
On the Cost of Generating PH-distributed Random
Numbers

Philipp Reinecke, Katinka Wolter
Humboldt-Universiẗat zu Berlin

Unter den Linden 6
10099 Berlin, Germany

{preineck,wolter}@informatik.hu-berlin.de

Levente Bodrog, Mikĺos Telek
Budapest University of Technology and Economics

Department of Telecommunications
1521 Budapest, Hungary

{bodrog,telek}@webspn.hit.bme.hu

Abstract—Phase-type (PH) distributions are proven to be very
powerful tools in modelling and analysis of a wide range of
phenomena in computer systems. The use of these distributions
in simulation studies requires efficient methods for generating
PH-distributed random numbers. In this work, we consider the
cost of PH-distributed random-number generation.

I. I NTRODUCTION

Phase-type distributions (PH) distributions have been widely
used in modelling various phenomena such as response-times,
inter-arrival times and failure times in computer systems.The
fact that there are simple and elegant solution techniques
available for PH distributions has made them appealing for
analytic solutions.

PH distributions can also be employed in simulation studies.
In this case the efficiency of generating PH-distributed random
numbers plays a crucial role. In this work we investigate the
efficiency of generating random numbers from continuous PH
distributions. Due to the fact that the Markovian representation
of PH distributions is not unique the key issue to investigate
is which representation of a PH distribution is most efficient
for random-number generation.

II. D EFINITIONS AND NOTATION

Continuous phase-type (PH) distributions represent the time
to absorption in a continuous-time Markov chain with one ab-
sorbing state [4]. PH distributions are commonly specified as a
tuple(α,A) of the initial probability vectorα = (α1, . . . , αn)
and the transient generator matrixA = {aij}, 1 ≤ i, j ≤ n.
The probability density function, the cumulative distribution
function, and thekth moment, respectively, are defined as
follows [2], [4], [7]:

f(x) = αeAx
a,

F (x) = 1 −αeAx
1I,

E
[

Xk
]

= k!α(−A)−k
1I.

where a = −A1I, and 1I is the column vector of ones of
appropriate size.

Definition 1: The (α,A) representation is called Marko-
vian if α ≥ 0, aij ≥ 0, 1 ≤ i 6= j ≤ n and a = −A1I ≥ 0.
Then, the generator matrix of the associated CTMC is

A =

(

A a

0 0

)

.

λi

ziλi

(1 − zi)λi

bi

Fig. 1. A Feedback-Erlang block.

Definition 2: The size of the(α,A) representation is the
size of the vectorα, which is equal to the size of the square
matrix A.

The (α,A) representation is not unique. WhenB is
invertible and B1I = 1I, then (αB,B−1

AB) is another
representation of the same distribution, since its CDF is

1−αBeB
−1

ABx
1I = 1−αBB

−1eAx
B1I = 1−αeAx

1I.

The sizes of the(α,A) and the(αB,B−1
AB) representa-

tions are the same in this case, but it is also possible to generate
representations of the same distribution with any larger size.

Based on the(α,A) representation, we distinguish the
following classes of phase-type distributions:
• HEx(n): The Hyper-Exponential distributions of ordern.
For these,aii < 0, andaij = 0 for i 6= j.
• HErD(β,m, b,λ): The Hyper-Erlang distributions with ini-
tial distributionβ (of sizem) andm Erlang branches with
length bi and parameterλi, i.e., Erl(bi, λi), i = 1, . . . ,m.
The order of the Hyper-Erlang distribution isn =

∑m

i=1
bi.

• APH(n): The Acyclic Phase-type distributions of ordern,
represented in the CF-1 form [1]:aii < 0, aii+1 = −aii and
aij = 0 for j < i and j > i+ 1.
• PH(n): Any Markovian (α,A) of sizen.

