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Model and preliminaries

Model: two fluid queues driven by o(t)

@ CTMC ¢(t) with finite state space S, generator T
@ Two fluid queues, contents X(t) and Y(t), both € [0, o0)

Buffer X Buffer Y
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Model and preliminaries

First queue X(t) driven by ¢(t)

@ (p(t), X(1)) is standard fluid queue
@ Fluid rates in R = diag(fi)jcs

;X(t) =Ty when X(t) > 0,
d
aX(l‘) = max(0, ) when X(t) = 0.

0 S=85,US8 US,, eg.S={ieS:r>0}
(upstates, downstates, zero-states)

@ also: Sg = S_ U S (“zero-states at X(t) =0)

@ after ordering,

T+ T, To
T=| T, T T |.
Tor To- Too
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Model and preliminaries

Second queue Y(t) driven by (¢(t), X(t))

@ Y(t) increases when X(t) > 0, at rate ¢; > 0

@ Y(t) decreases when X(t) =0, atrate ¢; <0
(unless Y(t) =0)

@ So
Y(t) Con) >0 when X(t) > 0,
gtY( t) = Cu(ry <0 when X(t) =0, Y(t) > 0,

gtY(t) =Cy(r) - H{(t) €S¢}  when X(t) =0, Y(t) =0.

o C = diag(Ci)ies and € = diag(&))ics
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Model and preliminaries

Special case: S, =10, |S.|=1[S5_| =1, C=-C=1

X(t)
r,>(/\r,<0
t
Yi
(t) A Vv
C>0 Ci<0
™~ X(t) t

[Kroese and Scheinhardt. Joint Distributions for Interacting
Fluid Queues, Queueing Systems, 2001]
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Model and preliminaries

Qualitative behaviour

W X(®)

Y(t)

™~ X(t) t
Assuming stability (see paper) process (p(t), X(t), Y(t))
alternates between:

(i) periodson x =0

(i) periodson x >0
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Model and preliminaries

Qualitative behaviour (i) on x =0

Y(t) X

Y(t)

o~ X(6) t

() periodsonx =0
e Y(t) decreasing, unlessatx =0,y =0
e p(t)inSs
e startsat x =0,y > 0, with ¢(t) in S_
e ends atx =0,y > 0, with ¢(t) jumping from S to S,
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Model and preliminaries

Qualitative behaviour (i) on x > 0

Y(t) X

Y(t)

o~ X(6)

(ii) periodsonx >0
e Y(t) increasing (while X(t) can either increase or decrease)
@ ¢(t)in S (any phase)
e startsat x =0,y > 0, with ¢(t) € S»
@ ends atx =0,y >0, with p(t) € S_
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Model and preliminaries

Stationary distribution

has following form (all vectors with |S| components):

(i) e 1-dimensional densities 7 (0, y)
atx=0,y>0
e point masses p(0,0)
at (0,0)
(i) e 2-dimensional densities 7(x, y)
on{(x,y) : x >0,y >x-minies. {Ci/r}}
e 1-dimensional density 7'(x, xc;/r)
onliney = x¢i/r, i € S,
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Analysis and numerics

Approach

Several steps:
@ Introduce embedded discrete-time process Ji
@ Find its stationary distribution &,
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Approach

Several steps:
@ Introduce embedded discrete-time process Ji
@ Find its stationary distribution &,
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Analysis and numerics
Approach

Several steps:

@ Introduce embedded discrete-time process Ji

@ Find its stationary distribution &,

@ Take a deep breath...

