start with the evaluation of 1− ‖H+‖. We set
fn = P(Z = n). Under the probability measure P,
it holds that EZ = κ′(0) < 0. Therefore, according
to Corollary VIII.5.6 [4], ‖H+‖ = 1 +EZ/f−1, where
from Eq. (3) we know that f−1 = P(Z = −1) = µ1.

By the definition of the descending ladder height
distribution, we have that

1− ‖H̆−‖ = P̆(τ− =∞) = P̆(Un ≥ 1 for all n ≥ 1).

We set now f̆n = P̆(Z = n) and T1 = inf{n : Un = −1}.
Since Un is a downward skip-free random walk with
an upward drift under the probability measure P̆, it
holds from Proposition 11 in [9] that

1− ‖H̆−‖ = f̆−1 · 1− P̆(T1 <∞)

P̆(T1 <∞)
.

Thus, it is left to find the probability P̆(T1 <∞), which
according to Lemma 2 in [9] is equal to the unique value

s ∈ (0, 1) that satisfies the equation ĔsZ = 1. Using
κ(α) = 0, we get from Proposition XIII.1.1 in [4] that

ĔeαZ1 = eκ(α+γ). Therefore, Ĕe−γZ = eκ(0) = 1, and
consequently s = e−γ ∈ (0, 1) is the unique solution to
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the equation ĔsZ = 1. As a result, P̆(T1 <∞) = e−γ .

We also find f̆−1 = P̆(Z = −1) = e−γµ1. Combining
all the above and Lemma 1, the result is immediate.

We turn now our attention to the evaluation of ET0.
Observe that ET0 = 1/P

(
X∞ = 0

)
. By applying Lit-

tle’s law for a busy server we find that ρ1 = λEB/µ1,
with λEB being the average number of customers
entering the system per time unit. Consequently,
P
(
X∞ = 0

)
= 1 − ρ1 = 1 − λEB/µ1. Thus, we

have proven:

Lemma 3. ET0 =
(
1− λEB/µ1

)−1
.

5. THE CONDITIONAL MEAN
RETURN TIME

Our last goal is to study the asymptotic behaviour
of the conditional expectation E

[
T(0,0)

∣∣MT(0,0) ≥ N
]
.

More precisely, we study the limit lim
N→∞

1

N
E
[
T(0,0)

∣∣

MT(0,0) ≥ N
]
. We take a heuristic approach, using

intuition from large deviations theory. A formal proof
can be found in Section 5.6 of [34]. Define

τ1: the time at which Q1 reaches or exceeds level
N . Recall that it was defined in Section 4 as
τ1 = inf{n : Xn ≥ N}.

τ2: the return time to 0 in Q1 after τ1. Formally,
τ2 = inf{n > τ1 : Xn = 0}.

τ3: the first time Q2 empties after τ2. Formally,
τ3 = inf{n > τ2 : Yn = 0}. The time τ3 can
either coincide with or happen before T(0,0).

We describe heuristically how both queues behave,
given that the number of customers in Q1 has reached
a very high level before the first return time T(0,0) to
the empty state (0, 0). Our description is based on
intuition from large deviations theory and fluid limits.
We write a ≈ b to denote that a is approximately
equal to b, without explicitly determining the degree
of accuracy. Denote by #Q1 and #Q2 the number of
customers in Q1 and Q2.

Observe that the behaviour of Q1 is not affected by
what happens in Q2. On the other hand, we recognise
three different cases for the behaviour of Q2 that arise
from the relation between the rates µ1, µ2, and µ̆1. We
summarise all cases in Figure 1. We start by discussing
the behaviour of Q1.

To describe the behaviour of Q1 until time T(0,0),
given that #Q1 reached or exceeded level N , we apply
arguments from large deviations theory. According
to Section 2, this event happens by a change of mea-
sure, from P to P̆. Since N →∞, the time its takes
Q1 from τ1 to reach its maximum value (something
above N) before T(0,0) is negligible (compared to τ1).
Moreover, until τ1, the departure rate of the customers
is asymptotically equal to µ̆1 because the system is
overloaded (λ̆ĔB > µ̆1). On the other hand, after τ1,
all the rates are back to normal. As we have already
mentioned, τ2 is the point at which the Q1 reaches 0
after reaching its maximum value within cycle T(0,0).
Since during the time interval [τ1, τ2] Q1 is always full,
the departure rate of customers equals µ1.

Next, we describe the behaviour of Q2 before T(0,0).

Case 1: µ1 < µ2

It always holds that µ̆1 < µ1 (see Section 2 for the
definition of µ̆1). Therefore, in this case, Q2 behaves
asymptotically as a stable M/M/1 queue in all time
intervals (but with different arrival rates of customers).
Thus, the number of customers in Q2 is bounded by
the number of customers in a stable M/M/1 queue
until T(0,0). Consequently, the time interval [τ2, T(0,0)]
is negligible compared to [0, τ2] and we expect that
E
[
T(0,0)

∣∣ MT(0,0) ≥ N
]
≈ E

[
τ2

∣∣ MT(0,0) ≥ N
]
,

where from Euclidean geometry we can easily verify
that (see Figure 1)

τ1 ≈ N

λ̆ĔB − µ̆1

, τ2 − τ1 ≈ N

µ1 − λEB
. (18)

Case 2: µ̆1 < µ2 < µ1

Since µ̆1 < µ2, Q2 behaves asymptotically as a stable
M/M/1 queue with arrival rate µ̆1 and service rate
µ2 until time τ1. This means that the number of
customers in Q2 at time τ1 is bounded by the number
of customers in the latter M/M/1 queue. From τ1
onwards, the arrival rate of customers in Q2 is equal to
µ1, which is greater than the service rate µ2. Therefore,
the number of customers in Q2 grows linearly with rate
µ1 − µ2 up until τ2. After τ2, the output rate from
Q1 is equal to λEB and the customers in Q2 reduce
linearly with rate λEB − µ2 until the queue empties
at time τ3. We calculate (see Figure 1)

h2 ≈ (µ1 − µ2)
N

µ1 − λEB
,

τ3 − τ2 ≈ h2

µ2 − λEB
=

µ1 − µ2

µ2 − λEB
· N

µ1 − λEB
.

(19)

Obviously, in this case E
[
T(0,0)

∣∣ MT(0,0) ≥ N
]
≈

E
[
τ3
∣∣MT(0,0) ≥ N

]
, because the interval [τ3, T(0,0)] is

negligible compared to [0, τ3].

Case 3: µ2 < µ̆1 < µ1

Since µ̆1 > µ2, the number of customers in Q2 grows
linearly with rate µ̆1 − µ2 up until time τ1. For the
remaining time intervals, Q2 behaves in a similar man-
ner as in Case 2. Therefore, E

[
T(0,0)

∣∣MT(0,0) ≥ N
]
≈

E
[
τ3
∣∣MT(0,0) ≥ N

]
, where (see Figure 1)

h1 ≈ (µ̆1 − µ2)
N

λ̆ĔB − µ̆1

,

h2 ≈ h1 + (µ1 − µ2)
N

µ1 − λEB
,

τ3 − τ2 ≈ h2

µ2 − λEB
.

(20)

To prove rigorously the behaviour of Q2 in [0, τ2], we
use renewal theory arguments and the relation between
P and P̆. For the time interval [τ2, τ3], the idea is to
see our two-dimensional Markov chain as a Markov
Additive Process (MAP) [11]. Finally, for [τ3, T(0,0)],
we use that the hitting time of the origin is finite since
the latter is a recurrent state for our ergodic Markov
chain.

6. NUMERICAL EXPERIMENTS
We perform now numerical experiments to check the

quality of our asymptotic upper error bound (a.u.e.b.)
in Theorem 1. As an example, we use geometric
batch sizes, where we calculate the exact queue lengths
through simulation.
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time

#Q1

λ̆Ĕ
B
− µ̆

1
λEB −

µ
1

µ̆1
µ1 λEB

N

0 τ1 τ2 T
(C1)

(0,0) T
(C2)

(0,0) T
(C3)

(0,0)

time

#Q2

µ1
− µ

2 λEB − µ
2h

(C2)
2

µ̆1 − µ2

µ1
− µ

2

λEB − µ
2

h1

h
(C3)
2

0 τ1 τ2 τ
(C2)
3 τ

(C3)
3T

(C1)

(0,0) T
(C2)

(0,0) T
(C3)

(0,0)

Figure 1: The asymptotic behaviours of Q1 and Q2, given that #Q1 before T(0,0) exceeded the
truncation level N , for all 3 different cases; solid black for Case 1, dash-dotted red for Case 2, and
solid blue for Case 3.

Suppose that P(B = n) = β(1− β)n−1, n = 1, 2, . . .
We find γ = − ln

(
(λ + µ1 − βµ1)/µ1

)
and the rates

with respect to the measure P̆ take the form λ̆ = βµ1

and µ̆1 = λ + µ1 − βµ1. We also find that ĔB =
(λ+µ1− βµ1)/λ. Finally, using Proposition 3, we also
calculate that C1 = (βµ1 − λ)λ/βµ1. Combining these
expressions, we calculate the a.u.e.b. in Theorem 1.

For our numerical experiments, we focus on the
marginal distribution of Q2. We performed exten-
sive numerical experiments for various combinations
of the parameters. We present here the combinations
{β = 0.5, ρ1 = 0.7, ρ2 = 0.8} (Case 2),since the qualita-
tive results are similar among the various combinations
we tested. Observe that due to the uniformisation
λ+µ1 +µ2 = 1 of the rates, there exists a unique com-
bination of {λ, µ1, µ2} given a combination {β, ρ1, ρ2}.
For this combination, we choose a number of trunca-
tion levels and we calculate for each N the truncated
approximation P

(
Y

(N)
∞ ≥ y

)
, y ≥ 0, with MAM.

To check the quality of our a.u.e.b., we compare it
with the differences between the exact and the trun-
cated approximation of the marginal distribution of
Q2. We summarise our findings in Table 1.

From the table, we observe that the truncated ap-
proximations become more accurate as N increases,
which is in accordance with our expectations. The
same also holds for the asymptotic bound. However,
the bound is at least 5 times greater than the observed
error, which makes it rather conservative.

Similar results were derived in [34], where we per-
formed additional numerical experiments for the special
case of single arrivals of customers.

7. CONCLUSIONS
The conclusions we can draw for the asymptotic up-

per bound are summarised as follows: (i) The bound

y N = 10 N = 20 N = 30 N = 50
5 0.128921 0.025536 0.005539 0.000755
10 0.123171 0.029763 0.006556 0.000517
15 0.086761 0.026535 0.006317 0.000349
20 0.054454 0.020534 0.005432 0.000237
25 0.032516 0.014616 0.004358 0.000221
30 0.018948 0.009835 0.003276 0.000195

a.u.e.b. 0.617191 0.243018 0.018839 0.004636

Table 1: Observed errors between the original
marginal distribution of Q2 and its QBD ap-
proximation for ρ1 = 0.7 and ρ2 = 0.8. The last
line corresponds to the a.u.e.b for each N .

depends only on the truncation level and the parame-
ters of the model; i.e. it is uniform in the values x and

y of P
(
X

(N)
∞ ≥ x, Y (N)

∞ ≥ y
)
. (ii) The bound is rather

conservative. Moreover, the bound becomes more con-
servative as the truncation level increases. (iii) Given
the fact that the expression for γ in the leading term
e−γN is optimal, the conservative behaviour that our
bound exhibits is probably attributed to the factor N .

The above observations indicate that further mod-
ifications are important to improve the accuracy of
the asymptotic upper bound. One possible direction
is to make the bound dependent on the values x and
y. Most importantly, since the factor N of the bound
seems to be more responsible for the latter’s conserva-
tive behaviour, further improvements should be sought
towards the removal of this factor from the bound.
Nonetheless, the advantage of our bound is clear, in
that it makes the procedure of truncating the back-
ground state rigorous, thereby reducing concerns raised
in [6].
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1. INTRODUCTION
Multiclass closed queueing networks are established stochas-

tic models used in performance evaluation of computer and
communication systems. In the presence of nodes with first-
come first-served (FCFS) scheduling, these models become
difficult to analyze, since they can be handled by product-
form theory only under restrictive assumptions, namely ex-
ponential service times and, locally to each node, identical
mean service times for all classes [1]. In this paper, we pro-
pose a new method, called decay rate approximation (DRA),
to heuristically analyze closed networks of FCFS nodes with
phase-type distributed (PH) service times. Mean service
times are assumed to be chosen arbitrarily.

DRA may be seen as a multiclass extension of the work
in [2], described in the next section, which applies only to
single-class networks. The central idea is to approximate
joint queue-length distributions at multiclass FCFS nodes
by multinomial distributions. The latter are obtained by
studying each node as an MMAP[R]/PH[R]/1 queue in isola-
tion, in order to extract an asymptotic decay rate of the joint
queue-length distribution, which is then used to parameterize
the multinomials. This multinomial approximation can be
mapped into a product-form closed queueing network that
approximates the original model and that can be efficiently
analyzed. DRA also features an optimization program that
refines the MMAP[R] input processes based on the estimated
utilization at each queue. The goal of this program is to
make the DRA predictions maximally consistent, in the sense
of reconciling certain utilization predictions that are partly
misaligned due to the heuristic nature of DRA.

By validating the method on networks of increasing size,
we find that DRA incurs in less than 15% error on queue-
lengths in all our tests, whereas state-of-the-art methods

∗The work of G. Casale has received funding from the En-
gineering and Physical Sciences Research Council (EPSRC)
under grant agreement No. EP/M009211/1 (OptiMAM).
†The research of J. F. Pérez is supported by the ARC Cen-
tre of Excellence for Mathematical and Statistical Frontiers
(ACEMS).

such as AMVA-FCFS [1, §10.2] and MVA incur errors that
often exceed 20%-25% error.

2. BACKGROUND
Model. We consider a closed queueing network composed of
M FCFS queues. The network processes R service classes,
with a population of Kr jobs each (r = 1, . . . , R). Queue i
(i = 1, . . . ,M) processes jobs of class r with mean service
demand θir = virsir, where vir is the mean number of visits
of jobs to the resource and sir is the mean service time per
visit. We model the service time distribution of class r jobs at
node i as a PH. Below we describe two heuristics to analyze
this kind of models.
AMVA-FCFS Method. The AMVA-FCFS method consid-
ers a simple iterative solution scheme similar to the Bard-
Schweitzer AMVA algorithm [1], but in which the arrival
theorem is corrected to describe multiclass FCFS schedul-
ing. Recall that the (exact) arrival theorem states that the
waiting time of class-r jobs a queue i may be written as

Wir = θir + θir
∑R

s=1A
(r)
is , where A

(r)
is is the mean class-s

queue-length at i seen by an arriving job of class r. This
expression is exact for several queueing systems, in particular
for processor-sharing (PS) queues. AMVA-FCFS corrects

this expression at FCFS nodes as Wir ≈ θir +
∑R

s=1 θisA
(r)
is ,

which accounts for the fact that jobs found ahead in the
queue impose delays that depend on their classes.

Despite its conceptual simplicity, AMVA-FCFS offers good
performance on small models. However, it is easy to show
cases where AMVA-FCFS incurs non-negligible errors as
the model size grows. Moreover, the method is insensitive
to moments of the service time distribution other than the
mean, which limits its ability to account for PH service
times. Figure 1 shows two such cases, the details of which
are described in Section 4. This example indicates that the
error of AMVA-FCFS can easily exceed 15-20%.
Single-Class Decay Rate Approximation. Recently, [2] con-
siders single-class networks of FCFS nodes with PH service
times and proposes a heuristic solution inspired by matrix-
analytic methods. The authors first observe that the sta-
tionary queue-length distribution of a MAP/PH/1 queue
may be quite accurately approximated in many cases by the
expression

pi(n) =

{
(1− ρi) n = 0

ρi(1− ηi)ηni n ≥ 1

where i is the node label, ρi is the utilization, and ηi is the
caudal characteristic of the node, i.e., the dominant eigenvalue
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Figure 1: Approximation error with the AMVA-FCFS
method.

of the rate matrix R associated to the quasi-birth-and-death
process used to solve the MAP/PH/1 queue. This may be
regarded as a heavy-traffic approximation, since ηi corre-
sponds to the limiting decay rate of the exact queue-length
probability as the number of jobs grows large. A heuristic
product-form probability expression is then formulated, i.e.,

p(n1, . . . , nM ) =
1

C

M∏

i=1

pi(ni) (1)

where C is a normalizing constant relatively to the state
space of the closed network. In order to parameterize the
above product-form approximation, the ρi and ηi values are
required for all i = 1, . . . ,M . The approach proposed in [2]
obtains these values by iteratively analyzing each MAP/PH/1
queue in isolation. Each iteration step assumes that the
input flow of jobs to each node i is known. To this end, a
utilization-based scaling of the service process of the feeding
queues is computed and a MAP of their superposition is then
used as input process for each of the MAP/PH/1 queues.
Matrix-geometric solutions are then computed, from which
new values for the decay rates ηi, i = 1, . . . ,M , are obtained.

New values for the utilizations are obtained by the expres-
sion ρi = Xθi, where X estimates the network throughput
and θi is the mean service demand at node i. The network
throughput is obtained as an average of the node throughputs
predicted by the product-form expression (1), appropriately
scaled by the visits vi at each node. Averaging here helps
convergence to a solution where the values ρi = Xθi and
the utilizations computed by summing (1) over states with
ni > 0 are identical and thus the model is self-consistent.

3. DECAY RATE APPROXIMATION
Although the heuristic in [2] offers good accuracy on single-

class models, its generalization to the multiclass case is diffi-
cult for several reasons. First, the notion of caudal character-
istic is difficult to define in the multiclass case, where there
exist multiple ways to increase the job populations inside a
queue. Moreover, the analysis of load-dependent multiclass
models is computationally difficult, making it challenging to
use probabilistic expressions such as (1) to model the network
performance. In the next sections, we therefore examine and
address these problems.

3.1 The MMAP[R]/PH[R]/1 queue
We begin by considering the problem of characterising

the caudal characteristics in multiclass MMAP[R]/PH[R]/1
queues. An MMAP[R] process is ruled by R positive matrices

Dr and a sub-generator matrix D0 such that
∑R

r=0 Dr is a
Markov-chain generator matrix. In [4] Sengupta introduced
semi-Markovian queues and a novel solution technique based
on the age process analysis. The analysis of the age process
turns out to be useful for the solution of many other queueing
models, including the multiclass FCFS queue (see [3]).

If A(t) denotes the age and J (t) the phase of the back-
ground process (including the phase of the MMAP, the phase
and the class of the current job in service), then the joint
process {(A(t),J (t)) ≥ 0} is a continuous time Markov pro-
cess on a continuous state space. It is proven in [4] that the
stationary solution is matrix-exponential, thus the density
πi(x) = limt→∞ d

dx
P (A(t) < x,J (t) = i) is given by

π(x) = π(0) · eTx, x > 0, (2)

where π(x) = [πi(x)]. Matrix T in (2) is the solution of a
non-linear matrix equation, and vector π(0) is obtained by
the solution of a set of linear equations. Both are discussed
in detail in [3, Example 3.1].

3.2 The exact queue-length distribution
To express the distribution of the number of jobs in the

system we first need to express the distribution of the number
of jobs waiting in the queue. At time t, the age of the job in
the server is A(t), thus all jobs waiting in the queue arrived
in (t−A(t), t). Let us now introduce matrix L(n), which is
related to the probability that n = (n1, . . . , nR) jobs arrive
over the (stationary) age of the current job in the service.
In [3, Example 5.2] it is proven that L(n) can be recursively
calculated by Sylvester matrix equations.

The joint distribution of the number of waiting jobs is

w(n) =

{
1− ρ+ π(0)L(0)1, n = 0,

π(0)L(n)1, n 6= 0,
(3)

where 0 is the vector of zeros and 1 is the column vector
of ones. To obtain the total number of jobs, the job in the
server has to be taken into consideration as well. Let vector
hr hold 1 for states where a class-r job is in service and 0
otherwise. The distribution of the number of jobs in the
system is

p(n) =

{
1− ρ, n = 0,

π(0)
∑R

k=1,nr>0 L(n− er)hr, n 6= 0.
(4)

where er is the rth unit vector.

3.3 A multinomial approximation
In the simplest special case, when the arrival processes are

Poisson processes, and the service times are exponentially
distributed with the same parameters, the joint distribution
is a multinomial distribution as

p(n)= (1− ρ)
(n1+n2+. . .+nR)!

n1!n2! · · ·nR!

(
λ1

µ

)n1
(
λ2

µ

)n2

· · ·
(
λR

µ

)nR

.

To be able to use some of methods of product-form the-
ory in the analysis of closed queueing networks composed
by MMAP[R]/PH[R]/1 nodes, we are looking for an ap-
proximation which has a similar form. This is because the
product-form solution involves a product of multinomial dis-
tributions [1]. According to [2] the queue length distribution
of a MAP-driven single class queue with PH service times can
be approximated by a geometric distribution reasonably well,
with the geometric decay of the distribution given by the
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Figure 2: Distribution of the number of class-2 jobs given
that the total number of jobs is 200

caudal characteristic. Unfortunately, such a straightforward
approximation is not known for the multiclass variant of this
family of queues. However, by numerical experiments we
have found that, if the total number of jobs in the system
is fixed, the distribution of the number of jobs belonging
to different job classes is reasonably close to a multinomial
distribution. A 4-state example with two job classes is shown
in Figure 2, where the density of the number of class-2 jobs
(N2) is shown conditional on a queue-size of 200 jobs.

This and similar experiments we have performed in other
cases suggest that this multinomial approximation is often
accurate. For given per-class decay rates ηr, r = 1, . . . , R, a
multinomial approximation of the queue length would be

p(n) ≈ p∗(n) =
(

1−
R∑

i=1

ηi
) (n1 + · · ·+ nR)!

n1! · · ·nR!
ηn1
1 · · · ηnR

R .

Unfortunately, we were not able to analytically determine
the decay rates of the exact distribution in order to minimize
the distance from the multinomial expression. Therefore we
give a numerical method to determine decay rates.

In order to uniquely define the caudal characteristic in
a multiclass setting, we propose to consider a decay rate
along the direction of queue-length increase that preserves
the steady-state class mix of the MMAP[R]/PH[R]/1 queue,
initially determined under a given MMAP[R] arrival process
D = (D0,D1, . . . ,DR). Let yr(q|D), r = 1, . . . , R, q > 0,
be the decay of the joint queue length distribution along a
direction (i.e., mix) corresponding to the ratios of the mean
queue lengths under arrival process D, i.e.,

yr(q|D) = p̂(qβ)
/
p̂(qβ − er), (5)

where p̂(n) = n1!···nR!
(n1+···+nR)!

p∗(n), β = bQ/(Q1)c is the class

mix, q is a scale factor on the total queue-length size, Q
is the size R row vector of the mean queue lengths in
the MMAP[R]/PH[R]/1 queue. We then propose an ap-
proximation for the decay rates for class k given by ηr =
limq→∞ yr(q|D).

A drawback of this approach is that the stationary distribu-
tion has to be calculated up to a given threshold, which can
be computationally demanding. Although in this paper we re-
port results for large thresholds, we have empirically observed
on the experiments in Section 4 that setting q = 1 +

∑
rKr

preserves the accuracy of the method.

3.4 The DRA method
The decay rate approximation assumes the availability

of an AMVA-FCFS implementation, a solver for continu-
ous non-linear optimization programs (e.g., an interior point
method), and an AMVA solver for product-form closed queue-
ing networks. Given that many AMVA solvers exist1, e.g.,
Bard-Schweitzer and Linearizer [1], which differ for the trade-
off between accuracy and speed, the chosen product-form
solver is generically referred to as AMVA-PF.

Let X = (X1, . . . ,XR) be a vector of estimates of mean
throughputs. We assume the initial value of X to be given
by the throughput estimates returned by AMVA-FCFS for
the multiclass FCFS network, which provides a reasonable
initial guess of the closed network performance. DRA seeks
to optimize, locally to the neighborhood of this initial point,
the following non-convex non-linear program

min f(X) =
M∑

i=1

R∑

r=1

|ρ̃ir − ρir| subject to X ≥ X−.

Here X− is a throughput lower bound, which we set in
the experiments to a small positive quantity (ε = 10−3).
The term ρir = Xrθir, r = 1, . . . , R, is the mean per-class
utilization at each queue when the throughputs are given
by X. The term ρ̃ir is the mean per-class utilization given
by the product-form solver AMVA-PF, when the model is
evaluated with service demands ηir/Xr and populations Kr.

The decay rate ηir corresponds to the decay rate ηr for a
MMAP[R]/PH[R]/1 queue that represents node i in isolation.
Such rates are obtained at each iteration of the nonlinear
solver by the procedure outlined in Section 3.3, but where Q
is replaced by the mean queue-length provided by AMVA-PF
at the last iteration of the interior point method. At the first
iteration, Q is obtained by AMVA-FCFS.

The service distributions of the MMAP[R]/PH[R]/1 queues
are set equal to the PH service distributions of the FCFS
queue. For a given queue i, the MMAP[R] is instead obtained
by superposing the service processes PH[R] of all the queues
j that feed i. Such superposition is carried out class-wise, i.e.,
only PH rates of the same job class r are superposed to define
Dr. Thus, the resulting MMAP[R] has the same number of
classes R as the queueing network model. Note that prior to
applying the superposition, the rates of the PH of queue j
for class r are multiplied by ρjr, in order to account for idle
periods. This provides a basic approximation of the class-r
departure process of j; it would be interesting in future work
to examine whether more sophisticated departure process
models could improve accuracy.

Upon finding a local optimum, the DRA method returns
as mean performance metrics those obtained at the last eval-
uation of the AMVA-PF solver. As observed before, the
net-effect of the above approximation is to seek for a maxi-
mally consistent solution for a multinomial approximation of
the joint queue-length distribution at multiclass FCFS nodes
parameterized with the decay rates.

4. VALIDATION
We now evaluate the accuracy of the approximation pro-

posed in Section 3.4. To this end we consider networks
with R = 2 job classes and M ∈ {2, 3, 4, 8} FCFS nodes in
tandem. To account for different job population sizes, we

1Note that it is possible to combine Bard-Schweitzer and
AMVA-FCFS in a single implementation, provided that dif-
ferent waiting time expressions are used at PS and FCFS
nodes.
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Table 1: Validation test cases - Mean service times (si,r)

Queue
Case 1 2 3 4
1 1 0.5 0.8 0.6 0.4 0.7 0.7 0.8
2 1 0.5 0.8 0.2 0.4 0.1 0.7 0.2
3 1 0.5 0.8 0.8 0.4 0.4 0.7 0.7
4 1 1 1 1 1 1 1 1
5 1 0.5 1.2 0.6 1.4 0.7 1.6 0.8
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Figure 3: DRA error: networks with 2 and 3 queues.

vary the total number of jobs K in the set {15, 30, 45, 60},
while keeping the ratio of class-2 to class-1 jobs constant and
equal to 2. In addition, we consider 5 different cases for the
demands, varying the relative demands across job classes
and stations. Table 1 summarizes the mean demands for the
network instances with 4 stations. The scenarios with 2 and
3 stations use the demands in this table corresponding to
the first 2 and 3 queues, respectively. The scenarios with
8 queues use the demands in Table 1 for the first 4 queues
while the demands for the remaining queues are set similarly.
Finally, we assume all demands are exponentially distributed,
except for the last one (e.g., the fourth one in the case with
4 stations), where the demands follow PH distributions. For
this last station we select PH distributions that, using the
method in [5] for hyper-exponential distributions, match the
mean demand and a given squared coefficient of variation,
which we set to 2 and 5 for jobs of class 1 and 2, respectively.

4.1 Results
Experiments have been carried out in MATLAB, using the

fmincon interior-point method. The results for the scenarios
with 2 and 3 queues are summarized in Figure 3. Here we
report the mean absolute error in the mean queue length
across all classes and stations, computed as

error =
1

2K

M∑

i=1

R∑

r=1

|Qi,r − Q̂i,r|,

where Qi,r is the mean queue length for class-r jobs in station

i obtained with the approximation, while Q̂i,r is the same
quantity obtained from an event-driven simulation. This
error can be interpreted as the amount of (queue length)
mass misplaced by the approximation, proportional to the
total number of jobs K. The scaling factor in front of the
summations ensures that the error is in [0, 1]. To ensure
convergence, the simulation runs until the half-width of the
confidence interval of the estimates is below 1% of the mean.

Figure 3 shows that DRA obtains errors mostly below
10% and always below 15%. In many cases the errors are
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Figure 4: DRA error: networks with 4 and 8 queues.

Table 2: Distribution of errors for different methods across
all test cases

Method
Error (%) DRA AMVA-FCFS AMVA

0 - 5 42.5% 33.75% 20%
5 - 10 45% 30% 38.75%
10 - 15 12.5% 27.5% 26.25%
15 - 20 - 7.5% 11.25%
20 - 25 - 1.25% 3.75%

actually between 2% and 5%. Similar results are obtained
for 4 and 8 queues, as depicted in Figure 4, although the
errors for the 8-queue case are somewhat larger. We do not
observe any pattern in the approximation error as a function
of the number of jobs K, nor across the different demand
cases. Comparing with the results of the AMVA-FCFS
method in Figure 1, we see that for case 1 AMVA-FCFS
is better than DRA for a network with 2 queues, but for 3
and more queues the errors of AMVA-FCFS increase rapidly,
while DRA remains below 13%. In fact, we have observed
that while the AMVA-FCFS approximation may present
large errors in some cases, especially with many queues,
DRA offers errors that remain below 15% in all the cases
tested. This is further illustrated in Table 2, where we depict
the distribution of the errors achieved across all test cases
by three methods: DRA, AMVA-FCFS, and the standard
AMVA. There we observe how AMVA-FCFS improves upon
plain AMVA, but still in over 35% of the scenarios the error
is above 10%. With our proposed method, this percentage
is reduced to just over 12%, all of which is concentrated in
scenarios with error between 10% and 15% as none of the
cases display errors beyond 15%.
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ABSTRACT
In this talk, we analyze a 2-class, single-server polling model
operating under a ki-limited service discipline with class-
dependent switchover times. Arrivals to each class are as-
sumed to follow a Poisson process with phase-type distributed
service times. Within each queue, customers are impatient
and renege (i.e., abandon the queue) if the time before en-
try into service exceeds an exponentially distributed pa-
tience time. We model the queueing system as a level-
dependent quasi-birth-and-death process, and the steady-
state joint queue length distribution as well as the per-
class waiting time distributions are computed via the use
of matrix analytic techniques. The impact of reneging cus-
tomers and choice of service time distribution is investigated
through a series of numerical examples, with particular em-
phasis on the determination of (k1, k2) which minimizes a
cost function involving the expected time a customer spends
waiting in the queue and an additional penalty cost should
reneging take place.