Apart from these traditional PH structures we make use of
the monocyclic representations of PH distributions introduced
in [3]. Monocyclic PH distributions are composed of a series
of Feedback-Erlang distributions (Figure 1), which are Erlang
blocks with a feedback transition from the last phase of
the block to the first one. The degenerate cases with no
feedback (true Erlang distribution) and Erlang block of size
one (Exponential distribution) are allowed as well. Similarly
to the above we thus define:
• Mono(α,m, b,λ,z): The monocyclic distributions with
initial distribution α (of size n) and m Feedback-Erlang



blocks of orderbi, parameterλi and feedback probability
zi. The order of the monocyclic distribution isn =

∑m

i=1
bi.

Any PH distribution has a monocyclic representation [3]. If
the representation of the PH distribution is PH-simple [6] and
of size n, then the size of the monocyclic representation is
n′ ≥ n. This potential size expansion makes the monocyclic
representation less efficient in analytical studies, but its simple
and still Markovian structure makes it promising for simulation
studies.

III. PH-DISTRIBUTED RANDOM-NUMBER GENERATION

The simulation of PH-distributed random numbers is based
on the following simple elementary operations:

• Drawing an exponentially distributed sample with param-
eterλ

Exp(λ) = −
1

λ
ln(U),

• Generating an Erlang-distributed sample with degreeb
and parameterλ

Erl(b, λ) = −
1

λ
ln

(

b
∏

i=1

Ui

)

• Obtaining a geometrically distributed sample (starting
from 0) with parameterp

Geo(p) =

⌊

ln(U)

ln(p)

⌋

,

whereU denotes a[0, 1] uniformly distributed pseudo-random
number. TheErl(b, λ) sampling is more efficient than drawing
b exponentially distributed samples and summing them up,
because theln operation is applied only once.

Based on the structural properties of the above-listed PH
classes,HEx(n) ⊂ HErD(n) ⊂ APH(n) ⊂ PH(n) holds, but
the subset membership is far from visible based on an arbitrary
representation, e.g., the CF-1 form of aHEx(n) distribution
does not indicate theHEx(n) membership. A random-number
generator for one class of phase-type distributions can generate
random numbers also for all of the subclasses, which allows
a comparison of the computational complexity.

The most natural way to simulate a PH-distributed random
number is to play the CTMC until absorption. By ‘play’ we
mean to simulate the state transitions of the CTMC according
to the following basic steps. Letei denote the row vector with
1 at positioni, and 0 everywhere else.

Procedure Play:

1) clock= 0, draw anα-distributed discrete sample for the
initial state,

2) the chain is in statei

– draw an ei(−diag〈1/aii, 0〉A + I)-distributed dis-
crete sample for the next state,

– clock += Exp(−aii),

– if the next state is the absorbing one go to 3),
otherwise go to 2)

3) return the clock value

Instead of individually sampling exponentially distributed
samples with the same parameter, [5] proposed the following
approach:

Procedure Count:

1) clock= 0, count[i] = 0, (i = 1, .., n), draw anα-
distributed discrete sample for the initial state,

2) the chain is in statei

– count[i] += 1,
– draw an ei(−diag〈1/aii, 0〉A + I)-distributed dis-

crete sample for the next state,
– if the next state is the absorbing one go to 3)

otherwise to 2)

3) for i = 1, . . . , n, clock += Erl(count[i],−aii) and return
the clock value.

The structural properties of the monocyclic representation
lead to another approach, where we consider the single expo-
nential phase to be a degenerate Feedback-Erlang block with
zi = 0 andbi = 1:

Procedure Monocyclic:

1) clock= 0, draw anα-distributed discrete sample for the
initial state,

2) the chain is in statel of block i (for the left-most state
of the block,l = bi)

– c = Geo(zi),
– clock += Erl(cbi + l, λi) sample,
– if the next block is the absorbing state go to 3),

otherwisel = bi+1, i = i+ 1 and go to 2)

3) return the clock value.

