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Abstract—Phase-type (PH) distributions are proven to be very
powerful tools in modelling and analysis of a wide range of
phenomena in computer systems. The use of these distributions
in simulation studies requires efficient methods for generating * ,
PH-distributed random numbers. In this work, we consider the bi

cost of PH-distributed random-number generation.

Fig. 1. A Feedback-Erlang block.
I. INTRODUCTION

Phase-type distributions (PH) distributions have beerelyid

used in modelling various phenomena such as response-time®efinition 2: The size of the(a, A) representation is the
inter-arrival times and failure times in computer systefitse ~ Size of the vectory, which is equal to the size of the square
fact that there are simple and elegant solution techniqu@atrix A.

available for PH distributions has made them appealing for The (a, A) representation is not unique. WheB is

analytic solutions. invertible and B = 1I, then (aB,B~!AB) is another
PH distributions can also be employed in simulation studiggpresentation of the same distribution, since its CDF is
In this case the efficiency of generating PH-distributedican 1— aBeB 'ABrl — | _ BB~ 'eABT = 1 — AL

numbers plays a crucial role. In this work we investigate the

efficiency of generating random numbers from continuous PFhe sizes of thga, A) and the(aB,B~'AB) representa-
distributions. Due to the fact that the Markovian repreagon tions are the same in this case, but it is also possible torgtne
of PH distributions is not unique the key issue to investigatepresentations of the same distribution with any largee.si
is which representation of a PH distribution is most effitien Based on the(c, A) representation, we distinguish the
for random-number generation. following classes of phase-type distributions:

e HEx(n): The Hyper-Exponential distributions of order

II. DEFINITIONS AND NOTATION e
. o . For thesepn;; < 0, anda;; = 0 for i # j.
Continuous phase-type (PH) distributions represent the ti | HErD(3, m, b, A): The Hyper-Erlang distributions with ini-

to apsorptlon ina cont'lnu.ous.-tlme Markov chain with one ab'tial distribution 3 (of sizem) andm Erlang branches with
sorbing state [4]. PH distributions are commonly specified a length b; and paramete, i.e., Erl(b;, \;),i = 1,...,m.

tuple (a, A) of the initial probability vectorx = (a, . . ., o) L Sm
and the transient generator matk = {a;;},1 <i,j <n.
The probability density function, the cumulative distitilom
function, and thekth moment, respectively, are defined as
follows [2], [4], [7]:

m

The order of the Hyper-Erlang distributionis= ) _." | b;.
e APH(n): The Acyclic Phase-type distributions of ordey
represented in the CF-1 form [1d;; < 0, a1 = —ay; and
a;; =0for j <iandj>i+ 1.

e PH(n): Any Markovian (a, A) of sizen.

flx) = aet@a, Apart from these traditional PH structures we make use of
F(z) = 1- eI, the monocyclic representations of PH distributions inteet!
E [Xk] — Ka(—A)"*IL in [3]. Monocyclic PH distributions are composed of a series
of Feedback-Erlang distributions (Figure 1), which areaBgl
wherea = —ATl, and 1L is the column vector of ones of plocks with a feedback transition from the last phase of
appropriate size. the block to the first one. The degenerate cases with no
Definition 1: The («, A) representation is called Marko-feedback (true Erlang distribution) and Erlang block ofesiz
vian if & > 0, a;; > 0,1 <i#j<nanda= —All > 0. one (Exponential distribution) are allowed as well. Simjla

Then, the generator matrix of the associated CTMC is to the above we thus define:

A A a e Mono(a, m, b, A, z): The monocyclic distributions with
L0 0 ) initial distribution o (of size n) and m Feedback-Erlang



blocks of orderb;, parameter\; and feedback probability — if the next state is the absorbing one go to 3),
z;. The order of the monocyclic distributionis= """, b,. otherwise go to 2)
Any PH distribution has a monocyclic representation [3]. If3) return the clock value

the representation of the PH distribution is PH-simple [i6dl a

of size n, then the size of the monocyclic representation is |nstead of individually sampling exponentially distribdt

n' > n. This potential size expansion makes the monocycligmples with the same parameter, [5] proposed the following
representation less efficient in analytical studies, Busimple approach:
and still Markovian structure makes it promising for sintida

studies. Pr ocedur e Count :