Keywords
Queueing theory; Polling model; Phase type distribution;
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ABSTRACT
For the first-order Markovian fluid models, where the (state
dependent) fluid rates are constant, there are various solu-
tion methods available. Among these solution methods the
recently developed matrix-analytic method provides an ef-
ficient, numerically stable way to determine the stationary
fluid level distribution even if the number of states is high.

In second-order Markovian fluid models the process deter-
mining the change of the fluid level is a Brownian motion
with state-dependent drift and variance parameters. This
paper presents a matrix-analytic solution of second-order
fluid models where the matrix parameter of the matrix-
exponential solution is obtained as a minimal non-negative
solution of a matrix-quadratic equation.

1. INTRODUCTION
First-order Markovian fluid flow models are popular mod-

eling tools with many practical applications. The differ-
ential equation providing the steady state distribution of
the fluid level has been solved by eigenvalue decomposition
based methods (see [3]). Later, more efficient procedures
appeared that can solve larger models without the need of
the numerically demanding eigenvalue decomposition and
complex arithmetic. Such a method is the matrix-analytic
solution (appearing in [4]), that provides the stationary dis-
tribution in a matrix-exponential form. The crucial step of
this procedure is obtaining the minimal non-negative solu-
tion of a matrix-Riccati equation. In [4], this step is reduced
to the solution of the matrix-quadratic equation.

In this paper we consider second-order Markovian fluid
flows, which are Markov-modulated Brownian motions with
a boundary at level 0. The differential equations governing
the system are provided in [1], where an eigenvalue-based
solution is also provided. As the matrix-analytical approach
turned out to be more capable than the eigenvalue-based
one in the first-order case, the aim to generalize it to the
second-order case is natural. The contribution of the paper

is the introduction of a matrix-quadratic equation whose
minimal non-negative solution provides the matrix parame-
ter of the matrix-exponentially distributed stationary fluid
level distribution.

2. SECOND-ORDER FLUID MODELS
Second-order fluid flows are two-dimensional processes
{X (t),Z(t), t ≥ 0}, where X (t) is a continuous time back-
ground Markov chain (CTMC) with generator Q and state
space S, and X (t) represents the level of the fluid in a buffer.
While the CTMC is in state i, the increment of X (t) is nor-
mally distributed with mean ri and variance σ2

i . Diagonal
matrices R and S contain the drift and variance parame-
ters, hence R = diag〈ri〉 and S = diag〈σ2

i /2〉 (note that the
variances are multiplied by 2 in order to make the arising
expressions simpler).

The fluid buffer has a boundary at level 0. Two typical
boundary behaviors are distinguished in the literature: the
absorbing and the reflecting boundaries.

Let us denote the stationary fluid level density by vector
f(x) = [fi(x), i ∈ S], defined by f(x) = limt→∞ d

dx
P (X (t) <

x,Z(t) = i). The probability mass accumulating at level 0
and state i is denoted by pi = limt→∞ P (X (t) = 0,Z(t) =
i). According to [2] f(x) satisfies the differential equation

d

dx
f(x)R− d

dx
f(x)S = f(x)Q. (1)

Two different boundary behaviors are frequently distin-
guished in the literature, the reflecting, and the absorbing
boundary.

• In case of a reflecting boundary, the density at level 0
satisfies

f(0)R− f ′(0)S = f(x)Q, (2)

and for the probability mass at zero pi = 0, ∀i : ri >
0 or σi > 0.

• In case of an absorbing boundary, equation (2) still
holds. Additionally, the density at level 0 is zero in
the second order states (fi(0) = 0, ∀i : σ2

i > 0), and
the probability mass at 0 is zero in the positive states
with zero variance (pi = 0, ∀i : ri > 0 and σ2

i = 0).

3. THE STATIONARY SOLUTION
The state space S is partitioned according to the sign of

the rates and variances as follows:
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• S+ = {i : ri > 0, σ2
i = 0}, S− = {i : ri < 0, σ2

i = 0},

• Sσ+ = {i : ri > 0, σ2
i > 0}, Sσ− = {i : ri < 0, σ2

i > 0},

and in this extended abstract we do not allow ri = 0.
Hence, the set of states are S = S+ ∪ Sσ+ ∪ Sσ− ∪ S− =
S•∪S−, where S• = S+∪Sσ+∪Sσ−. In the rest of the paper
it is assumed that the states of the CTMC are numbered
according to the S+,Sσ+,Sσ−,S− order of subsets.

From [1] (and from other sources as well) is known that
f(x) can be expressed in a matrix-exponential form. The
order of this matrix-exponential equals |S•| ([1, Theorem
4.]). Taking this fact into consideration the solution can be
transformed into the following form

f(x) = πeKx
[
I Ψ

]
, (3)

where the size of K is |S•| × |S•| and the size of Ψ is |S•| ×
|S−|. Hence, the form of the solution is the same as in first
order fluid models, therefore we used the same notations
for the matrices. It is important to note, however, that
matrices K and Ψ do not have the same elegant probabilistic
interpretations as they have in [4] for the first order case.

In order to fully characterize the stationary behavior, it
remains to solve

• matrices K and Ψ,

• vector π,

• and the vector of probability masses at level 0 p.

3.1 Computing matrices K and Ψ

Substituting the solution (3) into the differential equation
(1) gives

KR• −K2S• = Q•• + ΨQ−•, (4)

KΨR−−K2ΨS−︸ ︷︷ ︸
0

= Q•− + ΨQ−−, (5)

where S− = 0 has been exploited.
Let us now define diagonal matrixes with strictly positive

diagonal elements C• =




R+

Rσ+

−Rσ−


 and C− =

−R−, and choose an arbitrary constant c such that

c > max

(
max
i∈S+

|qii|
ri

, max
i∈Sσ− ⋃Sσ+

1

2si
(
√
r2i + 4si|qii| − ri)

)
.

(6)

Furthermore, by introducing matrices K̂ = 1
c
C−1
• KC•,

Ψ̂ = 1
c
C−1
• KC−, Ŝ• = cC−1

• S•, and Q̂ = 1
c
C−1Q equations

(4) and (5) simplify to

K̂Î• − K̂2Ŝ• = Q̂•• + Ψ̂Q̂−•, (7)

−K̂Ψ̂ = Q̂•− + Ψ̂Q̂−−, (8)

where Î• =




I+
Iσ+

−Iσ−


.

In the first-order case, when Sσ+ = Sσ− = ∅, identity
Î• = I holds, which makes equations (7) and (8) easy to
solve: expressing K from (7) and inserting the result into (8)
leads to the well-known matrix Riccati equation for matrix
Ψ. In the second-order case, however, Ψ and K can not

be obtained this way. Instead, a special quasi birth-death
Markov chain (QBD) is introduced, and the fundamental
matrix of this QBD will provide matrices Ψ and K.

The regular part of the block-tri-diagonal generator of
QBDs are characterized by three matrices: the transition
rates corresponding to level-forward (F), local (L) and level-
backward (B) transitions. We define these matrices as fol-
lows

F =

[
Q̂•• + Î• + Ŝ• Q̂•−

0 0

]
, (9)

L =

[
−Î• − 2Ŝ• 0

Q̂−• Q̂−− − I

]
, (10)

B =

[
Ŝ• 0
0 I

]
. (11)

Observe that these matrices define a proper QBD, since due
to (6)

Q̂++ + I+ > 0, (12)

Q̂σ+σ+ + Iσ+ + Ŝσ+ > 0, (13)

Q̂σ−σ− − Iσ− + Ŝσ− > 0 (14)

(15)

hold, hence Q̂••+ Î•+ Ŝ• (and therefore F) is non-negative,
furthermore,

Iσ− − 2Ŝσ− < 0 (16)

holds, hence −Î• − 2Ŝ• (and therefore L) is a valid sub-
generator. The non-negativity of B is straightforward. It
can be checked that the row-sum of F + L + B is zero as
well.

Theorem 1. The minimal non-negative solution of the
matrix-quadratic equation F + RL + R2B = 0 is

R =

[
K̂ + I Ψ̂

0 0

]
. (17)

Proof. Substituting the solution gives identity for the
matrix equation. When the eigenvalues of R are in the unit
disk the eigenvalues of K̂ as well as the eigenvalues of K
have negative real part.

Second-order fluid flow models: reflected Brownian motion
in a random environment

3.2 Computing vectors π and p

3.2.1 Reflecting boundary
If the boundary is reflecting, p• = 0 holds. Inserting the

matrix-exponential solution into (2) and taking the state
partitioning into account leads to equations

πR• − πKS• = p−Q−•, (18)

πΨR− = p−Q−−, (19)

since S− = 0.
After some manipulation vectors π and p− are expressed

by

π(R• −KS• −Ψ|R−|(−Q−−)−1Q−•) = 0, (20)

p− = π|R−|(−Q−−)−1. (21)
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In order to obtain a unique solution, the normalization con-
dition has to be taken into consideration as well, thus the
additional equation is

π
(
(−K)−1 [I Ψ

]
1+ |R−|(−Q−−)−1

1
)

= 1. (22)

3.2.2 Absorbing boundary
In case of the absorbing boundary, the density is zero in

the second order states, hence, fσ+(0) = 0 and fσ−(0) = 0.
Since the density at zero is expressed by f(0) = π

[
I Ψ

]
,

this implies that πσ+ = 0 and πσ− = 0, given that π =[
π+ πσ+ πσ−

]
. With such a π vector the terms in (2) are

f(0)R =
[
π+R+ 0 0 π+Ψ+−R−

]
, (23)

f ′(0)S =
[
0 π+K+,σ+Sσ+ π+K+,σ−Sσ− 0

]
, (24)

since S+ = S− = 0. Hence, for our partitioned vectors and
block matrices (2) can be rewritten as

π+R+ = pσ+Qσ+,+ + pσ−Qσ−,+ + p−Q−,+,

−π+K+,σ+Sσ+ = pσ+Qσ+,σ+ + pσ−Qσ−,σ+ + p−Q−,σ+ ,

−π+K+,σ−Sσ− = pσ+Qσ+,σ− + pσ−Qσ−,σ− + p−Q−,σ− ,

π+Ψ+−R− = pσ+Qσ+,− + pσ−Qσ−,− + p−Q−,−,

which, in matrix form, defines
[
π+ pσ+ pσ− p−

]
·




−R+ K+,σ+Sσ+ K+,σ+Sσ− −Ψ+−R−
Qσ+,+ Qσ+,σ+ Qσ+,σ− Qσ+,−
Qσ−,+ Qσ−,σ+ Qσ−,σ− Qσ−,−
Q−,+ Q−,σ+ Qσ−,− Q−,−


 = 0.

(25)

Finally, the normalization condition to be added to the
above set of equations is

[
π+ pσ+ pσ− p−

]
·




(−K)−1
+•
[
I Ψ

]
1

1

1

1


 = 1. (26)
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ABSTRACT
Fluid queues are a particular family of Markov-modulated
Brownian motions (MMBMs) characterized by the fact that
the evolution is piece-wise linear without Brownian noise. A
key difference is that stochastic fluid queues are amenable
to Kolmogorov-type analysis.

Ramaswami has shown in 2013 that standard Brownian
motion is the limit of a family of two-phase fluid queues
with increasing rates of transition from one phase to the
other. This has been extended to Markov-modulated Brow-
nian motions and we have coined the nomenclature flip-flop
fluid queue as a reminder of the fast transitions between up
and down movements.

This approximation has proved to give us a versatile tool
to analyse properties of MMBMs, in the spirit of Matrix-
Analytic methods. In particular, we have been able to use a
semi-regenerative approach to analyse the stationary prop-
erties of various processes related to MMBMs.

We present here a summary of the idea behind the tech-
nique and of the results obtained so far.

Keywords
Fluid queues, Markov-modulated Brownian motion, regen-
erative analysis

1. INTRODUCTION
We start from {Y (t), κ(t)}t≥0, a Markov-modulated Brow-

nian motion where the phase process κ is a Markov chain
with state spaceM = {1, . . . ,m}, and Y is a Brownian mo-
tion with drift µi and variance σ2

i whenever κ(t) = i ∈ M.
We denote by ∆µ the drift matrix diag(µ1, . . . , µm), by ∆2

σ

the variance matrix diag(σ2
1 , . . . , σ

2
m), and by Q the genera-

tor of κ, and we assume that Q is irreducible.
The family of fluid processes {Xλ(t), βλ(t), ϕλ(t)}t≥0 is

constructed as follows: the phase process (βλ(t), ϕλ(t)) is a

two-dimensional Markov chain with state space S = {(k, i) :
k ∈ {1, 2} and i ∈M} and generator

Tλ =

[
Q− λI λI
λI Q− λI

]
,

where the entries of Tλ follow the lexicographic ordering of
{1, 2} × M, and I denotes an appropriately-sized identity
matrix. Whenever ambiguity might arise, we write In to
denote the n× n identity matrix. The fluid rate matrix Cλ
is given by

Cλ =

[
∆µ +

√
λ∆σ

∆µ −
√
λ∆σ

]
.

Intuitively speaking, we duplicate the state space M in
the Markov-modulated Brownian motion {Y (t), κ(t)}, and
the auxiliary process βλ(t) keeps track of which copy is in
use. Note that for λ sufficiently large, the phases in the copy
with βλ(t) = 1 have all positive rates while the phases in the
other copy have all negative rates. We use the term flip-flop
processes to characterize the triplet {Xλ(t), βλ(t), ϕλ(t)}.

The idea originated with Ramaswami [8], where it is shown
that standard Brownian motion arises as the limit of a fam-
ily of Markov-modulated linear fluid processes. We extended
in [5] the argument of Ramaswami and showed that the flip-
flop fluid queue converges weakly, as λ goes to infinity, to
the Markov-modulated Brownian motion. We proved that
the stationary distribution of a Markov-modulated Brow-
nian motion regulated at zero is the limit from the well-
analyzed stationary distribution of fluid queues, and so pro-
vided a new approach for obtaining the stationary distribu-
tion of a regulated MMBM.

Our results opened the way to the analysis of more com-
plex processes and we give in this presentation a brief sum-
mary of some processes that have been analysed, with em-
phasis on two approaches which proved to be very fruitful:

• We identify a set of regeneration points, and so are able
to confirm old results, and provide new ones, without
having to rely on time-reversal;

• We use techniques developed for fluid queues to supple-
ment, wherever needed, known results from traditional
MMBM analysis.

2. MMBM WITH STICKY BOUNDARY
Systems in real life are designed with feedback loops. This

is our reason for studying stochastic processes with reactive
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boundaries, that is, processes that change behaviour upon
hitting some boundary. In [6] we focus on regulated MMBMs
with a sticky boundary at level 0.

Brownian motions with a sticky boundary were introduced
by Feller [1] in the 1950s. Briefly stated, the regulated Brow-
nian motion is slowed down when it is at level 0, in such a
way that, without actually staying at zero for any interval of
time of positive length, it does spend in that level an amount
of time with positive Lebesgue measure.

We extend in two ways the construction in Harrison and
Lemoine [2]. First, we define a straightforward generaliza-
tion based on the regulator R∗(t) = | inf0≤s≤tX

∗(s)| and a
change of clock. The new clock increases at rate 1 while the
regulated process is strictly positive, at a slower rater when
the process is equal to 0. In a further extension, the phase is
controlled with a different Markov process when the MMBM
is at level 0.

To determine the stationary distribution of our processes,
we choose points of regeneration forming a subset of the
epochs when the process hits level 0: once the process hits
the boundary, we start an exponential timer and we do not
register the instantaneous returns to 0 by the Brownian mo-
tion until the timer has expired.

We use a flip-flop approximation of the MMBM with sticky
boundary to determine the expected time spent in various
states during an interval between regeneration, and we ob-
tain an expression for the stationary distribution, expression
which has a very simple physical interpretation.

3. TWO-SIDED MMBM WITH BOUNDARY
CONTROL

We consider in [3] a Markov-modulated Brownian mo-
tion with two boundaries at 0 and b > 0, and we allow for
the controlling Markov chain to instantaneously undergo a
change of phase upon hitting either of the two boundaries at
semi-regenerative epochs. These are defined to be the first
time the process reaches a boundary since it last hits the
other boundary. To give one example, assume that losses
occur whenever the buffer gets full; to reduce the losses,
one might instantaneously increase the speed at which the
buffer is emptied. When the buffer content drops to level 0,
operations may resume under normal conditions.

To determine the stationary distribution, the key ingredi-
ents needed are the expected time spent in an interval [0, x]
and in a given phase during an excursion from 0 to b for
the process regulated at 0, and from b to 0 for the process
regulated at b, as well as the distribution of the phase upon
reaching a boundary. To obtain these quantities, we use con-
nections obtained in [4] between MMBMs and their flip-flop
approximations, and we prove new ones.

4. CONCLUSION
The synergy of the semi-regenerative analysis of stochastic

processes and the flip-flop fluid approximation to MMBMs
is a powerful one. It is being put to use in Latouche and Si-
mon [7], and it will prove to be useful in many circumstances
beyond the models already mentioned.
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ABSTRACT
We describe a componentwise accurate algorithm to find
the stationary distribution of a Markov-modulated Brow-
nian motion {Y (t), ϕ(t)}t≥0. The algorithm is based on
finding a suitable invariant pair (X,U), with U =

[
I Ψ

]
,

satisfying X2UV − XUD + UQ = 0, where Q is the rate
matrix of the driving continuous-time Markov chain ϕ(t) on
state spaceM, and the diagonal matrices D and V contain,
respectively, the drifts di and parameters 2σ2

i , where σ2
i is

the variance, for i ∈ M. The algorithm is based on a com-
ponentwise accurate variant of Cyclic Reduction; a special
treatment based on the shift technique is needed in the case
when V is singular.

CCS Concepts
•Mathematics of computing→Queueing theory; Com-
putations on matrices; Markov processes;

Keywords
Markov-modulated Brownian motion; Cyclic Reduction; com-
ponentwise accurate computation; numerical linear algebra;
matrix equations

1. INTRODUCTION
Markov-modulated Brownian motion [6, 11] is a popu-

lar tool in modeling fluid processes evolving with a stochas-
tic behavior. The process is defined by a continuous-time
Markov chain ϕ(t) with transition matrix Q on state space
M = {1, . . . , n}, and by a level process Y (t) which evolves

∗Giang Nguyen acknowledges the financial support of the
Australian Research Council through the Discovery Grant
DP110101663, and the support of ARC Centre of Excel-
lence for Mathematical and Statistical Frontiers. Federico
Poloni acknowledges the financial support of a PRA research
project of the University of Pisa, and of a INDAM-GNCS
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as a Brownian motion with drift di and variance σ2
i when-

ever ϕ(t) = i, for i ∈ M. Here, we consider the case in
which the boundary conditions are absorbing at zero, that
is, we set Y (t) = 0 whenever it would become negative.

The stationary density p(x) : (0,∞) 7→ R1×n is a vector-
valued function such that

(p(x))i =
d

dx
P[Y (t) ≤ x, ϕ(t) = i].

It was proved [6] that it satisfies the differential equation

p̈(x)V − ṗ(x)D + p(x)Q = 0, (1)

with V = diag(2σ2
i )i∈M and D = diag(di)i∈M. Moreover,

the stationary distribution p is matrix-exponential:

p(x) = v exp(Xx)U

for suitable v ∈ R1×k, X ∈ Rk×k, and U ∈ Rk×n, with
k = |M+|, where M+ = {i : vi 6= 0 or di > 0}|. Without
loss of generality, we assume the states are ordered so that
M+ = {1, 2, . . . , k}.

2. NUMERICAL METHODS
A number of different methods have been suggested in the

literature to find the parameters v, X, U . The method in [6]
is based on the explicit computation of the eigenvectors and
eigenvalues of a suitable matrix constructed from Q,D, V ;
the one in [1] is based instead on a block diagonal decom-
position, which is computed through an iterative method.
Other algorithms stem from the fact that

X2UV −XUD + UQ = 0, (2)

or, in linear algebra terms, (X,U) is a left invariant pair of
the matrix polynomial P (z) := V z2−Dz+Q. The method
in [2] to compute invariant pairs can be used for this prob-
lem. If V is nonsingular, then (2) reduces to a matrix equa-
tion

X2V −XD +Q = 0;

the method [8] uses a Cayley transform to reduce this equa-
tion to a version commonly studied in the setting of quasi-
birth-death (QBD) processes, the most efficient algorithm
to solve it is then Cyclic Reduction [4].

Moreover, it is shown in [5] that we can take U =
[
I Ψ

]

for a suitable matrix Ψ ≥ 0 (here and in the following, in-
equalities on matrices are intended in the componentwise
sense), and that the associated X is a subgenerator matrix,
that is, Xij ≤ 0 for i 6= j and X1 ≤ 0, where 1 is the vector
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of all ones. These matrices can be interpreted as the proba-
bilities of first return to the starting level and the generator
of the process of downward records for the time-reversed
process, respectively.

3. COMPONENTWISE ACCURACY
The papers [9, 12] present algorithms to solve the special

case in which V = 0, which are stable in a strong sense: we

say that M̃ ∈ Rm×n is a componentwise accurate approxi-
mation (within a threshold ε) of M ∈ Rm×n if

|M̃ij −Mij |
|Mij |

≤ ε for all i and j.

With this definition, these algorithms produce quantities
X,U,v, and p(x) that are componentwise accurate, within
a threshold that is a small multiple Cu of the machine pre-
cision u, for some constant C. This guarantee is stronger
than what is traditionally provided by numerical linear al-

gebra algorithms, that is, ‖M̃−M‖/‖M‖ ≤ ε. In particular,
tiny entries are computed with a high number of significant
digits, and quantities that have an interpretation in terms of
probability are always nonnegative, a property highly valued
in models of this kind.

Componentwise stability is obtained by ensuring that the
algorithms contain (almost) no subtractions between two
quantities with the same sign (subtraction-free algorithms),
which is made possible by the special sign structure of the
problem. The main building block is the GTH algorithm
[10], which allows one to solve accurately linear systems
with an M-matrix M if two vectors u > 0,v ≥ 0 such
that Mu = v are known accurately. The triple (M,u,v) is
known as a triplet representation.

4. THE CASE OF POSITIVE VARIANCES
In this extended abstract and the associated presentation,

we describe an extension of the techniques introduced in the
previous section to deal with the Brownian motion case. The
simplest case is the one in which V > 0. In this setting,
we need only a few modifications to the strategy in [8] to
ensure componentwise accuracy. We have k = n, and we
can choose U = I. We take h > 0 small enough such that
vi + dih + Qiih

2 ≥ 0 for all i = 1, 2, . . . , n; then, direct
verification shows that R = I + hX satisfies the equation
R2A−RB + C = 0, where

A := V, B := 2V + hD, C := V + hD + h2Q. (3)

These coefficients satisfy A ≥ 0, C ≥ 0, and (A−B+C)1 =
0. These matrices can be interpreted (possibly after a scal-
ing) as the transition matrices of a QBD process; hence, we
can compute R with the following iteration, known as cyclic
reduction [4].

A0 = A, B0 = B̂0 = B, C0 = C,

Ak+1 = AkB
−1
k Ak,

Bk+1 = Bk −AkB
−1
k Ck − CkB

−1
k Ak,

Ck+1 = CkB
−1
k Ck,

B̂k+1 = B̂k − CkB
−1
k Ak.

Indeed, B̂k converges to a matrix B̂∞, and R = C0B̂
−1
∞ .

The required inversions can be performed with the GTH

algorithm, using the triplet representation Bk1 = (Ak +

Ck)1 and B̂∞1 = C01 + w, with w = limk→∞Ak1. The
former triplet has been already used in the implementation
of Cyclic Reduction (see, for example, [3]) but the latter, to
the best of our knowledge, is new. A triplet representation
for the M-matrix −X> can be derived explicitly as well.

In the previous algorithm, subtractions are needed only
in the computation of diag(C), but choosing h suitably one
can make sure that they cause no significant cancellation.

5. THE GENERAL CASE
When k 6= n, there are a number of difficulties in the

previous algorithm; the most apparent one is that we cannot
choose h > 0 to satisfy the required inequalities. Further
ones appear if one considers the location of eigenvalues and
the minimality of the computed solutions, which we have
not done in this very brief note.

To work around these issues, let us subdivide (1) into
blocks corresponding to S and its complementary set

[
p̈1 p̈2

] [V1 0
0 0

]
−
[
ṗ1 ṗ2

] [D1 0
0 D2

]
+
[
p1 p2

] [Q11 Q12

Q21 Q22

]
= 0.

We differentiate the equation corresponding to the second
column, −ṗ2D2 + p1Q12 + p2Q22 = 0, obtaining

−p̈2D2 + ṗ1Q12 + ṗ2Q22 = 0.

Multiplying the latter equation by −h and summing it to
the original second column equation leads to

[
p̈1 p̈2

] [V1 0
0 −hD2

]
−
[
ṗ1 ṗ2

] [D1 −hQ12

0 D2 − hQ22

]

+
[
p1 p2

] [Q11 Q12

Q21 Q22

]
= 0. (4)

We now continue with the transformation (3), replacing
Q,D, V with the corresponding coefficients of (4). This
technique of differentiating equations is common in the field
of differential-algebraic equations [7], where it is used for dif-
ferent reasons: not to preserve sign structures, but to obtain
a system with a nonsingular highest-order factor for numeri-
cal integration. Alternatively, it can be understood as a shift
technique [4] to relocate some of the infinite eigenvalues of
P (z).

From the solution R of the resulting matrix equation, one
can recover (X,U) as X = h−1(Y − I), U =

[
I Ψ

]
, where

Ψ = −B12B
−1
22 ≥ 0,

Y = (C11 + ΨC21)(B11 + ΨB21)−1 ≥ 0.

Again, it is possible to perform the whole algorithm in a
subtraction-free way with the help of triplet representations,
apart from the subtractions in diag(C) which are not prob-
lematic. A triplet representation for −X> can be returned.

6. CONCLUSIONS
This informal description aims to present the main points

of the algorithm. A full treatment, including proofs that
these formulas work, a full discussion of drifts, location of
the eigenvalues and minimality of the solutions, a compo-
nentwise stability analysis, and numerical experiments, will
be available in a future paper.

114



7. REFERENCES
[1] M. Agapie and K. Sohraby. Algorithmic solution to

second-order fluid flow. In Proceedings IEEE
INFOCOM 2001, The Conference on Computer
Communications, Twentieth Annual Joint Conference
of the IEEE Computer and Communications Societies,
Twenty years into the communications odyssey,
Anchorage, Alaska, USA, April 22-26, 2001, pages
1261–1270, 2001.

[2] T. Betcke and D. Kressner. Perturbation, extraction
and refinement of invariant pairs for matrix
polynomials. Linear Algebra Appl., 435(3):574–536,
2011.

[3] D. Bini, B. Meini, and S. Steffè. SMCSolver
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ABSTRACT
In this paper a one-dimensional surplus process is considered
with a certain Sparre Andersen type dependence structure
under general interclaim times distribution and correlated
phase-type claim sizes. The Laplace transform of the time to
ruin under such a model is obtained as the solution of a fixed
point problem. An efficient algorithm for solving the fixed
point problem is derived together with bounds that illus-
trate the quality of the approximation. A two-dimensional
risk model is analyzed under a bailout type strategy with
both fixed and variable costs and the proposed dependence
structure.
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1. THE RISK PROCESS
We consider in this paper the following risk process. For

a given initial surplus u ∈ R+, we denote by X = {X(t), t ∈
R+} the insurer’s surplus, whose evolution at t ∈ R+ is given

∗A full version of this paper is available as On a class of
dependent Sparre Andersen risk models with applications,
available upon request

by

X(t) = u+ ct−
N(t)∑

i=1

Jk.

The premium rate c is assumed to be strictly positive. We
denote by N(t) = max{k ∈ N : Tk ≤ t} for t ∈ R+ the num-
ber of claims by time t and we assume independence among
each generic pair interclaim time-claim size {(Tk, Jk)}∞k=1.
Furthermore, we assume that the surplus process X(t) has
a Sparre Andersen type dependence structure, defined by

P (Tk ∈ dt, Jk ∈ dx) = α(dt) eRx r dx t, x ∈ R+, (1)

where α(dt) ∈ Rm, is a 1 ×m distribution vector, R is an
m × m sub-generator matrix, r an m × 1 vector given by
r = (−R)1, with 1 denoting the m× 1 vector of ones. Note
that within each pair interclaim time-claim size the ran-
dom variables Tk and Jk are dependent, whereas the pairs
{(Tk, Jk)}∞k=1 are independent and identically distributed
(iid) random variables. This dependence structure is a slight
generalization of [3], with marginals Jk following a Phase
Type distribution with parameters (R,α(R+)). For this risk
model, we assume that he safety loading condition for sur-
plus {Xt, t ≥ 0} is satisfied, i.e. that cE(T1) > E(J1). We
let τ the time to ruin, defined as τ = inf{t ≥ 0 : X(t) < 0}
and ψ(t, u) = P (τ < t) to be the finite time ruin probability,

and denote it’s associated Laplace transform by ψ̂(q, u) =∫∞
0
qe−qtψ(t, u) dt.

2. EQUATION SATISFIED BY THE LAPLACE
TRANSFORM

This section relates ψ̂(q, u) to the solution of a matrix
equation. We first extend the definition of the Laplace trans-
form of α(dt) to matrix arguments:

Definition 1. For any m × m negative-definite matrix
Q and 1×m sub-probability vector valued measure α(dt) on
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R+\{0}, we denote by α̂(Q) the 1×m vector

α̂(Q) :=

∫ ∞

0

α(dt)eQt.

The main result of this section is the following:

Theorem 1. For q > 0 and u ≥ 0 the Laplace transform
of the time to ruin is given by

ψ̂(q, u) = ρ̂(q)eΓ(q)u1, (2)

where ρ̂(q) is a 1 × m sub-probability vector satisfying the
fixed point equation

ρ̂(q) = α̂(cR+ c r ρ̂(q)− qI), (3)

and Γ(q) = R+ r ρ̂(q).
If q = 0 there exists a 1 × m sub-probability vector ρ̂(0)

verifying (3) such that expression (2) holds for ψ̂(0, u).

The above result obtained is new and extend the results
obtained under the renewal risk model in [1] in Chapter 9,
Theorem 4.4, and the fixed point problem in Proposition
4.3.

