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Motivation
Performance analysis of 
two coupled M / M /1 queues (in parallel), 

where the coupling occurs due to 
simultaneous abandonments. 

We transform the state space description
𝑚𝑚 = min{𝑞𝑞1, 𝑞𝑞2} and 𝑑𝑑 = 𝑞𝑞1 − 𝑞𝑞2

So we have a level dependent QBD with infinite phases….
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Background
Exact analysis techniques for random walks
• Boundary value method approach

[1] Cohen, J.W. and Boxma, O.J. (1983). Boundary Value Problems in Queueing 
System Analysis.
[2] Fayolle, G., Iasnogorodski, R. and Malyshev, V. (1999). Random Walks in the 
Quarter Plane.

• Matrix geometric approach
𝐴𝐴1 + 𝑅𝑅𝐴𝐴0 + 𝑅𝑅2𝐴𝐴−1 = 0

• Compensation approach
[3] Adan, I.J.B.F. (1991). A Compensation Approach for Queueing Problems.

• Successive lumping
[4] Smit, L.C. (2016) Steady State Analysis of Large-Scale Systems.

All above techniques have been developed separately and although there exists a set of models 
for which all aforementioned techniques are appropriate there have never been connected!
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Main results
We consider the class of nearest neighbour random walks (NNRW) and 
we connect 
• Boundary value method approach
• Matrix geometric approach
• Compensation approach

Theorem 1
We consider the class of NNRW and we calculate the eigenvalues and 
eigenvectors of 𝑅𝑅 recursively.

Theorem 2
For the class of NNRW the infinite dimension rate matrix 𝑅𝑅 is 
“diagonalizable” and we can numerically approximate 𝑅𝑅 using 
truncation.

Theorem 3
We obtain the eigenvalues of the rate matrix for the original model.

NNRW
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Nearest neighbour random walk
We consider the class of nearest neighbour random walks (NNRW):
• 1st quadrant
• Homogeneous nearest neighbour 
• No transitions to N, NE and E 

Then,
𝜋𝜋 𝑛𝑛,𝑚𝑚 ~𝑐𝑐𝛼𝛼𝑛𝑛𝛽𝛽𝑚𝑚 as 𝑛𝑛,𝑚𝑚 → ∞

More concretely,

𝜋𝜋 𝑛𝑛,𝑚𝑚 = �
𝑖𝑖

𝑐𝑐𝑖𝑖𝛼𝛼𝑖𝑖𝑛𝑛𝛽𝛽𝑖𝑖𝑚𝑚,𝑛𝑛,𝑚𝑚 > 0

The limitations above are sufficient
[3] Adan, I.J.B.F. (1991). A Compensation Approach for Queueing Problems.

and necessary
[5] Chen, Y. (2015). Random Walks in the Quarter-Plane: invariant Measures and 
Performance Bounds.

NNRW
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Boundary value method approach
First, introduce

Π 𝑥𝑥,𝑦𝑦 = �
𝑛𝑛=0

∞
�

𝑚𝑚=0

∞
𝜋𝜋 𝑛𝑛,𝑚𝑚 𝑥𝑥𝑛𝑛𝑦𝑦𝑚𝑚

then
𝐾𝐾 𝑥𝑥,𝑦𝑦 Π 𝑥𝑥, 𝑦𝑦 = 𝐴𝐴 𝑥𝑥,𝑦𝑦 Π 𝑥𝑥, 0 + 𝐵𝐵 𝑥𝑥,𝑦𝑦 Π 0,𝑦𝑦 + 𝐶𝐶 𝑥𝑥,𝑦𝑦 Π 0,0

where 𝐾𝐾 𝑥𝑥, 𝑦𝑦 ,𝐴𝐴 𝑥𝑥, 𝑦𝑦 ,𝐵𝐵 𝑥𝑥,𝑦𝑦 ,𝐶𝐶 𝑥𝑥,𝑦𝑦 are known quadratic functions.
Choose 𝑦𝑦 = f(x), e.g. 𝑦𝑦 = 𝑥̅𝑥, and set 𝐾𝐾 𝑥𝑥, 𝑓𝑓(𝑥𝑥) = 0

0= 𝐴𝐴 𝑥𝑥, 𝑓𝑓(𝑥𝑥) Π 𝑥𝑥, 0 + 𝐵𝐵 𝑥𝑥, 𝑓𝑓(𝑥𝑥) Π 0, 𝑓𝑓(𝑥𝑥) + 𝐶𝐶 𝑥𝑥, 𝑓𝑓(𝑥𝑥) Π 0,0
The above equation can be solved as a Riemann (Hilbert) boundary value problem

𝑲𝑲(
𝟏𝟏
𝜶𝜶 ,

𝟏𝟏
𝜷𝜷)
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Compensation approach
Aims at solving directly the balance equations of a random walk in the quadrant using a series 
(infinite or finite) of product-form solutions
Key idea:
• Guess a product-form solution

𝛼𝛼𝑛𝑛𝛽𝛽𝑚𝑚

• Check if it satisfies the boundaries
• If not start compensating by adding new product-form terms

Solution

𝜋𝜋 𝑛𝑛,𝑚𝑚 = �
𝑖𝑖

𝑐𝑐𝑖𝑖𝛼𝛼𝑖𝑖𝑛𝑛𝛽𝛽𝑖𝑖𝑚𝑚 ,𝑛𝑛,𝑚𝑚 > 0

NNRW
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Matrix geometric approach
We know that

