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Single Server Speed Scaling

Ii.

Speed scaling: Adapting the speed of a computer or

communication system to tradeoff energy and

performance

Static speed scaling: System is busy = single speed,
System is idle = sleep mode

Dynamic speed scaling: Speed is continuously adapted

based on the system state, i.e., the number of jobs in the

system, delay experienced by jobs, etc.



Single Server Speed Scaling

e Low speed <> low power

e Takes longer to finish a task with lower speed, BUT
generally less energy is consumed

e How to adapt the speed according to the system state

in order to obtain energy savings?



Motivating Application Areas

O Adaptive speed in processors and computer systems
=  Change the speed of a processor according to the number
of jobs waiting in the system to save energy 1]
O Adaptive link rate (ALR) schemes in Ethernet links
= Change the rate of an Ethernet link according to the link

utilization to obtain energy savings (not standardized) (2]

100 Mbps, if link utilization < 10%

" Datarate ={ 1 Gbps, if link utilization > 10%



Motivating Future Applications

O Wireless link that supports different power levels and
adaptive coding and modulation (ACM) techniques

O Adjust the link rate according to delays of the jobs in the
system

O Save from the power while satisfying QoS constraints



Delay-based Dynamic Speed Scaling

e Assign a service rate for the head-of-the-line (HOL) job of a
FIFO queue according to the total delay it has experienced
in the system

e Jobs may have strict deadlines
= Jobs with delays greater than the deadline abandon the

system without service

Low service rate - Low power —> Energy saving



Markov Fluid Queues (MFQs)

e Background process determines the rate of change (drift) of a

buffer

Finite state space Continuous Time Markov Chain (CTMC)

Each state has its own drift value

Infinitesimal generator and drift values

Multi-Regime (Multi-Layer/Multi-Threshold) MFQ (MRMFQ)
= Buffer is divided into a finite number of regimes

= Each regime has own infinitesimal generator and drift values
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Multi-Regime Markov Fluid Queues
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Multi-Regime Markov Fluid Queues

dPX <x Z
n —PriX(0) <x, 2(t) = i},

FO@E =@ 20 - KR9F),
(k) = lim Pr{X(t) = TW), Z(¢) = i},

t—> o0

e = [0 o ],

£5(x) = lim

— LfP@RY = fOx)Q®.

|T©@ 7@ T&)]: Boundary points, T(=0, T =co
Q) Infinitesimal generator at boundary k for 0 < k < K

”(k) : Net drift of the buffer at boundary k for 0 < k < K
R(") dlag( ) 0 ik )1) forl<k <K



Boundary Conditions of MRMFQs
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Computational Complexity

e An N-state K-regime MFQ system requires
" a3 Schur decomposition and a pair of Sylvester
equations for each regime: O(N3K)
" the solution of a linear matrix equation of at most size
NQ2K +1)
" Exploiting the block tridiagonal form of the linear
matrix equation reduces the computational

complexity to O(N3K) 1]



System Model

e Server has K + 1 available service rates to select

e Exponentially distributed service times withrate yy,, k =1,..., K + 1

e Poisson job arrivals with rate 1

e D(t): Delay already experienced by the HOL job at service start time t
e A(t): Unfinished work (process) in the system at time ¢t

e X(t): Fluid level at time t, obtained by replacing abrupt jumps in S(t)

by linear decrements



System Model

e Regime boundaries of the MRMFQ model

0=T0O0 <« T ... « TE) « TE+1) =
e When T*=1) < D(t) < T™), the HOL job is served with rate p,
e Service rate is fixed during the service of the HOL job.

* Operating power at rate uy is P;.

If T(K) < D(t), the job is either: i) served with rate ug.1, or ii) blocked.

T K s called the deadline or delay threshold.



Sample Paths
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State Space

O I:Service stateinregime k, k=1,2,..., K+ 1
" Ix2Ug
= X(t)isincreased with a drift of 1.

O ‘D: State representing the inter-arrival times

= X(t) is decreased with a drift of 1.

? ??? T ! Timet



State Transitions
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Infinitesimal Generator and Drift Matrices
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The Delay Distribution

e A(t) determines the amount of delay that newly arriving jobs will
experience.

e By PASTA property, average system power, blocking probability and
the delay distribution can be calculated from the steady-state

probability distribution of state D.

