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1 Introduction

Estimating a mean up timev(T) for a new component
generally relies on an extrapolation of informations ob-

some insights on the differences induced by the two distinct
distributions.

tained on one or several matured components of the same2 The MUT follows a uniform distri-

family. In charge of such a task, who did not hesitate think-
ing to himself :« why 5 000 hours rather thas 000 hours?
or 6 000 hours?>.

This estimation of theiuT will be used to estimate the
steady state availability of this new component and from
that elaborate the estimation of the availability of the global
system in which this subsystem is included. Moreover, for
tailored complex highly dependable systems (think for ex-
ample to air traffic control systems), there is a high sensitiv-
ity between the steady state availability of this new compo-

nent and the amount of spares to produce when introducing

the new complex system on the field. An over-estimation
of the MuT and the customer will not obtain the required
availability; an under-estimation of theuT and very costly
spares might be produced for no need.

In order to take this risk into consideration, we propose
to consider the steady state mean up timex) as a ran-
dom variable. This implies that the steady state availability
becomes itself a random variable.

In this paper we first consider theuT as uniformly
distributed on a time intervdg, by] ; when no additional
information is available, this is meaningful to use the uni-
form distribution (this is the distribution that maximizes the
entropy function of the information). Then we consider
the so calleck triangular»>distribution. For such a distribu-
tion, the density function is continuous and non nul over the
interval [Zmin, Tmaz], linearly increasing oM in, Tmod)
and linearly decreasing dt,od, Zmaz]-

Because we deal with highly available systems, it is
more meaningful to study the relative variation of the un-
availability as a function the different parameters. Here, the

mean down time (easier to evaluate) is supposed to be con-

stant and the steady state unavailability can be written as :

d

A= ——n—
MUT +d

whered is the constant mean down time.

We determine the expectation and the probability dis-
tribution of this steady state unavailability as a function of
the probability distribution of the steady state mean up time

for the two different cases, respectively in sections 2 and 3.

Sensitivities of the different parameters are pointed out with
graphical illustrations of numeral cases. Section 4 gives

bution

In this section, the random variableuT follows the
uniform distribution Ulag, bo]. Letting a = (ag + d)
andb = (by + d) the random variable ugavailabilit&i

takes its values on the interval € [Amin, Amax] Where

— d — d .. . .

Amnin = 7’ Amax = —. Itisinteresting to represent the ob-
a

tained results as a function of the rabijt: and therefore we

let 3 = b/a, 3 > 1. On this interval, the density function

of A is equal to

d _

fZ(CE) - mv S [Amin;Amax]

From this result we get the expectation

E[4] = In ()

4
a(f—1)

Expressing: as a function of a parameter « € [0, 1]
in the following way

z(a) = Amin + a(Amax — Amin) = d%v
it is possible to show that
— B (1 _ a)
P(A > z(a)) = m (1)

and also that
IP(A > 2(a)) < (1 —a)

Figure 1 gives the variation of the probabilily(A <
z(«)) as a function oty, a € [0, 1], for several values of.
The line segment denotedtl = 1 corresponds to the limit
curve wheng tends to onei.e., whenb, tends towards.

Itis possible to check that the probabillB(A > z(«)) de-
creases significantly when parametancreases. However
we have to remember that interval,,i,, Amax] increases
with g and therefore that, globally the uncertainty stays pe-
nalizing.



Figure 1: Variation oflP(A < z(«)) as a function ofx,
a € [0,1]. Values of3 : 1;2;4;8 (bottom-up).muT fol-
lowing a uniform distribution.

Given a small value of, we can determine the value of
a such thafP (A4 > z(«)) = . We get the function:

_ (1=
(L=7)+8
Note that this function is an involutiory (f(z)) = x).
Figure 2 gives this variation af as a function ofy, v €
[0, 0,2]. for several values of. We observe that de-
creases significantly when parametencreases.
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Figure 2: Variation ofv as a function ofy, v € [0, 0,2].
Values of 3 : 1;2;4;8 (top-down). MuT following a uni-
form distribution.
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Note that if we were considering a deterministic value
of MUT equal to its expectation, then the steady state un-
availability would be deterministic and equal to

2d
a(B+1)

It can be shown that increasing the uncertainty on the
mean up time (without changing its expectation) decreases
the expectation of the steady state availability.

A=

3 The MmuT follows a triangular dis-
tribution

We assume now that the random variakleT follows a
triangular distribution (see a representation on figure 3).

fuur ()

2

(ajmaxfwmin)

Tmin Zmin

Figure 3: |lllustration of the density function of the
«triangular»> distribution.

This distribution is entirely characterized by the triplet
(xmin; Tmax xmod)-
The mean down time is still supposed to be constant
(MDT = d) and, in order to simplify the writting, we let
& = Tmin +d, b = Trmax +d, A = Tmax — Tmin and
Lmod — Lmin

(xmax - xmin) .