The CF-1 form represents distributions of theAPH(n)
class as a chain of phases. For each phase, there is exactly
one successor phase. This structural restriction allows the
following simplification ofPlay:

Procedure SimplePlay:

1) clock= 0, draw anα-distributed discrete sample for the
initial state.

2) The chain is in statei.

– clock += Exp(−aii),
– i += 1,
– if the next state is the absorbing state go to 3),

otherwise go to 2).

3) Return the clock value.



Worst Case Average Case
PH Class #uni #ln #uni #ln

HEx(n) SimpleCount 2 1 2 1
HErD(n) SimpleCount max bi + 1 1 βbT + 1 1
APH(n) SimplePlay n + 1 n ανT + 1 ανT

PH(n) Play ∞ ∞ 2n∗ + 1 n∗

PH(n) Count ∞ n 2n∗ + 1 n

Monocyclic ∞ 3m ωϕT +αψT ωϑT

TABLE I
THEORETICAL COSTS(WHEREν = (n, n−1, . . . , 1),

n∗ = α(DIAG〈1/aii〉A)−11I).

For theHErD(β,m, b,λ) class, we can simplify the pro-
cedureCount:

Procedure SimpleCount:

1) Draw aβ-distributed discrete sample to choose an Erlang
branchi.

2) ReturnErl(bi, λi).

IV. COST OF GENERATINGPH-DISTRIBUTED NUMBERS

We consider two complexity metrics:
• #uni, the number of required uniform random variates, and
• #ln, the number of logarithms that need to be computed.

A. Worst-Case Costs

For theAPH(n) class and its subclasses we can compute
the worst-case cost by considering the longest possible path
through the CTMC. We denote the length of this path asñ.
For HEx(n), ñ = 1, for HErD(β,m, b,λ), ñ = max bi, and
for APH(n), ñ = n.

Then, the worst-case costs can be computed as follows: For
every class, we need one uniform random variate to choose the
initial state. With theHEx(n) class we need another uniform
and one logarithm to generate a random number from the
chosen exponential distribution. Similarly, for theHErD(n)
class we need̃n additional random variates and one logarithm
to obtain an Erlang-distributed random number. Finally, when
using theAPH(n) class in CF-1 form we need̃n uniforms
andñ logarithms for the consecutive phases. These results are
summarised in the left half of Table I.

B. Average Costs

As generalPH(n) and monocyclic distributions may con-
tain cycles, we cannot construct a worst case for these classes.
Instead, we compute the cost of the average case, which
is based on the average number of state transitions up to
absorption,

n∗ = α(diag〈1/aii〉A)−1
1I.

For subclasses ofAPH(n), n∗ is straightforward:n∗ = 1
for HEx(n), n∗ = βbT for HErD(β,m, b,λ), and n∗ =
ανT APH(n), where ν = (n, n − 1, . . . , 1). Using the
SimpleCount andSimplePlay procedures, respectively,
we then need one uniform random variate to choose the initial
state, and one uniform per traversed phase.

For the generalPH(n) class, in each step we need two
uniforms because the next phase is chosen randomly. With
the Count procedure the number of logarithms isn instead
of n∗ for Play.

For Mono(α,m, b,λ,z) we introduce vectorω of sizem,
whoseith element is the probability of starting from Feedback-
Erlang block i (e.g. ω1 =

∑b1
j=1

αj), vector ϕ of size m,

whoseith element isϕi = zibi

1−zi
+
∑m

j=i+1

bj

1−zj
(the mean

number of steps spent in a Feedback-Erlang block from the
first feedback, i.e. excluding the steps from the initial state
to the feedback state in the first passage through the initial
block), vectorψ of sizen whoseith element indicates how
many phases are needed to reach the next Feedback-Erlang
block (e.g. ifb1 ≥ 2 thenψ1 = b1, ψ2 = b1 − 1).

