SIR epidemics with stages of infection

Matthieu Simon (ULB)
Joint work with Claude Lefèvre (ULB)

Matrix Analytic Methods Conference
28-30 June 2016
Table of contents

1. The model
2. Martingales for the epidemic outcome
3. Contagion per infective
4. Semi-Markov extension
Table of contents

1. The model
2. Martingales for the epidemic outcome
3. Contagion per infective
4. Semi-Markov extension
SIR models

SIR models: spread of an epidemic amongst a closed and homogeneous population, according to the following scheme:

- **S**: healthy individuals, but susceptible to be contaminated.
- **I**: infected individuals, who can infect the healthy ones (independently of each other).
- **R**: infectives whose infection period is finished. They take no longer part to the infection process (removed).
SIR models with stages

We consider a SIR model with

- L stages of infection $1, 2, ..., L$ (e.g. for different degrees of infectiousness).
- p types of elimination $\star_1, \star_2, ..., \star_p$ (e.g. death or immunization).

At the beginning: n susceptibles and m_j infectives in phase j.

When contaminated, a susceptible begins in an initial stage given by α.

Transitions between stages

Contagion process

When in stage j, an infective contaminates the s available susceptibles according to a Poisson process with parameter $\frac{s\beta_j}{n}$.

Transitions for an infective

For each infective, a Markov process $\\{\varphi(t)\}$ modulates the transitions between stages and the elimination time.

Defined on $\{\star_1, \star_2, ..., \star_p, 1, 2, ..., L\}$ and with generator

$$Q = \begin{bmatrix} 0 & 0 \\ a_1 & a_2 & \cdots & a_p & A \end{bmatrix}.$$

Here, $t \in \mathbb{R}^+$ is the local time of an infection process.
Let T be the ending time of the epidemic:

$$T = \inf\{t \geq 0 \mid I(t) = 0\}.$$

We aim to determine the joint distribution of the statistics:

- S_T: final size of the epidemic,
- $R_T^{(r)}$: final number of eliminations of type r,
- A_T: cumulative total duration of all infection periods.
Table of contents

1. The model

2. Martingales for the epidemic outcome

3. Contagion per infective

4. Semi-Markov extension
Artificial time

Time change: We follow the infectives one after the other.

- Discrete time $\tau = 0, 1, 2, \ldots$

- $S_\tau = \text{number of susceptibles after } \tau \text{ infectives},$
- $R^{(r)}_\tau = \text{number of eliminations of type } r \text{ after } \tau \text{ infectives},$
- $A_\tau = \text{cumulative duration of the first } \tau \text{ infection periods}.$

- Initially, $S_0 = n$, $A_0 = 0$, $R^{(r)}_0 = 0$.

In this artificial time, the epidemic terminates at time

$$\tilde{T} = \inf\{\tau \mid \tau + S_\tau = n + m\}.$$

By the characteristics of the model,

$$\left(S_{\tilde{T}}, A_{\tilde{T}}, R^{(1)}_{\tilde{T}}, \ldots, R^{(p)}_{\tilde{T}}\right) \overset{d}{=} \left(S_T, A_T, R^{(1)}_T, \ldots, R^{(p)}_T\right).$$
Suppose that the \(\tau \)-th infective begins in stage \(j \). Then

\[
\binom{S_{\tau}}{k} = \sum_{u=1}^{k} 1_j(k; u),
\]

\[
A_{\tau} = A_{\tau-1} + D_j,
\]

\[
R_{\tau}^{(r)} = R_{\tau-1}^{(r)} + 1_j, r,
\]

1. \(1_j(k) = \mathbb{I}(\text{a fixed group of } k \text{ susceptibles escape from the infective}) \)
2. \(1_j(r) = \mathbb{I}(\text{the infective will become an eliminated of type } r) \)
3. \(D_j = \text{infection duration of the infective.} \)
Martingales for the epidemic outcome

With the preceding relations, one can show that for each \(k = 0, 1, \ldots, n \), \(\theta \geq 0 \) and \(z \in \mathbb{R}^p \), the process

\[
\left\{ \left(S_{\tau}^k \right) \frac{e^{-\theta A_{\tau}}}{q(k, \theta, z)^\tau} \prod_{r=1}^{p} z_r R_{\tau}^{(r)}, \tau \geq m = m_1 + \cdots + m_L \right\}
\]

is a martingale, provided that

\[
q(k, \theta, z) = \sum_{j=1}^{L} \alpha_j q_j(k, \theta, z),
\]

\[
q_j(k, \theta, z) = E \left[\mathbb{1}_j(k) e^{-\theta D_j} \prod_{r=1}^{p} z_r 1_j(r) \right].
\]
Joint distribution of S_T, A_T and $R_T^{(r)}$

Applying the optional stopping theorem on this martingale for $\tilde{T} = \inf\{\tau \mid \tau + S_{\tau} = n + m\}$, after having considered the effect of the initial infectives:

Proposition

For $0 \leq k \leq n$, $\theta \geq 0$ and $z \in \mathbb{R}^p$:

$$E \left[\binom{S_T}{k} e^{-\theta A_T} q(k, \theta, z)^{S_T} \prod_{r=1}^{R} z_r R_T^{(r)} \right]$$

$$= \binom{n}{k} q(k, \theta, z)^n \prod_{j=1}^{L} q_j(k, \theta, z)^{m_j}.$$
Some consequences of the preceding formula

A triangular system to determine the distribution of S_T:

\[
\begin{align*}
\sum_{s=k}^{n} \binom{s}{k} q(k)^s \mathbb{P}(S_T = s) &= \binom{n}{k} q(k)^n \prod_{j=1}^{L} q_j(k)^{m_j} \\
\sum_{s=0}^{n} \mathbb{P}(S_T = s) &= 1
\end{align*}
\]

where $q_j(k) \equiv q_j(k, 0, 0)$.