SN

Considering the random variableé = —, it can be

shown that this random variable has the following density
function :

y<1/b
1/b<y<

a+ pA
<y<l/a

a+ pA
y>1/a

This density function is represented on figure 4 for three valugs (@f/4; 1/2 and3/4). The cumulative probability

function is obtained by integration :
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Figure 4: Density function of” for three values op ; with
a = 10 andb = 20. MuT follows a« triangular> distribu-

tion.
With these previous notations, we still have <
— = — d — .

[Amin, Amax) Where A, = 5 Apax = —, as in the pre-
a

vious section. Using again the notatiofis= b/a, B > 1
Amin) , we get again

andx(a) = Anin + a(Amax -
1+a(f-1)
Ba
We can show that the expectationdhas the following
expression whep satisfies the conditiof < p < 1:

)

z(a) =d

2d
A= pF-17
@mm—g—%i@mw—m+w0

IE[A] X

y<1/b

1/b<y<

a+ pA
<y<l/a

a+ pA
y>1/a

PA<z(a’)=(1-p), VB,

and wheno takes its value betweehand o*, we can

(7 —nQ% ©)

Figure 5 gives the variation of the probabilily(A <

x(«)) as a function ofx andp ; p = 0.5, a € [0.5 ,1],

for several values off. Again, the curve denotef = 1
corresponds to the limit curve whehtends to onej.e.,
whenbg tends towards,y. We can see that the probabil-
ity IP(A > x(«)) decreases significantly when parameter
[ increases. But again we have to remember that interval
[Amin, Amax] increases with and therefore that, globally

the uncertainty stays penalizing.

show that :

af
1+ a(p

1
(1-p)

P(A < x(a)) =
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Figure 5: Variation oflP(A < z(a)) as a function ofx,
a €1[0.5,1]. p=0.5. Values ofg3 : 1; 2; 4; 8 (bottom-up),

a € [0.5,1]. muT follows a« triangulars> distribution.

Let o* be the value ofx such thatz(a*) = 4
a -+ pAt’hat Given a small value of (satisfyingy < p), we can de-
termine the value ofv such thatP(4 > z(«a)) = v. We

i.e., the value ofa corresponding to the unavailability
we obtained whemuT = z,.4. This value is:

(I-p)
(L—=p)+pB

*

Whena takes its value between* and1, we can show

that :
_ 1 (-
P(A<z(a)) =1 p((la)JrOéﬂ).

If « = a*, we have:

get the function :

-y
(1=vp7) + /B

Figure 6 gives this variation of as a function ofy,
v € [0, 0,2]. for several values off. For example, if
8 =2,p=0.5andy = 0.1, thena equals).63. We ob-
serve thaty decreases significantly when parameten-
creases. This figure can be compared to figure 2 relative to
the variation ofx in the case of the uniforme distribution.

()



Figure 6: Variation ofx as a function ofy, y € [0, 0.2].
p = 0.5. Values of( : 1;2; 4; 8 (top-down).muUT follows
a« triangular»> distribution.

On the other side, given a small value d{satisfying
§ < (1 — p)), we can determine the value afsuch that
P(A < z(a)) = 6. We get the function :

(1-p)d
B—=(B-1)(1-p)

o =

4 Comparison

In order to make comparisons between the two distribu-
tions, letlPy (A > x(a)) andlPr(A > x(«)) denote the
respective probabilities corresponding to the uniform and
to the triangular distributions of the random variabileT.
From previous equations 1 and 2 , we get, for a given value
of o, > a* :

Pr(A> ofe) = (Pu(@>ala). @)
Fora — a*, we have

Pr(A > z(a)) =Py(A > z(a)) = p. 5)
While for a, a < a* :
Pr(A < 2(0) = L - (Py(A < W)’ ()
Figure 7 shows, for3 — 2, the advantage of the

«triangular> distribution on the uniform distribution. In-
creasing the value of parametemwould increase this ad-
vantage.
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Figure 7: Variation ofP(A < z(«)) as a function ofx,
a € (0.0, 1]. Comparison of the uniform distribution with
the« triangular» distribution. Withp = 0.5 ; 3 = 2.

5 Conclusions

In this study, we have pointed out a way to determine the
probability P(A > =) when, due to a lake of knowl-
edge, the mean up time is considered as a random vari-
able. Simple expressions have been obtained for two cases
of probability distributions : the uniform distribution and
the« triangular»> distribution. Expressions af satisfying

the equalitylP(A > z) = ~, for a giveny have also been
exhibited.

We conducted this research with the aim to help the en-
gineer to understand the consequences of such uncertainties
on the mean up time.

Finally, note that, starting from these initial guesses on
probability distributions, we may then improve the evalu-
ation by using the Bayesian approach, making uses of the
data returning from the field experiences.
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