3. ALGORITHM FOR THE RUIN PROBA-
BILITY

Determining ρ̂(q) as the solution to (3) turns out not to
be practical, as this a non linear multidimensional equation.
We propose here an algorithm easily implementable for any
distributions α(dt), provided that the following joint mo-
ments

Mk(δ) :=

∫ ∞

0

tke−δtα(dt) ∈ R1×m, (4)

are available for all k ∈ N. We then define

α̂N (Q) =
N∑

k=0

Mk(δ)
(Q+ δI)k

k!
. (5)

for δ > −mini=1,...,m(Qi,i). One can easily prove that
α̂N (Q) −→ α̂(Q) as N → ∞. The goal of this section is
to approximate ρ̂(q) by ρ̂N (q) that satisfies

ρ̂N (q) = α̂N (cR+ c r ρ̂N (q)− qI) = α̂N
(
cB(ρ̂N (q))− qI

)
,

(6)
ρ̂N (q) is in turn obtained thanks to the following result:

Proposition 1. For q ≥ 0 and

δ ≥ q − c min
i=1,...,m

Rii, (7)

the sequence (ρ̂Nn (q))n∈N defined as
{

ρ̂N0 (q) = (0, ..., 0)
ρ̂Nn+1(q) = α̂N (cR+ c r ρ̂Nn (q)− qI), n ≥ 0,

(8)

converges to a solution of Equation (6) in the set of sub-
probability vectors.

Finally, the following theorem justifies that ρ̂N (q) provides
the approximation for the ruin probability starting from 0,
namely ψ̂(q, 0), and also provides its accuracy for q ≥ q0
large enough. Remember that ψ̂(q, u) is also expressed in
function of ρ̂(q) for all u ≥ 0 thanks to (2).

Theorem 2. For q > 0, if ρ̂N (q) is a solution to the

fixed point equation (6), then ρ̂N (q)1 converges to ψ̂(q, 0),
as N →∞.

For q = 0, if ρ̂N (0) is the solution to the fixed point equa-
tion (6) defined in Proposition 1, then ρ̂N (0)1 converges to

ψ̂(0, 0), as N →∞.
Finally, for δ and q satisfying conditions (7) and q >

c(e−1 + 5||R||) the following bound holds

∣∣∣ρ̂(q)− ρ̂N (q)
∣∣∣
m
≤ 1

1− C
∞∑

k=N+1

|Mk(δ)|m
k!

δk

=
1

1− C

[
α̂(0).1−

N∑

k=0

|Mk(δ)|m
k!

δk
]

where constant C is given by C := c.e−1||R||
q−5c||R|| < 1, and for all

m ∈ N \ {0}.

4. APPLICATION TO A BAILOUT PROB-
LEM

Although the dependence structure proposed in Section
1 has a lot of potential for many applications, we propose
one dealing with a bailout type model. This model is quite
recent and triggered some interesting development, see [2].
In economics, a bailout is an act of loaning or giving capital
to a failing business in order to save it from bankruptcy,
insolvency, or total liquidation and ruin. To this extent, we
consider a main economic unit that replenishes the level of
capital of a secondary economic unit when the last one faces
financial difficulties. A possible interpretation of the actual
problem from an insurance point of view is that the main
unit that we generically call the Central Branch (CB) infuses
capital into the secondary unit referred as the Subsidiary,
whenever the level of the surplus in the subsidiary drops
below level 0.

We start by introducing the bivariate risk model

Ui(t) = ui + ci t− S(i)(t), S(i)(t) =

Ni(t)∑

j=1

J
(i)
j , i ∈ {0, 1},

where {Ni(t), t ≥ 0} is a counting process that describes the

claim arrivals, and the claims sizes J
(i)
j , j ≥ 1 are nonnega-

tive i.i.d. random variables with arbitrary marginal distribu-
tions given by Fi(x), i ∈ {0, 1}. We let U0(t) to describe the
surplus of the CB, whereas U1(t) represents the surplus of
the independent subsidiary. We assume that the loading

condition for the subsidiary is satisfied, namely c1 ≥ E[J1]

E[T1]
,

where T 1 represents the generic interclaim random variable.
It is assumed that at the ruin instants of the subsidiary,
the central branch replenishes the shortfall of the ruined
subsidiary back to a zero surplus level. Furthermore, we
consider that the transaction cost associated to the generic
replenishment amount ζ(1) corresponding to the subsidiary,
is given by k1ζ

(1) + K1. Consequently, the cost associated
to each replenishment ζ(1) has two components: a “variable”
one (that depends on the size of the deficit) introduced via
the proportionality constant k1, and a “fixed” one (for e.g.
administration costs) described by the generic variable K1.
For mathematical tractability, K1 is assumed to be a ran-
dom variable independent on the replenishment levels ζ(1).
To avoid very complicated scenarios, we assume that the
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only feasible transactions are to be made from the CB to
the subsidiary.

We are then interested in the Laplace transform ψ0(q, u1)
of the ruin time τ0 of the Central Branch, and are set to
determine this quantity thanks to the approximation proce-
dure described in Section 3. As explained there, the crucial
point is to identify, in the present scenario, the structure
(1), get closed form expression for the corresponding joint
moments (4), then use recursion (8) in order to get the cor-
responding approximating vector ρ̂N (q).
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1. THE MARKOV ADDITIVE RISK PRO-
CESS

Consider a Markov additive risk process {Rt}t≥0 on the
form

Rt := u+

∫ t

0

rJsds+

∫ t

0

σJsdBs −
Nt∑

k=1

Uk,

where u > 0 is the initial reserve, {Jt}t≥0 is a Markov
jump process with intensity matrix Γ = C + D and ini-
tial distribution µ, ri > 0, σi ≥ 0, {Bt}t≥0 is a standard
Brownian motion, and {Nt}t≥0 is a Markovian Arrival Pro-
cess MAPm(C,D). Claim sizes U1, U2, . . . are phase–type
distributed with representations (πij ,T ij) (each one hav-
ing transient state space Eij), where ij denotes the type
of the transition governed by D. This model is essentially
a spectrally negative Markov modulated Lévy process with
phase–type jumps (and no small jumps).

We shall employ a fluid embedding (see [2], [3] and [4])
in order to calculate different probabilities of interest. From
here on, we will denote with I the identity matrix, 0 the
matrix filled with 0’s, e the column vector filled with 1’s,

and e
(m)
j the column vector with value 1 in its j-th entry

and 0 everywhere else, all of them of appropriate dimension.
If their dimension needs to be specified, we will indicate it
with a superscript. In addition,we will partition the state
space of the Markov jump process associated to the fluid
model into Eσ := {i : σi > 0}, E+ := {i : σi = 0, ri > 0}
and E− := {i : σi = 0, ri < 0} and order the space into these
three blocks of states. Throughout this manuscript, we will
usually use diagonal matrices (indicated by ∆) whose sub-
script indicates the entries on the diagonal, and whose su-
perscript indicates the block we are referring to; for example,
∆++

1/r = diag(1/ri : i ∈ E+).

To create the fluid embedding of the risk process, we
need to consider a fluid flow model (see [1] for more de-
tails) with the following characteristics. Let Eσ ∪ E+ ∪
E− be the states underlying the fluid flow process, with
drifts r := (r1, . . . , rm,−1, . . . ,−1), diffusion parameters
σ = (σ1, . . . , σm, 0, . . . , 0), initial distribution (µ, 0, . . . , 0)
and intensity matrix given by

Λ :=




Λσσ Λσ+ Λσ−

Λ+σ Λ++ Λ+−

Λ−σ Λ−+ Λ−−


 , (1)

with

(
Λσσ Λσ+

Λ+σ Λ++

)
= C,

(
Λσ−

Λ+−

)
= diag(Hi :

∑

j

dij > 0)

(
Λ−σ Λ−+

)
= col(tij(e

(m)
j )′ : dij > 0),

Λ−− = diag(T ij : dij > 0),

where Hi = row(dijπ
ij : dij > 0) and tij = −T ije. The

next result is a direct consequence of this embedding and
[1].

Theorem 1. Consider the Markov additive risk process
which starts in level u > 0 and is either transient (in the
sense of [6]) or goes to +∞ a.s.. Then, its probability of
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ruin is given by

µ

(
I 0

α(+σ) α(+−)

)
exp

((
U (σσ) U (σ−)

U (−σ) U (−−)

)
u

)
e

= µP (u)e

where
((
Uσσ,Uσ−) ,U−σ,U−−,

(
α+σ,α+−))

= lim
n→∞

f (n) ((−∆σσ
η ,0

)
,Λ−σ,Λ−−, (0,0)

)
,

and f (n) denotes the n-th application of the operator f de-
fined by

f
((
Uσσ,Uσ−) ,U−σ,U−−,

(
α+σ,α+−))

=

(
(
∆σσ
η ,0σ−

)
+
∑

i∈Eσ
eie
′
iF1(ωiI −U)−1 ,

Λ−σ + Λ−+α+σ,

Λ−− + Λ−+α+−,

∑

i∈E+

eie
′
i

(
f2(α+σ,α+−)

)( λi
|ri|
I −U

)−1

 ,

where

F1 = ∆σσ
2λ/σ2

(
(I + ∆σσ

1/rΛ
σσ),∆σσ

1/rΛ
σ−) ,

f2(α+σ,α+−)

= ∆++
1/r

((
∆++
λ + Λ++) (α+σ,α+−)+

(
Λ+σ,Λ+−)) ,

and

ηi =
ri

σ2
i

+

√
r2i
σ4
i

+
2λi

σ2
i

, ωi = − ri

σ2
i

+

√
r2i
σ4
i

+
2λi

σ2
i

, λi = −λii.

Moreover, in the case the associated MAP is transient,
then the probability that the maximum of the risk reserve
process reaches level s > u before termination is

µ exp

((
V (σσ) V (σ+)

V (+σ) V (++)

)
(s− u)

)
e

where
((
V σσ,V σ+) ,V +σ,V ++,

(
β−σ,β−+))

= lim
n→∞

g(n)
(

(−∆σσ
ω ,0) ,∆++

1/rΛ
+σ,∆++

1/rΛ
++, (0,0)

)
,

and g(n) denotes the n-th application of the operator g de-
fined by

g
((
V σσ,V σ+) ,V +σ,V ++,

(
β−σ,β−+))

=

(
(
∆σσ
ω ,0σ+

)
+
∑

i∈Eσ
eie
′
iG1(ηiI − V )−1 ,

∆++
1/r

(
Λ+σ + Λ+−β−σ

)
,

∆++
1/r

(
Λ++ + Λ+−β−+) ,

∑

i∈E−
eie
′
i

(
g2(β−σ,β−+)

)
(λiI − V )−1


 ,

where

G1 = ∆σσ
2λ/σ2

(
(I + ∆σσ

1/rΛ
σσ),∆σσ

1/rΛ
σ+) ,

and

g2(β−σ,β−+)

=
(
∆−−λ + Λ−−

) (
β−σ,β−+)+

(
Λ−σ,Λ−+) .

2. PARISIAN RUIN
To compute the probability of not getting ruined in a

parisian way, we need to calculate the probability that for
every i ≥ 1, the duration of the i-th excursion below zero
of {Rt}t≥0 is smaller than Li, where {Ln}n≥1 is a sequence
of i.i.d. phase-type distributed r.v.’s (referred to as parisian
clocks) with parameters (κ,K) of dimension `. If there is at
least one genuine Brownian component in the Markov addi-
tive risk model, then we need to define the ε-parisian ruin
and ε-recoveries in the following way: the risk process un-
dergoes an ε-recovery whenever it downcrosses level −ε < 0
(at which point the parisian clock is started) and is capable
of reaching level 0 before the parisian clock rings. If at least
one of those ε-recoveries is not succesful, then we declare
ε-parisian ruin.

In order to calculate the probability that once the risk
process downcrosses level −ε it will reach level 0 before the
parisian clock rings, we kill the underlying MAP at an in-
dependent PH`(κ,K)-distributed random time, which ac-
cording to [6], leads us to the transient MAP process with
parameters (C ⊕K,D ⊗ I). Then, by applying the fluid
embedding method, we end up working with a terminal fluid
flow process with intensity matrix given by

Λ∗ :=




Λσσ ⊕K Λσ+ ⊗ I Λσ− ⊗ I
Λ+σ ⊗ I Λ++ ⊕K Λ+− ⊗ I
Λ−σ ⊗ I Λ−+ ⊗ I Λ−− ⊗ I(`)


 ,

with drifts r∗ := ((r1, . . . , rm) ⊗ (e(`))′,−1, . . . ,−1), diffu-

sion parameters σ∗ := ((σ1, . . . , σm) ⊗ (e(`))′, 0, . . . , 0) and

initial distribution (µ ⊗ (e(`))′, 0, . . . , 0). This is the very
same idea of “freezing time” during downwards movements
of a fluid flow process proposed by [2]. Also, notice that
the underlying state space of the fluid flow model is an aug-
mented one, where each block’s cardinality is `-times bigger
than the original one.

This construction implies that the original risk process
makes a parisian ε-recovery if and only if this associated
fluid flow model which starts in level −ε < 0 ever upcrosses
0. With this in mind, we can state the next theorem.

Theorem 2. Suppose that the risk process downcrosses
−ε < 0 according to a probability row-vector ξ, with the pos-
sible states being E− = Eσ∪

(
∪i,jEij

)
. Then, the probability

that the process ε-recovers is

ξ(I− ⊗ κ)

(
Iσ 0

γ(−σ) γ(−+)

)
exp

((
W (σσ) W (σ+)

W (+σ) W (++)

)
ε

)
e

= ξQ(ε)e,

where γ(−σ),γ(−+) and W can be recursively approxi-
mated in the same way β(−σ),β(−+) and V were computed
in Corollary 1, with (Λ, r,σ) replaced with (Λ∗, r∗,σ∗).

Finally, to compute the ε-probability of ruin we just need
to construct an adequate Markov chain whose space state
contains Eσ↑ ∪ E+, Eσ↓ ∪

(
∪i,jEi,j

)
, and two absorbing

states ∆NR and ∆R. The elements in Eσ↓ ∪
(
∪i,jEi,j

)
are
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the underlying states in which the risk process can downcross
level −ε, and Eσ↑∪E+ are the underlying states in which the
killed risk process can upcross level 0. The states ∆NR and
∆R mark the events {No further downcrossings of −ε} and
{Failed ε-recovery}, respectively. The distribution of this
Markov chain is characterized by the initial distribution

(0,µP (u+ ε), 1− µP (u+ ε)e, 0)

and the transition matrix



0 P (ε) e− P (ε)e 0

Q(ε)(I ⊗ e(`)) 0 0 e−Q(ε)e
0 0 1 0
0 0 0 1




This way, we have the next result.

Theorem 3. The probability that a Markov additive risk
process gets ruined in an ε-parisian way on its n-th down-
crossing of −ε is given by

ψ(n)
ε (u) =µP (u+ ε)

(
Q(ε)(I ⊗ e(`))P (ε)

)n−1

(e−Q(ε)e).

Moreover, the probability of an ε-parisian ruin occurring
at all is given by

ψε(u) =µP (u+ ε)
(
I −Q(ε)(I ⊗ e(`))P (ε)

)−1

(e−Q(ε)e).

To compute the 0-parisian probability of ruin (the one
that was originally proposed in [5]) for risk processes with
genuine Brownian components, we only need to compute the
probability of being εn-parisianly-ruined for some sequence
εn ↓ 0 and calculate the limit of such a sequence of proba-
bilities. If there are no Brownian components at all, we can
compute it directly with the formulae found in the previ-
ous theorems by substituting ε = 0. Erlangization provides
a tool to compute parisian ruin with deterministic parisian
clocks.
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1. INTRODUCTION
Consider a Markovian Arrival Process MAPk(π,C,D).

Let X(t) be the Markov Jump Process {X(t)}t≥0, with in-
tensity matrix Q = C + D of dimension k × k and initial
probability vector π, which generates the Markovian Arrival
Process. We observe the Markov Jump process at certain
discrete time points, as well as at the times of all arrivals.
Thus the states have physical interpretations, as opposed
to most models involving MAPs. This type of data is fre-
quently encountered in survival analysis in models for long-
term disease development. For example, the states could in-
dicate the different phases of a disease development, where
the current state of a patient is monitored periodically, but
certain acute transitions might occur as well, e.g. heart
events or psychiatric relapses. Hence transitions can be hid-
den or observable. We shall present maximum likelihood
methods for estimation, and a somewhat simplified example
based on a well-known model of breast cancer.

2. ESTIMATION
The estimation problem can be seen as an incomplete data

problem, since we do not observe the complete trajectories of
the Markov Jump processes. The current model comprises
three different scenarios, two of which have been considered
previously. Estimation in phase-type distributions was con-
sidered in [1], while [2] dealt with discretely observed Markov
Jump Processes. These works employed the EM algorithm
and MCMC methods. In survival analysis, similar problems
have been treated, by direct optimization of the likelihood
function [3]. We employ the EM-algorithm, which makes use
of the complete-data likelihood as well. First, we consider
the case of complete data. Hence we observe the complete
trajectory of the Markov jump process, and the arrivals of
the MAP. Figure 1 displays a sample path of a MAP. With-

0
1
2
3
−
−
k

Figure 1: A sample path of MAP with k states. The
stars indicate transitions associated with an arrival.

out loss of generality, we may assume that the number of
independently observed MAPs is one. The complete-data
likelihood function is

L(θ) =

k∏

i=1

πbi
i

·
k∏

i=1

∏

j ̸=i

c
nij

ij exp(−cijzi)

·
k∏

i=1

k∏

j=1

d
nij

ij exp(−dijzi),

where

• bi, the number of processes that start in state i,

• zi, the total time spent in state i,

• nij , the total number of transitions from state i to
state j not associated with an arrival,

• nij , the total number of transitions from state i to
state j associated with an arrival,

constitutes a sufficient statistic. These parameters are col-
lected in vectors and matrices respectively, as B = {bi}i=1,..,k,
Z = {zi}i=1,..,k, N = {nij}i=1,..,k,j=1,..,k

and N = {nij}i=1,..,k,j=1,..,k. The maximum likelihood es-
timator is given by

π̂ = B, ĉij =
nij

zi
, d̂ij =

nij

zi
. (1)
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Figure 2: An illustration of the discrete observation
sampling scheme. The stars are arrivals while the
crosses are discrete observations.

Now, consider the case of incomplete data. We observe a
vector of states (xt1 , xt2 , . . . , xtn), with n being the total
number of observations and where t1 < t2 < . . . < tn. We
also observe a vector of indicators (i1, i2, . . . , in). Here, ih
equals 1 if the h’th observation is an arrival, 0 otherwise.
The likelihood function for the discrete data is a product
of the transition probabilities, and a closed-form expression
for the maximum likelihood estimator is not easily found.
As mentioned, we instead use the EM-algorithm to find
the maxmimum likelihood estimator. The EM-algorithm re-
quires a specification of the conditional expectations of the
sufficient statistics given the incomplete-data. Introduce the
following notation.

• Mk
ij(t) = E(Zk|X(0) = i, X(t) = j) = the expected

sojourn time in state k, given that the process was
initialised in state i and is in state j at time t.

• fkl
ij (t) = E(Nkl|X(0) = i, X(t) = j) = the expected

number of jumps not caused by an event from k to l,
given that X was initialised in state i and is in state j
after time t.

• f
kl

ij (t) = E(Nkl|X(0) = i, X(t) = j) = same as for

fkl
ij (t), but for the number of jumps caused by an event.

These variables can been seen as the individual contributions
of each observation-interval to the sufficient statistics. The
sufficient statistics are then given by

E(Zk|x) = Mk
·x1

(t1) +

n∑

h=2

Mk
xh−1xh

(∆h),

E(Nij |x) = f ij
·x1

(t1) +

n∑

h=2

f ij
xh−1xh

(∆h),

E(N ij |x) = f
ij

·x1
(t1) +

n∑

h=2

f
ij

xh−1xh
(∆h)

E(Bi|x) = E(Bi|X(t1) = x1),

Here, we have separated the contribution of the interval be-
tween time t = 0 and the first observation, because only a
distribution over the states is know at t = 0, and therefore
this contribution requires a slightly different approach. We
write Mk

·j(t) instead of Mk
ij(t), and similar for f and f , to

indicate that no previous state is known. The remainder is

hence to evaluate Mk
ij(t), fkl

ij (t), f
kl

ij (t) and E(Bk|X(t1) =
x1).

To shorten the equations that follow, define the matrices

Mkk′
(t) =

∫ t

0

exp(Cu)eke
′
k exp(Q0(t − u))du, (2)

Mkl′(t) =

∫ t

0

exp(Cu)eke
′
l exp(Q0(t − u))du. (3)

A fast way to calculate these integrals is with the method
described in [5]:

Mkl′(t) =
(

I 0
)
exp

([
C eke

′
l

0 C

]
t

) (
0
I

)
, (4)

where I is the identity matrix of dimension k × k and 0 is
a matrix of zeroes of dimension k × k. The contribution of
the first interval is

Mk
·j(t) =

πMkk′
Di1ej

π exp(Ct)Di1ej
, fkl

·j (t) = q0,kl
πMkl′Di1ej

π exp(Ct)Di1ej
,

f
kl

·j = 0, E(Bi|X(t1)) =
πie

′
i exp(Ct1)D

i1ext1

π exp(Ct1)Di1ext1

.

If the h’th observation is caused by an arrival, the contribu-
tion of the interval is

Mk
ij(t) =

eiM
kk′

Dej

ei exp(Ct)Dej
, fkl

ij (t) = q0,kl
eiM

kl′Dej

ei exp(Ct)Dej
,

f
kl

ij = 0 for l ̸= j, f
kl

ij =
ei exp(Ct)ekq1,kj

ei exp(Ct)Dej
for l = j.

If the h’th observation is caused by a discrete observation,
the contribution of the interval is

Mk
ij(t) =

eiM
kk′

ej

ei exp(Ct)ej
, fkl

ij (t) = q0,kl
eiM

kl′Dej

ei exp(Ct)ej

f
kl

ij = 0.

3. AN APPLICATION IN SURVIVAL ANAL-
YSIS

While usually not identified as such, many so-called multi-
state models used in survival analysis can be seen as MAPs.
One such model is used to analyse late-term effects of breast
cancer surgery. [4] This model has 5 states:

State 1: Post-surgery. The patient is in this state fol-
lowing the surgery.

State 2: Local reccurrence. The tumor reappears in
the vicinity of the operated tumor.

State 3: Distant metastatis. A tumor appears at a
distant location from the original tumor.

State 4: Local reccurence and distant metastasis. A
tumor has occured both in vicinity of and distant to
the original tumor. This can happen in any order,
although local occurence happening first is most com-
mon.

State 5: Dead. The absorbing state.

Transitions into state 2, 3 and 4 are not observed when they
happen, but only at screenings in the doctor’s office. The
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time at which transitions into the state death occur is how-
ever known very precisely, and we label such transitions as
events. Since the initial state is known, estimating the initial
distribution π is not relevant for this example. The matrix
structure, with some chosen values, is illustrated below.

C =




− 0.3 0.1 0 0
0 − 0 0.3 0
0 0 − 0.25 0
0 0 0 − 0
0 0 0 0 0


 ,

D =




− 0 0 0 0.025
0 − 0 0 0.04
0 0 − 0 0.03
0 0 0 − 0.1
0 0 0 0 0


 .

We simulated 100 women until absorption occurred, and dis-
crete observations were taken every 5 years. The model was
then fitted using the EM algorithm to 3-decimal points. Es-
timating for multiple series amounts to summing the suffi-
cient statistics for each series, while using the same maxi-
mum likelihood estimator (The π-vector would need to be
scaled by the number of series). The estimated values are
shown below.

Ĉ




− 0.2 0.118 0 0
0 − 0 0.342 0
0 0 − 0.419 0
0 0 0 − 0
0 0 0 0 0




D̂




− 0 0 0 0.030
0 − 0 0 0.035
0 0 − 0 0.004
0 0 0 − 0.104
0 0 0 0 0




And these appear reasonably close to the chosen values.
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ABSTRACT
It is well known that the Batch Markovian Arrival Process
permits dependent inter-event times and batch sizes. In this
work, the characterization of the dependence structure re-
lated to this model is analyzed for the general stationary
BMAPm(k), with event occurrences up to size k. In the
case of two states, it is proven that both auto-correlation
functions (inter-event times and batch sizes) decrease geo-
metrically as the time lag increases. More rich patterns can
be found when more than two states are considered in the
embedded Markov process. It is also shown how the depen-
dence associated to the model affects to the quantities and
distributions that describe the reliability of the process.
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ABSTRACT
Order statistics play an important role in many areas of
probability and statistics such as reliability (waiting for the
k–th failure before a system breaks down), robust statistics
(replace mean estimator by mean central order statistic) and
tail prediction (how does order statistics increase and how
we can predict yet unobserved higher orders). For a few
more examples and details we refer to [2] and [3].

Much of the literature of order statistics is concerned with
the (numerical) calculation of (possibly higher–order) mo-
ments and cross–moments, and in particular the more gen-
eral models with independent non–identically distributed
random variables (i.n.i.d.) has turned out to be rather chal-
lenging (see e.g. [4] or [2]).

We will consider the class of matrix–exponential distri-
butions, which is an extension of the class of phase–type
distributions with a rational Laplace transform. The class
of phase–type distributions is dense in the class of distribu-
tions on the positive real axis (this means that any non–
negative distribution may be approximated arbitrarily close
by a phase–type distribution), and they are well known for
their probabilistic attractive properties which allows for ex-
plicit and exact solutions in even complex stochastic models.

We work with the case when the order statistics are both
identically and non–identically, independently distributed
random variables having either ME or PH distributions, and
we derive expressions for both marginal and joint distribu-
tions respectively. While it has been mentioned in several
places in the literature that order statistics of phase–type
distributions are again of phase–type, it has not been pos-
sible for us to retrieve any particular representation other
than for the cases of the minimum and maximum. We
shall provide specific representations for any order statis-
tic of matrix–exponential distributed random variables, and
consequently for the case of phase–type distributed random
variables as well. Also we shall present formulas for cal-
culating joint distributions and higher order cross moments
which can be calculated in an efficient and numerically sta-

ble way by standard methods involving matrix inversions.
At the end, we will be able to calculate fractional moments
of order statistics by using a recent method of functional
calculus, which in turn will provide an explicit formula for
their Mellin transform (see [5] for details).

Previous work on order statistics within the classes of
phase–type and matrix–exponential distributions seems to
be limited to the papers by [1] and [8]. The two papers are
somewhat related in that they use similar recursive methods
for calculating the Laplace transform and moments respec-
tively, however, neither of the papers appear to take ad-
vantage of the probabilistic interpretation of the phase–type
distributions.

1. ORDER STATISTICS OF MATRIX–EX-
PONENTIAL DISTRIBUTIONS

LetX1, ..., Xn be independent random variables withXi ∼
MEpi(αi,Si, si), i = 1, 2, ..., n. We assume that the repre-
sentations MEpi(αi,Si, si) are such that si = −Sie. We
write ME(αi,Si). This assumption is not essential but sim-
plifies the derivations and the expressions.

Define the block diagonal matrices

S(k) = diag
((
Sj1 ⊕ · · · ⊕ Sjn−k

)
(j1,...,jn−k)∈I(n:k)

)
, (1)

where I(n : k) denotes the set of n!/((n − k + 1)!(k − 1)!)
lexicographically ordered n−k tuples (j1, ..., jn−k) such that
j1 < j2 < · · · < jn−k.

Theorem 1. Let X1, ..., Xn be matrix–exponential distri-
buted random variables with representation ME(αi,Si), i =
1, . . . , n. Then the k-th order statistic X(k), with 1 ≤ k ≤
n, has a matrix–exponential distribution with representation
ME(π(k),T(k)), where π(k) = (α1⊗ · · · ⊗αn,0, ...,0) (k− 1
blocks of zeros of appropriate dimension) and

T(k) =




S(1) S0
(1) 0 · · · 0

0 S(2) S0
(2) · · · 0

...
...

...
...
...
...

...
0 0 0 · · · S(k)


 .

The matrices S0
(j) are uniquely determined in terms of the

ordering of S(j) and S(j+1). For example, in the case when
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n = 3, we have that

S(1) = S1 ⊕ S2 ⊕ S3,

S0
(1) = (I ⊗ I ⊗ s3, I ⊗ s2 ⊗ I, s1 ⊗ I ⊗ I) ,

S(2) =



S1 ⊕ S2 0 0

0 S1 ⊕ S3 0
0 0 S2 ⊕ S3


 ,

S0
(2) =



I ⊗ s2 s1 ⊗ I 0
I ⊗ s3 0 s1 ⊗ I

0 I ⊗ s3 s2 ⊗ I


 ,

S(3) =



S1 0 0
0 S2 0
0 0 S3


 .

Then

T(1) = S1 ⊕ S2 ⊕ S3, (2)

T(2) =

(
S(1) S0

(1)

0 S(2)

)
, (3)

T(3) =



S(1) S0

(1) 0

0 S(2) S0
(2)

0 0 S(3)


 . (4)

We conclude that

X(i) ∼ ME
(
π(i),T(i)

)
, i = 1, 2, 3,

where T(1), T(2) and T(3) are given by (2), (3) and (4) respec-
tively, and , π(1) = α1 ⊗α2 ⊗α3, π(2) = (α1 ⊗α2 ⊗α3,0)
and π(3) = (α1 ⊗α2 ⊗α3,0,0).

Next we consider the joint distribution of X(r) and X(u).

Theorem 2. If X1, ..., Xn are independent and Xi ∼
ME(αiSi), then the distribution of (X(r), X(u)) is given by
the equation (5):

f(r,u)(x, y) =

(
n⊗

i=1

αi, 0

)
exp







S1 S0
1 · · · 0

0 S2 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.
.
.
.

.

.

.
0 0 · · · Sr


 x


×




0 0 · · · 0
0 0 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.
.
.
.

.

.

.
S0

r 0 · · · 0


 exp







Sr+1 S0
r+1 · · · 0

0 Sr+2 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.
.
.
.

.

.

.
0 0 · · · Su




(y − x)




(
0
S0

ue

)
(5)

The joint distributions of order statistics of matrix expo-
nential and phase type distributions are of the MME∗ and
MPH∗ types respectively, see [6]. The natural representation
uses the matrix corresponding to the highest order statistic
involved and a reward matrix R with columns of ones and
zeros. The simplest example is the joint distribution of the
maximum and minimum of two variables. This represen-
tation will be ((α1 ⊗ α2,0,0),T(2),R), where R is given
by

R =




e e
e 0
e 0


 .

The first column of the matrix R refers to the maximum
of the variables while the second column refers to the mini-
mum.

The formulation of joint order statistics as MME∗ or MPH∗

distributions leads to stable formulas for the calculation of
their cross moments. The cross moments can be calculated
using the following theorem, which is a reformulation of a
Theorem 4.2 from [7].

Theorem 3. Let Y ∼ MME∗(α,S,R). Then with U =
−S−1 and Wi = U∆(Rei) we have that

E

(
n∏

j=1

Y
hj

j

)
= α mper

∣∣∣∣∣∣∣∣∣

W1 W2 W3 · · · Wn

W1 W2 W3 · · · Wn

...
...

