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Abstract— We propose an extension of Time Petri Nets (TPNs)
that introduces a partial stochastic characterization of timers,
providing a model that regards controllable and non-controllable
timers as non-deterministic and stochastic variables, respectively.
This induces a partial stochastic characterization of timings in
the symbolic state space of the model and supports the evaluation
of the probability of execution of any symbolic run as a function
of non-deterministic values.

Index Terms—partially stochastic Time Petri Nets, non-
Markovian stochastic Petri Nets, symbolic state space analysis,
Difference Bound Matrix, stochastic state classes.

I. INTRODUCTION

The analysis of timed systems can be largely supported by
the use of formalisms like Timed Automata or Time Petri
Nets (TPNs), whose capabilities of exhaustive state space
enumeration and explicit timing parameters manipulation can
be exploited in order to validate the correctness of the system
and ensure the preservation of concurrency properties. In this
context, the identification of the ranges of timing parameters
that lead the system to execute along a selected path of the
state space represents a problem whose importance is crucial
for the observation of behaviors that may exhibit pathological
issues. This topic has been developed in [13] in the context
of TPNs and directly applied to a real-time testing scenario in
[7], by operating a distinction between controllable and non-
controllable events, whose timing values are regarded as non-
deterministic variables.

The introduction of a stochastic characterization over the
space of temporal variables of the model generally highlights
two different problems, that in turn require the adoption of
different analysis techniques: namely, the evaluation of the
probability of a given path and the derivation of a probability
distribution over the whole set of timers activated along a
path. The former aspect has been dealt with in [10] and
[5], with reference to a variant of Timed Automata called
Stochastic Timed I/O Automata (STIOA) and to a non-
Markovian stochastic Petri Net named stochastic Time Petri
Net (sTPN), respectively. In particular, [10] evaluates the
probability of a single path, while in [5] the DTMC underlying
the model is enumerated, thus providing a wider solution that
also encompasses cyclic behaviors. The latter problem is faced
within [6] and [12] for sTPN models, and within [14] for
STIOA. Both approaches account for the distinction between
controllable and non-controllable events in the model; the
latter exploits the controllability of certain input parameters

in order to maximize the probability of execution of the path,
under the assumption that all transitions are associated with
uniform distributions.

In this paper, we propose partially stochastic Time Petri Nets
(psTPNs), which extend TPNs by distinguishing controllable
and non-controllable transitions and by associating times to
fire of non-controllable transitions with a probability distribu-
tion. This induces a partial measure of probability over the
space of feasible behaviors of the model, and in particular
over the range of feasible timings along a path in the graph of
symbolic state classes [3] [13]. We characterize this measure to
express the probability distribution of non-controllable times-
to-fire as a function of the values taken by the controllable
ones. The formulation that we propose here is wider than that
of [14] in various aspects: i) it considers models where also
controllable transitions are bound to fire within constrained
intervals; ii) it assumes that times to fire of non-controllable
transitions are distributed according to any GEN distribution,
making explicit effects of the derivation that remain hidden in
the case of uniform distributions assumed in [14] and [10]; iii)
most importantly, it makes evident that quantitative evaluation
of the probability distribution of non-controllable events must
encompass not only the cases that let the net run along the
run but also those that let the behavior deviate from it.

The combination of non-deterministic and stochastic be-
havior relates to various works in the literature. The general
aim of the problem formulation reproduces the concept of
[1], where a stochastic fault tree is associated with non-
deterministic repair strategies so as to represent the space of
possible choices for the selection of an optimal maintenance
strategy. More generally, the combination of stochastic and
non-deterministic behavior relates to the theory of Markov
Decision Processes (MDPs) [2] [8]. However, as opposite
to MDPs, in the formulation that we address, timers can
be non-Markovian variables with GEN distributions, possibly
supported over bounded domains that make the state space
non-isomorphic to the graph of reachable markings of the un-
derlying untimed model. Moreover, non-determinism choices
do not select discrete (and finite) switches among immediate
transitions, but they rather select times to fire taking values
within continuous (possibly bounded) domains. As in [4], the
joint manipulation of non-deterministic and stochastic param-
eters unifies qualitative verification of feasible behaviors and
quantitative evaluation of their probability. However, while [4]
exploits the probabilistic semantics that defines the likelihood



of each behavior in order to compute the probability of a given
property, our effort primarily aims at identifying timed inputs
that maximize the probability to cover a previously selected
run of the model.

