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Abstract—Acyclic phase-type distributions can be used to
describe the time until a basic event in a fault tree occurs.
We show in this paper that the top event of a fault tree built
from such basic events is also acyclic phase-type distributed. We
then apply a recently developed acyclic phase-type minimization
algorithm to effectively combat the state-space explosion problem
in a dynamic fault tree analysis.

I. INTRODUCTION

Fault trees (FT) [1] are a popular and well-established

formalism used for dependability modeling. A FT describes

how different combinations of component failures lead to a

system failure. A FT is a directed acyclic graph in which the

sources are basic events, which generally denote component

failures, and the other vertices are gates, which connect the

basic events and generally describe the failures of subsystems.

A FT has one sink, the top event, which describes the failure

of the entire system. The most important measure of interest

for a FT is the unreliability: the probability that the top event

occurs given specified probabilities that the basic events occur.

A FT with m basic events encodes a boolean function

f : {0, 1}m → {0, 1}, where boolean vector ~b = (b1, · · · , bm)
describes the operational status of the basic events, and f(~b)
describes the operational status of the top event. When bi is

equal to 0, the i-th basic event has not yet occurred; when

it is equal to 1, it has occurred. Similarly, f(~b) = 0 denotes

that the system is operational, whereas f(~b) = 1 means that

the top event has happened, i.e. the system has failed. In

this paper, we consider only coherent FTs, namely FTs where

system failure is irreversible: the failure of a basic event cannot

cause the entire system to go from failed to operational. In

terms of boolean functions, this means that the function f

is monotonically increasing with respect to the partial order

({0, 1}m,�) with ~a � ~b ⇔ ∀i ∈ [1, m]·bi = ai∨bi. The most

effective analysis technique for FTs is based on an encoding

of FTs in binary decision diagrams (BDD) [2].

Instead of considering FTs where each basic event Bi, i ∈
[1, m] has a fixed failure probability P (Bi = 1), we can

also consider FTs where basic events are random processes

(B
(t)
i )t∈R≥0

, which fail after a randomly distributed delay. The
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top event of the FT is then also described by a random process

(T (t))t∈R≥0
. The analysis strategy remains the same: for a

particular time point t, we calculate P (B
(t)
i = 1) for each

basic event and use these probabilities in the standard way to

find the probability P (T (t) = 1) of the system having failed

at time point t. However, we may now also consider systems

where the order in which basic events occur matters for the

system reliability. To allow such modelling, [3] introduced

dynamic fault trees (DFTs), which extend FTs with several

dynamic gates, which take into account the order in which

events happen. DFT analysis is more difficult than FT analysis

because we must consider the random process (T (t))t∈R≥0
,

which described the failure of the top event.

In [3], a continuous-time Markov chain (CTMC) represen-

tation X(t) of the random process T (t) for a DFT is created

monolithically from the DFT description, assuming that the

basic events fail after exponentially distributed delays. The

states of the CTMC describe the operational status of the basic

events and, if necessary, the order in which they occurred.

Using the DFT description, we can find the set of states SY

of X in which the top event has occurred. We then find the

reliability of the system by numerically solving [4] the CTMC

to find the probability P (X(t) ∈ SY ) = P (T (t) = 1) for some

time-point t.

Because we must record the order in which basic events

occur, the state space of the CTMC grows exponentially in

the number of basic events. This problem is also known as the

state-space explosion. One way of mitigating the state-space

explosion is by using compositional aggregation [5]. Here

the CTMC is constructed by composing interactive models,

which represent the syntactic elements of the DFT. After

each compositional step, the resulting model is minimized,

i.e. a smaller model that is still equivalent to the original

model is identified. The equivalence used is weak bisimulation,

which considers only the structure of the models. Although

compositional aggregation mitigates the problem of state-space

explosion, it does not avoid it.

II. CONTRIBUTION

Instead of assuming that basic events are exponentially

distributed, we may also use acyclic phase-type (APH) dis-

tributions [6] as suggested in [5]. APH distributions have

three useful properties: (1) they can be represented by acyclic

CTMCs, (2) they are topologically dense and can be used to

www.avacs.org


approximate any probability distribution, and (3) we can gener-

ally find the minimal representation of an APH distribution [7].

Now we are equipped to model any possible basic event.

However, as the size of the CTMC representation of APH

distributions may be large, the state-space explosion problem

is worsened by using APH distributions. We give a short

introduction into APH distributions and their representations

in Section III.