...
...
...
...

...
W1︸︷︷︸
h1

W2︸︷︷︸
h2

W3︸︷︷︸
h3

· · · Wn︸︷︷︸
hn

∣∣∣∣∣∣∣∣∣
e,

where mper is like the permanent but with entrances being

square matrices of the same dimension. The mper is calcu-
lated as the usual permanent in terms of sums of products of
matrices taking into account the possible non–commutativity
and expanded by the first block row only. The notation of
∆(A) refers to the diagonal of the matrix A.

The matrix–exponential methodology allows us to calcu-
late moments, cross moments and Mellin transforms (frac-
tional moments) in an efficient and numerically stable way
for reasonably sized matrices T(k). The computationally
demanding operations in terms of time consumption and
memory allocation are matrix inversion for the case of mo-
ments of integer order, and matrix–logarithm and exponen-
tials for general fractional moments. The exit rate vector
corresponding to T(i) is given by t(i) = −T(i)e. By calcula-

ting U(i) = −T−1
(i) , we then obtain Mellin transforms for the

X(i)’s by

MX(i)
(α) = E

(
Xα−1

(i)

)
= Γ(α) π(i)U

α
(i)t(i).

The fractional moments of U(i) can be obtained using the
method of functional calculus, see [5].
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ABSTRACT
In this paper we propose to use the concept of physiological
age to modelling the process of aging by using phase-type
distributions to calculate the probability of death.

We propose a finite-state Markov jump process to model
the hypothetical aging process. Since the Markov process
has only a single absorbing state (the death state), the death
time (the absorbing time) follows a phase-type distribution.
We assume an specific evolution for the aging process that
determine the structure of the intensity matrix of the Markov
process. Thus, to build a mortality table the challenge is to
estimate this matrix based on the records of the aging pro-
cess.

Considering the nature of the data, we consider two cases:
first, having continuous time information of the aging pro-
cess (hypothetical case), and the more interesting case, where
we have reports of the process just in determined times.

If the aging process is only observed at discrete time points
we have a missing data problem, thus, we use a stochastic
EM algorithm for finding the maximum likelihood estima-
tor of the intensity matrix. And in order to do that, we
build Markov bridges which are sampled using the Bisection
method.

The theory is illustrated by a simulation study and finally
we used our model to fit real data.

Keywords
Mortality, Physiological Age, Phase-type distributions, Sto-
chastic EM algorithm, Bisection, Markov Bridges.

1. INTRODUCTION
Throughout the history of mankind the study and mea-

surement of mortality risk has been very important. Nowa-
days it is essential to have a way to measure this in the
valuation of insurance, contingent rentals, and management

of social security systems and pensions. Since the solvency
and financial stability of institutions depends, among other
things, of the availability of suitable tools that reflect a
proper measurement of the sinister rate, they will face possi-
ble deviations. Moreover, mortality rates play an important
role in calculus of risk premium and risk reserves.

Studies on the behavior of mortality in humans is traced
back to the early seventeenth century. In 1693 E. Halley
([14]) built the first annuity table based on the lifespan. On
another hand, A. de Moivre ([24]) in 1725 proposed the first
mathematical mortality model, and in 1817, E. Sang ([11])
proposed a model based on that the number of survivors in a
group must decrease geometrically together with a different
age factor.

However, it was not until 1825 that B. Gompertz ([13])
proposed that a law of geometric progression pervades in
mortality after a certain age. He obtained the following
expression known as the Gompertz equation:

µx = αeβx,

where µx denotes the mortality rate at age x, and α and β
are constants. This equation represents a force of mortality
that increases progressively with the age in such a manner
that logµx grows linearly. In this equation α is known as
the baseline mortality and the term β describes the actuarial
aging rate.

In 1860, W. M. Makeham ([22]) extended the Gompertz
model by adding a constant:

µx = σ + αeβx,

where σ represents all random factors with no willingness to
death, for example accidents, epidemics, etc. This model is
known as Gompertz-Makeham law of mortality.

In 1980, Heligman and Pollard ([15]) proposed the follow-
ing formula that fits Australian mortality rates fairly well at
all ages:

qx
1− qx

= A(x+α)β +D exp

[
−E

{
log
( x
F

)}2
]

+GHx,

where qx is the probability that a person at aged x will die
within a year. This model reflects the exponential pattern
of mortality at adult ages, the hump at age 23 that is found
in many mortality tables, and the fall in mortality during
childhood.

Currently, the actuaries use mortality tables as a basic
tool to describe the mortality through an age structure.
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However, a mortality table is only an option when there
is no mathematical law available. Several factors can alter
this probability, the more considered factor is the age but
there are other important characteristics such as sex, clinical
history, smoking, age policy, etc. Actuaries have used two
mortality models widely, the Heligman-Pollard model and
Lee-Carter model ([21]), however, in these models, we can-
not determine the distribution of the time of death explicitly.
In this paper we will study a model in which the time until
death is explicit and has a phase-type distribution.

Sheldon and Xiaoming [29] used phase-type distributions
to model human mortality. In their model a health index
called physiological age was introduced and modeled by a
Markov process, however, they only considered the possi-
bility to go to the next state with certain parameters, esti-
mating those using the simplex algorithm. In this work, we
will consider a more general case for the form of the inten-
sity matrix for modeling a hypothetical aging process, giv-
ing another interpretation of the states (physiological ages),
and using a stochastic EM algorithm for the estimation part
when the Markov process associated with the phase-type
distribution is observed at discrete times. The advantage of
using this model is to have a closed-form expression for cal-
culating premiums of all life insurance based on a model that
considers smooth transitions in the human’s aging process.

The rest of the paper is organized as follows. In section 2
we introduce the physiological age concept. As background
of phase-type distributions in section 3 we discuss some ana-
lytic aspects of these distributions. In section 4 we propose
our model. In section 5 we discuss the estimation for the
continuous and discrete cases. Finally in section 6 we used
our model to fit real data. The paper is concluded in section
7.

2. PHYSIOLOGICAL AGE
The properties and functional capacities of the body are

changing as the accumulated time increases from birth. We
mean by aging process to simultaneous degradation of mul-
tiple organ systems. In [18] the aging process is defined as
“the progressive, and essentially irreversible diminution with
the passage of time of the ability of an organism or one of
its parts to adapt to its environment, manifested as diminu-
tion of its capacity to withstand the stresses to which it is
subjected and culminating in the death of the organism”.

To model the aging process, we consider the concept of
physiological age, which can be interpreted as relative health
index representing the degree of aging on the individual.
Physiological age has been studied in [19] where they pro-
posed a linear model of aging, which allowed a latent ad-
justment to be made to an individual’s chronological age
to give their physiological age. In [30] for example, studied
the relation of the physiological indicators of organisms in a
population to the age specific population mortality rate.

Physiological age is a relative index. Since the time spent
at a certain physiological age can be considered within a
unbounded time interval, it is enough to know the current
physiological age of the individual (regardless of its evolu-
tion in the past) to determine its future evolution, i.e., this
process presents a Markovian behavior, so is natural assume
that the time spent in each state (physiological age) has an
exponential behavior. Assuming that during the time that
individuals remains in this state, their ability to adapt to
their environment are the same, and when they move to an-

other physiological age it is because these capacities were
diminished. There are different factors affecting the dete-
rioration of these capacities, the individuals may suffer an
incident that make they pass to any physiological age where
their abilities are less than those of the current physiological
age.

Determine the age in which human life is segregated is not
an easy task, since it is necessary to have information on the
health status of the population under study.

3. PHASE-TYPE DISTRIBUTIONS
Let consider a Markov jump process {Xt}t≥0 with state

space E = {1, 2, . . . , n, n + 1}, where the states 1, 2, . . . , n
are transient, and the state n+1 is an absorbing one. Given
these conditions the infinitesimal generator of the process
can be written as follows

Λ =

(
Q r
0̄ 0

)
(1)

where Q is a square matrix of dimension n, r a column
vector of dimension n, and 0̄ is a row vector of dimension n
with all its entries zero. Q is called the phase-type generator
and r is called the exit vector since it contains the rates by
which exit to the absorbing state takes place. Since the
rows in an intensity matrix must sum 0, we also have that
r = −Qe, where e is a vector of dimension n with all of its
entries one.

Let α be the initial distribution associated to the process,
i.e. P(X0 = i). We assume that

∑n
i=1 αi = 1, this means

that the process cannot start in the absorbing state.
Consider a random variable τ which models the time it

takes for the process to reach the absorbing state n+ 1, i.e.:

τ = inf{t ≥ 0;Xt = n+ 1}.
Note that the distribution of τ only depends on α and Q,
since r is given in terms of Q.

Definition 3.1. Phase-type (PH) distributions with rep-
resentation (α,Q) is the distribution of a stopping time τ
for a Markov jump process {Xt}t≥0 on state space E =
{1, 2, . . . , n, n+1} with an absorbing state n+1. We denote
this by τ ∼ PH(α,Q).

PH distributions were considered first by M. Neuts ([25,
26]).

The transition probability matrix of the Markov jump pro-
cess at time t ≥ 0 is given by

P (t) = exp (tΛ) =

(
exp (tQ) e− exp (tQ)e

0̄ 1

)
. (2)

Some of the properties of the PH distributions are below.
Consider τ ∼ PH(α,Q), then for all t ≥ 0:

1. The survival function of τ is given by P(τ > t) =
α exp (tQ)e.

2. The density of τ is fτ (t) = α exp (tQ)r.

3. The i-th moment of τ is given by

E(τ i) = i!(−1)iα(Q−1)ie.

The demonstration of these properties can be found in [5].
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Given the characteristics of the aging process (presented
in the previous section) it is natural to consider that this
is a Markov jump process with the death considered as an
absorbing state and the remaining life time following a PH
distribution.

Since mortality modeling is important for pension plans
and annuity business, the use of parametric models to ex-
trapolate the past into the future has changed over the years
due to such as parameters have to have information of the
aging process. The new models apart from adjusting data
effectively show the connection between physiological age
given by experts and the aging process. Markov processes
and PH distributions have been used to model human mor-
tality (e.g. see [1]). Reference [29] has shown that using PH
distributions to model mortality data with the properties
before mentioned is satisfactory, however, its model has an
special structure of the transition matrix that in this work
will be extended.

4. MODEL AND DATA
Let consider a finite-state Markov jump process (time-

homogeneous) to model the hypothetical aging process. As-
suming that the life of a person can be segregated into n
physiological ages and death is represented by the state n+1,
the state space of the Markov process associated to the aging
process is E = {1, 2, . . . , n, n + 1}. Since the Markov pro-
cess has only a single absorbing state (the death state), the
death time (the absorbing time) follows a PH distribution.

Seeing that we want a model to explain more precisely
human mortality, we propose the following evolution for
the aging process. If a person has physiological age i (i ∈
{1, 2 . . . , n}) we assume that the time spent at this age is
exponentially distributed with parameter λi (0 < λi < ∞).
Also, for i ∈ {1, . . . , n− 1}, we consider three possible cases
(additionally of the possibility of continue in the current
state):

1. The person presents a natural development of the ag-
ing process, in this case, the person eventually tran-
sits to the next physiological age i + 1. We suppose
that the intensity of this transition is given by λi,i+1

(0 < λi,i+1 <∞).

2. The aging process of a person is affected by an unusual
incident which causes a diminution of its capacity to
continue alive, and then the person transits to some
physiological age j, with j ∈ {i+ 2, i+ 3, . . . , n}. The
intensity of this transition is denoted by λij (0 < λij <
∞).

3. The possibility of death for the person at that physio-
logical status. The intensity of this transition is given
by ri (0 < ri <∞).

Being at the physiological age n, the only possibility of tran-
sition is the eventual transition to the death state, with in-
tensity λn = rn (0 < rn <∞).

Note that each state represents a physiological age, and
aging is described as a process of transitions from one phys-
iological age to a higher physiological age. In section 6, we
will present how to obtain the parameters λij and ri, which
basically depend on risk factors.

Thus, the sub-intensity matrix is given by

Q =




−λ1 λ12 λ13 . . . λ1n

0 −λ2 λ23 . . . λ2n

0 0 −λ3 . . . λ3n

...
...

. . .
. . .

...
0 0 0 . . . −λn



,

where

λi =
n∑

j=i+1

λij + ri, i = 1, 2, . . . , n− 1. (3)

The initial distribution isα = ei, which denotes the i-th unit
vector, and the exit vector is given by r = (r1, r2, . . . , rn)′.

We denote by qi(t) the probability of death for a person at
physiological age i ∈ {1, 2 . . . , n}, in the interval [0, t], which
is given by

qi(t) = P(τi ≤ t) = 1− ei exp (tQ)e, (4)

where τi ∼ PH(ei,Q). It is important to note that in our
model, if a person at physiological age i ∈ {1, 2 . . . , n − 1}
who died in a time interval [0, t], then the transition from age
i to the death state not necessarily happened, it is probably
that the person visited some other states {i+ 1, . . . , n− 1}
before die. Since our model proposes to use factors that
affect the aging process, so it presents a better way to model
the time to death.

In order to generate mortality tables based on this model,
we need to estimate the parameters. Since by this model
the time of death is PH distributed, a technical advantage is
that, its density, survival function, and moments have sim-
ple analytical form. It is well known that PH distributions
allow the use of matrix-analytic methods in stochastic mod-
els (see [26]). Note that we have an acyclic PH distribution
(see [9, 8]) with a certain interpretation of the states. There
are many software available for the estimation part of this
distribution: PhFit, EMpht, G-FIT, Hyperstar, among oth-
ers, but in our work, because of the variance reduction, we
propose a new way of estimate these distributions using the
Bisection algorithm ([2]).

Furthermore, the Heligman-Pollard model cannot identify
the distribution of the time of death explicitly, and no ana-
lytical tool is available, most of the studies using this model
focus on numerical or statistical experiments.

Now, we will consider the following two scenarios regard-
ing the nature of the data: first when we have continuous
time information of the aging process of the population and
secondly considering a more realistic scene where there are
reports of the development process only at determined mo-
ments, i.e., there are only discrete time observations of a
Markov jump process. In both scenarios we consider a popu-
lation that is subject to the same risk factors and the distri-
bution of the aging process of each individual it is indepen-
dent of the others. Also, persons at the same physiological
age have the same distribution, and the risk factor only de-
pends on the physiological age.

With these assumptions, we can consider that the aging
process to death of each individual represents a path of a
Markov jump process, indeed the paths of the individuals
are independent.

Considering a population of size M and the time interval
[0, T ], let Xm = {Xm

t }Tt≥0,m = 1, . . . ,M , be independent
Markov jump processes with the same finite state space E
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and the same intensity matrix (infinitesimal generator) given
in (1). Each Xm represents the aging process for each per-
son in the population. In the next section we develop a
stochastic EM algorithm for finding maximum likelihood es-
timators of (α,Q) considering the two scenarios presented
before.

5. STOCHASTIC EM ALGORITHM
It is well known that the EM algorithm is very useful for

finding the maximum likelihood estimators of the PH distri-
butions considering both cases: continuous and discrete.

Now, for the first case -continuous case- we just present
the formulae and an example, we let the reader the refer-
ence [3] for more details about the estimation. For the sec-
ond case, which is one contribution of the paper, we present
an algorithm for estimating continuous time PH distribu-
tions for discrete observations using the Bisection algorithm,
which in turn uses Markov bridges (see also [10, 27, 28] for
other algorithms of this case).

5.1 Continuous case
Considering that the Xm’s have been observed contin-

uously in the time interval [0, T ], the complete likelihood
function is given by (see [4], [17], or [20])

LcT (θ) =
n∏

i=1

αBii

n∏

i=1

n∏

j 6=i
λ
Nij(T )

ij e−λiZi(T )
n∏

i=1

r
Ni(T )
i , (5)

where θ = (α,Q); Bi is the number of processes starting

in state i; Nij(T ) =
∑M
m=1N

m
ij (T ), where Nm

ij (T ) is the
number of jumps from state i to j of the m-th process in
[0, T ]; Ni(T ) =

∑M
m=1N

m
i (T ) is the number of processes

exiting from state i to the absorbing state in the time interval
[0, T ], where

Nm
i (T ) =





1 if the m-th process is exiting from

state i to the absorbing state

0 other case;

and Zi(T ) =
∑M
m=1 Z

m
i (T ), where Zmi (T ) is the total time

spent in state i of the m-th process in [0, T ].
Because of (3) we can rewrite the complete likelihood func-

tion as

LcT (θ) =
n∏

i=1

αBii

n∏

i=1

n∏

j 6=i
λ
Nij(T )

ij e−λijZi(T )
n∏

i=1

r
Ni(T )
i e−riZi(T ).

The log-likelihood function is as follows

lcT (θ) =
n∑

i=1

Bi log(αi) +
n∑

i=1

n∑

j 6=i
Nij(T ) log(λij)

−
n∑

i=1

n∑

j 6=i
λijZi(T ) +

n∑

i=1

Ni(T ) log(ri)−
n∑

i=1

riZi(T ). (6)

It is immediately clear that the maximum likelihood estima-
tors of the parameters are given by

α̂i =
Bi
M

; λ̂ij =
Nij(T )

Zi(T )
; r̂i =

Ni(T )

Zi(T )
.

In the following we will present an easy example (that will
be also consider in the next case) to see the behaviour of the
estimators in relation with the real parameters.

Example 5.1.

Let consider the initial vector α = (0.25, 0.25, 0.25, 0.25),
the subintensity matrix

Q =




−0.125 0.03125 0.03125 0.03125
0 −0.09375 0.03125 0.03125
0 0 −0.0625 0.03125
0 0 0 −0.03125


 , (7)

and the exit vector r =




0.03125
0.03125
0.03125
0.03125


 .

In Figure 1 we present the norm-1 of Q̂−Q calculated for
values of T from 10 to 10 until T = 200. We also considered
different values of M to see the behaviour of the norm.
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Figure 1: Norm-1 of Q̂ − Q for T = 10, 20, . . . , 200.

As we can see, for small values of T , the norm-1 is bigger,
and as we increases the value of T this norm decreases. Note
also that if we increase the value of M the estimator is closer
to the value of the real parameter. At around T = 150 the
value of the norm-1 is stabilized.

We found that the maximum likelihood estimators for
M = 10000 and T = 200 were the following:

α̂ = (0.257, 0.249, 0.252, 0.242),

Q̂ =




−0.128 0.0332 0.0321 0.0306
0 −0.0950 0.0315 0.0314
0 0 −0.0599 0.0303
0 0 0 −0.0309


 , r̂ =




0.0318
0.0321
0.0295
0.0309


 .

5.2 Discrete case
In this case, the aging process of a person is recorded only

at discrete times, hence it is necessary to have an algorithm
to estimate the intensity matrix and build the corresponding
mortality probabilities. We are interested in the inference
about the intensity matrix Λ based on samples of observa-
tions of Xm’s at discrete times points, i.e., we suppose that
all processes have been observed only at K time points 0 =
t1 < . . . < tK = T denoted by Y mk = Xm

tk . Assuming that
the observation points are equidistant, i.e., tk+1 − tk = ∆
for all k = 1, . . . ,K, then Y m = {Y mk : k = 1, . . . ,K} is
the discrete time Markov chain associated with Xm with
transition matrix P (∆) = exp(∆Λ), for m = 1, . . . ,M .
We denote the observed values by y = {y1, . . . ,yM} where
ym = {Y m1 = ym1 , . . . , Y

m
K = ymK}.

In this case there are some difficulties that must be taken
into account. First, from a finite number of samples it
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is impossible to tell if the underlying process is actually
Markovian. Second, it is not clear if the observed data are
originated indeed from discrete samples of a Markov jump
process with some generator Λ, or rather from a discrete-
time Markov chain which cannot be embedded into a time-
continuous counterpart (embedding problem), and finally,
the fact that the matrix exponential function is not injec-
tive if the eigenvalues of the generator are complex, see [7].

The discrete log-likelihood function LdT (Λ) of a time series
Y m is given in terms of the transition matrix P (T ) (see 2):

LdT (Λ) =
M∏

m=1

K−1∏

k=1

pym
k
ym
k+1

(∆), (8)

where pym
k
ym
k+1

(∆) is the probability that the m-th process

makes a transition from the state ymk to the state ymk+1 in
the time ∆. The problem is that the derivative of (8) with
respect to the entries has such a complicated form that the
null cannot be found analytically. Hence no analytical ex-
pression for the maximum likelihood estimator with respect
to Λ is available.

In this part, the data can be viewed as incomplete observa-
tions from a model with a tractable likelihood function. The
full data set is a continuous time record of the Markov jump
processes and the initial states. We can therefore find the
maximum likelihood estimates by applying the Expectation-
Maximization (EM) algorithm, see [12] and [23]. We need to
find the likelihood function for the full data set and the con-
ditional expectation of this function given the observations
Y = y.

Let θ0 = (α0,Q0) denote any initial value of parameters.
Then the EM algorithm works as follows.

Algorithm 1 EM algorithm

1: (E-step) Calculate the function

h(θ) = Eθ0(lcT (θ)|Y = y);

2: (M-step)

θ0 = argmaxθh(θ);

3: Go to 1

The E-step and the M-step are repeated until convergence.
In order to calculate the E-step, from (6) we have that

Eθ0(lcT (θ)|Y = y) =
n∑

i=1

log(αi)Eθ0(Bi|Y = y)

+
n∑

i=1

n∑

j 6=i
log(λij)Eθ0(Nij(T )|Y = y)−

n∑

i=1

n∑

j 6=i
λijEθ0(Zi(T )|Y = y)

+
n∑

i=1

log(ri)Eθ0(Ni(T )|Y = y)−
n∑

i=1

riEθ0(Zi(T )|Y = y). (9)

Since (6) is a linear function of the sufficient statistics Bi,
Zi(T ), Ni(T ), and Nij(T ), it is enough to calculate the cor-
responding conditional expectations of these statistics:

Eθ0(Bi|Y = y) =
M∑

m=1

1{Ym1 =i}; i = 1, . . . , n, (10)

where 1{·} is the indicator function,

Eθ0(Nij(T )|Y = y) =
M∑

m=1

K∑

k=2

Ñmij
ym
k−1

ym
k

(tk − tk−1), (11)

Eθ0(Zi(T )|Y = y) =
M∑

m=1

K∑

k=2

Z̃miym
k−1

ym
k

(tk − tk−1), (12)

and

Eθ0(Ni(T )|Y = y) =
M∑

m=1

K∑

k=2

Ñmi
ym
k−1

(tk − tk−1), (13)

where by the Markov property and the homogeneity of the
processes, it is sufficient to evaluate for the states i, j, r, s =
1, . . . , n, the processes m = 1, . . . ,M , and the times 0 ≤
s1 < s2 <∞, the following

Ñmij
rs (s2 − s1) = Eθ0(Nm

ij (s2 − s1)|Xm
s2 = s,Xm

s1 = r), (14)

Z̃mirs (s2 − s1) = Eθ0(Zmi (s2 − s1)|Xm
s2 = s,Xm

s1 = r), (15)

Ñmi
s (s2−s1) = Eθ0(Nm

i (s2−s1)|Xm
s2 = n+1, Xm

s1 = s). (16)

The delicate part of using the EM algorithm rely on the
E-step, since it is the computationally demanding one. In
2009, the reference [27] proposed two EM algorithms for fit-
ting Markovian Arrival Processes (MAPs) and Markov Mod-
ulated Poisson Processes with generalized group data, the
estimation is performed when exact arrival times are not
known. Since in their work the size of the MAPs is limited
due to the computational effort, they extended it in [28] con-
sidering also PH distributions and giving an improvement
of reducing the time complexity of their algorithms using
uniformization. Some of their sofware available are mapfit
(estimation methods for PH distributions and MAPs from
empirical data (point and grouped data)), and PHPACK
(Phase-Type Analysis Package) which is a software package
to use the PH distribution in stochastic modeling.

In 2012, the reference [10] proposed a new form of calcu-
lating the steps of the EM in MAPs based on the matrix
exponential function.

Considering PH distributions, in simulation-based statis-
tical estimation, one needs to generate a sample path of the
Markov chain, the problem can, however, be translated to
endpoint conditioned simulation. In [16] is suggested some
algorithms for end-point conditional simulation from con-
tinuous time Markov chains (CTMCs): rejection sampling,
uniformization, and direct simulation. Thus, as Asmussen
mentioned in [2], we will use bridge sampling from CTMCs
for the estimation of PH distributions.

To calculate (14), (15) and (16) we propose to generate L
(where L is a fixed positive integer number) sample paths
of the Markov bridge Xm(r, s1, s, s2) using the parameter
value θ0 = (α0,Q0), i.e., a stochastic process defined on
[s1, s2] and having the same distribution of the Markov jump
process {Xm

t }t∈[s1,s2] conditioned on Xm
s1 = r and Xm

s2 = s
for m = 1, . . . ,M .

LetXm(l)(r, s1, s, s2) be the l-th path of the Markov bridge
Xm(r, s1, s, s2). For l = 1, . . . , L and m = 1, . . . ,M , we can

calculate for the corresponding statistics by using: N
mij(l)
rs (s2−

s1), the number of jumps from state i to j; N
mi(l)
s (s2 − s1),
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the number of processes exiting from state i to the absorbing

state; and Z
mi(l)
rs (s2 − s1), the total time spent in state i.

Now, based on these bridges we approximate the condi-
tional expectations (14), (15), and (16) by

Ñmij
ym
k−1

ym
k

(tk − tk−1) ≈ 1

L

L∑

l=1

N
mij(l)
ym
k−1

ym
k

(tk − tk−1),(17)

Z̃miym
k−1

ym
k

(tk − tk−1) ≈ 1

L

L∑

l=1

Z
mi(l)
ym
k−1

ym
k

(tk − tk−1),(18)

Ñmi
ym
k−1

(tk − tk−1) ≈ 1

L

L∑

l=1

N
mi(l)
ym
k−1

(tk − tk−1), (19)

respectively, for i, j = 1, . . . , n; m = 1 . . . ,M ; and k =
1, . . . ,K.

Thus we rewrite the EM algorithm for the maximum like-
lihood estimation as follows:

Algorithm 2 EM algorithm

1: Let θ0 = (α0,Q0) denote any initial value of parameters
and we make θ = θ0. Given M , K for m = 1, . . . ,M ,
k = 2, . . . ,K:

2: Generate L paths of the Markov bridge
Xm(yk−1, tk−1, yk, tk) using the parameter value
θ.

3: E-step.

• Using the equations (17), (18), and (19) calcu-

late Ñmij
ym
k−1

ym
k

(tk − tk−1), Z̃miym
k−1

ym
k

(tk − tk−1), and

Ñmi
ym
k−1

(tk − tk−1), respectively.

• Using the equations (10), (11), (12), and (13) we
can calculate Eθ(Bi|Y = y), Eθ(Nij(T )|Y = y),
Eθ(Zi(T )|Y = y), and Eθ(Ni(T )|Y = y), respec-
tively.

4: M-step Calculate θ̂ = (α̂, Q̂) by

α̂i =
Eθ(Bi|Y = y)

M
; λ̂ij =

Eθ(Nij(T )|Y = y)

Eθ(Zi(T )|Y = y)
;

r̂i =
Eθ(Ni(T )|Y = y)

Eθ(Zi(T )|Y = y)
.

5: θ = θ̂ go to 2.

To implement this algorithm, the main issue is how to
sample Markov bridges. We use the bisection method pro-
posed by S. Asmussen and A. Hobolth ([2]) because of its
potential for variance reduction. The idea of this algorithm
is to formulate a recursive procedure where we finish off in-
tervals with zero or one jumps and keep bisecting intervals
with two or more jumps. The recursion ends when no inter-
vals with two or more jumps are presented.

Considering a Markov bridge X(a, 0, b, T ) and using the
bisection algorithm we have two type of scenarios:

1. If a = b and there are no jumps. In this case we
are done: Xt = a (a is not an absorbing state) for
0 ≤ t ≤ T .

2. If a 6= b and there is one jump we are done: Xt = a
for t ∈ [0, τ) , and Xt = b for t ∈ [τ, T ]. Here τ is the
jump time.

To determine τ we use the following lemma from [2].

Lema 5.1. Considering an interval of length T , let X0 =
a, the probability that XT = b 6= a and there is only one
single jump (from a to b) in the interval is given by

Rab(T ) = λab

{
e−λaT−e−λbT

λa−λb λa 6= λb

Te−λaT λa = λb.

The density of the time of state change is

fab(t;T ) =
λabe

−λbT

Rab(T )
e−(λa−λb)t; 0 ≤ t ≤ T.

Example 5.2. Bridges. Considering the intensity ma-
trix (7), we simulate some bridges which are presented in
Figure 2. In this example, we suppose that a person is in
the initial state is 1 at time 0 and at time 33.309 is in the
state 4. Here we present four different scenarios that could
happen to this person.
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Figure 2: Example of Bridges.

As we can see in this figure, in the example b), the person
passes directly from state 1 to the state 3 at the age around
12. This is not the case for the examples a) and c), where
the person visits all the state and spends certain amount of
time in each of them. Note also in the example d) that the
person is in the state 2 for almost 26 units of time.

5.2.1 Fisher information matrix
Because we are interested in the variance reduction, based

on [6] we have that the Fisher information matrix using our

proposed EM algorithm is given by I(θ̂) = −
[
∂2Q(θ̂|θ)
∂θ̂2 + ∂2Q(θ̂|θ)

∂θ∂θ̂

]
θ̂=θ

,

whereQ(θ̂|θ) = Eθ(lcT (θ̂)|Y = y). Thus, in order to get this
matrix, we just have to calculate the following:

∂2Q
∂α̂2

i

= − 1

α̂2
i

∗ eq(10),
∂2Q
∂λ̂2

ij

= − 1

λ̂2
ij

∗ eq(11),

∂2Q
∂r̂2i

= − 1

r̂2i
∗ eq(13).

Further, the inverse of the Fisher information matrix is
an estimator of the asymptotic covariance matrix. Hence,
the estimated standard deviation of the maximum likelihood
estimates is given by:

SD(θ̂ML) =
1√

I(θ̂ML)
.
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Now, we will present an example of estimation using the
Algorithm 2 and calculating the standard errors of the es-
timators. We will see the convergence of the algorithm and
thus we propose a way to find the final estimation. This
methodology will be used in the next section for the estima-
tors of the transition matrix that models mortality data.

Example 5.3. Estimation. As real parameters we use
the same as the Example 5.1, and M = 500, T = 100,∆ =
5,K = 20, L = 50, with arbitrary initial parameters. Now,
using the stochastic EM and the bisection algorithms, we
present the results.

In the following figure we present the norm-1 of the matrix
Q̂−Q for 100 iterations.
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Figure 3: Norm-1 of Q̂−Q for 100 iterations, where the estimation
was obtained using Bridges.