The paper is organized as follows. Sect.II presents psTPNs
and discusses symbolic analysis of their state space. The
identification of timing boundaries for timers along a path
in the state space and their partial stochastic characterization
are discussed in Sect.III and Sect.IV, respectively. Finally,
conclusions are drawn in Sect.V.

II. PARTIALLY STOCHASTIC TIME PETRI NETS

A partially stochastic Time Petri Net (psTPN) is a TPN
where a subset of transitions is associated with a stochastic
characterization of times to fire and where choices among
firable transitions with the same time to fire are resolved
through a random switch. Formally, a psTPN is a tuple:

psTPN = 〈P ;T c;Tnc;A−;A+;m0;EFT ;LFT ; τ0; C;F〉
(1)

where:
• the first 9 members comprise the basic model of TPNs

[13] (the only difference lies in the partition of the set T
of transitions in two subsets T c and Tnc of controllable
and non-controllable transitions, respectively);

• C associates each transition with a weight C : T → R+;
• F associates each transition t ∈ Tnc with a static

probability distribution Ft() defined over its static firing
interval [EFT (t), LFT (t)].

The state of a psTPN is a pair s = 〈m, τ〉, where m : P →
N is a marking and τ : T → R+

0 associates each transition
with a (dynamic) time to fire. As in TPNs, the state evolves
according to two clauses of firability and firing, which are not
reported here for space reasons. As a matter of fact, the overall
semantics of the model closely reproduces that of TPNs [13],
except for the fact that:
• C defines a measure of probability for the choice among

firable transitions:

Prob{t0 is selected} =
C(t0)∑

ti firable
C(ti)

; (2)

• F defines a measure of probability for the times-to-fire
sampled by non-controllable transitions at their enabling
time:

τ(tnc) ∈ [EFT (tnc), LFT (tnc)]

P (τ(tnc) ≤ x) = Ftnc(x)

∀ tnc ∈ Tnc.

(3)

We also assume that static probability distributions are ab-
solutely continuous functions that can be expressed as the
integral of a density function:

Ft(x) =
∫ x

0

ft(y)dy (4)

Non-deterministic analysis based on the theory of Difference
Bound Matrix (DBM) [9][13] supports the identification of the
boundaries of the space of feasible timed behaviors. As already
mentioned, i) controllable and non-controllable transitions can
be concurrently enabled within the same state, and ii) proba-
bilities on non-deterministic choices pertain to the selection
of timers taking values within continuous domains (non-
controllable transitions sample the time to fire according to
their respective probability distributions). Both of the choices
are resolved at enabling time and the state space is covered
through state classes, each including a set of states with the
same marking, but with different valuations of the vector of
times to fire distributed within a DBM domain. A state class
is a pair:

State class = 〈m,D〉 (5)

where m is a marking and D is the DBM domain for times
to fire of transitions enabled by m.

The dynamic behavior of the system is covered through a so-
called AE reachability relation between state classes [11][13]:

Definition II.1. Given two state classes S = 〈m,D〉 and S′ =
〈m′, D′〉, we say that S′ is a successor of S through t0, and
we write S t0=⇒ S′, iff S′ contains all and only the states that
are reachable from some state collected in S through some
feasible firing of t0.

Enumeration of the reachability relation Sp
t=⇒ Sc among

state classes yields a timed transition system, called state class
graph:

State class graph = 〈V,E〉 (6)

where vertices in V are state classes and edges in E ⊆ V ×V
are labeled with a transition t ∈ T . By transitive closure of
Def.II.1, if the psTPN is in a marking m and its timers are
distributed over a domain D, then a firing sequence ρ can be
executed if and only if ρ is a path originating from class S0 =
〈m,D〉 in the state class graph. In this case, the state at the end
of the sequence has the marking of the class SN = 〈mN , DN 〉
reached by the path, and its timers are distributed over DN .
According to this, any path in the state class graph represents
a qualitative sequence of events that can be executed with a
continuous set of timings, and it is referred to as symbolic run.
A symbolic run is identified by a starting class and a sequence
of transitions, and the set of its feasible timings turn out to
range within a DBM domain.