We will show that we can combine compositional DFT

analysis with APH minimization to fight back against the

state-space explosion. In DFTs, we can often find independent

subtrees (or modules) [8] that consist only of non-dynamic

gates. We show in Section IV that the top event of such a

subtree, where the basic events occur after APH-distributed de-

lays, occurs also after an APH-distributed delay. We can then

replace the subtree by a basic event and, more importantly,

minimize the associated APH representation. A short overview

of the APH minimization algorithm is given in Section V.

Finally we show in Section VI, that applying APH min-

imization instead of weak-bisimulation minimization in the

analysis of DFTs can have a huge impact on memory require-

ments and computation times. In essence, we are improving

the compositional aggregation technique of [5] by using a bet-

ter minimization strategy whenever possible. In this case, APH

minimization is better than weak-bisimulation minimization

as APH minimization computes the smallest representation

regardless of structural properties, while weak-bisimulation

minimization only computes the smallest representation that

is structurally equivalent to the original.

III. ACYCLIC PHASE-TYPE DISTRIBUTIONS

Consider a continuous-time Markov chain (X(t))t∈R≥0
with

finite state space S = {1, . . . , n, n+1} for some n ∈ N, initial

distribution ~π, and infinitesimal generator matrix Q. The non-

diagonal entries of Q are such that, for an infinitesimal time

interval ∆, for all t ∈ R≥0, and for all i, j ∈ S with i 6= j, we

have P (X(t+∆) = j | X(t) = i) = ∆ · Q(i, j). For diagonal

entries of Q we have Q(i, i) = −
∑

j∈S,i6=j Q(i, j). The

derivatives of the state probabilities are given by the Chapman-

Kolmogorov equation:

d

dt
P (X(t) = j) =

∑

i∈S

P (X(t) = i)Q(i, j). (1)

Given the initial distribution, the solution of the system of

differential equations (1) is, for t ∈ R≥0:
(

P (X(t) = 1), . . . , P (X(t) = n + 1)
)

= ~πeQt.

We can interpret a CTMC as an edge-labelled graph with

vertices S and an edge from state i ∈ S to j ∈ S labelled

with Q(i, j), whenever Q(i, j) > 0.

Assume now that state n+1 is absorbing, i.e. for all t, t′ ∈
R≥0, t < t′: P (X(t′) = n + 1 | X(t) = n + 1) = 1, and

all other states are transient, i.e. there is a path from each

transient state to the absorbing state n+1. Let A be the n×n

submatrix of Q that corresponds to the transient states, and ~α

be the row vector that corresponds to the initial probabilities

of the transient states. Let ~e be a column vector of appropriate

dimension whose entries are all equal to 1.

Definition 1: A random variable Z is distributed according

to a phase-type (PH) distribution with representation (~α,A)
if its distribution function is given by

F (t) = Pr(Z ≤ t) =

{

1 − ~αeAt~e, t ∈ R≥0,

0, otherwise,
(2)

A matrix of the form of A is called a PH-generator, and

PH(~α,A) denotes the PH distribution of (~α,A). The size of

the representation (~α,A) is the dimension of A. From now on,

we only deal with irreducible representations, i.e. those that

do not contain superfluous states, which means that the vector

~αeAt is strictly positive for all t > 0. A PH distribution has

uncountably many different representations [6]. We associate

a CTMC X with each PH representation (~α,A) by adding

the absorbing state n + 1 to ~α and A to obtain ~π and Q

respectively. We then have from (2), for t ∈ R≥0:

F (t) = 1 − ~αeAt~e =
[

~πeQt
]

(n + 1) = P (X(t) = n + 1).

Here
[

~πeQt
]

(n + 1) denotes the (n + 1)-th entry of vector

~πeQt.

Beside its distribution function, a PH distribution can be

characterized by its Laplace-Stieltjes transform (LST):

f̃(s) = −~α(sI − A)−1A~e + 1 − ~α~e =
p(s)

q(s)
, s ∈ R≥0, (3)

where I is the n-dimensional identity matrix. The transform is

a rational function for some polynomials p(s) and q(s) 6= 0.

When the LST is expressed in irreducible ratio, the degree

of the numerator p(s) is no more than the degree of the

denominator q(s). The degrees of the two polynomials are

equal only when 1 − ~α~e > 0 [9].