@ Express m(0, y) and p(0,0) in &, using down-shift in Y
@ Normalise based on knowledge of (¢(t), X(t))

@ Express w(x,y) in m(0, y) and p(0, 0), using up-shiftin Y
@ Express 7/(x, xc;/r;) in p(0,0)

Mostly as LST’s (but not always)
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Analysis and numerics

Intermezzo (i) on down-shift: (vLH and (v)@+

Define generator matrix

Qoo = (ICo)) ' Tee,
then for i,j € S, and z > 0,
[€999%]; = P(e(tz) = Jo p(U) € 85,0 < U < tz | (0) = i, X(0) = 0)
Also,

Qo = (ICo]) ' Tes,

is @ matrix of transition rates (w.r.t. level) to phases in S
(for times at which X and Y start increasing)

[Bean, O'Reilly and Taylor. Hitting probabilities and hitting times
for stochastic fluid flows, SPA 2005]

Matgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues



Analysis and numerics

Intermezzo (ii) on up-shift: 6(5) and W(s)

Let @ = inf{t > 0: X(t) =0} and U(t) = fu o Co(u)du, then
U(0) is total up-shift in Y during Busy Period of X

Its | S| x |S—| density matrix fp(z) is given via LST

W(s) = /zoo e~ %4(z)dz

=0

as

[W(s)lj = E(e”*YD1{p(6) = j} | £(0) = i, X(0) = 0),

[Bean and O’Reilly. A stochastic two-dimensional fluid model,
Stochastic Models, 2013]
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Analysis and numerics

Intermezzo (ii) on up-shift: 6(5) and W(s)

To find \Tl(s) define Key generator matrix a(s), as

=~ Q) Q).
als) = [ 6(3)1 6(3): ]

6(3)++ = (Ry)™! <T++ —sCy — To(Too — 360)_1To+)
Q(s):— = (Ry) <T+— —Tio(Too — Séo)_1To—)

Q(s) -+ = (IR_|)~" <T—+ —T_o(Too - Séo)_1To+>
Q(s)-- = (R-[)~" (T-- =€~ T_o(Too — sCo) ' To-)

Then W(s) is minimum nonnegative solution of Riccati eq.
Q(5)— + Q(5)+-+W(s) + W(s)Q(s) - + W(s)Q(s)— ¥(s) = O,

[Bean and O’Reilly. A stochastic two-dimensional fluid model,
Stochastic Models, 2013]
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Analysis and numerics

Back on track... Embedded process Jx

Let Jk = (¢(0k), Y(0k)), with state space S_ x (0, 00),
where 6 is k-th time that (¢(f), X(t), Y(t)) hits x =0

Lemma
The transition kernel of Jy is given by

Z A ~ o~
P,, = / [1 0]e%cvQeiyp(y — z+u)du
u=lz—y1*

+ [1 0]6%e2(—Que) ' Qs P (y)-

where [x]" denotes max(0,x), and [ | O | isa|S_| x |Ss|
matrix.
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Analysis and numerics

Embedded process Jk

Proof. Based on Lindley-type recursion,
Y(Oks1) = [Y(0k) — D] ™ + Uk, (1)

where
Tk Ok _
Dy :/ |c¢(u)\du, Uk :/ Cw(u)du
u="0 U=y

So (i) Y(t) first has down-shift —D, as long as ¢(t) € Sg
(ii) after jump Sg — S5, Y(t) has up-shift U, during busy period

of X.
Then use previous knowledge; note that Jx moves from (i, z) to
(/, y) without or with returning to 0 during (6x, 0x+1)- O
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Analysis and numerics

Embedded process Jk

Corollary

The Laplace-Stieltjes transform of P, , w.r.t. y is given by

P.(s) = [I O]e ™ (699 +sl)71 (e<6ee+SI)z_l>
><69+‘T’(S)

+ [1 0]6%57(—Que) Q0. W(s).

O

Proof. Using lemma, or based on (1) directly
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Analysis and numerics

Embedded process Ji — stationary distribution &,

Stationary distribution of Ji is given by row vector
€, = [¢iz]ics_ of densities, satisfying

fzoio Eszv.}/sz
fyoio Eydy1 = 1 9

Will be solved numerically.

Il
o
<
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Analysis and numerics

Embedded process Ji — stationary distribution &,

Stationary distribution of Ji is given by row vector
€, = [¢iz]ics_ of densities, satisfying

fzoio Eszv.}/sz
fyoio Eydy1 = 1 9

Will be solved numerically.

