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Material of the talk

The material of this talk is taken from

S. Hautphenne, G. Latouche and G. Nguyen. Extinction probabilities of
branching processes with countably infinitely many types. Advances in
Applied Probability, 45(4) : 1068-1082, 2013.

and

P. Braunsteins, G. Decrouez, and S. Hautphenne. A pathwise iterative
approach to the extinction of branching processes with countably many
types. arXiv preprint arXiv :1605.03069, 2016.
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Multi-type Galton-Watson process

Each individual has a type i ∈ S ≡ N

The process initially contains a single individual of type ϕ0

Each individual lives for a single generation

At death individuals of type i have children according to the
progeny distribution : pi (r) : r = (r1, r2, . . .), where

pi (r) = probability that a type i gives birth to r1 children of
type 1, r2 children of type 2, etc.

All individuals are independent
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Multi-type Galton-Watson process

Population size : Zn = (Zn1,Zn2, . . .), n ∈ N, where

Zni : # of individuals of type i at the nth generation

In this example Z3 = (0, 1, 1, 2, 1, 0, 0, . . . ).

{Zn} : ∞-dim Markov process with state space (N0)∞ and an
absorbing state 0 = (0, 0, . . .).
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Multi-type Galton-Watson process

Progeny generating vector G(s) = (G1(s),G2(s),G3(s), . . .), where
Gi (s) is the progeny generating function of an individual of type i

Gi (s) =
∑

r∈(N0)∞

pi (r) sr =
∑

r∈(N0)∞

pi (r)
∞∏
k=1

srkk , s ∈ [0, 1]∞

Mean progeny matrix M with elements

Mij =
∂Gi (s)

∂sj

∣∣∣∣
s=1

= expected number of direct offspring of type j

born to a parent of type i

There is a path from type i to j ⇔ there exists ` such that
(M`)ij > 0.
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Global extinction probability

Global extinction probability vector q = (q1, q2, q3, . . .), with
entries

qi = P
[

lim
n→∞

Zn = 0
∣∣ϕ0 = i

]
The vector q is the (componentwise) minimal nonnegative solution
of

s = G(s), s ∈ [0, 1]∞
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Partial extinction probability

Partial extinction probability vector q̃ = (q̃1, q̃2, q̃3, . . .), with

q̃i = P
[
∀` : lim

n→∞
Zn` = 0

∣∣ϕ0 = i
]

We have
0 ≤ q ≤ q̃ ≤ 1.

The vector q̃ also satisfies the fixed point equation

s = G(s), s ∈ [0, 1]∞
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Example 1

Suppose

p1(r) =


1/6, r = 3e1

1/6, r = 3e2

2/3, r = 0

and

pi (r) =


1/75, r = 3ei−1

1/6, r = 3ei

1/6, r = 3ei+1

49/75, r = 0

for i ≥ 2.
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Example 1

The mean progeny matrix has entries

M11 = M12 = 1/2

and
Mi ,i−1 = 1/25, Mi ,i = Mi ,i+1 = 1/2

for i ≥ 2.

Figure : A graphical representation of the mean progeny matrix.
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Example 1
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Question : How to compute q and q̃ ?
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Example 1

The progeny generating vector, G(s), has the form

G1(s) =
s31
6

+
s32
6

+
2

3

G2(s) =
s31
75

+
s32
6

+
s33
6

+
49

75
...

Gi (s) =
s3i−1
75

+
s3i
6

+
s3i+1

6
+

49

75
...
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Example 1

The fixed point equation, s = G(s), is

s1 =
s31
6

+
s32
6

+
2

3

s2 =
s31
75

+
s32
6

+
s33
6

+
49

75
...

si =
s3i−1
75

+
s3i
6

+
s3i+1

6
+

49

75
...
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Example 1

Take the first k elements of G(s)

s1 =
s31
6

+
s32
6

+
2

3

s2 =
s31
75

+
s32
6

+
s33
6

+
49

75
...

si =
s3i−1
75

+
s3i
6

+
s3i+1

6
+

49

75
...

sk =
s3k−1
75

+
s3k
6

+
s3k+1

6
+

49

75
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Computing q̃

Define {Z̃
(k)

n } by modifying {Zn} such that all types > k are sterile
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Computing q̃

Denote q̃(k) : the (global) extinction probability of {Z̃
(k)

n }

q̃(k) ↘ q̃ as k →∞

The proof is an application of the monotone convergence
theorem

For each k , q̃(k) can be computed, for instance using
functional iteration
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Computing q̃

In Example 1 the progeny generating vector, G̃
(k)

(s), is

G̃
(k)
1 (s) =

s31
6

+
s32
6

+
2

3

G̃
(k)
2 (s) =

s31
75

+
s32
6

+
s33
6

+
49

75
...

