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Abstract—Network management systems must often deal with
malicious intrusion attempts aimed at obstructing routing policy.
Management techniques based on fluid models and discrete
controlled random walks require modifications to deal with such
intrusion attempts. In this work we propose a generalization of
classic single server queue model. This approach is based on
conflict control point of view and could be useful for modeling
of attacking actions and response behaviour of the system.

I. INTRODUCTION

Areas where one can apply network models are very
different – information networks, telecommunications, gas
transportation and energy systems, distributed production pro-
cesses. Information network applications are especially impor-
tant. Today networks are related to almost all sides of human
activity. As a result, security and reliability of information
flows directly affect the quality of service, efficiency and
overall economic development of entire industries. Reliable
operation of the information networks has become vital for
day-to-day transactions for the most organizations. That’s why
the Internet becomes an attractive target for cyber crime.
Financially motivated, the crime we see today becomes more
distributed, sophisticated and dangerous. Distrubuted Denial of
Service (DDoS) attacks has been identified as one of the most
serious problem on the Internet. The aim of DDoS attacks is
to prevent legitimate users from accessing resourses such as
web services. During attack multiple malicious hosts that are
recruited by the attacker start flooding attack against server,
which cause denial of service to users. In this paper proposes
an analytical model based on conflict interaction between
attack and defense parties. From this point of view network
attacks could be considered as a contest between two players
in the other words a game or conflict controlled system. In
[1] we proposed the concept of such attacks modeling. In
this work we build mathematical model of the fluid single
server model in the conflict case. We typically consider a
linear, deterministic model. This is the simplest model that
captures essential features of the system to be controlled [2].
The most important question is stability: how we can guarantee
boundedness of delays for all time? If we use control-oriented
approach we face with a control problem: what is the best
way to develop a control function or routing and scheduling to
obtain the best performance. Networks considered here consist

of finite set of nodes, each containing finite buffer. Packets
arrive from outside the network to various buffers. One or
more servers process packets at a given node, after which a
packet either leaves the network or visits another node (Fig.
1).

A general fluid model can be described by the differential
equation

q̇ = Aq + α(t)−Bu(t) + Cv(t) (1)

where q(t) is the n-dimensional vector of queue process,
α(t) : Rn → R denotes the packet arrival rate, u(t) - the
routing policy, v(t) - attack policy. Matrix A represents an
inner network construction (how different queues influence
each other), matrix B - routing process and C describes
attack process. The controlled differential equation (1) can
be viewed as a state space model, as frequently used in
control applications, with controls u(t), v(t) and independent
function α(t). We assume that all mentioned function are
integrable. Consider model (1) as a starting point to investigate
conflict problem of interaction between a routing policy and an
attacker. If a successful design is obtained, we will generalize
this solution for the case of Markovian processes [3], [4]. The
problem of finding of control u(t) can be described as follows.

We choose a control function u(t) in purpose of minimizing
vector q(t) under several special conditions (e.g. for minimal
time) and any admissible functions v(t),α(t) . Let us fix
some function u(t) , then solution of (1) can be found using
following formula:

q(t) = eA(t−t0)q(t0)−
∫ t
t0
eA(t−s)u(s)ds+∫ t

t0
eA(t−s)α(s)ds+

∫ t
t0
eA(t−s)v(s)ds

(2)

If we assume, that A = 0, B = I , C = 0 and , α(t) = α
(2) could be rewriting as:

q(t) = q(t0) + αt−
∫ t

t0

u(s)ds (3)

This is well-known single server queue fluid model if we
substitute z(t) = −

∫ t
t0
u(s)ds.



Figure 1. Network system

II. SINGLE SERVER QUEUE FLUID MODEL WITH INTEGRAL
CONSTRAINTS

Let us consider (3). In the differential form:

q̇ = α− u(t) (4)

where q0 ∈ Rn+ ,u(t) ≤ µ and policy u(t) is, generally
speaking, measurable function. Let us expand this model by
following assumptions :

• Arrival rate of packets changes with time. Denote α(t) as
an arrival rate at the time t . Suppose that α(t) ≤ αmax.

• Buffer is finite, so 0 ≤ q(t) ≤ qmax .
• u(t) ≤ µ

We will consider two constraint types for functionα(t).
1) Geometric constraint: 0 ≤ α(t) ≤ αmax.
2) Integral constraint:

∫∞
t0
α(s)ds ≤ αint.