Considering a burn-in of b = 25 (see Figure 3) and maxi-
mum number of iterations I = 100, the stochastic EM esti-
mate of θ is given by

1

I − b
I∑

i=(b+1)

θ̂i,

where θ̂i denotes the maximum likelihood estimator at the
iteration i.

After finding the maximum likelihood estimators, the Fisher
information matrix was obtained, so as the variance-covariance
matrix. The results are presented in Table 1.

Table 1: Maximum likelihood estimators (MLEs) and Standard de-
viations (SDs) of the parameters presented in the Example 5.1.

Parameter True value MLE SD
α̂1 0.25 0.2680 0.0232
α̂2 0.25 0.2820 0.0237
α̂3 0.25 0.2480 0.0223
α̂4 0.25 0.2020 0.0201

λ̂12 0.03125 0.0390 0.0064

λ̂13 0.03125 0.0320 0.0060

λ̂14 0.03125 0.0377 0.0060

λ̂23 0.03125 0.0252 0.0036

λ̂24 0.03125 0.0323 0.0041

λ̂34 0.03125 0.0345 0.0034
r̂1 0.03125 0.0210 0.0040
r̂2 0.03125 0.0354 0.0043
r̂3 0.03125 0.0325 0.0033
r̂4 0.03125 0.0334 0.0020

With this simple example we can corroborate that the EM
algorithm using the Bisection works very well (see Table
1, column 3). Thus, we can apply it into a real scenario:
Mortality.

6. MORTALITY TABLE
In this section we use detailed mortality and population

data from the U.S.A. (check http://www.mortality.org) for
the construction of hypothetical physiological ages. The
database contains annual information on mortality and popu-
lation from 1933 to 2013. In each year, the information is
classified at 111 ages, from 0 to 110. Let µi(j) be the proba-
bility of death observed for a person at age i ∈ {0, . . . , 110}
in the year j ∈ {1990, . . . , 2013} and µi =

∑
j µi(j)

24
.

Since the biological age is the most important factor for
the construction of physiological ages, we assume that we
have the same number of physiological and biological ages.
In order to construct these physiological ages, we need a way
to establish the transition probabilities between them, so as
to have the structure of our model. Since the information on
the database is recorded annually, we just have to calculate
the probability that the person passes from age i to age j in
one year (i = 0, 1, . . . , 109; j = 0, . . . , 110), denoted by pij .
These probabilities are given by:

pij =





(1− µi)si if j = i,

(1− µi)wi if j = i+ 1,

(1− µi)(1− wi − si)tij if j ≥ i+ 2,

where si ∈ (0, 1) represents a greater ability to adapt to
the environment for a person at physiological age i , wi ∈
(0, 1) represents the natural aging factor for a person at
physiological age i (if we want to have an exactly or estimate
of this value we need detailed information about medical
record and lifestyle of each person - feeding habits, sports
practice, etc.), and tij represents the aging factor caused by
an incident which causes that a person at age i passes to age
j in a period of one year (for obtaining this value we need
history incidents for each physiological age).

Thus, we have a hypothetical population with 111 phys-
iological ages and a death state, to which we can associate
a discrete time Markov chain that models the aging process
with transition matrix P = {pij}i,j (for one year). Since
λij ∝ pij , for the corresponding infinitesimal generator we
do λij = pij for all i 6= j.

We generate historical information of the aging process
of the population of the United States observed at discrete
times. We use the algorithm 2 to estimate the correspond-
ing infinitesimal sub-generator Q̂ (n = 111, ,M = 1000, T =
50,∆ = 1,K = 50, L = 20, I = 100, b = 20, si = 0.02, wi =
0.8, ∀i, and tij = n−1+i+2−j

(n−1)(n/2)−(i+1)(i+2)/2
) and therefore the

parameters of the PH distribution used for building the mor-
tality tables.

Considering the year 2013, in figure 4 we plot the esti-
mation of the mortality tables using the equation (4). The
figure shows the increasing susceptibility with aging.
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Figure 4: Estimation of Mortality Tables.

7. CONCLUSIONS
In this paper we considered the concept of physiological

age to such a model in order to have a more realistic one,
since it considers more risk factors. For the estimation part,
in the case of missing data, we used a stochastic EM using
Markov bridges. We have fitted real data from the United
States using our algorithm, choosing arbitrarily the factors
for the construction of the evolution of the aging process,
and we consider the results are satisfactory. Based on the
statistics, we would expect that si takes a small value for
ages under 35 (at that age people start to lead a healthier
life) and a little larger from 35, wi is the same for all ages
(close to one), and tij can take four different values: one for
ages under of 2, another between 2 and 15, the third one for
ages from 15 to 35, and the last one greater than 35; and thus
the model presented in this paper would be a great tool for
modeling human mortality. This work serves as motivation
to propose a new method for calculating the risk factors
mentioned in the last section. Furthermore, it is possible
to extend this model if we assume that the risk factors are
modeled by a stochastic process and seen the aging process
as a stochastic process in random environment.
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ABSTRACT
In this paper, we estimate the parameters of the transient
Markovian arrival process controlling the individuals lifetime
and reproduction epochs in a Markovian binary tree. The
datasets used are population data containing information on
age-specific fertility and mortality rates, and we apply a non-
linear regression method or a maximum likelihood method,
depending on the precision of the available data. We dis-
cuss the accuracy of the parameter estimates, as well as the
optimal choice of the number of phases, and we provide con-
fidence intervals for some model outputs.

Keywords
Markovian binary tree; transient Markovian arrival process;
Markov modulated Poisson process; parameter estimation;
non-linear regression; maximum likelihood

1. INTRODUCTION
Simple birth-an-death processes do not offer enough flex-

ibility to model real biological populations in which the age
of individuals impacts on their fertility and mortality rates.
Indeed the memoryless property inherent to these models
implies that individuals do not age. Despite this problem,
these Markovian models have the very attractive property
that they are tractable and amenable to efficient parameter
estimation. We aim at generalising birth-and-death models,
while keeping the desirable tractability property.

In this paper, we model the lifetime and reproduction
epochs of individuals in a population using a transient Marko-
vian arrival process (TMAP). Roughly speaking, a TMAP
is a point process in which the event rate depends on the
state transition of an underlying transient Markov chain

with n transient states (also called phases), and one absorb-
ing phase. Each event in the TMAP corresponds to the birth
of a child, and the absorption in phase 0 corresponds to the
individual’s death. The resulting continuous-time branching
process, called Markovian binary tree (MBT), is the matrix
generalisation of the birth-and-death process, and allows for
much more flexibility than the latter, while keeping an ex-
cellent computational tractability.

Performance measures of MBTs include the extinction
probability of the population, the distributions of the time
until extinction, the population size at any given time, and
the total progeny size until any given time. All these model
outputs are function of the initial phase (or the initial age-
class) of the first individual in the population. The MBT
model has already been used to efficiently compare demo-
graphic properties of female families in different countries,
see [2]. The purpose of this paper is to develop the statistical
tools necessary to fit an MBT to a population of endangered
species such as the black robins of the Chatham Islands [5].
The model can then be used to compare different strategies
of conservation for the species.

For that purpose, we fit a TMAP to different types of pop-
ulation datasets which may be available from demographic
databases or may result from field research in biology. These
datasets can have different degrees of accuracy: we distin-
guish between

• global population data, consisting in the average age-
specific fertility and mortality rates over an entire pop-
ulation; this is the case in human fertility and mortal-
ity database for instance; and

• individual population data, consisting in data on age-
specific fertility and mortality counts for each individ-
ual in a population; this is the case for closely moni-
tored species such as the black robin population.

The parameter estimation method depends on the type of
data which are available. The optimal number of phases
n in the TMAP has to be chosen according to some valida-
tion methods, such as the cross-validation method, the mean
squared error, or the Akaike information criterion. Once
a value of n is determined and an estimator is found for
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the model parameters, we derive confidence intervals for the
model outputs.

The paper is organised as follows: in the next section,
we provide more details on TMAPs and describe one par-
ticularly simple case of such processes that we shall focus
on. In Section 3 we perform the model parameter estima-
tion based on the average age-specific fertility and mortality
rates, using a non-linear regression method. In Section 4,
we estimate the parameters based on individual age-specific
fertility and mortality counts, using a maximum likelihood
method. We compare the results of both methods in Sec-
tion 5.

2. TMAPS
TMAPS are two-dimensional Markovian processes {(N(t),

ϕ(t)) : t ∈ R+} on the state space N × {0, 1, . . . , n}, where
n is finite. The states (k, 0) are absorbing for all k ≥ 0; the
other states are transient. The process {N(t)} counts the
number of arrivals in [0, t] and is called the level process. The
process {ϕ(t)} is a continuous-time Markov chain, called the
phase process.

A TMAP is characterized by two n× n rate matrices D0

and D1 and a non-negative n × 1 rate vector d. Feasible
transitions are from (k, i) to (k, j), for k ≥ 0 and 1 ≤ i 6=
j ≤ n at the rate (D0)ij , or from (k, i) to (k + 1, j) for
1 ≤ i, j ≤ n at the rate (D1)ij , or from (k, i) to (k, 0) at
rate di. The first transitions (at rate (D0)ij) are hidden:
the phase of the individual changes but not the count. The
second transitions (at rate (D1)ij) are observable: a birth
(arrival) is recorded, at which time the state of the individual
may or may not change. Finally, the third transitions (at
rate di) indicate the termination of the individual’s life.

The matrix D1 and the vector d are nonnegative, D0 has
nonnegative off-diagonal elements and strictly negative ele-
ments on the diagonal such that D0 1+D1 1+d = 0, where
1 is an n×1 vector of ones. One also defines the initial prob-
ability vector α = (αi)1≤i≤n such that αi = P(ϕ(0) = i);
we assume that α1 = 1, so that ϕ(0) 6= 0 a.s. More details
on TMAPs can be found in [3].

There is a total of 2n2 + n − 1 entries in the matrices
α, D0, D1,d if no assumption is made on their structure.
For efficiency purposes in our parameter estimation, we shall
consider a particular case of TMAP called the acyclic tran-
sient Markov modulated Poisson process (ATMMPP). In
this model we assume that

• individuals start their lifetime in phase 1 with proba-
bility one,

• they can only move from phase i to phase i + 1 or to
phase 0, with respective rates γi for 1 ≤ i ≤ n− 1 and
µi for 1 ≤ i ≤ n,

• while in phase i, they reproduce at rate λi and do not
make any simultaneous phase transition at reproduc-
tion time.

With these assumptions, the matrices α, D0, D1,d have the
following structure: α = [1, 0, . . . , 0], d = [µ1, . . . , µn]>,
D1 =diag(λ1, . . . , λn), and the only non-zero entries of D0

are (D0)i,i+1 = γi and

(D0)ii =

{
λi − µi − γi 1 ≤ i ≤ n− 1
−λi − µi i = n.

There is a total of 3n− 1 parameters in an ATMMPP.
Note that the corresponding lifetime distribution is phase-

type PH(α, D0 + D1). Due to the particular structure of
D0 and D1 in the ATMMPP case, this corresponds more
precisely to a Coxian distribution. Such distributions are
very important as any acyclic phase-type distribution has
an equivalent Coxian representation. Therefore, in terms of
the lifetime distribution, the ATMMPP does not impose too
much restriction compared to the general TMAP.

3. GLOBAL POPULATION DATA
In this section, we assume that the available data are

• estimates of the expected age-specific fertility rates,
b̂x, and

• estimates of the expected age-specific mortality rates,
d̂x,

where x ∈ {0, 1, 2, . . . ,M} denotes the age, that is, the pe-
riod of time [x, x + 1) during the lifetime, and M is the
maximal age for which data are available. We denote by
d̄(x) and b̄(x) the equivalent quantities computed from the
TMAP model, for any x ≥ 0. We can show that these func-
tions have an explicit expression.

Proposition 1. The age-specific mortality and fertility
rates in a TMAP are respectively given by

d̄(x) =
αeDx(I − eD)1

αeDx1

b̄(x) =
αeDx(I − eD)(−D)−1D11

αeDx1
,

where D = D0 +D1 is the phase transition rate matrix.

We extend the approach developed in [4], in which only
death rates were used to fit phase-type lifetime distributions,
and we estimate the model parameters by minimizing the
sum of weighted squared errors

F =
M∑

x=0

[
(d̂x − d̄(x))2 + (b̂x − b̄(x))2

]
Ŝx, (1)

where the weights Ŝx are the observed probability of survival
until age x, computed as

Ŝx = (1− d̂0)(1− d̂1) · · · (1− d̂x−1).

Since the functions d̄(x) and b̄(x) are non-linear in both the
input variable x and in the parameters of the TMAP, we are
dealing with a weighted non-linear regression.

4. INDIVIDUAL POPULATION DATA
In this section, we assume that the available data are in-

dividual age-specific fertility and mortality counts, that is,
they consist of N vectors (one for each individual) of the
type

v = [6, 8, −2, 9, 0, 3, 3, −1], (2)

of variable length, whose entries vi, i ≥ 1 are interpreted as
follows:

• vi = k ∈ {0, 1, 2, . . .} means that the individual had k
offspring while in the age interval [i− 1, i) (that is, at
age x = i− 1),
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• vi = −1 means that the individual died in the previous
age interval [i−2, i−1), possibly after producing some
offspring, and

• vi = −2 means that we do not have any information on
the number of offspring generated by the individual in
the age class [i−1, i), but we know that the individual
was still alive at the end of this age class. We therefore
allows for missing information in the data.

We use a maximum likelihood estimation method based on
a sample of i.i.d. individual count vectors {v(1), . . . ,v(N)}.
The log-likelihood function is

L(θ;v(1), . . . ,v(N)) =
N∑

j=1

log p(v(j)|θ), (3)

where θ = {α, D0, D1,d}, and p(v(j)|θ) is the likelihood
of the jth observation, that is, the probability of observing
the individual population count vector v(j), under the model
parameter θ. The probabilities p(v(j)|θ) can be decomposed
into products of some matrices P (k) for 1 ≤ k ≤ K, where

Pij(k) = P [N(1) = k, ϕ(1) = j |N(0) = 0, ϕ(0) = i],

and where K = maxi,j{v(j)i : 1 ≤ i, 1 ≤ j ≤ N} is the
maximum number of offspring per age-class among the indi-
viduals in the sample. The matrices P (k) can be computed
explicitly, as shown in the next proposition.

Proposition 2. For 1 ≤ k ≤ K,

P (k) = (1/k!)(ek ⊗ I) exp(M)(e>1 ⊗ I),

where ek is the kth unit row vector of size K, and

M =




D0

D1 D0

2D1 D0

. . .

KD1 D0



.

This result generalises those of Davison and Ramesh [1] who
considered the parameter estimation of Markov modulated
Poisson processes in the binary data case vi = 1{N(i)−N(i−1)≥1}.
To the best of our knowledge, other methods for the parame-
ter estimation of such processes are based on the observation
of the successive inter-event times rather than on the num-
ber of events within a given time interval, see for instance
[6] and [7] .

5. NUMERICAL EXAMPLE
Consider an ATMMPP with n = 3 phases and parameter

values given in Table 1.

γ1 γ2 µ1 µ2 µ3 λ1 λ2 λ3

0.25 0.25 0.2 0.4 0.9 6 3 2

Table 1: Parameter values of the ATMMPP

We simulated N = 250 trajectories of this process until
time T = 15, and we counted the number of points falling
in successive one-year intervals (age-classes). This produced

a sample {v(1), . . . ,v(250)} of 250 individual data vectors of
the form (2). The average age-specific fertility and mortality

rate vectors b̂ = (b̂x) and d̂ = (d̂x) were computed from that
sample.

In a first experiment, we fix the value n = 3, and we
use the Matlab function fmincon to minimize the sum of
weighted squared errors (1) in the global population data
case, or to maximize the log-likelihood function (3) in the
individual population data case, under the constraint that
the parameters are positive. The optimization algorithm
requires an initial value for the parameters. A reasonable
guess for the model parameters is

γi = (M + 1)−1 n, 1 ≤ i ≤ n− 1

λi = (M + 1)−1
M∑

x=0

b̂x, 1 ≤ i ≤ n

µi = (M + 1)−1
M∑

x=0

d̂x, 1 ≤ i ≤ n.

We compare the fits obtained with the two different esti-
mations methods in Figure 1, where the entries of the aver-
age age-specific mortality and fertility rate vector d̂ and b̂
are represented by the blue stars. In order to assess the ac-
curacy of the parameter estimates, we re-sampled the data
50 times from the true model, and we show in Figure 2 the
mean curves compared to the real ones, as well as the cor-
responding pointwise confidence intervals. On both figures,
we see that, as expected, the fits corresponding to the in-
dividual population data are much closer to the real model
than those corresponding to the global population data.
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Figure 1: Comparison of the model fits obtained
using global population data (estimated average
model) and individual population data (estimated
individual model). The initial model is the one used
as a seed in the optimisation algorithms

In our next experiments, we aim to find the optimal value
of the number of phases n by using different criteria and
validation techniques. This is still on-going work.
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ABSTRACT
Dating from the work of Neuts in the 1980s, the field of
matrix-analytic methods has been developed to analyse dis-
crete or continuous-time Markov chains with a two-dimensional
state space in which the increment of a level variable is gov-
erned by an auxiliary phase variable. More recently, there
has been considerable interest in general Markov additive
models in which the level variable is continuous, and its dy-
namics have either bounded or unbounded variation.

From the Markov additive perspective, traditional matrix-
analytic models can be viewed as special cases where in-
crements in the level are constrained to be lattice random
variables. For example, the class of M/G/1-type Markov
chains in which transitions of the level variable are skip-free
downward can have increments which are an integral mul-
tiple k ≥ −1 of the distance between levels. The analogue
of an M/G/1-type Markov chain in the non-lattice context
is a one-sided Markov additive process that does not have
negative jumps.

In this paper we discuss such one-sided lattice and non-
lattice Markov additive processes side by side. Results that
are standard in one tradition are interpreted in the other,
and new perspectives emerge.

Keywords
One-Sided Markov Additive Processes, Markov-modulated
Lévy Processes, Scale matrices.
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ABSTRACT
Motivated by various applications in queueing theory, this
paper is devoted to the monotonicity, convexity and compa-
rability of some functions associated with discrete-time or
continuous-time denumerable Markov chains with a general
block transition matrices. First, we introduce the notion
of block-increasing convex ordering for probability vectors,
and characterize the block-monotone matrices in the sense
of the block-increasing ordering and block-increasing con-
vex ordering. Second, we provide the general conditions
under which we obtain stochastic monotonicity and com-
parability of Markov chains with general block structure
and conditions for functions associated with block structure
Markov chains to be monotone, convex, or concave. By us-
ing the uniformization technique, the results are extended
to the case of continuous-time Markov chains. Those results
can be applied to special Markov chain including GI/M/1
type, M/G/1 type and quasi-birth-and-death (QBD) both
discrete-time or continuous-time cases. Third, the obtained
results can be applied to a number of queueing systems such
as the discrete-time GI/Geo/1 queue, the continuous-time
PH/M/c queue, those conditions for some functions of the
queue length and phase of arrival to be monotone, convex,
or concave are found.

Keywords
Block stochastic ordering; stochastically block-monotone ma-
trices; block-monotone Markov chains; uniformization; queue-
ing systems.

1. INTRODUCTION
∗Supported by the National Social Science Fund Mega
Project of China(No.11&ZD40) and the National Natu-
ral Science Fund Emergency Management Project of Chi-
na(No.11541006)

One of the more recent researches within the field of matrix-
analytic methods has been its generalization to discrete-time
bivariate Markov chains. In this area, the classical work on
Markov chains of GI/M/1 type and M/G/1 type by Neuts
(for example, Neuts (1981, 1989)) has been well recognized.
Many other researchers have also made important contribu-
tions in this area(see, e.g., Gail, Hantler and Taylor (1996,
1997); Zhao, Li and Braun (1998) Zhao, Li and Alfa (2000);
Neuts (1998)). It is well-known that the transition matrix
of the embbeded Markov chains for both GI/M/1 queue
and M/G/1 queue is stochastic monotone. When a Markov
chain has a monotone transition matrix, it often leads to
new properties or/and makes analysis of the chain easier.
For example, the discussion of approximating the stationary
distribution of infinite Markov chains becomes easier and
unified (Gibson and Seneta (1987)).

Various semi-Markovian queues and their state-dependent
extensions can be analyzed through block-structured Markov
chains characterized by an infinite number of block matri-
ces, such as level-dependent quasi-birth-and-death processes
(LD-QBDs), M/G/1-, GI/M/1- and GI/G/1-type Markov
chains (see, e.g., He(2014)). Tweedie (1998) and Liu (2010)
study the estimation of error caused by truncating (stochas-
tically) monotone Markov chains (see, e.g., Daley (1968)).
Tweedie (1998) presents error bounds for the last-column-
augmented truncation of a monotone Markov chain with ge-
ometric ergodicity.

Unfortunately, block-structured Markov chains are not
monotone in general. Li and Shaked (1994) introduced the
notation of the stochastic block-monotone of stochastic vec-
tors based on F-orderings. Li and Zhao (2000) extend the
notion of monotonicity to block-structured Markov chain-
s. The new notion is called (stochastic) block-monotonicity.
Block-monotone Markov chains (BMMCs) arise from queues
in Markovian environments, such as queues with batch Marko-
vian arrival process (BMAP) (Lucantoni 1991). Li and Zhao
(2000) prove that if an original Markov chain is block-monotone,
then the stationary distributions of its augmented trunca-
tions converge to that of the original Markov chain, which
motivates this study. Masuyama (2015) provide error bound-
s for augmented truncations of discrete-time block-monotone
Markov chains under geometric drift conditions; Masuya-
ma (2016) consider continuous-time block-monotone Markov
chains and their block-argument truncations.

In this paper, we first give the notion of stochastically
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block-increasing ordering of stochastic vectors introduced by
Li and Zhao (2000) and introduced the notion of stochasti-
cally block-increasing convex ordering for stochastic vectors,
provide some general conditions to obtain stochastic mono-
tonicity and comparability of block structure Markov chain
and conditions for functions associated with block-montone
Markov chains to be monotone, convex, or concave.

Throughout this the paper,we use N0 to denote the set
of nonnegative integers and R+ for the set of nonnegative
real numbers. We use a to denote a row vector and aT is
a column vector. e is a column vector with all components
equal to 1. 0 denotes a row vector when its order is clear
from the context. We use c(i) to denote the ith componen-
t of a vector c and c(i, j) to denote the (i, j)th entry of a
matrix C. For two row vectors c and d of dimension m, let
c = (c(1), c(2), . . . , c(m)) and d = (d(1), d(2), . . . , d(m)), if
c(i) ≤ d(i) hold for all i = 1, 2, . . . ,m, we say c ≤ d element-
wise, denoted by c ≤el d. Similarly, for twom×m dimension
matrices C = (c(i, j)) and D = (d(i, j)), if c(i, j) ≤ d(i, j)
hold for all i, j ∈ {1, 2, . . . ,m}, we say C ≤ D element-wise,
denoted by C ≤el D. The terms “increasing” and “decreas-
ing”mean“non-decreasing”and“non-increasing”, respective-
ly. For convenience, we shall use A =⇒ B to denote that A
implies B; A⇐⇒ B to denote that A is equivalent to B.

2. BLOCK-MONOTONICITY AND CONVEX-
ITY PROPERTIES

2.1 Block-Monotonicity of Probability Vectors
and Stochastic Matrices

In this section, we provide a notion of stochastically block-
increasing ordering and introduce a notion of stochastical-
ly block-increasing convex ordering for vectors partitioned
into blocks. We give the concept of block-monotonicity s-
tochastic dominance and discuss properties of probability
vectors and stochastic matrices in sense of two class of block-
monotone stochastic orderings.

Let N0 = {0, 1, 2, . . .}, Dm = {1, 2, . . . ,m}. Denoted by
Im the m × m identity matrix and I the identity matrix
when its order is clear from the context. Let O denote a
zero matrix of dimension m×m. Furthermore, let

Em =




Im O O O · · ·
Im Im O O · · ·
Im Im Im O · · ·
...

...
...

. . .
. . .


 . (1)

It is easy to see that

E−1
m =




Im O O O · · ·
−Im Im O O · · ·
O −Im Im O · · ·
...

...
...

. . .
. . .


 , (2)

and

E−2
m =




Im O O O · · ·
−2Im Im O O · · ·
Im −2Im Im O · · ·
O Im −2Im O · · ·
...

...
...

. . .
. . .



. (3)

The matrix Em in Eq.(1) and its inverses in Eq.(2) and
(3) will be used throughout the paper to simplify notation.

Stochastic block-ordering is defined based on F-orderings
(see, e.g.

”
Li and Shaked (1994)). This definition includes

stochastic matrices for study and also leads to a mathemat-
ically tractable analysis. Throughout the paper, let P(N0)
denote the set of all probability vectors defined on N0. A vec-
tor a ∈ P(N0) is called to be a probability vector with block
size m, if it can be written as a = (a0,a1,a2, . . .), where
ak = (ak,1, ak,2, . . . , ak,m) are probability vectors having
m elements. Similarly, a stochastic matrix P = (Ak,l) is
called to be with block size m, where all entries Ak,l are
sub-matrices of size m×m, k, l ∈ N0.

We first provide the definitions associated with the block
monotonicity and block-wise dominance relation for proba-
bility vectors and stochastic matrices in the sense of block-
increasing ordering.

Definition 2.1 Let a and b be two probability vectors of
block size m defined on P(N0); P = (Ak,l) is a stochastic
matrix of block size m. Em and E−1

m are given in Eq.(1)
and (2) respectively. O be a zero matrix with block size m.

(i) (Masuyama (2016) Definition 2.1) a is said to be s-
tochastically block-less than b with block size m (writ-
ten as a ≤m−st b) if

∑∞
k=v ak ≤el

∑∞
k=v bk(i.e.,∑∞

k=v ak,j ≤
∑∞
k=v bk,j , j = 1, 2, . . . ,m) for all v ∈ N0,

or equivalently, aEm ≤el bEm.

(ii) (Masuyama (2015) Definition 2.1 and Proposition 2.1)
P is said to be block-monotone with respect to block-
increasing ordering ≤m−st (denoted by P ∈ Mm−st)
if
∑∞
l=v Ak,l ≤el

∑∞
l=v Ak+1,l for all k, v ∈ N0, or e-

quivalently, E−1
m PEm ≥ O.

(iii) Let P = (Ak,l) and P̃ = (Ãk,l) are two block-increasing

stochastic matrices of block sizem, i.e., P , P̃ ∈Mm−st.
P is said to be less than P̃ with respect to block-
increasing ordering ≤m−st (denoted by P ≤m−st P̃ )

if
∑∞
l=v Ak,l ≤el

∑∞
l=v Ãk,l for all k, l ∈ N0, or equiva-

lently, PEm ≤ P̃Em.

Remark 2.1 It is easy to show that a ≤m−st b if and only
if
∑v
k=0 ak ≥el

∑v
k=0 bk for v ∈ N0, i.e., aET

m ≥el bET
m.

P ≤m−st P̃ if and only if Ai,· ≤m−st Ãi,·, where Ai,· and

Ãi,· denote the i row of matrices P and P̃ respectively.
The following example shows that the block-increasing or-

dering of probability vectors can be obtained by changing
their elements with block size m.

Example 2.1 Let a = (a0,a1,a2, . . .) be a probability vec-
tor with block size m. Then for k = 0, 1, 2, . . ., we have

(i) b ≤m−st a, where b = (
∑k
j=0 aj ,ak+1,ak+2, . . .).

(ii) b ≤m−st a, where b = (a0,a1, . . . ,ak,
∑∞
j=k+1 aj ,0,0, . . .).

(iii) a[k] ≤m−st a[k+1], where a[k] = (0,0, . . . ,0,a1,a2, . . .)
be a block probability vectors of size m which there is
k zero vector before a1.

Probability vectors and stochastic matrices under the block-
increasing ordering can be characterized by corresponding
block-monotone functions introduced by Li and Zhao (2000):
A real function f(·) defined on N0 can be written as a row
vector with block size m, that is, f = (f0,f1, . . .), where
fk is a row vector of dimension m for k ∈ N0. The func-
tion f is said to be block-increasing with block size m if

150



fk+1−fk ≥el 0 for all k ∈ N0, equivalently, E−1
m f

T ≥el 0T .
Let Fm−st denote the set of all block-increasing functions
with block size m.

It is obvious that every increasing function is block-increasing
with any block size m, but f in Definition 2.1 (i) is not nec-
essary an increasing function. For example, let a = (2, 1, 1)
and b = (2, 3, 3) be two sub-vectors of size 3, then f =
(a, b, b, . . .) = (2, 1, 1, 2, 3, 3, 2, 3, 3, . . .) is a block-increasing
function with block size 3. Note that f is not an increasing
function.

Proposition 2.1 Let a and b be two probability vectors
of block size m defined on P(N0). Then the following state-
ments are equivalent:

(i) a ≤m−st b.

(ii) afT ≤ bfT for all f ∈ Fm−st.

Proof. (i) ⇐ (ii): Taking f = t
[0]
j , t

[1]
j , t

[2]
j , . . . in part

(ii), for j = 1, 2, . . . ,m, where t
[k]
j = (0,0, . . . ,0, eTj , e

T
j , . . .)

is a probability vectors with block size m which there is
k zero vectors before the first eTj , eTj = (0, . . . , 0, 1, 0, . . .)
is a m-dimension vector which its jth element is equal to
1, and otherwise are equal to zero for j = 1, 2, . . . ,m and
k = 0, 1, 2, . . .. Combining Definition 2.1 (i) and Eq.(1),
which leads to the desired result.

(i) ⇒ (ii): By Definition 2.1(i), a ≤m−st b implies that

a t
[k]
j

T ≤ b t
[k]
j

T
follows for all j = 1, 2, . . . ,m and k =

0, 1, , 2, . . ., where t
[k]
j are given by above for j = 1, 2, . . . ,m.

By using the fact that any block-increasing function f can be

expressed as combination of functions t
[k]
j for j = 1, 2, . . . ,m

and k = 0, 1, , 2, . . ., which leads to the desired result.

Proposition 2.2(Masuyama (2015)Proposition 2.2)
Suppose that a and b be two block probability vectors of
size m in P(N0), P is a stochastic matrix with block size m.
Then the following statements are equivalent:

(i) P is block-monotone with respect to ordering ≤m−st.

(ii) a ≤m−st b implies aP ≤m−st bP .

(iii) PfT ∈ Fm−st hold for all f ∈ Fm−st.

Remark 2.2 Block-increasing ordering of probability vec-
tors and stochastic matrices may be defined by Proposition
2.1 (ii) and Proposition 2.2 (ii) respectively see e.g., Defini-
tion 2.2 and Definition 2.5 in Li and Zhao (2000).