An acyclic phase-type (APH) distribution has at least one

representation that, under some permutation of its state space,

has a triangular representation matrix. Such representations

are called APH representations. A triangular minimal repre-

sentation of an APH distribution is an APH representation

with the least number of states. The triangular order of an

APH distribution [10] is the size of its triangular minimal

representation. The degree of the denominator polynomial of

the LST of a PH distribution, expressed in irreducible ratio,

is called the algebraic degree of the distribution. The zeros of

the denominator polynomial are called the poles of the LST.

APH distributions are exactly those distributions whose LST

is rational and has only real poles [11].

For λn ≥ λn−1 ≥ · · · ≥ λ1 > 0, let PH-generator
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be denoted by Bi(λ1, λ2, · · · , λn). A representation with

PH-generator of this form is called an ordered bidiagonal

representation (OBR).

Theorem 2 ([12]): Let (~α,A) be an acyclic phase-type

representation and let −λ1,−λ2, · · · ,−λn be the eigenvalues

of A. W.l.o.g., assume λn ≥ λn−1 ≥ · · · ≥ λ1 > 0. Then

there exists a unique representation (~β,Bi(λ1, λ2, · · · , λn)
such that both represent the same phase-type distribution.

The spectral polynomial algorithm (SPA) [13] is an efficient

algorithm to transform a given APH representation to an OBR

that has at most the size of the original APH representation.

The SPA has complexity O(n3), where n is the size of the

given APH representation.

IV. PROBABILITY DISTRIBUTION OF A FAULT TREE

We now consider m independent PH distributions running

in parallel with CTMC representations X1, . . . , Xm, which

in turn have state spaces S1 = {1, . . . , n1 + 1}, . . . ,Sm =
{1, . . . , nm + 1}, initial distributions ~π1, . . . , ~πm, and in-

finitesimal generator matrices Q1, . . . ,Qm, respectively. The

probability that each of the CTMCs is in a particular state is

described by a CTMC with state space S =
∏m

i=1 Si, initial

distribution ~π =
⊗m

i=1 ~πi, and infinitesimal generator matrix

Q =
⊕m

i=1 Qi [14]1. We then have, for t ≥ 0 and for all

1 ≤ i ≤ m, xi ∈ Si:

P (X
(t)
1 = x1, . . . , X

(t)
m = xm) = P (X(t) = (x1, . . . , xm)).

Each state of the combined CTMC X is then a vector of

states of the CTMCs of the composite PH representations.

Let ~b : S → {0, 1}m be a function that, for each state

s = (x1, . . . , xm), returns a boolean vector that specifies

which component PH distributions are in the absorbing state

and which are in a transient state. If the i-th component

distribution has absorbed, i.e. if xi = ni+1, then [~b(s)](i) = 1
otherwise [~b(s)](i) = 0.

We have seen that a fault tree with m basic events encodes a

boolean function f : {0, 1}m → {0, 1}. Assume that these m

basic events occur after delays that are distributed according

to the m PH distributions discussed above. For a state s of the

combined CTMC X the vector ~b(s) then encodes which basic

events have occurred and which haven’t. We then find that the

top event of the fault tree has occurred in a state s if and only

if f(~b(s)) = 1. We define the function g : S → {0, 1}, which

describes for each state of X whether the top event has failed

or not, as g(s) = f(~b(s)).

Let SN be the set of states where the top event has not

yet occurred, i.e. SN = {s ∈ S | g(s) = 0}. Naturally, SY =
S\SN is the set of all states where the top event has occurred.

Because we only consider coherent fault trees, the probability

to move from a state where the top event has occurred to a

state where it has not occurred is always zero. System failure

1
N

and
L

are the Kronecker product and the Kronecker sum operators,
respectively.

is irreversible. Thus,

∀s ∈ SY , s′ ∈ SN ·Q(s, s′) = 0, (4)

∀s ∈ SY ·
∑

s′∈SY

Q(s, s′) =
∑

s′∈S

Q(s, s′) = 0. (5)

Here (5) is derived from the fact that the rows of Q add up

to zero.