Il
o
<

Next step (after deep breath):

Express stationary distribution of (¢(t), X(t), Y(t)) at level
x =0interms of &,.
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Analysis and numerics

Expressing (0, y) and p(0,0) in &,

X(t)
rp%l’ﬂo
t
Y(t)
A \
Cp>0 Ci<0
™~ X(®) t
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Analysis and numerics

Expressing (0, y) and p(0,0) in &,

We have ©(0,y) = [ 0 =(0,y)s |, where

(e o]

7(0,¥)0 = a / (€, 0]e8cE9 (8] 0z,
z=y

andp(0,0) = [ 0 p(0,0)s |, where

PO.0)c =a [ [€ 0]eefoz(~Tec) ™,

Here, o is a normalization constant
In fact « is the total rate of hitting x = 0.
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Analysis and numerics

Expressing (0, y) and p(0,0) in &,

Proof. Consider “cycles” defined by hitting times of x = 0, and
condition on where previous hit took place.

[Latouche and Taylor. A stochastic fluid model for an ad hoc
mobile network, Queueing Systems, 2009]
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Analysis and numerics

Expressing (0, y) and p(0,0) in &,

LST of density part: let

Corollary

We have 7 (0,-)(s) = [ 0 =(0,-)(S)s |, where

n(0)(&)e = o [€ 0]eter(@os+ sl

x <| - e—(éee+3'>2) (ICa|)'dz.

Proof. Straightforward. Ol
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Analysis and numerics

Normalise, based on 1-dim fluid queue ((t), X(t))

Lemma

The normalisation constant « is given by

a = {[E 0 ](-Teo)™ (1

+Te K[ (R)™ W(R_|)™" ]

—1
)

where, £ = [[° &,dz, W = W(s)|s—o and K = K(s)|s—o with

K(s) = Q(s)4+ + W(s)Q(S)_+.
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Analysis and numerics

Normalise, based on 1-dim fluid queue ((t), X(t))

Proof. Integrating (0, y) and adding p(0, 0) yields the
probability mass vector of ¢(t) at x = 0, which is also known
from 1-dim fluid queue:

[p- pPo] = a[€& 0](-Tee)™!
Similarly, we have expression for density =(x) at x > 0.

Now solve o from

p1 —|—/ w(x)dx1 =1
x=0

O
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Analysis and numerics

Expressing = (x, y) in =(0, y) and p(0,0)

We have

m(x,)(s) = [ m(x,))(s)+ m(x,")(s)- w(x.)(s)o ]

[ (e )()e w0 )(9)- ] = (w(0.)()o + p(0.0)e)
xTor O [ (R W()(R) |,

and

m(x,)(S)o = [ m(x.)(8)y m(x,:)(s)- ]

XTio(Sao ~Too) ™
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Analysis and numerics

Expressing = (x, y) in =(0, y) and p(0,0)
Let (-, )(v,8) = [, & *m(x,-)(s)dx.

Corollary

We have
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Analysis and numerics

Expressing 7'(x, x¢;/r;) in p(0,0)

Forallie Sy,

(%, xCi/r) = Y pj(0,0)Tjiexp(—(Tii/ri)x)/ri
JESe

Proof. Consider “cycle” starting when (0, 0) is left, and
consider expected number of visits to (i, x, xc;/r;) before return
to (0,0). O
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Analysis and numerics

Main result

Stationary distribution of (¢(t), X(t), Y(t)) is found, as mixture
of densities and LSTs.
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Analysis and numerics

Numerical scheme

@ Discretize the DTMC Ji and truncate its state space:

. (m+1)Au

me - / PeAuyydy, E,m: 0’1,2’...L
y=mAu

@ Normalize this to obtain Py, with 325 Pyl = 1.

® Find £, = [§j/]jes_ by solving EP =¢, &1 =1.
@ Use this to approximate e.g.

p(0,0)c = o[ &6%°%dz(-Toe)™
z=0

L
ay g0 Y (~Toe) ™.
=0

@ Similar for (0, y) etc; invert using Abate and Whitt
@ Work in progress
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Analysis and numerics

Numerical scheme
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Analysis and numerics

Conclusions and future work

@ Stationary distribution found, as mixture of densities and
LSTs (as opposed to closed form LST in special case)

@ Finish numerical scheme
@ Consider dual model
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