[1l. PH-DISTRIBUTED RANDOM-NUMBER GENERATION 1) clock= 0, counti] = 0, (i = 1,.,n), draw ana-
The simulation of PH-distributed random numbers is base% ?As:réal‘:ﬁ]digli?g;;ample for the initial state,
on the following simple elementary operations:

) . . . i — count[i] += 1,
« Drawing an exponentially distributed sample with param _ draw an e;(—diag(1/a;;, 0)A + T)-distributed dis-

eter \
crete sample for the next state,
Exp(\) = —lln(U), — if the next state is the absorbing one go to 3)
A otherwise to 2)
o Generating an Erlang-distributed sample with degbee 3) fori=1,...,n, clock +=Erl(counfi], —a;;) and return
and parametei the clock value.
b
1
Erl(b,\) = 3 (H Ui) The structural properties of the monocyclic representatio
i=1 lead to another approach, where we consider the single expo-
« Obtaining a geometrically distributed sample (startingential phase to be a degenerate Feedback-Erlang block with
from 0) with parametep z; =0andb; = 1:
ln(U)J :
Geo(p) = Procedure Monocycli c:
0= |n y

. o 1) clock= 0, draw ana-distributed discrete sample for the
whereU denotes 40, 1] uniformly distributed pseudo-random initial state,

number. Thefrl(b, ) sampling is more efficient than drawing 2) the chain is in staté of block i (for the left-most state
b exponentially distributed samples and summing them up, of the block,! = b;)
because thén operation is applied only once. — ¢ = Geo(z)
Based on the structural properties of the above-listed PH N
classesHEx(n) ¢ HErD(n) C APH(n) C PH(n) holds, but
the subset membership is far from visible based on an arpitra
representation, e.g., the CF-1 form offlx(n) distribution
does not indicate thEEx(n) membership. A random-number
generator for one class of phase-type distributions caargém ——
random numbers also for all of the subclasses, which allowsThe CF-1 form represents distributions of tRePH(n)
a comparison of the computational complexity. class as a chain of phase;. For each phasg, _there is exactly
The most natural way to simulate a PH-distributed randoff® Successor phase. This structural restriction alloves th
number is to play the CTMC until absorption. By ‘play’ wefollowing simplification of Pl ay:
mean to simulate the state transitions of the CTMC according :
to the following basic steps. Lei; denote the row vector with Procedure Sinpl ePl ay:

— clock +=Erl(ch; + 1, A\;) sample,

— if the next block is the absorbing state go to 3),
otherwisel = b; 1,7 =1¢+ 1 and go to 2)

3) return the clock value.

1 at positioni, and 0 everywhere else. 1) clock= 0, draw ana-distributed discrete sample for the
initial state.
Procedure Pl ay: 2) The chain is in state.
1) clock= 0, draw anc-distributed discrete sample for the — clock +=Exp(—a;),
initial state, —i+=1,
2) the chain is in state — if the next state is the absorbing state go to 3),
— draw ane;(—diag(1/a;;,0)A + I)-distributed dis- otherwise go to 2).
crete sample for the next state, 3) Return the clock value.

— clock +=Exp(—aj;),




Worst Case Average Case

PH Class #uni #n suni #n For the generaPH(n) class, in gach step we need two'
HEx(n) Si npl eCount > 1 > 1 uniforms because the next phase is chosen randomly. With
HErD(n) Si npl eCount | maxb; +1 1 By +1 1 the Count procedure the number of logarithmssisinstead
APH(n) Si npl ePl ay n+1 n a’+1 o’ | of n* for Pl ay.
gggzg gloﬁﬁt ol o | 2 i} "~ For Mono(a, m, b, A, z) we introduce vectow of sizem,
Nonocycl i ¢ ~ am | wol + o’ wd' whoseith element is the proba})blllty of starting from Eeedback—
ABLE 1 Erlang blocki (e.g. w1 = 3 ;1 a;), vector ¢ of size m,
THEORETICAL COSTS(WHEREY = (n,n—1,...,1), whoseith element isp; = fi—bz‘i + Z;‘n:i-u [=n (the mean
n* = ca(DIAG(1/a;;) A)~ ). number of steps spent in a Feedback-Erlang block from the

first feedback, i.e. excluding the steps from the initiatesta

to the feedback state in the first passage through the initial
block), vectoriy of size n whoseith element indicates how
many phases are needed to reach the next Feedback-Erlang
block (e.g. ifby > 2 then; = by, 99 = by — 1).