We are interested in the probability that the top event occurs

within time t ≥ 0: P (g(X(t)) = 1) = P (X(t) ∈ SY ).
From (1), (4) and (5) we can derive the following system

of ordinary differential equations for the top event probability

and state probabilities for states s′ ∈ SN :

d

dt
P (g(X(t)) = 1) =

∑

s∈S,s′∈SY

P (X(t) = s)Q(s, s′),

=
∑

s∈S

P (X(t) = s)
∑

s′∈SY

Q(s, s′),

=
∑

s∈SN

P (X(t) = s)
∑

s′∈SY

Q(s, s′). (6)

d

dt
P (X(t) = s′) =

∑

s∈S

P (X(t) = s)Q(s, s′),

=
∑

s∈SN

P (X(t) = s)Q(s, s′). (7)

The initial condition is derived from the initial probability

distribution of X :

P (g(X(0)) = 1) =
∑

s∈SY

~π(s) = 1 −
∑

s∈SN

~π(s), (8)

P (X(0) = s′) = ~π(s′). (9)

From (6), (7), (8), and (9) we see that it is not necessary

to consider individual states within set SY . In fact we can

construct a smaller CTMC Y (t) from X(t) by collapsing all

states in SY to one state sy , while still preserving the top

event probability. The state space of Y is then SN ∪ {sy}.

The initial probability distribution ~πY is given by (8) and (9),

i.e. for s ∈ SN , ~πY (s) = ~π(s), and for sy we have

~πY (sy) =
∑

s′∈SY
~π(s′). The infinitesimal generator matrix

QY is derived from (6) and (7):

QY (s, s′) =







Q(s, s′), if s, s′ ∈ SN ,
∑

s′′∈SY
Q(s, s′′), if s ∈ SN , s′ = sy,

0, otherwise.

Applying (1) to CTMC Y we find, for all states s′ ∈ SN :

d

dt
P (Y (t) = sy) =

∑

s∈SN∪{sy}

P (Y (t) = s)Q(s, sy),

=
∑

s∈SN

P (Y (t) = s)Q(s, sy),

=
∑

s∈SN

P (X(t) = s)
∑

s′∈SY

Q(s, s′),

=
d

dt
P (g(X(t)) = 1),



d

dt
P (Y (t) = s′) =

∑

s∈SN∪{sy}

P (Y (t) = s)Q(s, s′),

=
∑

s∈SN

P (Y (t) = s)Q(s, s′)

+ P (Y (t) = sy)
∑

s∈SY

Q(s, s′),

=
∑

s∈SN

P (Y (t) = s)Q(s, s′),

=
d

dt
P (X(t) = s′).

The initial distributions of X and Y trivially match as well.

Theorem 3: The top event of a coherent fault tree whose

basic events occur after delays governed by independent PH

distributions itself occurs after a delay governed by a PH

distribution.

We have shown how to construct the CTMC Y above. It is

straightforward that state sy is absorbing and that the states

in SN are transient. Hence, Y is a CTMC representation of a

PH distribution and the probability to be in state sy at time t

is the same as the probability that the top event of the fault

tree happened within time t.

Corollary 4: The top event of a coherent fault tree whose

basic events occur after APH distributed delays itself occurs

after an APH distributed delay.

Corollary 4 follows directly from the fact that the Kronecker

sum of several acyclic CTMCs is itself acyclic. Hence the

CTMC X is acyclic, and then so is CTMC Y .

V. MINIMIZATION

In this section, we discuss an algorithm for reducing

the size of APH representations [7]. The reduction proce-

dure is roughly as follows: (1) Given an APH distribution

with representation (~α,A), it is transformed into an OBR

(~β,Bi(λ1, · · · , λn)) by using SPA, without increasing its

size. (2) A smaller representation is obtained by eliminating

unnecessary states from the OBR. The unnecessary states can

be decided as explained below.

The Laplace-Stieltjes transform (LST) of an exponential

distribution with rate λ is f̃(s) = λ
s+λ

. Let L(λ) = s+λ
λ

,

then the LST of OBR (~β,Bi(λ1, · · · , λn)) can be written as

f̃(s) =
~β(1) + ~β(2)L(λ1) + · · · + ~β(n)L(λ1) · · ·L(λn−1)

L(λ1)L(λ2) · · ·L(λn)
.

Theorem 5 ([7]): If for some 1 ≤ i ≤ n, polynomial ~β(1)+
~β(2)L(λ1)+· · ·+~β(i)L(λ1) · · ·L(λi−1) is divisible by L(λi),
then there exists a unique vector ~δ such that

PH(~β,Bi(λ1, · · · , λn))

= ME(~δ,Bi(λ1, · · · , λi−1, λi+1, · · · , λn), ~e).

If vector ~δ is substochastic (i.e. ~δ~e ≤ 1), then

PH(~β,Bi(λ1, · · · , λn))

= PH(~δ,Bi(λ1, · · · , λi−1, λi+1, · · · , λn)).

