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1. Introduction

 Customer abandonment: Customers wait in queue 
and then leave the system without service

– Call center; 

– Supply chain;

– Supermarket, Restaurant, Healthcare, etc.

 Customer impatience

 System congestion control
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 Queues with constant impatient/abandonment 
time
– Constant approximation of abandonment time
– System congestion/performance control

– Choi et al. (2004): MAP/M/K + τ (τ is constant)
– Kim and Kim (2014): M/PH/1 + τ
– He, Zhang, and Ye (2015): M/PH/K + τ
– He, Cai, and Huang (2016): MAP/PH/K + τ

1. Introduction (continued)



5

 Our model, method, and contribution

– Model: MAP/PH/K + τ

– Method: Matrix-analytic methods (Explicit)

– Potential contributions of our research
 Developed a computational procedure for computing 

distributions and moments of waiting times and queue lengths, 
for systems with 

i) small and moderate K (from 1 to 100), 
ii) phase-type service times, and 
iii) a Markovian arrival process.

1. Introduction (continued)
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 Customers arrive according to a Markovian arrival process with 
matrix representation (D0, D1).
– There is a underlying (continuous time) Markov chain {Ia(t), t>0} 

with states {1, …, ma} associated with the service time. 

 All customers join a single queue waiting for service and are 
served on a first-come-first-served basis.  If a customer’s waiting 
time reaches constant time τ, the customer leaves the system 
immediately without service.

 There are K identical servers.  
 The service time of each customer has a phase-type distribution 

with PH-representation (β, S) of order ms.
– There is a underlying (continuous time) Markov chain {Is(t), t>0} 

with states {0, 1, …, ms} associated with the service time.

2. The MAP/PH/K+τ Queue
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 System state: Track-phase-for-server (TPFS)
– a(t): the age of the first customer waiting in the queue at time t, if 

the (waiting) queue is not empty; otherwise, a(t) = –∞. 
– Ik(t): the phase of the server k at time t, for k = 1, 2, …, K.
– {(a(t), Ia(t), I1(t), …, IK(t)), t>0} is a continuous time Markov chain.

2. The MAP/PH/K+τ Queue (continued)

 System state: Count-server-for-phase (CSFP)
– a(t): the age of the first customer waiting in the queue at time t, 

if the (waiting) queue is not empty; otherwise, a(t) = –∞. 
– ni(t): the number of servers whose service phase is i at time t, for 

i = 1, 2, …, ms.
– {(a(t), Ia(t), n1(t), …, nm_s(t)), t > 0} is a continuous time 

Markov chain.
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 For states with a(t) = –∞ (no one is waiting)
– p0 = P{a(t) = –∞};

– for k = 1, 2, …, K, and n1+…nm_s = k, 

pk(n1, …, nm_s) = P{a(t) = –∞, n1(t) = n1, …, nm_s(t) = nm_s};

pk = (pk(n), n∈Ω(k)) (probabilities)

3. Existing Approach for M/PH/K+τ
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 For states with a(t) > 0 (at least one is waiting)

– The vector pK+1(x) (transition rates) is defined in a way similar 
to pK.
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 Fundamental equations for {p0, p1, …, pK, pK+1(x)}
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3. Existing Approach for M/PH/K+τ (continued)
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 Solution approach for {p0, p1, …, pK, pK+1(x)}

– For the M/PH/K+τ case:
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3. Existing Approach for M/PH/K+τ (continued)
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1.   Use a routine method for QBD process
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2.   Following the approach in Choi et al. (2004) or Kim 
and Kim (2014)

where u1, u2, R, and G are constant vectors/matrices.

3. Existing Approach for M/PH/K+τ (continued)
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 Computation procedure for stationary distribution 
{p0, p1, …, pK, pK+1(x)}:

– Computing {R, G} (e.g., Logarithmic reduction)
– Construct φ, and compute ξ or ζ
– Computing {u1, u2}
– Compute pK+1(x)
– Compute pK = pK+1(0)/λ
– Compute {Dk, k = 1, 2, …, K}
– Compute {p0, p1, …, pK–1}
– Performance measures (loss probability, waiting time, queue 

length, etc.)

3. Existing Approach for M/PH/K+τ (continued)
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4. Proposed Approach for MAP/PH/K+τ

 Fundamental equations for {p0, p1, …, pK, pK+1(x)}
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4. Proposed Approach for MAP/PH/K+τ (continued)

 Solution approach for {p0, p1, …, pK, pK+1(x)}

– For the M/PH/K+τ case:
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– For the MAP/PH/K+τ case, the above second order (vector) 
differential equation cannot be obtained (due to the 
commutability of matrices).

– Our proposed approach: Laplace-Stieltjes Transform (LST) of 
the vector function pK+1(x).
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4. Proposed Approach for MAP/PH/K+τ (continued)

 LST of pK+1(x)

– Definition: 

– The fundamental equation of pK+1(x) becomes

where
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4. Proposed Approach for MAP/PH/K+τ (continued)

 Characterization of the roots of det(B*(s)) (conjecture 
to be shown)

– Half of the roots with positive real part; 

– Half with negative real part.

 Linear system for constant vectors (validity depending 
on independence of some vectors, which is not guaranteed.)

– {U+, V+, W+} are associated with roots with positive real part;

– {U–, V–, W–} are associated with roots with positive real part;
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4. Proposed Approach for MAP/PH/K+τ (continued)

 A solution
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However, linear independence is 
not guaranteed in general, and the 
matrix is invertible only for ms ≤ 2.
- Q-(K, ms)P+(K-1,ms) is singular!!!
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 Consider an MAP/PH/K + τ queue with τ = 1, 

5. Numerical Examples
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6. Current Research

 The  MAP/PH/K + τ queue (undergoing)
– Characterization of the roots of det(B*(s));
– Find new independent vectors to form a linear system for 

constant vectors;
– Try probabilistic approaches for some constant vectors;
– …



Thank you very much!

Any question and suggestion?
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