N Using these notations the mean number of steps till absorp-
Procedure Sinpl eCount: tion is 9 P P

1) Draw ag@-distributed discrete sample to choose an Erlang
branchi. n =we' +oap,
2) ReturnErl(b;, ;).

For theHErD(3,m, b, \) class, we can simplify the pro-
cedureCount :

where ayp” contains the number of steps if there is no

feedback (i.e., ifz; = 0, for i = 1,...,m) and we'
IV. COST OF GENERATINGPH-DISTRIBUTED NUMBERS  contains the additional number of steps due to the loops in
We consider two complexity metrics: the Feedback-Erlang block.
e #uni, the number of required uniform random variates, and The mean number dh operations is
e #In, the number of logarithms that need to be computed. = wd’,

A. Worst-Case Costs where 9 is a row vector of sizem whose ith element
For the APH(n) class and its subclasses we can compuigdicates the number of requirdd operations starting from
the worst-case cost by considering the longest possible pafock i. 9, = Z;.”:i(l + 2 sgn(z;)), since a degenerate
through the CTMC. We denote the length of this pathias Feedback-Erlang block with; = 0 is Erlang(, ;) distributed
For HEx(n), 7 = 1, for HErD(83,m, b, A), i = maxb;, and which requires onén operation and a non degenerate % 0)
for APH(n), n = n. Feedback-Erlang block requires thrae operations, twaln
Then, the worst-case costs can be computed as follows: bperations forc = Geo(z;) and one forErl(ch; + 1, \;).
every class, we need one uniform random variate to choose thgve can summarise the complexity (in terms of #uni and
initial state. With theHEx(n) class we need another uniformgin) of PH classes as follows: FdfEx(n) and HErD(n)
and one logarithm to generate a random number from tBenpl eCount is efficient, because this procedure reduces
chosen exponential distribution. Similarly, for th&<rD(n) #In to 1 and does not draw uniform random variates for the
class we need additional random variates and one logarithréhoice of the next state (which is fixed). FaPH(n) in CF-1
to obtain an Erlang-distributed random number. Finallyewh form, there is again no choice between successor states, and
using theAPH(n) class in CF-1 form we need uniforms thereforeSi npl ePl ay is more efficient tharPl ay. For the
andn logarithms for the consecutive phases. These results geeralPH(n) class,Count is more efficient tharPl ay.
summarised in the left half of Table I. Note that by exploiting structural limitations the cost of
B. Average Costs random-number generation can be reduced. For instance,

o generatingHErD(n) random variates usingi npl ePl ay
As generalPH(n) and monocyclic distributions may Con'requireszz’;1 b; random variates and logarithm operations,

tain cycles, we cannot construct a worst case for theseersias%, ile the specialisedsi npl eCount procedure has worst-
Instead, we compute the cost of the average case, wh e costs afaxb; +1 < 3™ b; uniforms and 1 logarithm
is based on the average number of state transitions up to LT T el '

absorption, V. A MOTIVATING NUMERICAL EXAMPLE

* ; -1
n' = o(diagl/a;)A) 1L In the above discussion we used the number of uniforms
For subclasses aAPH(n), n* is straightforward:n* = 1 and the number of logarithms as measures of the cost of
for HEx(n), n* = Bb' for HErD(3,m,b,A), and n* = generating a random number. The effect of these measures
av' APH(n), wherev = (n,n — 1,...,1). Using the on the computational cost is very much implementation-
Si npl eCount and Si npl ePl ay procedures, respectively,dependent. For illustration purposes, we measured the time
we then need one uniform random variate to choose the initrequired to generate a large number of PH-distributed sssnpl
state, and one uniform per traversed phase. on a particular hardware.