G̃
(k)
i (s) =

s3i−1
75

+
s3i
6

+
s3i+1

6
+

49

75
...

G̃
(k)
k (s) =

s3k−1
75

+
s3k
6

+
1

6
+

49

75
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Computing q

Define {Z(k)
n } by modifying {Zn} such that all types > k are

replaced by an immortal type ∆
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Computing q

Denote q(k) : the (global) extinction probability of {Z(k)
n }

q(k) ↗ q as k →∞

The proof is again an application of the monotone
convergence theorem

For each k , q(k) can be computed, for instance using
functional iteration
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Computing q

In Example 1 the progeny generating vector, G(k)(s), is

G
(k)
1 (s) =

s31
6

+
s32
6

+
2

3

G
(k)
2 (s) =

s31
75

+
s32
6

+
s33
6

+
49

75
...

G
(k)
i (s) =

s3i−1
75

+
s3i
6

+
s3i+1

6
+

49

75
...

G
(k)
k (s) =

s3k−1
75

+
s3k
6

+ 0 +
49

75

19



Random replacement

Define {Z̄(k)
n } by modifying {Zn} such that

All types > k are replaced by a type in {1, 2 . . . , k}
The types of the replaced individuals are selected
independently using the probability distribution

α(k) =
(
α
(k)
1 , α

(k)
2 , . . . , α

(k)
3

)
For example

α(k) = e1 : replacement by type 1

α(k) = 1/k : replacement by a type uniformly distributed on
{1, . . . , k}
α(k) = ek : replacement by type k

Denote q̄(k) : the (global) extinction probability of {Z̄(k)
n }
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Random replacement

An illustration when α(k) = e1
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Random replacement

In Example 1 the progeny generating vector, Ḡ
(k)

(s), is

Ḡ
(k)
1 (s) =

s31
6

+
s32
6

+
2

3

Ḡ
(k)
2 (s) =

s31
75

+
s32
6

+
s33
6

+
49

75
...

Ḡ
(k)
i (s) =

s3i−1
75

+
s3i
6

+
s3i+1

6
+

49

75
...

Ḡ
(k)
k (s) =

s3k−1
75

+
s3k
6

+

(∑k
`=1 α

(k)
` s`

)3
6

+
49

75
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Random replacement

What conditions on {Zn} and {α(k)} are required for

q̄(k) → q

as k →∞ ?
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Assumptions

Assumption (1)

inf
i∈S

qi > 0

Assumption (2)

There exists constants N1,N2 ≥ 1 and a > 0, all independent of k,
such that

min{N1,k}∑
i=1

α
(k)
i ≥ a

for all k ≥ N2.
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Main result

Theorem

Suppose Assumptions 1 and 2 hold. In addition, assume that there
exists N1 such that either

q̃j < 1 for all j ∈ {1, . . . ,N1}, or
q̃j = 1 for all j ∈ {1, . . . ,N1}, and there is a path from any
j ∈ {1, . . . ,N1} to the initial type i .

Then
lim
k→∞

q̄
(k)
i → qi

for any initial type i .
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Coupling of the branching processes

We place {Zn}, {Z(k)
n }, {Z̃

(k)

n }, and {Z̄(k)
n } on the same

probability space, for all k ≥ 1.
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Coupling of the branching processes

We place {Zn}, {Z(k)
n }, {Z̃

(k)

n }, and {Z̄(k)
n } on the same

probability space, for all k ≥ 1.
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Example 1
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Example 2

Consider the branching process with progeny generating function
G(s) such that a, c > 0, d > 1 and

G1(s) =
cd

t
st2 + 1− cd

t
,

and for i ≥ 2,

Gi (s) =


cd

u
sui+1 +

ad

u
sui−1 + 1− d(a + c)

u
when i is odd,

c

dv
svi+1 +

a

dv
svi−1 + 1− (a + c)

dv
when i is even,

where t = ddce+ 1, u = dd(c + a)e+ 1 and v = d(c + a)/de+ 1.
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Example 2

When i ≥ 2 the mean progeny matrix M has entries,

Mi ,i−1 = ad and Mi ,i+1 = cd

for i odd and

Mi ,i−1 = a/d and Mi ,i+1 = c/d

for i even.
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Example 2

a = 1/6, c = 7/8 and d−1 = 0.95

a = 1/6, c = 7/8 and d−1 = 0.93
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Concluding remarks

Example 2 demonstrates that when α(k) = ek , limk→∞ q̄(k)

does not necessarily exist

For this example we can prove that when α(k) = ek for any
a, c > 0 and d > 1,

lim inf
k→∞

q̄(k) = q.

Under Assumption 1 we believe this to be true in general.

When α(k) = 1/k , we can construct an example where
q < limk→∞ q̄(k) = q̃.

32



Questions ?
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