𝝅𝝅𝑛𝑛 = 𝝅𝝅𝑛𝑛−1𝑹𝑹
where 𝝅𝝅𝑛𝑛 = (𝜋𝜋 𝑛𝑛, 0 𝜋𝜋 𝑛𝑛, 1 … ) and 𝜋𝜋 𝑛𝑛,𝑚𝑚 = ∑𝑖𝑖 𝑐𝑐𝑖𝑖𝛼𝛼𝑖𝑖𝑛𝑛𝛽𝛽𝑖𝑖𝑚𝑚 ,𝑛𝑛,𝑚𝑚 > 0.
Then,

Π 𝑥𝑥,𝑦𝑦 = 𝝅𝝅0𝒚𝒚𝒚 + 𝝅𝝅1 𝑥𝑥−1𝑰𝑰 − 𝑹𝑹 −1𝒚𝒚′
where 𝒚𝒚′ = (1 𝑦𝑦 𝑦𝑦2 … ).
Substituting in the functional equation reveals 

𝐾𝐾 𝑥𝑥,𝑦𝑦 Π 𝑥𝑥, 𝑦𝑦 = 𝐴𝐴 𝑥𝑥,𝑦𝑦 Π 𝑥𝑥, 0 + 𝐵𝐵 𝑥𝑥,𝑦𝑦 Π 0,𝑦𝑦 + 𝐶𝐶 𝑥𝑥,𝑦𝑦 Π 0,0 ⇒

𝝅𝝅1 𝑥𝑥−1𝑰𝑰 − 𝑹𝑹 −1[𝐾𝐾 𝑥𝑥,𝑦𝑦 𝒚𝒚 + 𝐴𝐴 𝑥𝑥,𝑦𝑦 𝒆𝒆]
= −𝝅𝝅0 𝐾𝐾 𝑥𝑥,𝑦𝑦 + 𝐵𝐵 𝑥𝑥, 𝑦𝑦 𝒚𝒚′ + 𝐴𝐴 𝑥𝑥, 𝑦𝑦 + 𝐶𝐶 𝑥𝑥, 𝑦𝑦 𝒆𝒆′

So 𝑥𝑥−1 = 𝛼𝛼 is an eigenvalue of matrix 𝑹𝑹.
How do we calculate them?
The terms 𝑦𝑦−1 = 𝛽𝛽 are associated with the eigenvalues of 𝑹𝑹.

NNRW

𝐴𝐴
1
𝑥𝑥 ,

1
𝑦𝑦

1/𝑥𝑥

1/𝑦𝑦
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Matrix geometric approach
Theorem 1
The terms 𝛼𝛼𝑖𝑖 constitute the different eigenvalues of the matrix 𝑹𝑹. For eigenvalue 𝛼𝛼𝑖𝑖 the 
corresponding eigenvector of the matrix 𝑹𝑹 is 𝒉𝒉𝒊𝒊 with ℎ𝑖𝑖,𝑚𝑚 = 𝑐𝑐𝑖𝑖(𝛽𝛽𝑖𝑖−1𝑚𝑚 + 𝑓𝑓𝑖𝑖𝛽𝛽𝑖𝑖𝑚𝑚).

Theorem 2
Spectral decomposition

𝑹𝑹 = 𝑯𝑯−𝟏𝟏𝑫𝑫𝑫𝑫

Truncated spectral decomposition
𝑹𝑹𝑵𝑵 = 𝑯𝑯𝑵𝑵

−𝟏𝟏𝑫𝑫𝑵𝑵𝑯𝑯𝑵𝑵

Remark
The latter is equivalent to truncating 

𝜋𝜋 𝑛𝑛,𝑚𝑚 = �
𝑖𝑖=0

𝑁𝑁

𝑐𝑐𝑖𝑖𝛼𝛼𝑖𝑖𝑛𝑛𝛽𝛽𝑖𝑖𝑚𝑚 ,𝑛𝑛,𝑚𝑚 > 0
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Main results
Theorem 3
We obtain the eigenvalues of the rate matrix for the original model.

𝐾𝐾 𝑥𝑥, 𝑦𝑦 Π 𝑥𝑥, 𝑦𝑦 = 𝐴𝐴 𝑥𝑥,𝑦𝑦 Π 𝑥𝑥, 0 + 𝐵𝐵 𝑥𝑥,𝑦𝑦 Π 0,𝑦𝑦 + 𝐶𝐶 𝑥𝑥,𝑦𝑦 Π 0,0
+𝐷𝐷(𝑥𝑥,𝑦𝑦)Π 𝑝𝑝 + (1 − 𝑝𝑝)𝑥𝑥, 𝑦𝑦

By using a similar argument as previously we obtain

𝜶𝜶𝟎𝟎 𝒑𝒑 + (𝟏𝟏 − 𝒑𝒑)𝜶𝜶𝟎𝟎 𝒑𝒑𝟐𝟐 + (𝟏𝟏 − 𝒑𝒑𝟐𝟐)𝜶𝜶𝟎𝟎

𝜶𝜶𝟏𝟏
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Conclusions
• Calculation of eigenvalues and eigenvectors of rate matrix for NNRW

• Efficient numerical calculation of rate matrix using truncation 

• Our results show promise for “non-structured” rate matrix of random walks in the 
quadrant

Extensions
• Probabilistic interpretation of the product-form terms

• Use the results for approximation, i.e.  approximate the invariant measure by a series 
(finite or infinite) of product forms.

[6] Y. Chen, R.J. Boucherie, and J. Goseling, (2016). Invariant measures and error bounds for random walks in the 
quarter-plane based on sums of geometric terms, arXiv:1502.07218. 
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