Constraint 1 means boundedness of input channel. Constraint 2
describes situation that during time period [0,∞] total amount
of traffic is limited by the constant value.

The main question is: how we can achieve satisfying condi-
tion q(t) = 0 for all t ≥ T . As we know from general theory
the single server queue is stable (q(t) = 0 could be obtained)
when α ≤ µ .

Claim 1: Let us consider the equation (4) with constraints
1, 2. If αmax < µ then for any given q0, α(·) there exists
minimal moment of time T < ∞ , such that q(T ) = 0 . If
αmax ≥ µ, than for q(t0) ≤ qmax− (αnax−µ)αint

αmax , there exists
minimal moment of time T <∞ , such that q(T ) = 0.
Proof. If q(t0) = 0, T = t0. For q(t0) > 0 consider a solution:

q(t) = q(t0) +
∫ t

t0

α(s)ds−
∫ t

t0

u(s)ds

For non-idling policy

u(t) =
{
−µ q(t) > 0
0 q(t) = 0

and

q(t) = q(t0) +
∫ t

t0

α(s)ds− tµ

Now we use constraints 1, 2 and obtain:∫ t

t0

α(s)ds ≤ αmaxt, t ≤ αint
αmax∫ t

t0

α(s)ds ≤ αint, t >
αint
αmax

It is clear that for αmax < µ and moment of time T ≤
q(t0)

µ−αmax : q(T ) = 0.
If αmax > µ, then we have two possibilities. First, let t ≤

αint

αmax . According to previous statement

q(t) ≤ q(t0) + αmaxt− tµ

q(t) ≤ q(t0) +
(αmax − µ)αint

αmax

taking into account condition q(t0) ≤ qmax− (αnax−µ)αint

αmax

we obtain:

q(t) ≤ qmax

for all t ≤ αint

αmax .
If t > αint

αmax , then

q(t) ≤ q(t0) + αint − tµ

q(t) ≤ q(t0) + αint −
αint
αmax

µ ≤ qmax

For moment of time T ≤ q(t0)+αint

µ follows inequality holds
q(T ) ≤ 0.

For large αint and αmax < µ we have obtained the same
result as for single server queue. Integral constraints allow
situation when αmax ≥ µ.

III. CONFLICT MODEL

The single server queue is a useful model for a dynamic
investigation of very different systems. In this chapter we
introduce an extension of the fluid model [1]in the case of
conflict process [5]. Let us consider dynamic system defined
for an initial condition q(t0) = (q1(t0), q2(t0)) by the system
of linear equations:

q̇1(t) = α(t) + kq2(t)− u1(t)
q̇2(t) = v(t)− u2(t)

(5)



Let us make some definitions and assumptions. Phase state
is described by the phase vector q(t) = (q1(t), q2(t)) ∈ R2,
where q1(t) ∈ R+ is the queue length at time t. The queue
length is subject to the linear phase constraint 0 ≤ q1(t) ≤
qmax1 for all t ≥ 0. Parameter q2(t) ∈ R+ denote the strength
function of the attack that associated with the attacker player
which trying to overwhelm network (or maximize q1(t) in
other words) using control parameter v(t), 0 ≤ v(t) ≤ vmax.
The strength function here means the function of the factors
that can cause attack party win or lose. For example, for the
simple flooding attack the factors can be the volume of traffic
per second or the number of hosts that participate in the attack.
Similar model was introduced in [8].By choosing v(t) at time
t attacker sets attack power q2(t) which is subject to the linear
phase constraint 0 ≤ q2(t) ≤ qmax2 for all t ≥ 0.