Procedure | Play Count Monocycl i c

(@A) | 27s 1555 For largen* (n* > 30), the reduced number &fi operations

(6,D) | 196s  142s - of the Count procedure results in faster computation. For
(r,G) | 21s 23s 22s the monocyclic(v, G) representation, th€ount procedure
TABLE Il does not offer an advantage owray, since it requires more
THE RUNNING-TIME OF GENERATING 107 SAMPLES IN SECONDS |Ogarithm Operations than the |atte':*(< 7’L), and because |t

has some book-keeping overhead.

VI. OPTIMISING THE PH-REPRESENTATION FOR

Starting from representation(c, A), where o« = RANDOM-NUMBER GENERATION

{0.7,0.1,0.2} and
We can define optimisation problems to minimise the cost

A Ié O'g 8; of PH-distributed random-number generation. First of at,
o 2'5 B _'3 ’ need to recall that all of the introduced procedures aredbase

on Markovian representations. The authors are not aware
we have of efficient simulation methods for generating PH-disttéul
. _ -Markovian representation.
“(, A) = a(diagl1 /a;;)A)~ 1T = 39.8615. random numbers baseq on a non ' ntal
n'(a, A) = a(diag(l/e;) A) 39-8615 Consequently, the considered representations of the RH dis

Applying a similarity transformation with bution should be restricted to be Markovian.

104 0 —0.04 In order to optimise the Markovian representation of a PH-

B=— 0 1 0 distribution for efficient random-number generation we rofi
0 0 1 the following optimisation problem:

results ind = aB = {0.728,0.1,0.172} and Starting froma PHdistribution defined

—0.9 0.865385 0.0153846 by a Markovi an representation («,A) find

D=B 'AB = 1.56 _9 0.44 , t he Markovi an representation (§,D) that
2.6 0 31 m ni mi ses n* = §(di ag(1/d;)D)~ 11, where the
. . . size of (4,D) might differ fromthe size

whose associated complexity measure is of (a,A).

n*(8,D) = &(diag(1/d;;)D) "' 1 = 36.7209.

. The solution of this optimisation problem is not available
We used the M.OMI tool of Mocanu to qbtgm Fhe monoI’:\(:cording to the authors’ current knowledge. We think itris a
cyclic representation [3] of the same distributioty: =

interesting research problem which might have applicaition
{0.944558,0.013656, 0.003824, 0.037962} and numerical procedures as well.

—0.0353682 0.0353682 0 0 Based on the experiences of our motivating example we
G— 0 —2.66883  2.66883 0 think that the monocyclic representation is a good heurfsti
- 0 0. —2.66883  2.66883 " arepresentation with low* value, but we are at the beginning
0 0.034605 0. —2.66883 of this investigation and we need to evaluate several furthe
For this representatiofi* = 3.944558 and examples to verify this experience.
n*(v,G) = v(diag(1/g:;)G) ™ 1 = 3.90422. VIl. CONCLUSION AND FUTURE WORK

This way we obtained three different representations,In this paper, we considered some factors of the com-
(a, A), (6,D) and(~, G) of the same PH distribution. Theseplexity of PH-distributed random-number generation. We co
representations differ in their analytical parametersiarideir lected procedures for genefH(n) distributions Pl ay and
size. To evaluate the optimal way of drawing samples frofount) and also for PH distributions with specific struc-
this PH distribution we implemented the simulation progegu ture (Monocycl i ¢, Si npl ePl ay andSi npl eCount ) and
Pl ay, Count , andMonocycl i ¢ in C++ and measured their compared thePl ay, Count and Monocycl i ¢ procedures
performance for the three representations. using a numeric example.

The simulations ran under Slackware Linux on an Intel The main finding of the paper is that the complexity of PH-
Pentium 4 2.4 GHz-based machine. The measurement simgigtributed random-number generation strongly dependhen
determines the time difference between the start and ttepresentation of the PH distribution. Based on this findieg
end of each program generatini)” samples. To reduce pose a research problem, but did not go far in its solution.
environmental impact as much as possible, our programs ddn the near future we intend to attack the posed optimisation
not store the samples in memory or on disk. The results gmoblem and find efficient ways for PH-distributed random-
shown in Table Il number generation. Apart from the solution of the optimisa-

The running-times reported in Table Il mirror the analyticaion problem it requires numerical experimentation witle th
results (Table 1), as the computational cost increases wmifith possible simulation procedures and software environments
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