III. INSPECTING TIMING BOUNDARIES ALONG A
SYMBOLIC RUN

We reformulate here the process of trace analysis of [13]
by identifying in direct manner a set of constraints which are
necessary and sufficient for the execution of the run. We use
this result to identify an enlarged domain that includes also
inconclusive behaviors.

A. Domain of timings along a symbolic run

We consider a symbolic run ρ that originates from class S0,
visits classes S1 through SN−1 and terminates in SN (see



Fig.1 for an example). To give identity to transitions enabled
in multiple classes, a transition ti newly enabled in Sn will
be denoted with tni in Sn and in all the subsequent classes
where it is persistent (i.e. tni identifies a transition activation
in the dynamic evolution of the model). In Fig.1, t01 and t11
denote the activation of transition t1 in classes S0 and S1,
respectively; besides, t14 denotes the activation of transition t4
that is newly enabled in S1 and persistent until the firing that
enters class S4.

Each transition activation tni is associated with an absolute
virtual firing time denoted by τni and defined as the sum of
the time to fire taken by ti at its newly enabling plus the
time elapsed from the start of the sequence ρ to the firing
that enters Sn. We say that τni is absolute as it is referred to
the start time of the run, and that it is virtual, as tni might
not come to fire, either because it is disabled or because the
sequence ρ terminates. In Fig.1, this is the case of t11, which
is disabled by t12.

To represent the relations existing among transition activa-
tions, we introduce the following notation: ι(n) is the index
of the transition that enters class Sn; ν(n) is the index of
the class Sν(n) in which tι(n) is newly enabled; γ(j, n) is the
index of the transition that disables tnj ; δ(j, n) is the index of
the class Sδ(j,n) in which tγ(j,n) is newly enabled. According
to this, tν(n)

ι(n) denotes the transition that enables tni , while for

any transition tnj that does not come to fire, tδ(j,n)
γ(j,n) denotes the

transition that disables tnj or terminates the sequence ρ while
tnj is still persistent. If tni is newly-enabled in S0 (i.e. n = 0),
we assume tν(0)ι(0) to be the ground reference t∗ of the symbolic

run ρ, with timer τν(0)ι(0) = 0. In Fig.1: tν(1)ι(1) = t01, tν(2)ι(2) = t12,

t
ν(3)
ι(3) = t25, tν(4)ι(4) = t13; t02, t11 and t14 are disabled by t01, t12

and t13, respectively, and thus tδ(2,0)γ(2,0) = t01, tδ(1,1)γ(1,1) = t12 and

t
δ(4,1)
γ(4,1) = t13.

According to the semantics of psTPNs, any vector of virtual
firing times representing a feasible timing for ρ satisfies the
following three constraints:
• for any transition tni , the time to fire taken at the newly

enabling falls in the interval [EFT (ti), LFT (ti)]:

EFT (ti) ≤ τni − τ
ν(n)
ι(n) ≤ LFT (ti)

∀ tni enabled along ρ;
(7)

• the virtual firing time of any transition tnx that does not
come to fire is not lower than the virtual firing time of the
transition that disables tnx itself or terminates the sequence
ρ:

τnx ≥ τ
δ(x,n)
γ(x,n) ∀ tnx enabled but not fired along ρ; (8)

• according to the sequencing of ρ, class Sn is entered not
later than Sn+1:

τ
ν(n+1)
ι(n+1) ≥ τ

ν(n)
ι(n) ∀ n ∈ [0, N − 1]. (9)
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t5
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Fig. 1. A simple net and the schema of one of its traces: ρ = S0 t1→ S1 t2→
S2 t5→ S3 t3→ S4. Dotted lines denote times to fire sampled by transitions that
do not come to fire; a dot marks the point where the transition is disabled.

Viceversa, it can be proven [6] that constraints in Eqs.(7-9)
are also sufficient, provided that all transitions enabled in the
starting class S0 are newly enabled.