ME(·, ·, ·) in the theorem is a matrix-exponential distribu-

tion.

Based on Theorem 5, an algorithm to reduce the size of

a given APH representation can be constructed. For a more

exhaustive discussion of the algorithm, we refer to [7].

Two relevant properties of the algorithm are the minimality

on triangular-ideal APH distributions and almost minimality

on minimum and maximum operations.

An APH distribution is triangular ideal if and only if

its triangular order is equal to its algebraic degree. Given

an APH representation whose APH distribution is triangular

ideal—no matter how large the size of the representation

is—the reduction algorithm is certain to produce a minimal

representation [7].

Minimum and maximum operations are two of the most

common operations on probability distributions. The set of PH

distributions is closed under each of these operations. Neuts [6]

describes the CTMC representations of the PH distributions

produced by the operations. In the context of this paper, the

important fact is that these operations correspond precisely to

OR and AND gates, respectively, in FTs.

Now, applied on the results of minimum and maximum

operations on triangular-ideal APH distributions, the reduction

algorithm almost always produces minimal representations [7],

in the sense that the measure of APH distributions for which it

doesn’t produce minimal representations is zero. Hence, given

two arbitrary triangular-ideal APH distributions, regardless of

the size of their representations, we are almost certain that

the APH distribution of their minimum or maximum is also

triangular ideal, and hence its APH representation is reducible

to minimal size by applying the reduction algorithm. We con-

jecture that almost minimality applies to all top events of FTs

whose basic events are APH distributed. The implementation

of the algorithm is tentatively called APHMIN.

VI. CASE STUDY

As a case study, we consider a fault tree with three basic

events connected to a 2-out-of-3 voting gate, which is also the

top event (see Fig. 1 (left)). The three basic events occur after

delays governed by Erlang distributions with shape 2 and rates

1, 2, and 3, respectively. Erlang distributions are a subset of

APH distributions (see Fig. 1 (right)).

2/3

A B C

λ λ

Fig. 1. A fault tree (left) and a CTMC representation of an Erlang distribution
with shape 2 and rate λ (right).

The PH distribution of the top event of the fault tree as well

as its CTMC representation can be constructed as described

in Section IV. The constructed CTMC representation has 21
states and 45 transitions. This CTMC is minimal with respect

to weak bisimulation, however by using APH minimization



we can obtain a minimal representation, which consists of 14
states and 22 transitions. In either case, generating the CTMC

representation takes less than one second.

Although the difference in the size of the state spaces seems

small, we will see that even such a modest difference can

have a huge impact on memory and time requirements in a

compositional setting. To illustrate this we consider the fault-

tolerant parallel processor (FTPP) case study from [5]. We use

the CORAL tool [15] to analyze the DFT models of the FTPP.

We investigate what happens if some of the exponentially

distributed basic events in the FTPP case study are replaced by

APH-distributed basic events that correspond to the fault tree

in Fig. 1 (left). We replace one, two, or three of the network

element basic events by the voting gate in the FTPP DFT.

In the first experiment, we run CORAL without modification.

In the second experiment, we replace the voting gate with

a basic event that occurs after the same APH distribution.

However, this time the associated APH representation is first

minimized by using APHMIN and then the CORAL tool is

run on the resulting DFT. The results are shown in Table I,

which shows the state space of the largest model encountered

during compositional aggregation and the total analysis time.

The times reported here are faster than the ones in [15] since

the CORAL tool has since been improved.

TABLE I
RESULT OF THE CASE STUDY

# Tool States Transitions Time (s) Unreliability

1
CORAL 1,672 12,303 10.37 1.13 · 10

−7

APHMIN 1,119 7,410 10.42 1.13 · 10
−7

2
CORAL 59,739 598,524 24.52 3.21 · 10

−4

APHMIN 26,006 219,310 14.14 3.21 · 10
−4

3
CORAL 1,777,955 21,895,068 14,047.99 0.209

APHMIN 507,067 5,010,000 367.71 0.209

From the table, we can observe that using the larger PH

representation greatly deteriorates the performance of the

CORAL tool. When the minimized PH representation is used,

we see that the 7-state difference in the basic event model can

lead to a difference of 1.2 million states in the last DFT model

and a reduction of computation time by a factor greater than

38, from almost four hours to just over six minutes.

VII. FUTURE WORK

As future work, we would like to fully integrate the APH-

MIN tool and the CORAL tool, identify dynamic fault trees

that are APH distributed, and prove the conjecture stated in

Section V.
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