PriX(t) <x, Z(t) = D}
Pr{Z(t) = D}

gim Pr{A(t) < x} = L]im



Average Operating Power

* ;. probability that a newly arriving job finds the system in regime k

* P probability that a newly arriving job finds the system empty

p = lim Pr{iT* D < At) <T®}, 1<k<K+1

Do = tlim Pr{A(t) = 0}

* - probability that a job is served with rate p

a, = Pk, k > 2,
“7po +p1 k=
k+1 Yk
Poo = 1oP; + (1 = Dp) Pe__p
avg Pol] Po k+14i k
k=1 z:i=1 .U_z



Blocking Probability

* For the case of abandonments. ug.,.1 — ©0, no energy is consumed

* pp: blocking probability

pp = lim pgy; =lim lim Pr{A(¢) = T®}

UK +17® t—00 Uk 410



Numerical Examples



Example | — Case of Abondonments

K=2TM =10,T® =20,u;, =05, u, =1,n =1/,

Jobs with delays greater than T(®) = 20 abandon the system
PI — Or Pk — .ukz

Increase u3 in order to model abandonments

po (%) Puvg

H8 Py =04 n=08|n=04 1n=038
Te2 | 0.1123 3.0420 | 0.2238  0.6662
led | 0.1118  3.0196 | 0.2238  0.6664
le6 | 0.1118  3.0193 | 0.2238  0.6664
le8 | 0.1118  3.0193 | 0.2238  0.6664
Sim | 0.1118  3.0185 | 0.2238  0.6664

Table 1: Blocking probability p, and average system power Fy,;,; compared with
simulation results for two values of n = 0.4, 0.8.



Example Il — Piecewise Linear Rate
Adjustment Policy (PiLRAP)

Selects service rates from piecewise linear functions of the

unfinished work process A(t) from the interval [tmin, Umax]-

HK= Umax

Jobs with A(t) = T%) are blocked.

* (x9,Yo) point determines the exact service rate function.



Example Il — Piecewise Linear Rate
Adjustment Policy (PiLRAP)

Service Rat

0 1 2 3 Z S 6 7 8 9 10
Unfinished Work A(t)

Figure 1: Service rate function (dashed lines) and actual service rate uy (straight lines)
as functions of A(t) for pin= 0, Umar= 1, T® =10, K = 10.
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Example Il — Piecewise Linear Rate

Adjustment Policy (PiLRAP)
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Figure 2: Average system power Fy,;,; and blocking probability p;, as functions of parameters

Xo and y, for K = 20.
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Example Il - Comparison with
Static Speed Scaling

K = 11 T(l) — 201 H1 = HUmax = 1

M/M/1 queue with load p = A/t = Pr = (1 — p)P; + pPy

(Pf_Pavg)
Py

G =100

Blocking probability should be less than 0.01



Example Il - Comparison with
Static Speed Scaling

—n=04
...... n=06|

0.25- -
O | 1 | 1 |
5 10 15 20 25 30
K
Figure 3: Optimal values of x, and y,, denoted by x; and y,, as functions of K for
n = 0.4,0.6,0.8.
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Example Il - Comparison with
Static Speed Scaling

O 50 .

i= (“/

4v) L

(D 40 ----------------------------------------------------------------------------------------------------

2l —=04
3 L n=0.

o -l |

Q@ 20 —--1n=0.8

-% 10 E ’:"' -----------------------------------------------

e /

_,(E O I’ ! ‘

< 5 10 15 20 25 30

Figure 4: Attainable power gain, denoted by G*, as a function of K forn = 0.4, 0.6, 0.8.



Example Il - Comparison with
Static Speed Scaling
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Figure 5: Attainable power gain, denoted by G*, as a function of the load n for K=20.



Conclusion

e We propose an MRMFQ model of a dynamic speed
scaling system, in which a service rate is decided
according to the delay of the HOL job.

e Piecewise Linear Rate Adjustment Policy (PiLRAP) is
proposed which minimizes the power consumption

under job blocking probability constraints.



Future Work

e More general arrival process such as MAP

e Other service time distributions, such Phase-type
distribution

e Detailed analysis of a real life application

e Zero-drift states to model abandonments to deal
with the case Ug, 1 >

e Multi-server case
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Thank you for your attention.
Any questions?
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Markov Fluid Queues (MFQs)

* Single-Regime MFQ (SRMFQ)
= Buffer considered as a single regime
" Fixed infinitesimal generator and drift values

e Multi-Regime MFQ (MRMFQ)
= Buffer is divided into a finite number of regimes
" Each regime has own infinitesimal generator and drift
values

e Continuous-Feedback MFQ (CFMFQ)

" Infinitesimal generator and drift values as continuous
functions of the buffer level



Steady-state Solution of MRMFQs

A — Q(k)(Rac))‘l S Ay =y

el
(@)™ = | L)

157,

0

eA(_k) (x=T#*D) 1 (k)

A

L)

AT,

A%

al®) = [a(()k) al®) ai")]: vector of unknown coefficients



Stability Conditions

1. Mean drift in the last regime should be negative, i.e.,
TKREKI1 < 0
2. £ (x) should be bounded, i.e.,

e ) _ o

=0,a;



State Transitions

NG
A

T(z) =4

T(l) = 2
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