According to Eqs.(7-9), the set of all and only the valuations
(x,y) of timers (τ c, τnc) that are feasible for ρ is a DBM
domain, which we denote by Dτ :

Dτ = {(x,y) ∈ (R+ ∪ {∞})Nτc × (R+ ∪ {∞})Nτnc |

(x,y) |= (7) ∧ (8) ∧ (9)}
(10)

For the purposes of the subsequent treatment, the normal form
of Dτ is conveniently represented by distinguishing times
to fire of controllable and non-controllable transitions (the
normalization of Dτ amounts to an all shortest path problem
and can be resolved with complexity O((Nτc+Nτnc)3) [13]).
To this end, we denote the set of transition activations tni
enabled along ρ as A, and we assume the corresponding virtual
firing times τni be encoded in a vector τ of length Nτ by
means of an indexing function l(i, n) (i.e. τ l(i,n) = τni ).
Moreover, we partition the set of transition activations A
into two subsets Ac and Anc, including transition activations



with controllable and non-controllable timers, respectively (i.e.
tni ∈ Ac ⇔ ti ∈ T c, tni ∈ Anc ⇔ ti ∈ Tnc). In a
similar manner, we define a partition of τ in two sub-vectors
τ c and τnc of length Nτc and Nτnc , encoding controllable
and non-controllable virtual firing times, respectively (i.e.
τni ∈ τ c ⇔ tni ∈ Ac, τni ∈ τnc ⇔ tni ∈ Anc). In
addition, a timer τni is denoted as xni or yni depending on
whether it is controllable or non-controllable, respectively (i.e.
τni = xni ⇔ τni ∈ τ c, τni = yni ⇔ τni ∈ τnc). According to
this, the normal form of domain Dτ is expressed as:

Dτ =



xni − xmj ≤ bnmij
xni − y

q
k ≤ b

nq
ik

yph − xmj ≤ b
pm
hj

yph − y
q
k ≤ b

pq
hk

∀ tni , tmj ∈ Ac, tni 6= tmj
∀ tph, t

q
k ∈ Anc, t

p
h 6= tqk

∀ m,n, p, q ∈ [0, N − 1]

(11)

B. Enlarged domain of timings to include inconclusive behav-
iors

Non-controllable timers are not guaranteed to take values
that conform to Eqs.(7-9). Thus, Dτ does not encompass the
whole set of timings that may occur during the test run. To
this end, we enlarge Dτ in order to derive a domain Dτ̃ that
include also those values of non-controllable timers that do
not sensitize the test case but may be chosen during execution.
According to this, Dτ̃ collects valuations of timers such that
values of controllable timers conform to the domain of timings
of ρ and values assumed by non-controllable timers only
satisfy model constraints.

Formally, Dτ̃ is the intersection between i) the projection
Dτc of domain Dτ on the space of controllable timers τ c that
identifies all and only the valuations of controllable timers that
are feasible for ρ, and ii) constraints of Eq.(7) involving at least
one non-controllable timer:

Dτc = {x ∈ (R+ ∪ {∞})Nτc |∃ y ∈ (R+ ∪ {∞})Nτnc .

(x,y) |= (7) ∧ (8) ∧ (9)}
(12)

Dτ̃ = {(x,y) ∈ (R+ ∪ {∞})Nτc × (R+ ∪ {∞})Nτnc |

x ∈ Dτc ∧ y |= (7)}
(13)

Fig.2 reports a graphic representation that helps intuition.
Based on the properties of the normal representation of a DBM
domain [13], the normal form of domain Dτc is derived from
the normal form of domain Dτ by removing all constraints
that involve at least one non-controllable timer:

Dτc =


xni − xmj ≤ bnmij

∀ tni , tmj ∈ Ac, tni 6= tmj
∀ m,n ∈ [0, N − 1]

(14)

Domain Dτ̃ is obtained by including constraints of Eq.(7) that
involve at least one non-controllable timer. We do not report

here the explicit representation of Dτ̃ ; however, since each of
its constraints is in DBM form, by construction Dτ̃ also turns
out to be a DBM.

τc

τnc

Dτc

Dτ̃

EFT s(tc) LFT s(tc)

LFT s(tnc)

EFT s(tnc)

Dτ

Fig. 2. A bi-variate example with a controllable timer τc and a non-
controllable timer τnc (i.e. τ c = (τc) and τnc = (τnc)). Timers τc and τnc

are associated with transitions tc and tnc, respectively, newly-enabled in S0.
Domain Dτ is the set of feasible timers valuations for ρ = S0 tc→ S1 tnc→ S2;
Dτ̃ is the corresponding enlarged domain.