The moments of A_T and $R_T^{(r)}$:

\[
\begin{align*}
\mathbb{E}[A_T] &= \sum_{j=1}^{L} m_j \mathbb{E}[D_j] + (n - \mathbb{E}[S_T]) \mathbb{E}[D_{\alpha}], \\
\mathbb{E}[R_T^{(r)}] &= \sum_{j=1}^{L} m_j q(0, 0, \bm{e}_r) + (n - \mathbb{E}[S_T]) q_j(0, 0, \bm{e}_r).
\end{align*}
\]
Table of contents

1. The model
2. Martingales for the epidemic outcome
3. Contagion per infective
4. Semi-Markov extension
To obtain the epidemic outcome, we only need the parameters

\[q_j(k, \theta, z) = E \left[1_j(k) e^{-\theta D_j} \prod_{r=1}^{p} z_r 1_j(r) \right]. \]

We only need to analyse the behaviour of a unique infective facing \(k \) susceptibles, who are immediately removed when infected.

Let \(N(k, t) \) be the number of infections generated by this single infective up to time \(t \) (\(t \) is the local time of the infectious period).
contagion process

\[
\{(N(k; t), \varphi(t)) \mid t \in \mathbb{R}^+\} \text{ is a Markov process with state space }
\{\star_1, \ldots, \star_p, [(0, 1), \ldots, (0, L)], \ldots, [(k, 1), \ldots, (k, L)]\},
\]

and its generator is

\[
\begin{bmatrix}
0 & & & & & \\
& a_1 \cdots a_p & A_0(k) & A_1(k) & 0 & \cdots & 0 \\
& a_1 \cdots a_p & 0 & A_0(k-1) & A_1(k-1) & \cdots & 0 \\
& a_1 \cdots a_p & 0 & 0 & A_0(k-2) & \cdots & 0 \\
& \vdots & & & & & \vdots \\
& a_1 \cdots a_p & 0 & 0 & 0 & \cdots & A_1(1) \\
& a_1 \cdots a_p & 0 & 0 & 0 & \cdots & A_1(1) \\
\end{bmatrix},
\]

where \(A_1(h) = \frac{h}{n}B \) and \(A_0(h) = A - A_1(h) \).
By using the structure of this last generator, one can show that

Proposition

For $1 \leq j \leq L$,

$$q_j(k, \theta, z) = e_j \left[\theta I - A_0(k) \right]^{-1} \sum_{r=1}^{p} z_r a_r.$$

The same formula holds for $q(k, \theta, z)$ except that α is substituted for e_j.
Table of contents

1 The model

2 Martingales for the epidemic outcome

3 Contagion per infective

4 Semi-Markov extension
The process \(\{ \varphi(t) \} \) is now a semi-Markov process with kernel

\[
Q(t) = \begin{bmatrix}
I & 0 \\
\mathbf{a}_1(t) & \ldots & \mathbf{a}_p(t) & A(t)
\end{bmatrix},
\]

where, if \(\delta \) denotes the first renewal time,

\[
A_{j,v}(t) = P[\delta \leq t, \varphi(\delta) = v \mid \varphi(0) = j],
\]

\[
(a_r)_j(t) = P[\delta \leq t, \varphi(\delta) = *r \mid \varphi(0) = j].
\]
The martingales obtained in the Markovian case are still valid.

We just need to adapt the formulae for the parameters

\[
q_j(k, \theta, z) = E \left[\mathbb{1}_j(k) e^{-\theta D_j} \prod_{r=1}^{p} z_r \mathbb{1}_j(r) \right].
\]

As before, we consider a unique infective facing \(k \) susceptibles \(N(k, t) \) is be the number of infections generated by this infective «up to time \(t \)>>.
Contagion process

The semi-Markov kernel of \(\{(N(k; t), \varphi(t))\} \) is

\[
\begin{bmatrix}
I & 0 \\
\mathbf{u}_{k0}(t) & \mathbf{U}_{k0}(t) \\
\mathbf{0} & \mathbf{U}_{k-10}(t) \\
\vdots & \vdots \\
\mathbf{0} & \mathbf{U}_{00}(t)
\end{bmatrix},
\]

where, if \(Y(t) \) denotes the number of susceptibles at time \(t \),

\[
(U_{hl})_{j, v}(t) = P[\delta \leq t, Y(\delta) = l, \varphi(\delta) = v \mid Y(0) = h, \varphi(0) = j],
\]

\[
(u_{hl})_{j}(t) = P[\delta \leq t, Y(\delta) = l, \varphi(\delta) = \star \mid Y(0) = h, \varphi(0) = j].
\]
The model
Martingales for the epidemic outcome
Contagion per infective
Semi-Markov extension

Formula for the coefficients

Proposition

For $1 \leq j \leq L$,

$$ q_j(k, \theta, z) = e_j \left[1 - C_k(\theta) \right]^{-1} \sum_{r=1}^{p} z_r c_{k,r}(\theta), $$

where for $0 \leq k \leq n$,

$$ (C_k)_{j,v}(\theta) = \hat{A}_{j,v}(\theta + k \beta_j / n), \quad 1 \leq v \leq L, $$

$$ (c_{k,r})_j(\theta) = (\hat{a}_r)_j(\theta + k \beta_j / n), \quad 1 \leq r \leq p, $$

with $\hat{A}_{j,v}$ and $(\hat{a}_r)_j$ the Laplace transforms of $A_{j,v}$ and $(a_r)_j$.
Thank you for your attention.