Remark 2.3 In particular, when m = 1, a stochastic ma-
trix A = (ak,l), k, l ∈ N0 satisfying E−1

1 AE1 ≥ 0 is called
stochastically monotone in the sense of usual stochastic or-
dering ≤st(see, e.g., Keilson J, Kester A. 1977 pp.233 E-
q.(1.2)).

Stochastic matrices in sense of stochastically block-increasing
ordering have the following basic properties(see, Proposition
2.10 and Proposition 2.11 in Li and Zhao (2000)).

Lemma 2.1 LetMm−st denote the set of the block-monotone
matrix with respect to ≤m−st, P ∈ Mm−st means P is
block-monotone with respect to ≤m−st.

(i) If A ∈Mm−st and B ∈Mm−st, then
(a) αA+ (1− α)B ∈Mm−st for 0 ≤ α ≤ 1.
(b)AB ∈Mm−st andAn ∈Mm−st for n = 0, 1, 2, . . ..

(ii) Suppose that A and B are stochastic matrices with
A ≤m−st B. If either A ∈ Mm−st or B ∈ Mm−st,
then An ≤m−st Bn for n = 1, 2, . . ..

Block-monotone matrices with respect to block-increasing
ordering have the following monotonicity and comparability,
it can be proved by using similar approach as Proposition
2.1, we omit its proofs.

Theorem 2.1 Let Fm−st denote the set of the block-
increasing functions, Mm−st denote the set of the block-
monotone matrix with respect to ≤m−st, and let a and b be
two block probability vectors of size m in P(N0). Assume
that P is block-monotone with respect to ≤m−st.
(i) If a ≤m−st b, then a P n ≤m−st b P n for all n ∈ N0.

(ii) If a ≤m−st aP , then a ≤m−st aP n for all n ∈ N0;
If aP ≤m−st a, then aP n ≤m−st a for all n ∈ N0.

(iii) Suppose that π is the steady-state distribution of P
(i,e,. πP = π and πeT = 1). If a ≤m−st aP , then
a ≤m−st π; if aP ≤m−st a, then π ≤m−st a.

(iv) Let P and P̃ are two block-increasing stochastic ma-

trices of block size m, i.e., P ∈ Mm−st and P̃ ∈
Mm−st. Then (a) PP̃ ∈ Mm−st; (b) P n ∈ Mm−st;
(c)
∑∞
k=0 wkP

k ∈Mm−st for 0 ≤ wk ≤ 1,
∑∞
k=0 wk =

1. In particularly,
∑∞
k=0 wkP

k ∈ Mm−st holds for

wk = e−θθk/k!, θ > 0.

Proof. Part (i) holds by Proposition 2.2 (ii). Proof of
part (ii) is obtained by part (i). Part (iii) holds by part (ii).

Part (iv)(a): by Proposition 2.2 (ii) and under the as-

sumption, we have P̃ f
T ∈ Fm−st hold for all f ∈ Fm−st.

By Proposition 2.2 (ii), PP̃f
T ∈ Fm−st hold for all f ∈

Fm−st, that is PP̃ ∈Mm−st.
Parts (iv)(b) and (c): by Lemma 2.1 and under the as-

sumption, which leads to the desired result.

Secondly, we introduce the definitions associated with the
block monotonicity and block-wise dominance relation for
probability vectors and stochastic matrices in the sense of
block-increasing convex ordering.

Definition 2.2 Let a and b be two probability vectors of
block size m defined on P(N0); P = (Ak,l) is a stochastic
matrix of block size m. Em and E−1

m are given in Eq.(1)
and (2) respectively. O be a zero matrix with block size m.

(i) a is said to be less than b in the sense of block-increasing
convex ordering with block sizem (written as a ≤m−icx
b) if

∑∞
l=v

∑∞
k=l ak ≤el

∑∞
l=v

∑∞
k=l bk for all v ∈ N0,

or equivalently, aE2
m ≤el bE2

m.

(ii) P is said to be block-monotone with respect to block-
increasing convex ordering ≤m−icx (denoted by P ∈
Mm−icx) if

∑∞
s=v

∑∞
l=sAk,l ≤el

∑∞
s=v

∑∞
l=sAk+1,l for

all k, v ∈ N0, or equivalently, E−1
m PE2

m ≥ O.

(iii) Let P = (Ak,l) and P̃ = (Ãk,l) are two block-increasing
convex stochastic matrices of block size m, i.e., P ∈
Mm−icx and P̃ ∈ Mm−icx. P is said to be less than
P̃ with respect to block-increasing convex ordering
≤m−st (denoted by P ≤m−icx P̃ ) if

∑∞
s=v

∑∞
l=sAk,l ≤el∑∞

s=v

∑∞
l=s Ãk+1,l for all k, l ∈ N0, or equivalently,

PE2
m ≤ P̃E

2

m.
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Now we define a class of functions called block-increasing
convex function which will be used to compare two prob-
ability vectors with block structure, and characterize the
block-monotonicity of stochastic matrices.

Definition 2.3 A real function f(·) defined on N0 can be
written as a row vector with block size m, that is, f =
(f0,f1, . . .), where fk is a row vector of dimension m for
k ∈ N0. The function f is said to be block-convex with
block size m if fk+2 + fk − 2fk+1 ≥el 0 for all k ∈ N0,

equivalently, E−2
m f

T ≥el 0T .
Block monotone probability vectors and stochastic matri-

ces under the block-increasing convex ordering can be char-
acterized by corresponding block-increasing convex function-
s. Let Fm−icx denote the set of the block-increasing convex
functions. The following Proposition 2.3 and Proposition
2.4 provide a necessary and sufficient condition to compare
two probability vectors or two stochastic matrices. Proposi-
tion 2.3 and Proposition 2.4 can be proved by using similar
approach as Proposition 2.1, we omit its proofs.

Proposition 2.3 Let a and b be two probability vectors
of block size m defined on P(N0). Then the following state-
ments are equivalent:

(i) a ≤m−icx b.

(ii) afT ≤ bfT for all f ∈ Fm−icx.

Proposition 2.4 Suppose that a and b be two block prob-
ability vectors of size m in P(N0), P is a stochastic matrix
with block size m. The following statements are equivalent:

(i) P is block-monotone with respect to order ≤m−icx.

(ii) a ≤m−icx b implies aP ≤m−icx bP .

(iii) PfT ∈ Fm−icx hold for all f ∈ Fm−icx.

Block-monotone matrices with respect to block-increasing
ordering have the following monotonicity and comparability,
its can be proved by using similar approach as Theorem 2.1,
we omit its proofs.

Theorem 2.2 Let Fm−icx denote the set of the block-
increasing functions, Mm−icx denote the set of the block-
monotone matrix with respect to ≤m−icx, and let a and b
be two block probability vectors of size m in P(N0). Assume
that P is block-monotone with respect to ≤m−icx.

(i) If a ≤m−icx b, then a P n ≤m−icx b P n for all n ∈ N0.

(ii) If a ≤m−icx aP , then a ≤m−icx aP n for all n ∈ N0;
If aP ≤m−st a, then aP n ≤m−st a for all n ∈ N0.

(iii) Suppose that π is the steady-state distribution of P
(i,e,. πP = π and πeT = 1). If a ≤m−icx aP , then
a ≤m−icx π; if aP ≤m−icx a, then π ≤m−icx a.

(iv) Let P and P̃ are two block-increasing stochastic ma-

trices of block size m, i.e., P ∈ Mm−icx and P̃ ∈
Mm−icx. Then (a) PP̃ ∈Mm−icx; (b) P n ∈Mm−icx;
(c)
∑∞
k=0 wkP

k ∈Mm−icx for 0 ≤ wk ≤ 1,
∑∞
k=0 wk =

1. In particularly,
∑∞
k=0 wkP

k ∈ Mm−icx holds for

wk = e−θθk/k!, θ > 0.

Example 2.2 Consider a discrete-time Markov chain Z =
{Zn, n ∈ N0}, it is a countable state Markov chain whose

transition matrix has the following block structure: For k =
0, 1, 2, . . .,

P =




∑k
i=0Ai Ak+1 Ak+2 Ak+3 Ak+4 · · ·
A0 A1 A2 A3 A4 · · ·
O A0 A1 A2 A3 · · ·
O O A0 A1 A2 · · ·
...

...
...

. . .
. . .

. . .



, (4)

where Al, l = 1, 2, 3, are all m × m non-negative matrices
with

∑3
j=1Aje

T = eT , e is a m row vector which consists
of ones, O is a zero matrix of order m ×m. Let Bj denote
the jth block row of P , which is a matrix of size m × ∞.
Using Example 2.1(i), we have B1f

T ≤ B2f
T for all block-

increasing function f ∈ Fm−st. From Example 2.1(iii), it
follows that for any j ≥ 2, Bjf

T ≤ Bj+1f
T for all block-

increasing function f ∈ Fm−st. Therefore, PfT is block-
monotone with respect to order ≤m−st, by Proposition 2.2,
P is block-monotone with respect to order ≤m−st.

In particular, taking k = 1, Li and Zhao (2000 Example
2.8) showed that P in Eq.(4) is block-monotone with respect
to order ≤m−st.
Example 2.3 Consider a discrete-time Markov chain Z =
{Zn, n ∈ N0}, it is a countable state Markov chain whose
transition matrix has the following block structure:

P =




Im −B0 B0 O O O · · ·
Im −

∑1
i=0Bi B1 B0 O O · · ·

Im −
∑2
i=0Bi B2 B1 B0 O · · ·

Im −
∑3
i=0Bi B3 B2 B1 B0 · · ·

...
...

...
. . .

. . .
. . .



, (5)

where Bk, k = 1, 2, . . ., are all m×m non-negative matrices,
O is a zero matrix of order m ×m. By Definition 2.1 and
2.2, P in (5) is block monotone with respect to order ≤m−st
and is block-monotone with respect to order ≤m−icx.

Example 2.4 Consider a discrete-time Markov chain Z =
{Zn, n ∈ N0}, it is a countable state Markov chain whose
transition matrix has the following block structure:

P =




B C O O O · · ·
D A1 A0 O O · · ·
O A2 A1 A0 O · · ·
O O A2 A1 A0 · · ·
...

...
...

. . .
. . .

. . .



, (6)

where B, C, D and Ak, k = 1, 2, 3, are all m × m non-
negative matrices with

∑3
k=1Ake

T = eT , e is a m row
vector which consists of ones, O is a zero matrix of order
m×m. By Definition 2.1 and 2.2, we have

(i) If B ≥el D, B + C ≥el D + A1 and D + A1 ≥el A2,
then P in (6) is block-monotone with respect to order
≤m−st.

(ii) If A1 + 2A0 ≥el C, B +C ≤el D+A1 +A2 ≤el 2(A0 +
A1+A2), then P in (6) is block-monotone with respect
to order ≤m−icx.

2.2 Block-Monotone Discrete-Time Markov Chain-
s

Consider a discrete-time Markov chain Z = {Zn, n ∈ N0}
with countable state space E = {(k, i), k ∈ N0, i = 1, 2, . . . ,m},
whose transition matrix P has the block structure of block
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size m, i.e., P = (Ak,l), k, l ∈ N0, where Ak,l are all m×m
matrices. Let v be the initial probability distribution of the
Markov chain Z.

In general, to ensure stochastically monotonicity of Markov
chain Z, certain conditions must be imposed on the transi-
tion matrix P and the initial distribution v.

Condition Im−st : P ∈Mm−st,
Condition Im−icx : P ∈Mm−icx,
Condition IIm−st : v ≤m−st vP ,
Condition IIm−icx : v ≤m−icx vP .

(7)

Under the above conditions, the following Theorem 3.1
shows the stochastically monotonicity of block-monotone Markov
chain, Theorem 3.2 provide stochastic comparison results
for two block-monotone Markov chains, Theorem 3.3 give
sufficient conditions to obtain monotonicity and convexity
of function associated block-monotone Markov chain. The
three theorems also explains why the above conditions are
utilized in this paper. Theorem 3.1 and 3.2 can be obtained
by Theorem 2.1 and 2.2, we omit their proofs.

Theorem 3.1 Consider a discrete-time Markov chain Z
with transition matrix P having the block structure. Let
v be the initial distribution of Z.

(i) If Conditions Im−st and IIm−st in Eq.(7) hold, then
Zn ≤m−st Zn+1 for all n ∈ N0.

(ii) If Conditions Im−icx and IIm−icx in Eq.(7) hold, then
Zn ≤m−icx Zn+1 for all n ∈ N0.

(iii) Suppose that π is steady-state distributions of P . If
Conditions Im−st and IIm−st in Eq.(7) hold, then v ≤m−st
π.

(iv) Suppose that π is steady-state distributions of P . If
Conditions Im−icx and IIm−icx in Eq.(7) hold, then
v ≤m−icx π.

Theorem 3.2 Consider two discrete-time Markov chainZ =
{Zn, n ∈ N0} and Z̃ = {Z̃n, n ∈ N0} with the same state
space E = {(k, i), k ∈ N0, i = 1, 2, . . . ,m}, their transition

matrices P and P̃ have the block structure. Let v and ṽ be
the initial distribution of Z and Z respectively.

(i) If v ≤m−st ṽ, P ≤m−st P̃ and one of P and P̃ is block
monotone with respect to order≤m−st, then Zn ≤m−st
Z̃n for all n ∈ N0.

(ii) If v ≤m−icx ṽ, P ≤m−icx P̃ and one of P and P̃ is
block monotone with respect to order ≤m−icx, then
Zn ≤m−icx Z̃n for all n ∈ N0.

(iii) Suppose that π and π̃ are steady-state distributions of

P and P̃ respectively. If conditions in part (i) hold,
then π ≤m−st π̃.

(iv) Suppose that π and π̃ are steady-state distributions of

P and P̃ respectively. If conditions in part (ii) hold,
then π ≤m−icx π̃.

Define

hf = PfT − f , (8)

for function f(·) defined on N0 and have a block form with
block size m. We state another conditions as follows.

Condition II′m−st : vP ≤m−st v,
Condition IIIm−st : hf in Eq. (8) is block-decreasing,
Condition III′m−st : hf in Eq. (8) is block-increasing.

(9)

The following theorem shows the monotonicity, convexity,
and concavity of the function Ev[f(Zn)] = vP nfT under
the above conditions.

Theorem 3.3 Consider a discrete-time Markov chain Z =
{Zn, n ∈ N0} with state space E = {(k, j), k ∈ Z+, j =
1, 2, . . . ,m}, its transition matrix P has the block structure.
We assume that Ev[f(Zn)] is finite for n ≥ 0.

(i) If Conditions Im−st, IIm−st in Eq.(7) and IIIm−st in
Eq.(9) hold and the function f(·) is block-increasing,
then the function Ev[f(Zn)] is increasing concave in
n.

(ii) If Conditions Im−st in Eq.(7) and II′m−st and IIIm−st in
Eq.(9) hold and the function f(·) is block-increasing,
then the function Ev[f(Zn)] is decreasing convex in n.

Proof. Define ϕv(n) = Ev[f(Zn)] = vP nfT for n =
0, 1, 2, . . ..

Part (i): under the assumption, we have ϕv(n + 1) −
ϕv(n) = (vP − v)P nfT for n = 1, 2, . . .. By combin-
ing Proposition 2.2 and the assumption, we have ϕv(n)
is increasing in n for n = 1, 2, . . .. Furthermore, we have
ϕv(n+ 2) + ϕv(n)− 2ϕv(n+ 1) = (vP 2 + v − 2vP )P nfT

for n = 1, 2, . . .. By Proposition 2.2 and the assumption,
which leads to the desired result.

Part (ii) can be obtained by similar approach as part
(i).

2.3 Block-Monotone Continuous-Time Markov
Chains

LetX = {X(t), t ∈ R+} be a homogeneous and continuous-
time Markov chain with state space E = {(k, i), k ∈ N0, i ∈
Dm}, Dm = {1, 2, . . . ,m}, its infinitesimal generator Q has
the block structure, Q = (Bk,l), Bk,l = (Bk,l(i, j)) are
m × m squire matrices, m ≥ 1, k, l ∈ N0, i, j ∈ Dm. If
supk∈N0,i∈Dm

(−Bk,k(i, i)) < ∞, then Markov process X is
said to be uniformizable ((see Dijk (1990)). Let ξ be equal
or greater than the biggest absolute value of all diagonal
elements of Q, that is, ξ ≥ supk∈N0,i∈Dm

(−Bk,k(i, i)), we
define

P = I +Q/ξ, (10)

where I is the identity matrix. Note that P defined by
Eq.(10) is a stochastic matrix and it has the block structure,
i.e., P = (Ak,l), Ak,l are m×m squire matrices, m ≥ 1, k, l ∈
N0, Ak,l = I +Bk,l/ξ for k, l ∈ N0. We have:

exp{Qt} = e−ξt
∞∑

k=0

(ξt)k

k!
P k. (11)

Counterparts of conditions in Eq.(7) and (9) are given as
follows.

Condition Icont : I +Q/ξ is ≤m−st -block-monotone,
Condition IIcont : v ≤m−st v(I +Q/ξ),
Condition II′cont : v(I +Q/ξ) ≤m−st v,
Condition IIIcont : QfT is block-decreasing,
Condition III′cont : QfT is block-increasing.

(12)
We state the monotonicity, convexity, and concavity of

the function Ev[f(X(t))] in the following theorem, it can be
proved by combining Theorem 3.3 and Eq.(10), we omit its
proof.
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Theorem 3.4 Suppose that Markov chain X is uniformiz-
able, and Markov chain Y with transition matrix P given
by Eq.(10). Suppose that X and Y have the same initial
distribution v. We assume that Ev[f(X(t))] is finite for
t ≥ 0.

(i) If Conditions Icont and IIcont in Eq.(12) hold and if the
function f defined on N0 is block-increasing (block-
decreasing), then the function Ev[f(X(t))] is increas-
ing (decreasing) in t.

(ii) If Conditions Icont and II′cont in Eq.(12) hold and if the
function f defined on N0 is block-increasing (block-
decreasing), then the function Ev[f(X(t))] is decreas-
ing (increasing) in t.

(iii) If Conditions Icont, IIcont and IIIcont in Eq.(12) hold,
then the function Ev[f(X(t))] is concave in t. If Con-
ditions Icont, IIcont and III′cont in Eq.(12) hold, then
the function Ev[f(X(t))] is convex in t.

(iv) If Conditions Icont, II′cont and IIIcont in Eq.(12) hold,
then the function Ev[f(X(t))] is convex in t. If Condi-
tions Icont, II′cont and III′cont in Eq.(12) hold, then the
function Ev[f(X(t))] is concave in t. 2

3. APPLICATIONS TO QUEUEING SYSTEM-
S

General type distribution, other than the phase types, can
be used to describe both inter-arrive and service times. In
continuous times it is well know that general distributions
encountered in queueing systems can be approximated by
continuous time PH distributions. This is also true for the
discrete distributions. However, discrete distributions have
an added advantage in that if the distribution has a finite
support then it can be represented exactly by discrete PH.
Alfa (2016) show that this is true by using a general inter-
event time X with finite support and a general distribution
given as Pr{X = j} = gj , j = 1, 2, . . . ,mt, mt <∞.

In this section, we show how the block-monotonicity and
convexity can help us gain insight into the queue length pro-
cesses for queueing systems with general arrival or general
service time, such as the discrete-time GI/Geo/1 queue (see,
e.g., Alfa (2016)pp.156-159) and PH/M/c queue (see, e.g.,
Li and Zhao (2000)Example 4.1).

3.1 The GI/Geo/1 queue
Consider a single server GI/Geo/1 queue, suppose that

the arrivals are of the general independent type with inter-
arrival times τ having a probability mass function of gj =
Pr{τ = j}, j = 1, 2, . . . ,m, m < ∞ whose mean is λ−1

and the service times is of the geometric distribution with
parameter µ and mean service time µ−1, µ̄ = 1 − µ, 0 <
µ < 1. According to Alfa (2016) pp.90, the inter-arrival
times τ follow a discrete PH distribution with remaining
time representation (β, S), where β = (g1, g2, . . . , gm), and
the m×m matrix S has the same form as B in Eq.(14).

Let Xn and Jn be the number of packets in the system
and the remaining inter-arrival time at time n ≥ 0. It is
immediately that {(Xn, Jn), n ≥ 0} is a bivariate discrete

time Markov chain with transition matrix P written as

P =




B C O O O · · ·
A2 A1 A0 O O · · ·
O A2 A1 A0 O · · ·
...

...
...

. . .
. . .

. . .


 , (13)

where

B =




0 0 0 · · ·
1 0 0 · · ·
0 1 0 · · ·
...

...
. . .


 , C =




g1 g2 g3 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
. . .


 (14)

A2 =




0 0 0 · · ·
µ 0 0 · · ·
0 µ 0 · · ·
...

...
. . .


 , A1 =




µg1 µg2 µg3 · · ·
µ̄ 0 0 · · ·
0 µ̄ 0 · · ·
...

...
. . .


 (15)

A0 =




µ̄g1 µ̄g2 µ̄g3 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
. . .


 . (16)

It is easily to show that if 0 < µ < 1 then B, C and Ak,
k = 0, 1, 2 satisfy the conditions in Example 2.4 (i) and (ii),
so P in Eq.(13) is block-monotone with respect to order
≤m−st and is block-monotone with respect to order ≤m−icx.

For GI/Geo/1 queue, conditions in Eq.(7) and Eq.(9) can
be further simplified to the following:

(a) Condition Im−st always holds for 0 < µ < 1.

(b) Condition IIm−st: For k = 0, 1, 2, . . .,

k∑

j=0

vj(i)− [
k∑

j=0

vj(i+ 1) + µvk+1(i+ 1)]

−gi[(1 + µ)
k∑

j=1

vj(i) + v0(i)− vk(i)] ≥ 0,

for i = 1, 2, . . . ,m− 1, (17)

k∑

j=0

vj(m)− gm[(1 + µ)
k∑

j=1

vj(m)

+v0(m)− vk(m)] ≥ 0. (18)

(c) Condition II′m−st: For k = 0, 1, 2, . . .,

k∑

j=0

vj(i)− [
k∑

j=0

vj(i+ 1) + µvk+1(i+ 1)]

−gi[(1 + µ)
k∑

j=1

vj(i) + v0(i)− vk(i)] ≤ 0,

for i = 1, 2, . . . ,m− 1, (19)

k∑

j=0

vj(m)− gm[(1 + µ)
k∑

j=1

vj(m)

+v0(m)− vk(m)] ≤ 0. (20)
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(d) Condition IIIm−st: For k = 0, 1, 2, . . .,

∆fk+1(1) ≥ µ
m∑
j=1

gj [∆fk+1(j)−∆fk+2(j)]

+
m∑
j=1

gj∆fk+2(j), (21)

∆fk+1(i+ 1)−∆fk+1(i) ≥ µ(∆fk(i)−∆fk+1(i)),

for i = 1, 2, . . . ,m− 1. (22)

where ∆fk+1(j) = fk+1(j) − fk(j), for k = 0, 1, 2, . . ., and
j = 1, 2, . . . ,m.

First, it is clear that the matrix P in Eq.(13) is always
block-monotone with respect to order ≤m−st, that is, Condi-
tion Condition Im−st always holds for 0 < µ < 1. Second, by
routine calculations, it is easy to verify that the initial dis-
tribution v = (e1,0,0, . . .) satisfy Condition IIm−st in (17),
(18), where e1 = (1, 0, . . . , 0) and 0 is a zero vector with m-
dimension; the initial distribution v = (v0,0,0, . . .) satisfy
Condition IIm−st in (17), (18), where v0 = (θ, 1− θ, . . . , 0),
1/2 < θ < 1. It can also be verified that the initial dis-
tribution v = (v0,0,0, . . .) satisfy Condition II′m−st in (21)
and (22), where v0 = (0, 0, rm−1, rm−1, . . . , r2, r), 0 < r < 1
is unique solution of equation rm−2 − 2r + 1 = 0,m ≥ 4.
For Condition IIIm−st in (21) and (22), it always holds for
f = (f0,f1,f2, . . .),where fk(j) = k for k = 0, 1, 2, . . . and
j = 1, 2, . . . ,m.

By Theorem 3.3, a) if Eq.(17), (18), (21) and (22) satis-
fy, then the function Ev[f(Zn)] is increasing concave in n.
b) if Eq.(19), (20), (21) and (22) satisfy, then the function
Ev[f(Zn)] is decreasing convex in n. By Theorem 2.1, un-
der above conditions, for any initial distribution v we have
limn→∞ Ev[f(Zn)] = πfT , where π is the steady-state dis-
tribution of P (i,e,. πP = π and πeT = 1).

Remark 4.1 Alfa(2016) studied the GI/Geo/1 queue by
applying the Matrix-Analytic Methods, and showed that the
rate matrix R satisfying R = A0 + RA1 + R2A2 has the
following properties:

R =




r1 r2 r3 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .


 . (23)

where rk satisfy: rk = µ̄gk+r1µgk+µr1rk+1 for k = 1, 2, . . ..
rk, k = 1, 2, . . .

rm = µ̄gm + r1µgm,

rm−1 = µ̄gm−1 + r1µgm−1 + r1µµ̄gm + µ2(r1)2gm,
· · · · · ·

r1 = ξ0 + ξ1r1 + ξ2(r1)2 + . . .+ ξm(r1)m,
where ξj j = 1, 2, . . . ,m, are known constants.

(24)

Remark 4.2 Comparison the matrix-analytic results for
theGI/Geo/1 queue, e.g., Alfa(2016), our approach can pro-
vide those conditions for some functions of the queue length
and phase of arrival to be monotone, convex, or concave.
Those conditions only are related to the initial distributions
and transition matrix of Markov chain consist of the queue
length and phase of arrival.

3.2 The PH/M/c queue
Consider the PH/M/c (c ≥ 1) queue in which the ar-

rivals form a PH-renewal process with interarrival time dis-

tribution of phase type with representation (α, T ) of order
m (Page 88, Neuts (1981)). The service rate for each of
c servers is denoted by µ. The PH/M/c queue is a QBD
process on the state space E = {(i, j), i ≥ 0, 1 ≤ j ≤ m}
where i denotes the number of customers in the system and
j denotes the phase of the arrival process. The generator Q
of the Markov chain is given by

Q =




B0 A0

B1 A11 A0

B2 A12 A0

. . .
. . .

. . .

A2 A1 A0

A2 A1 A0

. . .
. . .

. . .




, (25)

where B0 = T , A0 = T 0α, A1 = T − cµI, A2 = cµI,
Bk = kµI, A1k = T − kµI, k = 1, 2, . . . , c − 1, I is the
m×m identity matrix. By using uniformization P = I+Q/ξ
with ξ equal or greater than the biggest absolute value of all
diagonal elements of Q, one can easily convert the generator
Q in Eq.(25) into the transition matrix P of a discrete time
Markov chain, where P is written as

P =




B̃0 Ã0

B̃1 Ã11 Ã0

B̃2 Ã12 Ã0

. . .
. . .

. . .

Ã2 Ã1 Ã0

Ã2 Ã1 Ã0

. . .
. . .

. . .




, (26)

where B̃0 = I + T/ξ, η = µ/ξ, Ã0 = T 0α/ξ, Ã1 = I + (T −
cµI)/ξ, Ã2 = cµI/ξ, B̃k = kµI/ξ, Ã1k = I + (T − kµI)/ξ,
k = 1, 2, . . . , c− 1.

Li and Zhao (2000 Example 4.1) proved that P in Eq.(26)
is stochastically block-monotone with respect to the order
≤m−st. Hence, Li and Zhao (2000) showed the stationary
probability vector can be obtained by approximation from
a stochastic block augmentation of P , and the last block-
column augmentation provides the best approximation in
the sense Eq.(3.6) in Li and Zhao (2000).

For PH/M/c queue, conditions in Eq.(7) and Eq.(9) can
be further simplified to the following:

(a) Condition IIm−st:

0 ≥el v0T + v1µI,

0 ≥el
k∑

i=0

viQ
∗ + vk+1T + vk+2(k + 2)µI, 0 ≤ k ≤ c− 2.

0 ≥el
k∑

i=0

viQ
∗ + vk+1T + vk+2cµI, k ≥ c− 1. (27)

(b) Condition II′m−st:

0 ≤el v0T + v1µI,

0 ≤el
k∑

i=0

viQ
∗ + vk+1T + vk+2(k + 2)µI, 0 ≤ k ≤ c− 2.

0 ≤el
k∑

i=0

viQ
∗ + vk+1T + vk+2cµI, k ≥ c− 1. (28)

155



(c) Condition IIIm−st:

(µI − T )f0 + (T − µI − T 0α)f1 + Tαf2 ≤el 0,

−(i+ 1)µIf i + [(2i+ 3)µI − T ]f i+1

+[T − (i+ 2)µI − T 0α]f i+2 + T 0αf i+3 ≤el 0,

for i = 0, 1, . . . , c− 2,

−cµIf i + [2cµI − T ]f i+1

+[T − cµI − T 0α]f i+2 + T 0αf i+3 ≤el 0,

for i = c− 1, c, . . . . (29)

It is clear that the matrix P in Eq.(26) is always block-
monotone with respect to order ≤m−st according to Li and
Zhao (2000), that is, Condition Condition Im−st always hold-
s. Condition IIm−st in (27), Condition II′m−st in (28) and
Condition IIIm−st in (29) can be checked by using similar
method as GI/Geo/1 queue above subsection.

Remark 4.3 Similar the discussion in Remark 4.2, com-
parison the results for the PH/M/c queue, e.g., Li and Zhao
(2000), our approach can provide those conditions for some
functions of the queue length and phase of arrival to be
monotone, convex, or concave. Those conditions are only
related to the initial distributions and transition matrix of
Markov chain consist of the queue length and phase of ar-
rival.

4. CONCLUSIONS
This paper generalizes Yu, He and Zhang (2006)’s work

to bivariate Markov chains with a general block transition
matrices, here the important condition is the stochastically
block-monotonicity of matrices. We provide the sufficien-
t conditions under which the monotonicity, convexity and
comparability of some functions associated with discrete-
time or continuous-time denumerable Markov chains with a
general block transition matrices are obtained.
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ABSTRACT
In this manuscript, the authors consider a sub-class of the
two-dimensional homogeneous nearest neighbor (simple) ran-
dom walk restricted on the lattice. In particular, the sub-
class of random walks with equilibrium distributions given
as series of product-forms is considered and the derivations
for the calculations of the terms involved in the equilibrium
distribution representation, as well as the eigenvalues and
the corresponding eigenvectors of the matrix R are pre-
sented. The above results are obtained by connecting three
existing approaches available for such an analysis: the ma-
trix geometric approach, the compensation approach and
the boundary value problem method.

Keywords
Random walks; Equilibrium distribution; Matrix geometric
approach; Compensation approach; Boundary value prob-
lem method.