Using these notations the mean number of steps till absorp-
tion is

n∗ = ωϕT +αψT,

where αψT contains the number of steps if there is no
feedback (i.e., ifzi = 0, for i = 1, . . . ,m) and ωϕT

contains the additional number of steps due to the loops in
the Feedback-Erlang block.

The mean number ofln operations is

ℓ∗ = ωϑT,

where ϑ is a row vector of sizem whose ith element
indicates the number of requiredln operations starting from
block i. ϑi =

∑m

j=i(1 + 2 sgn(zj)), since a degenerate
Feedback-Erlang block withzi = 0 is Erlang(l, λi) distributed
which requires oneln operation and a non degenerate (zi > 0)
Feedback-Erlang block requires threeln operations, twoln
operations forc = Geo(zi) and one forErl(cbi + l, λi).

We can summarise the complexity (in terms of #uni and
#ln) of PH classes as follows: ForHEx(n) and HErD(n)
SimpleCount is efficient, because this procedure reduces
#ln to 1 and does not draw uniform random variates for the
choice of the next state (which is fixed). ForAPH(n) in CF-1
form, there is again no choice between successor states, and
thereforeSimplePlay is more efficient thanPlay. For the
generalPH(n) class,Count is more efficient thanPlay.

Note that by exploiting structural limitations the cost of
random-number generation can be reduced. For instance,
generatingHErD(n) random variates usingSimplePlay
requires

∑m

i=1
bi random variates andn logarithm operations,

while the specialisedSimpleCount procedure has worst-
case costs ofmax bi +1 ≤

∑m

i=1
bi uniforms and 1 logarithm.

V. A M OTIVATING NUMERICAL EXAMPLE

In the above discussion we used the number of uniforms
and the number of logarithms as measures of the cost of
generating a random number. The effect of these measures
on the computational cost is very much implementation-
dependent. For illustration purposes, we measured the time
required to generate a large number of PH-distributed samples
on a particular hardware.



Procedure Play Count Monocyclic
(α,A) 217 s 155 s -
(δ,D) 196 s 142 s -
(γ,G) 21 s 23 s 22 s

TABLE II
THE RUNNING-TIME OF GENERATING107 SAMPLES IN SECONDS

Starting from representation(α,A), where α =
{0.7, 0.1, 0.2} and

A =





−1 0.9 0.1
1.5 −2 0.5
2.5 0 −3



 ,

we have

n∗(α,A) = α(diag〈1/aii〉A)−1
1I = 39.8615.

Applying a similarity transformation with

B =





1.04 0 −0.04
0 1 0
0 0 1





results inδ = αB = {0.728, 0.1, 0.172} and

D = B
−1

AB =





−0.9 0.865385 0.0153846
1.56 −2 0.44
2.6 0 −3.1



 ,

whose associated complexity measure is

n∗(δ,D) = δ(diag〈1/dii〉D)−1
1I = 36.7209.

We used the MOMI tool of Mocanu to obtain the mono-
cyclic representation [3] of the same distribution:γ =
{0.944558, 0.013656, 0.003824, 0.037962} and

G =









−0.0353682 0.0353682 0 0
0 −2.66883 2.66883 0
0 0. −2.66883 2.66883
0 0.034605 0. −2.66883









.

For this representationℓ∗ = 3.944558 and

n∗(γ,G) = γ(diag〈1/gii〉G)−1
1I = 3.90422.

This way we obtained three different representations,
(α,A), (δ,D) and(γ,G) of the same PH distribution. These
representations differ in their analytical parameters andin their
size. To evaluate the optimal way of drawing samples from
this PH distribution we implemented the simulation procedures
Play, Count, andMonocyclic in C++ and measured their
performance for the three representations.

The simulations ran under Slackware Linux on an Intel
Pentium 4 2.4 GHz-based machine. The measurement simply
determines the time difference between the start and the
end of each program generating107 samples. To reduce
environmental impact as much as possible, our programs do
not store the samples in memory or on disk. The results are
shown in Table II

The running-times reported in Table II mirror the analytical
results (Table I), as the computational cost increases withn∗.