IV. PARTIAL STOCHASTIC CHARACTERIZATION OF
TIMINGS ALONG A SYMBOLIC RUN

F induces a partial stochastic characterization of timings
along a symbolic run ρ and supports the derivation of a mea-
sure of probability to actually execute the path as a function
of non-deterministic values assumed by controllable timers.
To this end, we first identify the domain of non-controllable
timers for a given valuation of controllable timers and we then
derive the stochastic characterization that this choice induces.
For an assigned valuation x of controllable timers, let Dτ̃nc(x)
and Dτnc(x) be the projections of domains Dτ̃ and Dτ ,
respectively, over the space of non-controllable timers (see
Fig.3). We define a family fτ̃nc(τnc)(x) of functions of non-
controllable timers, indexed by valuations x of controllable
timers and supported over domain Dτ̃nc(x): fτ̃nc(τnc)(x)
associates each determination x of controllable timers with
the probability density function of non-controllable timers,
providing a measure of the stochastic characterization of non-
controllable timers induced by the choice x of controllable
timers (see Fig.3). Non-controllable timers are statistically in-
dependent variables that sample their times to fire at newly en-
abling according to their respective static probability distribu-
tions. According to this, the family of functions fτ̃nc(τnc)(x)
can be expressed as follows:

fτ̃nc(τnc)(x) =
∏

tni ∈Anc
fti(y

n
i − τ

ν(n)
ι(n) )

=
∏

tni ∈ A
nc

t
ν(n)
ι(n) ∈ A

nc

fti(y
n
i − y

ν(n)
ι(n) )

·
∏

tni ∈ A
nc

t
ν(n)
ι(n) ∈ A

c ∪ {t∗}

fti(y
n
i − x

ν(n)
ι(n) )

(15)



For a given valuation x = x1 of controllable timers, the
integral of function fτ̃nc(τnc)(x1) over domain Dτnc(x1)
represents the probability to execute the symbolic run ρ
under the assumption of the choice x1 on controllable timers.
According to this, the integral of the family of functions
fτ̃nc(τnc)(x) over domain Dτnc(x) defines a new function
f(x), that associates each valuation x of controllable timers
with the probability to actually execute the test-case ρ:

f(x) =
∫
Dτnc (x)

fτ̃nc(τnc)(x) d(τnc)

= Prob{(x,y) ∈ Dτ | τ c = x}

= Prob{ρ is executed | τ c = x}

(16)

Function f(x) provides the probability of successful sensiti-
zation as a function of non-deterministic values assumed by
controllable timers, in the light of the stochastic characteriza-
tion of non-controllable timers.

τc

τnc

x1x2

Dτ̃nc(x1)

Dτnc(x1)

fτ̃nc(τnc)(x1)fτ̃nc(τnc)(x2)

Fig. 3. Referring to the example of Fig.2, the picture highlights i) projections
Dτnc (x1) and Dτ̃nc (x1) of domains Dτ and Dτ̃ , respectively, over the
space of non-controllable timer τnc for valuation x1 of controllable timer
τc; ii) two instances fτ̃nc (τ

nc)(x1) and fτ̃nc (τ
nc)(x2) of the family of

functions fτ̃nc (τ
nc)(x) for valuations x = (x1) and x = (x2) of the

controllable timer τc, respectively.

V. CONCLUSIONS

We considered an extension of TPNs where a subset of
transitions are associated with a stochastic characterization of
the time to fire sampled at the enabling time. In a pragmatic
perspective, transitions associated with this stochastic char-
acterization represent non-controllable temporal parameters,
while transitions that are left non-deterministic account for
parameters that can be controlled in the design stage. This
induces a partial measure of probability over the space of
feasible timings that can occur in the execution of a symbolic
run and supports the identification of a measure of probability
of successful sensitization as a function of non-deterministic
values assumed by controllable timers.

The result opens the way to further theoretical problems
and practical applications. In the theoretical perspective, the
identification of the probability density function f(x) opens

the way to a problem of optimization, aimed at the identifi-
cation of valuations of controllable timers that maximize the
probability density function f(x) of successful sensitization.
In the practical perspective, the approach finds a direct appli-
cation in real-time testing, where f(x) can be employed in the
selection of timed inputs through a method for the simulation
of multivariate distributions.
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