1. INTRODUCTION
The objective of this work is to demonstrate how to obtain

the equilibrium distribution of the state of a two-dimensional
homogeneous nearest neighbor (simple) random walk re-
stricted on the lattice using the matrix geometric approach.
This type of random walk can be modeled as a Quasi-Birth-
Death (QBD) process with the characteristic that both the
levels and the phases are countably infinite. Then, based on
the matrix geometric approach, if πn = (πn,0 πn,1 · · · )
denotes the vector of the equilibrium distribution at level n,
n = 0, 1, . . ., it is known that πn+1 = πnR. This is a very
well known result, but the complexity of the solution lies in
the calculation of the infinite dimension matrix R. In this
manuscript, the authors develop a new methodological ap-
proach for the calculation of the eigenvalues and eigenvectors
of matrix R. Moreover, this approach can be numerically
used for the approximation of the matrix R.

As a first step and for illustration purposes, as well as for rea-
sons of simplicity, we restrict our analysis to random walks
whose equilibrium distribution away from the origin (0, 0)
can be written as a series (finite or infinite) of product-
forms. In particular, under the following sufficient condi-
tions, referred to as conditions for meromorphicity, cf. [1,
4],

• Step size: Only transitions to neighboring states are
allowed;

• Forbidden steps: No transitions from interior states to
the North, North-East, and East are allowed;

• Homogeneity: All transitions in the same direction oc-
cur according to the same rate;

the equilibrium distribution of the simple random walk re-
stricted on the lattice can be written as a series of product-
forms for all states n,m > 0, say

πn,m =

∞∑

k=0

c̃kα̃
n
k β̃

m
k , n,m > 0, (1)

cf. [1]. Note that the above conditions do not necessarily
imply that the transitions on the boundaries are identical to
the transitions in the interior, thus we allow for π0,m and
πn,0 to exhibit a slightly different structural pattern, i.e.

πn,0 =

∞∑

k=0

ẽkα̃
n
k , n > 0, (2)

π0,m =

∞∑

k=0

d̃kβ̃
m
k , m > 0, (3)

while π0,0 can be obtained as a function of (1)-(3) by solving
the system of equilibrium equations at the origin.
Some examples of queueing systems that satisfy the above
conditions are the 2 × 2 switch and the join the shortest
queue, see e.g., [2]. Also, we would like to remark that the
conditions for meromorphicity are not necessary for a ran-
dom walk to have an equilibrium distribution in the form of
a series of product-forms, e.g. two-node Jackson networks
although violate the above conditions have equilibrium dis-
tributions with a product-form representation.
In this manuscript, the authors illustrate the connection be-
tween the form of the equilibrium distribution depicted in
Equation (1) and the derivation of the eigenvalues and eigen-
vectors of the infinite matrix R. Moreover, this work sets
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Figure 1: Transition rate diagram of the homoge-
neous simple random walk on the state space (n, m)
with no transitions in the interior the North, North-
East, and East. Only the transitions at a few selected
states are depicted as an indication.

sets the groundwork for the probabilistic interpreta-
tion of the terms ↵ and � appearing in the series
of product-forms. This manuscript is based on the
joint on-going work of Stella Kapodistria and Zbig-
niew Palmowski on the combination of three existing
techniques: the matrix geometric approach, the com-
pensation approach, and the boundary value problem
method. This work promises 1) a wide spectrum of
applicability 2) an easy theoretical framework, while
also promising 3) the unification of the three existing
approaches, as well as 4) the probabilistic interpreta-
tion of the underlying terms involved in the solution.

2. MODEL DESCRIPTION
To investigate the scope of applicability of the method

described in this manuscript we study a class of Markov
processes on the lattice in the positive quadrant of R2.
We consider random walks (processes) for which the
transitions rate are constant, i.e. do not depend on
the state, and we further assume that transitions are
restricted to neighboring states. The transition rates
are depicted in Figure ??.

2.1 QBDs and MAM
For the model described in Section ?? one can de-

fine m to denote the phase and n to denote the level.
Thus, the generator of the random walk can be writ-
ten as follows

G =

2
666664

Ã0 Ã1 0 0 · · ·
A�1 A0 A1 0 · · ·
0 A�1 A0 A1 · · ·
0 0 A�1 A0 · · ·
...

...
...

...
. . .

3
777775

with

A�1 =

2
666664

q�1,0 q�1,1 0 0 · · ·
q�1,�1 q�1,0 q�1,1 0 · · ·

0 q�1,�1 q�1,0 q�1,1 · · ·
0 0 q�1,�1 q�1,0 · · ·
...

...
...

...
. . .

3
777775

A0 =

2
666664

�q̃ q0,1 0 0 · · ·
q0,�1 �q 0 0 · · ·

0 q0,�1 �q 0 · · ·
0 0 q0,�1 �q · · ·
...

...
...

...
. . .

3
777775

A1 =

2
666664

q1,0 q1,1 0 0 · · ·
q1,�1 0 0 0 · · ·

0 q1,�1 0 0 · · ·
0 0 q1,�1 0 · · ·
...

...
...

...
. . .

3
777775

Ã1 =

2
666664

q1,0 q1,1 0 0 · · ·
q1,�1 q1,0 q1,1 0 · · ·

0 q1,�1 q1,0 q1,1 · · ·
0 0 q1,�1 q1,0 · · ·
...

...
...

...
. . .

3
777775

Ã0 =

2
666664

�q̃ q1,0 0 0 · · ·
q�1,0 �q q1,0 0 · · ·

0 q�1,0 �q � q1,0 q1,0 · · ·
0 0 q�1,0 �q � q1,0 · · ·
...

...
...

...
. . .

3
777775

and q̃ = q�1,0 + q�1,1 + q1,0 + q0,1 + q1,1 and q =
q�1,�1 + q0,�1 + q�1,1 + q�1,0 + q1,�1.

2.2 Stability condition
Let A = A�1+A0+A1 and x be the unique solution

to

xA = 0

such that x1 = 1, with 1 a column vector of ones. For
the random walk at hand x corresponds to the vector
of the equilibrium distribution of a Birth-Death pro-
cess with birth rates �0 = q�1,1 + q0,1 + q1,1, �n =
q�1,1 and death rates µn = q�1,�1 + q0,�1 + q1,�1,
n � 1. Then, it was shown in Theorem 1.7.1 [?] that
the QBD is positive recurrent if and only if

xA�11 < xA11.

2.3 Structure of the QBD solution
Let ⇡n,m, n, m � 0 denote the equilibrium distri-

bution of the QBD where n denotes the levels and
m the phases. Then, if ⇡n = (⇡n,0 ⇡n,1 · · · ) de-
notes the equilibrium vector of level n, n = 0, 1, . . .,
it is known that

⇡n+1 = ⇡nR, (2)

where the infinite dimension matrix R is obtained
as the minimal non-negative solution to the matrix
quadratic equation

A1 + RA0 + R2A�1 = 0,

cf. [?]. This last equation can be recursively used to
obtain the equilibrium vector ⇡n+1, n � 0, in terms
of the matrix R, the vector of the equilibrium dis-
tribution corresponding to levels 0 and 1, as well as
the normalizing equation. However, the structure of
the random walk is overly generic and does not per-
mit the calculation of the infinite matrix R. This
will be achieved by combining in a smart way the
two other approaches used in the analysis of random
walks on the lattice: the compensation approach and
the boundary value problem method.

Figure 1: Transition rate diagram of the homoge-
neous simple random walk on the state space (n,m)
with no transitions in the interior to the North,
North-East, and East. Only the transitions at a few
selected states are depicted as an indication.

the groundwork for the probabilistic interpretation of the
terms α and β appearing in the series of product-forms.
The paper is organized as follows: in Section 2 the model is
described and in Section 3 the three relevant methods are
sketched; more concretely, the matrix geometric approach
is presented in Section 3.1, the compensation approach in
Section 3.2 and the boundary value problem method in Sec-
tion 3.3. In Section 4 the derivations for the calculations of
the terms involved in the equilibrium distribution represen-
tation are presented and in Section 4.1 the eigenvalues and
the eigenvectors of matrix R are derived. Finally, in Section
5 conclusions and future work is discussed.

2. MODEL DESCRIPTION
To investigate the scope of applicability of the method de-

scribed in this manuscript we study a class of Markov pro-
cesses on the lattice in the non-negative quadrant of R2. We
consider random walks (processes) for which the transition
rates are constant, i.e. do not depend on the state, and we
further assume that transitions are restricted to neighboring
states. The transition rates are depicted in Figure 1.

3. RELATED WORK

3.1 QBD processes and matrix geometric ap-
proach

For the model described in the section above, we define n
to be the level and m the phase. Thus, the generator of the
random walk can be written as follows

G =




Ã0 Ã1 0 0 · · ·
A−1 A0 A1 0 · · ·

0 A−1 A0 A1 · · ·
0 0 A−1 A0 · · ·
...

...
...

...
. . .




with

A−1 =




q−1,0 q−1,1 0 0 · · ·
q−1,−1 q−1,0 q−1,1 0 · · ·

0 q−1,−1 q−1,0 q−1,1 · · ·
0 0 q−1,−1 q−1,0 · · ·
...

...
...

...
. . .




A0 =




−q̃ q0,1 0 0 · · ·
q0,−1 −q 0 0 · · ·

0 q0,−1 −q 0 · · ·
0 0 q0,−1 −q · · ·
...

...
...

...
. . .




A1 =




q1,0 q1,1 0 0 · · ·
q1,−1 0 0 0 · · ·

0 q1,−1 0 0 · · ·
0 0 q1,−1 0 · · ·
...

...
...

...
. . .




Ã1 =




q1,0 q1,1 0 0 · · ·
q1,−1 q1,0 q1,1 0 · · ·

0 q1,−1 q1,0 q1,1 · · ·
0 0 q1,−1 q1,0 · · ·
...

...
...

...
. . .




Ã0 =




−q̃ q1,0 0 0 · · ·
q−1,0 −q q1,0 0 · · ·

0 q−1,0 −q − q1,0 q1,0 · · ·
0 0 q−1,0 −q − q1,0 · · ·
...

...
...

...
. . .




where q̃ = q1,0 + q1,1 + q0,1 + q−1,1 + q−1,0 and q = q1,−1 +
q0,−1 + q−1,−1 + q−1,0 + q−1,1.

3.1.1 Stability condition
Let A = A−1 +A0 +A1 and x be the unique solution to

xA = 0

such that x1 = 1, with 1 a column vector of ones. For the
random walk at hand x corresponds to the vector of the
equilibrium distribution of a Birth-Death process with birth
rates λ0 = q−1,1 + q0,1 + q1,1, λn = q−1,1, n ≥ 1, and death
rates µn = q−1,−1+q0,−1+q1,−1, n ≥ 1. Then, it was shown
in Theorem 1.7.1 [13] that the QBD is positive recurrent if
and only if

xA−11 < xA11.

3.1.2 Structure of the QBD solution
Let πn,m, n,m ≥ 0 denote the equilibrium distribution

of the QBD. Then, if πn = (πn,0 πn,1 · · · ) denotes the
equilibrium vector of level n, n = 0, 1, . . ., it is known that

πn+1 = πnR, (4)

where the infinite dimensional matrix R is obtained as the
minimal non-negative solution to the matrix quadratic equa-
tion

A1 +RA0 +R2A−1 = 0,

cf. [13]. Solving this last equation in terms of R we obtain
recursively the equilibrium vector πn+1, n ≥ 0, in terms of
the matrix R and the vector of the equilibrium distribution

158



corresponding to level 1. However, the structure of the ran-
dom walk is overly generic and thus does not permit the
calculation of the infinite matrix R. This will be achieved
by combining the two other approaches used in the analysis
of random walks on the lattice: the compensation approach
and the boundary value problem method.

3.2 Compensation approach
The compensation approach is developed by Adan et al.

in a series of papers [1, 2, 3] and aims at a direct solu-
tion for the sub-class of two-dimensional random walks on
the lattice of the first quadrant that obey the conditions for
meromorphicity. The compensation approach can also be
effectively used in cases that the random walk at hand does
not satisfy the aforementioned conditions, but the equilib-
rium distribution still can be written in the form of series
of product-forms. This is due to the fact that this approach
exploits the structure of the equilibrium equations in the in-
terior of the quarter plane by imposing that linear (finite or
infinite) combinations of product-forms satisfy them. This
leads to a kernel equation for the terms appearing in the
product-forms. Then, it is required that these linear combi-
nations satisfy the equilibrium equations on the boundaries
as well. As it turns out, this can be done by alternatingly
compensating for the errors on the two boundaries, which
eventually leads to a (potentially) infinite series of product-
forms.
For the model described in Section 2 one can easily show,
cf. [1], that

Step 1: πn,m = α̃nβ̃m, m,n > 0, is a solution to the equi-

librium equations in the interior if and only if α̃ and β̃
satisfy

α̃β̃(q−1,1 + q1,−1 + q0,−1 + q−1,−1 + q−1,0)

= α̃2q−1,1 + β̃2q1,−1 + α̃β̃2q0,−1

+α̃2β̃2q−1,−1 + α̃2β̃q−1,0. (5)

Step 2: Consider a product-form c0α̃
n
0 β̃

m
0 that satisfies the

kernel equation (5) and also satisfies the equilibrium
equations of the horizontal boundary. Without loss of
generality we can assume that c0 = 1. If the product-
form c0α̃

n
0 β̃

m
0 also satisfies the equilibrium equations

of the vertical boundary then this constitutes the solu-
tion of the equilibrium equations up to a multiplicative
constant that can be obtained using the normalizing
equation. Otherwise, consider a linear combination of
two product-forms, say α̃n

0 β̃
m
0 + c1α̃

n
1 β̃

m
1 , m,n > 0,

such that this combination satisfies now the equilib-
rium equations of the vertical boundary. For this to
happen it must be that β̃1 = β̃0 and that α̃1 satisfies
the kernel equation (5) for β̃ = β̃0.

Step 3: Finally, as long as our expression of linear combi-
nations of product-forms violates one of the two equi-
librium equations on the boundary, we continue by
adding new product-form terms satisfying the kernel
equation (5). This will eventually lead to Equation
(1). Of course, one still needs to show that the series
expression of Equation (1) converges for all n,m > 0.

3.3 Boundary value problem method
The boundary value problem method is an analytic method

which is applicable to some two-dimensional random walks

restricted to the first quadrant. The bivariate probability
generating function (PGF), say

Π(x, y) =
∞∑

n=0

∞∑

m=0

πn,mx
nym, |x|, |y| ≤ 1,

of the position of a homogeneous nearest neighbor random
walk satisfies a functional equation of the form

K(x, y)Π(x, y) +A(x, y)Π(x, 0) +B(x, y)Π(0, y)

+ C(x, y)Π(0, 0) = 0, (6)

with K(x, y), A(x, y), B(x, y) and C(x, y) known bivariate
polynomials in x and y, depending only on the parameters
of the random walk. In particular,

K(x, y) = y2q−1,1 + x2q1,−1 + xq0,−1

+ q−1,−1 + yq−1,0

− xy(q−1,1 + q1,−1 + q0,−1 + q−1,−1 + q−1,0)

and hence K(1/α̃, 1/β̃) = 0 reduces to exactly Equation (5).

The boundary value problem method consists of the fol-
lowing steps:

i) First, define the zero tuples (x, y) such that K(x, y) =
0, |x|, |y| < 1.

ii) Then, along the curve K(x, y) = 0 (and provided that
Π(x, y) is defined on this curve), Equation (6) reads

A(x, y)Π(x, 0) +B(x, y)Π(0, y)

+ C(x, y)Π(0, 0) = 0. (7)

iii) Finally, in same instances Equation (7) can be solved
as a Riemann (Hilbert) boundary value problem.

Malyshev pioneered this approach of transforming the func-
tional equation to a boundary value problem in the 1970’s.
The idea to reduce the functional equation for the generat-
ing function to a standard Riemann-Hilbert boundary value
problem stems from the work of Fayolle and Iasnogorodski
[7] on two parallel M/M/1 queues with coupled processors
(the service speed of a server depends on whether or not the
other server is busy). Extensive treatments of the boundary
value technique for functional equations can be found in Co-
hen and Boxma [6, Part II] and Fayolle, Iasnogorodski and
Malyshev [8]. The model depicted in Figure 1 can be ana-
lyzed by the approach developed by Fayolle and Iasnogorod-
ski [7, 8] and Cohen and Boxma [6], however this approach
does not lead to the direct determination of the equilibrium
distribution, since it requires inverting the PGF, and the ex-
isting numerical approaches for this method are oftentimes
tedious and case specific.

4. ANALYSIS
In this paper, we connect for the first time the three ap-

proaches: the matrix geometric approach, the compensation
approach and the boundary value problem method. We will
demonstrate now how to easily compute recursively these
α̃’s and β̃’s.
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(↵̃0, �̃0) (↵̃1, �̃1 = �̃0) (↵̃2 = ↵̃1, �̃2) (↵̃3, �̃3 = �̃2) · · ·

initial

solution

vertical

compensation

horizontal

compensation

vertical

compensation

Figure 2: For a system with two identical servers and JSQ routing, the approach generates in each iteration a

single product-form term.

does not lead to the determination of the equilibrium distribution, since it requires to invert the PGF, and the

existing numerical approaches for this method are oftentimes tedious and case specific.

In this paper, we connect for the first time the three approaches: the matrix geometric approach, the com-

pensation approach and boundary value problem method. Already in the previous section, in Theorem 2.1, we

showed that the terms ↵ and � appearing in (1) are related to the eigenvalues and eigenvectors of matrix R. In

this section, we will demonstrate how to easily compute recursively these ↵’s and �’s.

Step 1: Define the PGF as

⇧(x, y) =
1X

n=0

xn ⇡n ( 1 y y2 · · · )T

= ⇡0( 1 y y2 · · · )T +
1X

n=1

xn ⇡1 Rn�1 ( 1 y y2 · · · )T

= ⇡0( 1 y y2 · · · )T + ⇡1 (x�1I � R)�1( 1 y y2 · · · )T . (6)

In the last equation the term (x�1I �R)�1 should be interpreted as an operator instead of the inverse of

a matrix. Then, Equation (4) reduces to

⇡1 (x�1I � R)�1
⇣
K(x, y)( 1 y y2 · · · )T + A(x, y)( 1 0 0 · · · )T

⌘

= �⇡0

⇣
(K(x, y) + B(x, y)) ( 1 y y2 · · · )T + (A(x, y) + C(x, y)) ( 1 0 0 · · · )T

⌘
, (7)

Note that due to (1) we can meromorphically continue the PGF on the entire complex domain, i.e. the

PGF is holomorphic on the entire complex domain except a set of isolated points (the poles of the function)

x�1 = ↵k and y�1 = �k, k � 0.

Step 2: For the isolated point x�1 = ↵0 the right hand side of (7) is well defined, which implies that

K(x, y)( 1 y y2 · · · )T + A(x, y)( 1 0 0 · · · )T = 0

or equivalently that K(x, y) = 0 and A(x, y) = 0. This reveals the starting solution ↵0, with |↵0| < 1 for

the iterative calculation of the sequences {↵k}k�0 and {�k}k�0.

For the starting solution x�1 = ↵0 we can calculate recursively y�1 = �0 by the kernel equation K(x, y) =

0. This will produce a single � with |�|  |↵|. We can proceed in an analogous manner and construct the

entire set of product-form terms.

Step 3:

6

Figure 2: The recursive structure of the product-form terms.

↵0 �0 ↵1 �1 · · ·

y+ x+ y+

x� y� x�
Figure 3: Evolution of the ↵’s and �’s.

n

m

1

1 2⇢

⇢1

1 2⇢

⇢

Figure 4: Transition rate diagrams on the state space (m, n) for the symmetric JSQ system with two servers.

Only the transitions at a few selected states are depicted as an indication.

3 Example: the join the shortest queue model

We consider a queueing system with a Poisson arrival process with rate 2⇢, 0 < ⇢ < 1, two identical exponential

servers, both with rate 1, and join the shortest queue (JSQ) routing, i.e. customers upon arrival join the queue

with the smallest number of customers and in the case of a tie they choose either queue with probability 1/2.

Such a queueing system can be modeled as a Markov process with states (q1, q2) 2 N2
0, where qi is the number

of customers at queue i, including a customer possibly in service. By defining n = min(q1, q2) and m = q2 � q1,

one transforms the state space from an inhomogeneous random walk in the quadrant to a homogeneous random

walk in the half plane, where the two quadrants are symmetrical. The transition rate diagram of the Markov

process for n, m � 0 is shown in Figure 4. For the stability condition, ⇢ < 1, as well as a numerical approach

for the derivation of the matrix R for this model the interested reader is refereed to [7].

For the symmetric JSQ model one can easily show, cf. [8], that

⇧(x, y)
�
x(2⇢x + 1) � 2(1 + ⇢)xy + y2

�
= ⇧(0, y)y(y � x) + ⇧(x, 0)

�
x(2⇢x + 1) � (1 + ⇢)xy � ⇢xy2

�
. (8)

Implementing the steps described on page 7 of the manuscript yields

Step 1: Define

K(x, y) = x(2⇢x + 1) � 2(1 + ⇢)xy + y2,

A(x, y) = x(2⇢x + 1) � (1 + ⇢)xy � ⇢xy2,

B(x, y) = y(y � x),

C(x, y) = 0.

Step 2: For the isolated point x�1 = ↵0 the right hand side of (7) is well defined, which implies that K(x, y) = 0

and A(x, y) = 0. This yields, the following solutions x = 0, x = 1, x = �1/2⇢ and x = 1/⇢2. Note that

only the solution x = 1/⇢2 lies on the outside of the unit circle, thus ↵0 = ⇢2.

7

Figure 3: Evolutions of α’s and β’s.

Step 1: Rewrite the PGF as

Π(x, y) =
∞∑

n=0

xn πn ( 1 y y2 · · · )T

= π0( 1 y y2 · · · )T

+
∞∑

n=1

xn π1R
n−1 ( 1 y y2 · · · )T

= π0( 1 y y2 · · · )T

+π1 (x−1I −R)−1( 1 y y2 · · · )T .

(8)

In the last equation the term (x−1I −R)−1 should be
interpreted as an operator instead of the inverse of a
matrix. Then, Equation (6) reduces to

π1 (x−1I −R)−1
(
K(x, y)( 1 y y2 · · · )T

+A(x, y)( 1 0 0 · · · )T
)

= −π0

(
(K(x, y) +B(x, y)) ( 1 y y2 · · · )T

+ (A(x, y) + C(x, y)) ( 1 0 0 · · · )T
)
. (9)

Note that due to (1) we can meromorphically continue
the PGF on the entire complex domain, i.e. the PGF
is holomorphic on the entire complex domain except
for a set of isolated points (the poles of the function)

x−1 = α̃k and y−1 = β̃k, k ≥ 0. More concretely, it can
be shown that these PGFs are meromorphic functions,
i.e., they have a finite number of poles in every finite
domain, cf. [5].

Step 2: For the isolated point x−1 = α̃0 the right hand side
of (9) is well defined, which implies that

K(x, y)( 1 y y2 · · · )T

+A(x, y)( 1 0 0 · · · )T = 0,

or equivalently that K(x, y) = 0 and A(x, y) = 0.
This reveals the starting solution α̃0, with |α̃0| < 1
for the iterative calculation of the sequences {α̃k}k≥0

and {β̃k}k≥0.

For the starting solution x−1 = α̃0 we calculate recur-
sively y−1 = β̃0 by the kernel equation K(x, y) = 0.

This will produce a single β̃ with |β̃| ≤ |α̃|. We can

proceed in an analogous manner and construct the en-
tire set of product-form terms. Moreover, one can eas-
ily show, cf. [1], that

β̃2k+1 = β̃2k, k ≥ 0

and α̃2k+1, k ≥ 0, is obtained as the root of

K(1/α̃2k+1, 1/β̃2k+1) = 0

with |α̃2k+1| < |β̃2k+1|. Also,

α̃2k = α̃2k−1, k ≥ 1,

and β̃2k , k ≥ 1, is obtained as the root of

K(1/α̃2k, 1/β̃2k) = 0

with |β̃2k| < |α̃2k|. Figure 2 displays the way in which
the product-form terms are generated.

Step 3: We now consider a new representation of πn,m so
as to avoid repetitions in the family of roots of the
kernel. To this purpose, for k ≥ 0 we denote:

αk = α̃2k, βk = β̃2k.

Then, Equations (1), (2) and (3) are re-written, for
n, m > 0

πn,m = c0α
n
0β

m
0 +

∞∑

k=1

ckα
n
k (βm

k−1 + fkβ
m
k ), (10)

and

πn,0 =
∞∑

k=0

ekα
n
k , π0,m =

∞∑

k=0

dkβ
m
k , (11)

with c0 = c̃0, e0 = ẽ0 and d0 = d̃0, and, for k ≥ 1,
ck = c̃2k−1, fk = c̃2k/c̃2k−1, ek = ẽ2k + ẽ2k−1 and

dk = d̃2k + d̃2k−1. Equivalently, we can also consider
the following representation, for n,m > 0,

πn,m =
∞∑

k=0

c∗kβ
m
k (αn

k + f∗k+1α
n
k+1), (12)

with c∗0 = c0, c∗k = ckfk for k > 0 and f∗k+1 = ck+1/c
∗
k.

Now we have the sequence of the zero-tuples of the
kernel equation, cf. Figure 3, with ’forward’ oper-
ators y+ and x+ and ’backward’ operators y− and
x− constructed as the solutions of the kernel equation
K(x, y) = 0 with respect to y and x. More concretely,
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by re-writing the kernel equation K(x, y) = 0 as a
quadratic function in either y or x

K(x, y) = ax(y − y+(x))(y − y−(x)),

K(x, y) = ãy(x− x+(y))(x− x−(y))

for some functions ax and ãy, yields

y+

(
1

αk

)
=

1

βk
, x+

(
1

βk

)
=

1

αk+1
, (13)

y−

(
1

αk

)
=

1

βk−1
, x−

(
1

βk

)
=

1

αk
. (14)

Step 4: It remains to show how to calculate the coefficients
of the product-form terms. Observe that the represen-
tations (10)-(11) for the πn,m (or equivalently (12)-
(11)) yield

Π(x, y) =Π(x, 0) + (Π(0, y)− π0,0)

+ c0
α0β0xy

(1− α0x)(1− β0y)

+
∞∑

k=1

ck
αkx

1− αkx

(
βk−1y

1− βk−1y
+ fk

βky

1− βky

)
,

(15)

with

Π(x, 0) = π0,0 +
∞∑

k=1

ek
αkx

1− αkx
, (16)

Π(0, y) = π0,0 +
∞∑

k=1

dk
βky

1− βky
. (17)

We first identify the sequences {ek}k≥0 and {dk}k≥0

appearing in (11). Next, we set y = y+(x) in (9) (for
which K(x, y+(x)) = 0) and substitute the representa-
tions for Π(x, 0) and Π(0, y). We multiply the resulting
equation with 1−αix and take the limit as x→ 1/αi.
This yields

0 = A

(
1

αi
, y+

(
1

αi

))
ei

+B

(
1

αi
, y+

(
1

αi

))
di lim

x→ 1
αi

1− αix

1− βiy+(x)
. (18)

Similarly, repeating the above procedure for y = y−(x)
produces

0 = A

(
1

αi
, y−

(
1

αi

))
ei

+B

(
1

αi
, y−

(
1

αi

))
di−1 lim

x→ 1
αi

1− αix

1− βi−1y−(x)
.

(19)

Similarly, we could have chosen x = x±(y), but the
resulting equations would be identical to the ones de-
rived above.
Now starting from e0 all the coefficients {ek}k≥0 and
{dk}k≥0 are obtained recursively as follows: for a given
ek using Equation (18) one can derive dk, next Equa-
tion (19) produces ek+1.

Step 5: Having {ek}k≥0 and {dk}k≥0 recursively identified
in terms of e0, we show in this paragraph how to ob-
tain the sequence {ck}k≥0. Multiplying Equation (9)

with 1− αix, then substituting (15)-(17) therein, and
afterwards taking the limit as x → 1/αi and setting
y = 1 gives

0 =

(
A

(
1

αi
, 1

)
+K

(
1

αi
, 1

))
ei

+K

(
1

αi
, 1

)
c0

β0
1− β0

(20)

and

0 =

(
A

(
1

αi
, 1

)
+K

(
1

αi
, 1

))
ei

+K

(
1

αi
, 1

)
ci

(
βi−1

1− βi−1
+ fi

βi
1− βi

)
, (21)

for i > 0. Equivalently, using representation (12)
yields

Π(x, y) =Π(x, 0) + (Π(0, y)− π0,0)

+ c0
α0β0xy

(1− α0x)(1− β0y)

+
∞∑

k=0

c∗k
βky

1− βky

(
αkx

1− αkx
+ f∗k+1

αk+1x

1− αk+1x

)
.

(22)

Now using (22), multiplying Equation (9) by 1 − βiy,
and afterwards taking the limit as y → 1/βi and set-
ting x = 1 yields, for i ≥ 0,

0 =

(
B

(
1,

1

βi

)
+K

(
1,

1

βi

))
di

+K

(
1,

1

βi

)
c∗i

(
αi

1− αi
+ f∗i+1

αi+1

1− αi+1

)
(23)

which is equivalent to

0 =

(
B

(
1,

1

β0

)
+K

(
1,

1

β0

))
d0

+K

(
1,

1

β0

)(
c0

α0

1− α0
+ c1

α1

1− α1

)
(24)

and

0 =

(
B

(
1,

1

βi

)
+K

(
1,

1

βi

))
di

+K

(
1,

1

βi

)(
cifi

αi

1− αi
+ ci+1

αi+1

1− αi+1

)
, (25)

for i ≥ 1. Now the iterative procedure is as follows:
Starting from c0, we derive e0 from Equation (20) (and
hence from Step 4 all coefficients {ek}k≥0 and {dk}k≥0

are produced in terms of c0). Then, from Equation
(24) we calculate c1. Having c1 and using (21) we
identify f1, which allows us to derive c2 from Equa-
tion (25). Continuing this procedure permits the iden-
tification of the sequences {ck}k≥0 and {fk}k≥1. The
starting constant c0 is uniquely identified by the nor-
malization equation.
Note that from the construction of Equation (6) it fol-
lows that we can take any |y| ≤ 1 instead of y = 1
(respectively any |x| ≤ 1) since the rhs of the above
equation does not in practice depend on y.
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4.1 The matrix R
We are now in position to present the main result of the

manuscript, that connects the derivation of the matrix R
with Equations (10) and (11), and hence the boundary value
problem with the matrix geometric approach.