For largen∗ (n∗ > 30), the reduced number ofln operations
of the Count procedure results in faster computation. For
the monocyclic(γ,G) representation, theCount procedure
does not offer an advantage overPlay, since it requires more
logarithm operations than the latter (n∗ < n), and because it
has some book-keeping overhead.

VI. OPTIMISING THE PH-REPRESENTATION FOR

RANDOM-NUMBER GENERATION

We can define optimisation problems to minimise the cost
of PH-distributed random-number generation. First of all,we
need to recall that all of the introduced procedures are based
on Markovian representations. The authors are not aware
of efficient simulation methods for generating PH-distributed
random numbers based on a non-Markovian representation.
Consequently, the considered representations of the PH distri-
bution should be restricted to be Markovian.

In order to optimise the Markovian representation of a PH-
distribution for efficient random-number generation we define
the following optimisation problem:

Starting from a PH-distribution defined
by a Markovian representation (α,A) find
the Markovian representation (δ,D) that
minimises n∗ = δ(diag〈1/dii〉D)−1

1I, where the
size of (δ,D) might differ from the size
of (α,A).

The solution of this optimisation problem is not available
according to the authors’ current knowledge. We think it is an
interesting research problem which might have applicationin
numerical procedures as well.

Based on the experiences of our motivating example we
think that the monocyclic representation is a good heuristic for
a representation with lown∗ value, but we are at the beginning
of this investigation and we need to evaluate several further
examples to verify this experience.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we considered some factors of the com-
plexity of PH-distributed random-number generation. We col-
lected procedures for generalPH(n) distributions (Play and
Count) and also for PH distributions with specific struc-
ture (Monocyclic, SimplePlay andSimpleCount) and
compared thePlay, Count and Monocyclic procedures
using a numeric example.

The main finding of the paper is that the complexity of PH-
distributed random-number generation strongly depends onthe
representation of the PH distribution. Based on this findingwe
pose a research problem, but did not go far in its solution.

In the near future we intend to attack the posed optimisation
problem and find efficient ways for PH-distributed random-
number generation. Apart from the solution of the optimisa-
tion problem it requires numerical experimentation with the
possible simulation procedures and software environments.



ACKNOWLEDGEMENTS

This work was supported by DFG grant Wo 898/2-1 and
OTKA grant no. K-61709.

REFERENCES

[1] A. Cumani. On the canonical representation of homogeneousMarkov
processes modelling failure-time distributions.Microelectronics and
Reliability, 22:583–602, 1982.

[2] A. Horváth and M. Telek. PhFit: A General Phase-Type Fitting Tool.
In TOOLS ’02: Proceedings of the 12th International Conference on
Computer Performance Evaluation, Modelling Techniques and Tools,
pages 82–91, London, UK, 2002. Springer-Verlag.

[3] S. Mocanu and C. Commault. Sparse representations of phase-type
distributions.Commun. Stat., Stochastic Models, 15(4):759 – 778, 1999.

[4] M. F. Neuts. Matrix-Geometric Solutions in Stochastic Models. An
Algorithmic Approach. Dover Publications, Inc., New York, 1981.

[5] M. F. Neuts and M. E. Pagano. Generating random variates from
a distribution of phase type. InWSC ’81: Proceedings of the 13th
conference on Winter simulation, pages 381–387, Piscataway, NJ, USA,
1981. IEEE Press.

[6] C. A. O’Cinneide. Phase-type distributions and invariant polytopes.
Advances in Applied Probability, 23(3):515–535, 1991.

[7] M. Telek and A. Heindl. Matching Moments for Acyclic Discrete
and Continous Phase-Type Distributions of second order.International
Journal of Simulation Systems, Science & Technology, 3(3–4):47–57, Dec.
2002.