Theorem 1. The terms {αk}k≥0 constitute the different
eigenvalues of the matrix R. For eigenvalue αk the corre-
sponding eigenvector of the matrix R is hk = (hk,0, hk,1, kk,2 . . .),
with hk,0 = ek and hk,m = ck(βm

k−1 + fkβ
m
k ) (m = 1, 2, . . .),

if and only if ck 6= 0.

Proof. From (10) and (11) note that, for n > 0,

πn = (πn,0 πn,1 πn,2 · · · )

=
∞∑

k=0

αn
khk.

Plugging this last result into (4) and after straightforward
manipulations yields

∞∑

k=0

αn
khk(αkI −R) = 0, ∀n > 0.

From this last equation it is needed that

hk(αkI −R) = 0, ∀k ≥ 0,

which implies the statement of the Theorem, cf. [11].

Remark 1. Note that one could use in the above proof the
representations of Equations (1) and (2), instead of (10)
and (11). Such a choice, would reveal that the sequence
{α̃k}k≥0 constitutes the eigenvalues of matrix R, with eigen-
values α̃k, k ≥ 1, having an algebraic multiplicity of 2, since
α̃2k = α̃2k−1, k ≥ 1, and geometric multiplicity equal to 2,
since for eigenvalue α̃2k there are two eigenvectors

(ẽ2k−1 c̃2k−1β̃2k−1 c̃2k−1β̃
2
2k−1 · · · )

(ẽ2k c̃2kβ̃2k c̃2kβ̃
2
2k · · · )

which if added together and taking into account the connec-
tions between the various representations produce exactly the
eigenvector hk, k ≥ 1, appearing in Theorem 1.

4.1.1 Numerical evaluation of matrix R
It is known, see [1, 4], that the sequences {αk}k≥0 and
{βk}k≥0 decrease exponentially fast to 0. Based on this
fact, we suggest to truncate the dimension of the matrix R,
say at phase N , and obtain its approximation, say RN , as

RN = H−1
N DNHN ,

with DN = diag(α0, α1, . . . , αN−1) and the matrix HN =

(h
(N)
0 , . . .h

(N)
N−1), where h

(N)
k = (hk,0, . . . , hk,N−1). Then,

as N →∞ the matrix RN = HNDNH
−1
N converges to the

infinite matrix R, cf. [11]. Furthermore, closely inspecting
the structure of the matrix HN = (hk,m)0≤k,m≤N−1 we ob-
serve that it can be written as a generalized Vandermonde
matrix for which the inverse can be easily calculated.

5. CONCLUSIONS AND FUTURE WORK
In this manuscript, the authors present a methodological

approach that on the one hand permits a straightforward
derivation of the equilibrium distribution of random walks
in the quadrant satisfying the conditions for meromorphicity

and on the other hand connects three existing techniques:
the matrix geometric approach, the compensation approach,
and the boundary value problem method. Furthermore, the
derivation of the eigenvalues and eigenvectors of matrix R
sets the groundwork for the probabilistic interpretation of
the terms α and β appearing in the expression of the equi-
librium distribution. This work can be easily extended to
cover a wider spectrum of random walks with meromorphic
probability generating functions.
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ABSTRACT
This work is concerned with a stochastic model for the spread
of an epidemic in a closed homogeneously mixing population.
We assume that any infective can go through several stages
of infection before being removed. The transitions between
stages are governed by either a Markov process or a semi-
Markov process. An infective of any stage makes contacts
amongst the population at the epochs of a Poisson process.
Our main purpose is to derive the distribution of the final
epidemic size and severity by using simple matrix analytic
methods and martingale arguments.

CCS Concepts
•Mathematics of computing → Markov processes;
Renewal theory;

Keywords
Epidemic models, final size and severity, Markovian or semi-
Markovian infection process, matrix analytic methods.

1. INTRODUCTION
SIR epidemic models describe the spread of an infectious

disease in a closed homogeneously mixing population sub-
divided into three classes of individuals: the susceptibles,
the infectives and the removed cases. In short, an infective
remains infectious during a random period of time. While
infected, it can contact all the susceptibles present, indepen-
dently of the other infectives. At the end of the infectious
period, it becomes a removed case and has no further part in
the infection process. The epidemic ceases as soon as there
are no more infectives in the population.

The final size of the epidemic is defined to be the number
of initial susceptibles who ultimately become infected. Its
distribution and various approximations have received con-
siderable attention in the literature, as well as some related
statistics. Much on the epidemic theory can be found in the
books by Daley and Gani [2] and Andersson and Britton [1].

We represent an infectious period as a set of different
stages that the infective can go through before being re-
moved. The transitions between stages are ruled by either
a Markov process or a more general semi-Markov process.
In each stage, an infective makes contacts at the epochs of
a Poisson process with a rate specific to each stage. Full
details are presented in Lefèvre and Simon [3].

We determine the exact final epidemic outcome for this
class of epidemic models with phases. The evolution through
infection phases is modelled by a Markovian process in Sec-
tion 2 and by a semi-Markovian process in Section 3. The
analysis exploits matrix analytic methods and simple mar-
tingale arguments. This method has the merit to provide us
with closed expressions for the final size and severity distri-
butions in terms of parameters that are explicitly calculable.
It also points out how the only study of the contaminations
made per a single infective amongst a fixed number of sus-
ceptibles enables us to determine the final behaviour of the
epidemic.

2. MARKOVIAN INFECTION PROCESS

2.1 Model
Any infective stays infectious during a random period

of time before being removed. During this period, it can
go through L different stages of infection (corresponding
to the degree of infectiousness, light or strong for exam-
ple); these stages are labelled j = 1, . . . , L. At the end of
the period, the infective is removed in one of the R possi-
ble removal states (corresponding to the form of removal,
death or immunization for example); these states are de-
noted �r, r = 1, . . . R. The evolution through infection
phases is modelled by a Markov process {ϕ(t), t ≥ 0} with
state space {�1, . . . ,�R, 1, . . . , L} and whose generator is of
the form

Q =




0 0

a1 . . . aR A



,

where A is a L×L matrix that contains the transition rates
between the L phases of infection and ar is the column vec-
tor containing the removal rates in state �r from stage r.

Now, while in any phase j of infection, the infective makes
contact at the epochs of a Poisson process of rate βj . Each
contact is with an individual chosen at random from the n
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initial susceptibles. Thus, if there are s susceptibles present,
one of them is contacted according to a Poisson process of
rate sβj/n. Let B be the diagonal matrix whose non-null
entries are the L rates βj . When a susceptible is contacted,
it becomes infected and begins an infection process in one of
the L stages according to the probability row vector α. We
further assume that all the infectives behave independently.

2.2 Final epidemic outcome
Consider a population that initially counts n susceptibles

and mj infectives in stage j of infection. For the new infec-
tives, the infectious periods are i.i.d. and distributed as a
random variable D =d PH(α, A). For the infectives initially
in stage j, the infectious periods are i.i.d. and distributed
as Dj =d PH(ej , A), where ej is the j-th vector of the usual
basis of RL. The epidemic terminates at time T when all
the infectives are removed.

At the end of the epidemic, there are in the population

ST susceptibles and R
(r)
T removed cases, r = 1, . . . , R. A

measure of the virulence of the disease is given by the fi-
nal epidemic size n − ST . A complementary measure is
the severity AT defined as the cumulative total duration
of infection, which is also the area under the trajectory of
the infectives. Our aim is to determine the joint distri-

bution of the statistics ST , AT and R
(r)
T . To achieve it,

we are going to make an artificial time change as e.g. in
Lefèvre and Utev [4]. Specifically, we follow the successive
occurrences of removals one after the other. This gives a
representation of the epidemic using a discrete-time scale

t = 0, 1, 2, . . .. Let St, It and R
(r)
t be the numbers of sus-

ceptibles, infectives in stage j and removal cases of type r at
time t. By construction, t+ St + It = n+m for all t, with
m = m1 + . . .+mL. Thus, the epidemic terminates at time
T̃ when T̃ = inf{t : t + St = n + m}. Of course, the time
change modifies the true order of events, but it is easily seen

that the final outcome is not affected, i.e. ST̃ , AT̃ and R
(r)

T̃
are distributed as in the real course of time.

Suppose that the t-th removal is the removal of an infec-
tive that started in stage j. Denote by Dj its infectious
period, by 1j,r the indicator that it becomes removed with
type r and by 1j(k) the indicator that a group of k fixed sus-
ceptibles escapes infection from the infective. The artificial
time provides then the following relations:

(
St
k

)
=

(St−1
k )∑

u=1

1j(k;u), with S0 = n,

At = At−1 +Dj , with A0 = 0,

R
(r)
t = R

(r)
t−1 + 1j,r, with R

(r)
0 = 0,

where the 1j(k;u) are i.i.d. and distributed as 1j(k). Let

Ft be the filtration σ{Sτ , Aτ , R(1)
τ , . . . , R

(R)
τ , 0 ≤ τ ≤ t}.

The preceding relations can be used to show that, for each
k = 0, 1, ..., n, θ ≥ 0 and z ∈ RR, the process

{(
St
k

)
e−θAt

q(k, θ, z)t

R∏

r=1

zr
R

(r)
t t ≥ m

}

is a Ft-martingale if the parameters q(k, θ, z) and qj(k, θ, z)

are defined as

qj(k, θ, z) = E

[
1j(k)e−θDj

R∏

r=1

zr
1j,r

]
, (1)

q(k, θ, z) =
L∑

j=1

αjqj(k, θ, z), (2)

for 0 ≤ k ≤ n, 1 ≤ j ≤ L. Applying the optional stopping
theorem on this martingale yields a transform of the joint

distribution of ST , AT and R
(r)
T , after having considered the

effect of the m initial infectives:

Proposition 1. For 0 ≤ k ≤ n,

E

[(
ST
k

)
e−θAT q(k, θ, z)ST

R∏

r=1

zr
R

(r)
T

]

=

(
n

k

)
q(k, θ, z)n

L∏

j=1

qj(k, θ, z)mj . (3)

In particular, Equation (3) provides a triangular system of
n + 1 linear equations for the final susceptible state proba-
bilities P (ST = s):





n∑
s=k

(
s
k

)
q(k)s P (ST = s) =

(
n
k

)
q(k)n

L∏
j=1

qj(k)mj

n∑
s=0

P (ST = s) = 1

where qj(k) = q(k,0,1). The moments of ST , AT and R
(r)
T

can also be obtained from (3).

2.3 Contagion per infective
Equation (3) shows that the final epidemic outcome only

depends on the parameters qj(k, θ, z), that is, we only need
to analyse the behaviour of a unique infected facing a group
of k susceptibles to determine the final state of the pop-
ulation at time T . Consider an infective who begins its
infectious period in a stage given by the probability vec-
tor γ. This infective faces a group of k susceptibles and
we want to determine the total number Nγ(k) of infec-
tions generated by this single infective. The new infected
cases will be here supposed to be directly removed. We can
model the behaviour of the infected by the Markov process
{[Nγ(k; t), ϕ(t)], t ∈ R+} where Nγ(k; t) is the number of
susceptibles contacted up to time t and ϕ(t) is the stage of
infection at time t; the removal of the infective corresponds
to the absorption in any state �r. Thus, the state space of
the process is

{�1, ...,�R, [(0, 1), ..., (0, L)], . . . , [(k, 1), ..., (k, L)]},
and the associated generator is given by



0 0 0 0 · · · 0
a1 · · ·aR A0(k) A1(k) 0 · · · 0
a1 · · ·aR 0 A0(k − 1) A1(k − 1) · · · 0
a1 · · ·aR 0 0 A0(k − 2) · · · 0

...
...

...
...

. . .
...

a1 · · ·aR 0 0 0 · · · A1(1)
a1 · · ·aR 0 0 0 · · · A




,

where A1(h) = hB/n = A − A0(h) for 1 ≤ h ≤ k. In
particular, the parameters qj(k, θ, z) can be derived from
this Markov process, by using probabilistic arguments:
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Proposition 2. For 1 ≤ j ≤ L,

qj(k, θ, z) = ej [θI −A0(k)]−1
R∑

r=1

zrar.

The same formula holds for q(k, θ, z) except that α is sub-
stituted for ej.

3. SEMI-MARKOV INFECTION PROCESS
In this Section, we adapt the above results to the case

where the evolution of an infective through stages of infec-
tion is described by a semi-Markov process {ϕ(t), t ≥ 0}.
The state space of the contagion process is the same as in
Section 2.1 and the semi-Markov kernel is of the form

Q(t) =




I 0

a1(t) . . . aR(t) A(t)



,

where, if τ denotes the first renewal time in the associated
Markov renewal process,

Aj,v(t) = P [τ ≤ t, ϕ(τ) = v | ϕ(0) = j],

(ar)j(t) = P [τ ≤ t, ϕ(τ) = �r | ϕ(0) = j],

for 1 ≤ r ≤ R, 1 ≤ j, v ≤ L. We assume that the time before
removal is finite a.s. As before, an infective in phase j can
infect any given susceptible according to a Poisson process
of rate βj/n. If infected, a susceptible begins in one of the
L stages according to the row vector α.

By comparison with Section 2, only the infection process
has been modified here. Thus, Proposition 1 still holds but,
of course, the expression for qj(k, θ, z) needs to be adapted.
To that aim, consider as before a single infective who is
facing k susceptibles and begins its infectious period in a
stage given by γ. As in Section 2.3, we want to evaluate the
total number Nγ(k) of susceptibles that will be contacted
by this single infective. For that, we construct the semi-
Markov process {[Nγ(k; t), ϕ(t)], t ≥ 0} where ϕ(t) is the
stage of infection at time t and Nγ(k; t) is the number of
susceptibles contacted up to time t but only updated at the
successive renewal instants of ϕ(.). For instance, if the first
renewal occurs at time τ and the infective contacts three
susceptibles during the period (0, τ), then Nγ(k; t) = 0 for
t < τ and Nγ(k; τ) = 3. Although such a clock does not
count the infections in real time, we observe that it does not
modify the total number of contacts made by the infective.
The removal of the infective leads to the absorption in a
state �. So, the state space of the process is

{(0,�), · · · , (k,�), [(0, 1), ..., (0, L)], . . . , [(k, 1), ..., (k, L)]} ,
and the associated semi-Markov kernel is given by



I 0

ukk(t) · · · uk 0(t) Ukk(t) · · · Uk 0(t)
0 · · · uk−1 0(t) 0 · · · Uk−1 0(t)
...

...
...

...
...

0 · · · u00(t) 0 · · · U00(t)




,

where, if Y (t) denotes the number of susceptibles present at
time t, the matrices Uhl(t) and the vectors uhl(t), 0 ≤ h ≤ s,
0 ≤ l ≤ h, are defined as

(Uhl)j,v(t) = P [τ ≤ t, Y (τ) = l, ϕ(τ) = v],

(uhl)j(t) = P [τ ≤ t, Y (τ) = l, ϕ(τ) = �],

conditionally to Y (0) = h, ϕ(0) = j, and for 1 ≤ j, v ≤ L.
As for the Markovian case, the calculation of the coefficients
can be done by using the structure of this last kernel, as well
as some probabilistic arguments. This leads to the following
final expression:

Proposition 3. For 1 ≤ j ≤ L,

qj(k, θ, z) = ej [I − Ck(θ)]−1
R∑

r=1

zrck,r(θ),

where for 0 ≤ k ≤ n,

(Ck)j,v(θ) = Âj,v(θ + kβj/n), 1 ≤ v ≤ L,
(ck,r)j(θ) = (âr)j(θ + kβj/n), 1 ≤ r ≤ R,

where Âj,v and (âr)j are the Laplace transforms of the func-
tions Aj,v and (ar)j. The same formula holds for q(k, θ, z)
except that α is substituted for ej.
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ABSTRACT
We model the length of in-patient hospital stays due to
stroke and the mode of discharge using a phase-type stroke
recovery model. The model allows for three different types of
stroke: haemorrhagic (the most severe, caused by ruptured
blood vessels that cause brain bleeding), cerebral infarction
(less severe, caused by blood clots) and transient ischemic
attack or TIA (the least severe, a mini-stroke caused by
a temporary blood clot). A four-phase recovery process is
used, where the initial phase depends on the type of stroke,
and transition from one phase to the next depends on the
age of the patient. There are three differing modes of ab-
sorption: from a typical recovery phase, a patient may die
(mode 1), be transferred to a nursing home (mode 2) or be
discharged to the individual’s usual residence (mode 3).

The first recovery phase is characterized by a very high
rate of mortality and very low rates of discharge by the other
two modes. The next two recovery phases have progressively
lower mortality rates and higher mode 2 and 3 discharge
rates. The fourth recovery phase is visited only by those
who experience a very mild TIA, and they are discharged to
home after a short stay.

The model has practical value as it yields length of stay
distributions by age and type of stroke, which are useful
in resource planning. Also, inclusion of the three modes of
discharge permits analyses of outcomes.

1. BACKGROUND
Due to the debilitating nature of a stroke and complex

makeup of the disease there is an urgent need for stochastic
models that can be used for bed occupancy analysis, capac-
ity planning, performance modeling and prediction, with a
view to decreasing patient delays, better use of resources,
and improved adherence to targets.

Modeling length-of-stay (LOS) in hospital is an impor-
tant aspect of characterising patient stay in hospital and

outcomes in the form of discharge destinations. We focus
on using easily accessible administrative data routinely col-
lected at discharge. Such data, which include information on
patient date of birth, date of admission, diagnosis and dis-
charge date, are not appropriate for patient prognostication
but can rather been aimed towards supporting planning, ser-
vice organization, and allocation of resources, e.g. Shahani
et al. (2008), Faddy and McClean (2000), Marshall and Mc-
Clean (2003). In such cases we are interested in the behavior
of future patient populations rather than individuals, with
a focus on system wide planning.

Heterogeneity of patient pathways and LOS characteris-
tics have been investigated by a number of authors. Such
heterogeneity arises from a number of sources, for example,
method of admission, diagnosis, severity of illness, age, gen-
der, and treatment e.g. Faddy and McClean 2005, Marshall
and McClean 2004, Harper et al. 2012. Such covariates
have previously been incorporated into phase-type models
via conditional phase-type models Marshall and McClean
(2003), a Coxian proportional hazards approach (Faddy and
McClean, 2000) and classification trees (Harper et al., 2012).

2. STROKE IN-PATIENT DATA
We here focus on incorporating age and diagnosis into a

model of stroke patients in hospital. The modelling was
based on five yearsâĂŹ retrospective data for patients ad-
mitted to the Belfast City Hospital with a diagnosis of stroke
(cerebral hemorrhage, bleed in the brain; cerebral infarction,
clot in the brain; transient ischemic attack, minor stroke;
and unspecified or undetermined type of stroke). Data were
obtained from the Patient Administration System, PAS (a
computerized system that records patient activity relating
to inpatients, outpatients, and waiting lists, A&E and case
note tracking). Data retrieved from the Belfast City Hospi-
tal PAS included age, diagnosis, LOS, and discharge destina-
tion. Diagnosis and age were previously shown to be highly
significant with regard to LOS (McClean et al., 2011) Our
approach then models the patient journey through hospital
as a phase-type model incorporating diagnosis and age.

The large number of deaths after a relatively short aver-
age length of stay confirms the high mortality rate of hemor-
rhagic stroke patients. Also, the large number of discharges
to home after a very short average stay indicates the very
mild nature of the TIA type of stroke. Summary information
is shown in Table 1.
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Table 1: Summary by Type of Stroke and Mode of
Discharge

Discharge Counts
Cerebral

Mode of Discharge Hemorrhagic Infarction TIA
Death 65 125 13
Nursing Home 5 59 8
Usual Residence 69 432 389

Average Lengths of Stay (days)
Cerebral

Mode of Discharge Hemorrhagic Infarction TIA
Death 18.3 34.6 37.5
Nursing Home 85.5 83.7 25.8
Usual Residence 51.3 31.9 8.2

3. MODEL DETAILS
The model which we have decided upon strikes us as the

best compromise between allowing for sufficient distinction
of the various types of stroke to be considered, while main-
taining a reasonable level of parsimony for parameter esti-
mation. In fact, when we tried to make the model smaller
as a check, there was a statistically significant reduction in
the loglikelihood that was more than would be justified by
the reduction in the number of parameters. Also, both our
goodness of fit tests and the work of McClean et al. (2011)
show that phase-type models with this level of simplicity
tend to fit this hospital length of stay data well. Further-
more, we wish to be able to distinguish paths based upon
type of stroke incurred, and ultimate disposition upon ab-
sorption. The model’s state transition diagram is shown in
Figure 1, although initially we made provision for transitions
from all transient recovery states to all modes of discharge.

Phase 1 Phase 2 Phase 3 Phase 4

Death
Nursing
Home

Usual
Residence

✲ ✲
❄ ❄

�
��✠

❅
❅❅❘

Haemorrhagic
Cerebral
Infarction TIA

❏
❏
❏❏❫

✡
✡

✡✡✢

❍❍❍❍❍❍❍❥

✑
✑

✑
✑

✑
✑✑✰

✡
✡

✡✡✢

❏
❏
❏❏❫

✡
✡

✡✡✢

Figure 1: State Transition Diagram

Since haemorrhagic strokes are generally the most debili-
tating, we anticipate three recovery phases for such patients.
Those suffering a cerebral infarction, typically less severe in
its debilitation, involve the latter two of the recovery phases
that haemorrhagic patients encounter. TIAs are the least
severe of all, but our study of the data revealed that they
appear to comprise two distinction groups in terms of the
duration of their recovery period. TIA patients with longer
recoveries involve the last recovery phase of haemorrhagic &
infraction patients, with a distinct state for very short TIA

durations.
Transition rates for the model comprise some that depend

upon the age and stroke type of the patient, and others in-
dependent of age. Both for reasons of parsimony and for
simplicity, we have chosen exponential forms for selected
transition intensities and for the mixing probability for TIA
patients; this ensures positive rates for the former and re-
sults in the interval (0,1) for the latter. For i = 1, 2, let
λi(x) be the transition intensity from phase i to phase i + 1
for a patient who is age x, which we formulate as taking
the form λi(x) = exp(γi + βix). Also, let p(x) represent the
probability that a TIA stroke patient age x is in recovery
phase 4 upon admission (representing the less severe TIAs);
the other TIA patients start in phase 3. We assume that
p(x) = exp{− exp(θ0 + θ1x)}. As regards the parameters
which are independent of age, for i = 1, . . . , 4, µi denotes
the mortality rate from phase i, νi the rate of discharge to a
nursing home from phase i, and ρi the rate of discharge to
the usual residence from phase i. As indicated in Figure 1,
it is assumed that µ4 = 0 and ν4 = 0.

Let T = (tij) be a 4 × 4 matrix containing the transi-
tion rates among the transient states and TA = (tij); i =
1, 2, 3, 4; j = 5, 6, 7 is a 4 × 3 matrix containing the absorp-
tion rates for the various discharge modes (death, nursing
home, and usual residence, respectively). Then the usual
densities and distributions for the stroke length of stay X
are readily obtained in the usual way; for instance, given an
initial distribution of recovery phases α, one finds

fX(x |α,T,TA) = α′ exp(Tx)TA13 , x ≥ 0 . (1)

where 13 denotes a column matrix of ones of length three.
The 4 × 3 matrix P = (−T)−1TA is of interest in its own

right, and can be interpreted as the probability of being
absorbed into the various discharge modes (death, nursing
home, or regular residence), for each of the recovery phases.
This is equivalent to similar expressions previously given in
McClean et al. (2011). We are also interested in length of
stay by discharge mode, which can be obtained from the
conditional distributions by dividing by the ultimate prob-
ability of absorption into the appropriate states.

4. ESTIMATION
The total number of parameters to be estimated is 16. We

use maximum likelihood estimation. The likelihood function
is given by the product over all 1,234 stroke patients of the
likelihood contribution for that patient. The likelihood con-
tribution for a given patient is (proportional to) the model
probability or probability density associated with our obser-
vation for that patient.

Let Lj represent the likelihood contribution for patient j.
Space limitations prevent us from presenting expressions for
Lj herein; the interested reader can obtain the fuller form
of the paper from the authors.

The results of the initial estimation process showed that
three of the parameters were not meaningfully different from
zero (namely, ν1, ν2 and ρ1), as the associated p-values were
all in excess of 90 percent. We therefore revised the origi-
nal state transition diagrams to eliminate these transitions.
These eliminations also make sense, in that Phase 1 pertains
to seriously ill patients, for whom any sort of discharge other
than by death is unrealistic, while there would be no reason
to transfer patients from Phase 2 to a nursing home without
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availing of the normal amount of recovery time provided by
Phase 3. The resulting diagram appears in Figure 1.

We then obtained the revised parameter estimates shown
in Table 2. An asymptotic covariance matrix is obtained

Table 2: Parameter Estimates
Parameter Estimate Std Error Z-Stat p-value

γ1 6.63570 1.21893 5.44388 0.00000
β1 -0.03652 0.01631 -2.23902 0.02515
γ2 -3.06931 1.22697 -2.50153 0.01237
β2 0.07153 0.01667 4.29057 0.00002
θ0 -8.66118 1.48644 -5.82680 0.00000
θ1 0.08801 0.01828 4.81391 0.00000
µ1 22.10156 4.95434 4.46105 0.00001
µ2 2.48820 0.37993 6.54912 0.00000
µ3 1.56162 0.20294 7.69509 0.00000
ν3 1.27849 0.17391 7.35165 0.00000
ρ2 11.76860 0.99634 11.81180 0.00000
ρ3 3.41989 0.38393 8.90762 0.00000
ρ4 63.92514 4.11394 15.53865 0.00000

as the inverse of the observed information matrix evaluated
at the maximum likelihood estimates. The latter matrix
is found as a byproduct of the numerical method used to
maximize the log-likelihood function. The standard error
estimates shown in Table 2 are the square roots of the di-
agonal elements of the asymptotic covariance matrix. The
Z-statistics are the parameter estimates divided by the stan-
dard errors. Each can be used to test the hypothesis that
the corresponding parameter equals 0. The p-values, based
on asymptotic normality of the parameter estimators, indi-
cate rather strong evidence against the hypothesis in each
case.

In order to check the fit of our model, we considered com-
parisons of nonparametric estimates of the cumulative in-
tensity functions for the different modes of discharge with
estimates of the cumulative intensity function based on our
fitted model. Since the latter estimates depend on age at
admission, we examined nonparametric estimates for three
age groups. Specifically, we plotted the well-known Nelson-
Åalen estimates of the cumulative intensity function for each
of the age intervals [60, 70), [70, 80) and [80, 90) for each type
of stroke and each mode of discharge for which we have a
meaningful number of discharges. (Due to limited space in
this volume, interested readers are invited to contact the
authors for a longer version which includes these graphs.)

5. RESULTS
At this point, we present several examples of what the

model can be used for. The first such measure we present is
the“destination”matrix P for an individual aged 65, 75, and
85, respectively, indicating the likelihoods of the possible
destinations upon discharge for each initial recovery phase.

The table shows the notable dependence upon age of the
likelihoods of death and discharge to the usual residence
for an individual who suffers a haemorrhagic stroke. The
likelihood of death increases with age, and there is a slight
increase as well in the number of discharges to a nursing
home. For cerebral infractions, there is a slight increase in
the chance of death with age, but the more notable increase
is in the chance of discharge to a nursing home. Qualita-

Table 3: Ultimate Destination Percentage by Age
and Type of Stroke

Age 65
Death Nursing Home Usual Residence

Haemorrhagic 38.5 4.0 57.5
Cerebral Infarction 19.4 5.2 75.5
TIA complex 24.9 20.4 54.6
TIA simple 0 0 100.0

Age 75
Death Nursing Home Usual Residence

Haemorrhagic 45.1 5.8 49.1
Cerebral Infarction 20.5 8.4 71.1
TIA complex 24.9 20.4 54.6
TIA simple 0 0 100.0

Age 85
Death Nursing Home Usual Residence

Haemorrhagic 52.5 7.3 40.1
Cerebral Infarction 21.9 12.0 66.1
TIA complex 24.9 20.4 54.6
TIA simple 0 0 100.0

tively, these relative likelihoods are in keeping with what
one might anticipate from the relative severity of these two
types of stroke.

Figure 2 presents the cumulative probability of discharge
as a function of time by the type of stroke for each of the
modes of discharge: death, nursing home, and usual resi-
dence (i.e. home). For haemorrhagic strokes (top panel),
we see that the deaths that occur tend to happen quickly,
with most of them happening within the first 10 days since
onset of the stroke. The discharges to the usual residence
take much longer, as an extended period is needed to pass
through the corresponding recovery phases before being dis-
charged home. With few cases on record of discharge to a
nursing home, little can be inferred, other than the fact that
it, too, tends to take a lot of time.

Figure 2’s middle panel reveals that the chance of death
is markedly reduced in the case of cerebral infractions, and
that those deaths that do occur tend to happen over the
course of the stay. The likelihood of discharge to a nursing
home is also greater than either of the other types of stroke;
nenetheless, death is about twice as likely as discharge to
nursing home. The situation for TIAs (bottom panel) is
rather straightforward, with in excess of ninety percent of
patients being discharged to their usual residence.

6. CONCLUSIONS AND FURTHER WORK
We have developed a phase-type modelling approach with

particular applicability to stroke patient care. The model
includes a number of absorbing states to account for the pos-
sible outcomes for patients (discharge to normal residence,
nursing home, or death). Among these, of special note are
discharges to private nursing homes, which may be respon-
sible for bottlenecks, and resulting delayed discharge, which
can have a significant effect on expected LOS in hospital (a
key performance metric).

Based on data for stroke patients from the Belfast City
Hospital, various scenarios have been explored with a fo-
cus on modelling phases which represent different recovery
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Figure 2: Cumulative probability of discharge by
type of stroke and destination

phases whose transition rates are functions of important co-
variates, in this case age. The admission phase is charac-
terised by the type of stroke, as different types of strokes
have corresponding severity of illness and outcome. The
results demonstrate the relationship between phase of dis-
charge and expected total LOS, with its inherent impact
on bed occupancy. By exploring such scenarios, the key
mechanisms for delay can thus be explored and their impact
assessed.

Our current analytic model has the advantage that the
results are based on routinely available discharge data. Our
current framework represents initial work towards develop-
ing integrated models for stroke services, including both hos-
pital and community care, with the aim of supporting inte-
grated planning. However, we believe that this approach
also has considerable potential to include more detailed and
explicit models of stroke services that allow us to assess com-
plex scenarios involving interactions between services. An-
other important aspect of extending our current framework
is to attach costs to various options within the model. For
example, we would like to be able to answer questions such
as: should additional resources be put into thrombolysis for
patients immediately after they have suffered a stroke, or
is it better to focus on rehabilitative services in the com-
munity? Stroke is an excellent paradigm example enabling
modelling of a whole health and social care system. The
experience gained and techniques learned are likely to be
relevant to the health and care of older persons in general.
Phase-type models have an important role in this work.
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