In model (5) we assume that:
• v(t), u(t), α(t) are continuous differentiable function of

time;
• attack rate q2(t) is proportional to strength of the attack
v(t) and defense strength u2(t);

• attack packets inflict proportional damage to queue q1(t)
with a coefficient k. ;

The other player – defender – has a control vector u(t) =
(u1(t), u2(t)) . He divides his control resources between two
directions: u1(t) - for service of the arrived packets, u2(t) -
for counteraction of the attacker activity. Control parameter
u(t) is subject of following constraints:

u1(t) ≥ 0, u2(t) ≥ 0, u1(t) + u2(t) ≤ µ

Suppose that defender has information about α(t), v(t) and
q(t) at the moment of time t. Function α() : R → R2 de-
scribes packets arrival service at time t. Suppose the following
assumptions hold:
• 0 ≤ α(t) ≤ αmax for all t ≥ 0;
• α(t) - continuous, integrable function.
•
∫∞
t0
α(t)dt ≤ αint

Integral constraints are useful for modeling the situation when
users have limited amount of requests during a long period of
time. For example if server turns off for a night there is period
of working [0, T ]. All sessions [Ti, Ti+1] can be considered as
separated periods of activity. For every [Ti, Ti+1] users choose
function α(t) that defines requests distribution over time.

This model is stabilizable if µ > vmax for any initial
position such that q(t0) ≤ qmax− (αnax−µ)αint

αmax . Time optimal
strategy given by following formula u(t) = (u1(t), 0), where
u1(t) = −µ if q(t) > 0 and 0 otherwise. To solve (10)
we should find an admissible strategy u(t, q(t), v(t)) and
moment of time T such that q(T ) = 0. Denote this strategy
u(t, q(t), v(t)) as the solution of game (5). Note that this
result must be achieved over all an admissible functions v(t).
Let us write equations (5) in more general form. Denote

A =
(

0 k
0 0

)
, then

q̇(t) = Aq(t) +
(
α(t)
v(t)

)
−
(
u1(t)
u2(t)

)
(6)

Control sets U and V defined as follows U = {u ∈ R2
+ :

u1 + u2 ≤ µ}, V = {v ∈ R2
+ : v1 = 0, v2 ≤ ν} . We

solve this problem using the idea of the first direct method of
Pontryagin [7], [6].

Theorem 1: Consider the conflict controlled system (6). If
µ ≥ vmax and q1(t0)+ k(q2(t0))

2

µ−ν +αint ≤ qmax1 , then we can
construct the solution u(t) and moment of time T , such that
q(t) = 0 for t ≥ T .
Proof. Without loss of generality q(0) 6= (0, 0). Let us define
moments of time

T1 = min{t > 0 : q1(t) = 0}

T2 = min{t > 0 : q2(t) = 0}

Then, define

u(t) =
{

(0,−µ) t ∈ [0, T2]
(µ− v(t), v(t)) t ∈ [T2, T1]

(7)

First we show then the strategy u(t) is admissible. It is
clear, that the strategy u(t) is defined for all t ≥ 0 and
u1(t) + u2(t) = µ. Since condition µ ≥ ν holds, it follows
that u1(t) ≥ 0, u2(t) ≥ 0 for all t ≥ 0. Substituting (7) into
(6) we obtain

For t ∈ [0, T2]

q̇1(t) = α(t) + kq2(t)

q2(t) = v(t)− µ

For t ∈ [T2, T1]

q̇1(t) = v(t) + α(t)− µ

q2(t) = 0

Denote µ− vmax as ε, then

q̇2(t) ≤ −ε

q2(t) ≤ q2(0)− εt

From the last statement follows that q2(t) = 0 for moment of
time t ≤ T ∗2 = q2(0)

ε . Subsequently, we obtain that T2 ≤ T ∗2 .
Consider q1(t):

q1(t) = q1(0) +
∫ t

0

kq2(τ)dτ +
∫ t

0

α(τ)dτ

q1(t) ≤ q1(0) + kq2(0)t− kεt
2

2
+ αint

q1(T2) ≤ q1(0) +
k(q2(0))2

2ε
+ αint

q2(T2) ≤ qmax1



Figure 2.

Last statement obtained by using condition 2. In the moment
of time T2 control switches. Since q2(t) = 0, t ≥ T2, we can
consider only q1(t)

q1(t) = q1(T2)−
∫ t

T2

(v(τ) + α(τ)− µ)dτ

q1(t) ≤ q1(T2)− ε(t− T2)− αint

So q1(t) = 0, for t ≤ q1(T2)+εT2−αint

ε . Therefore, we have
following estimation for the time T1:

T1 ≤
q1(0)
ε

+
k(q2(0))2

2ε2
+
αint(1− ε)

ε
+
q2(0)
ε

This completes the proof of Theorem.

IV. EXPERIMENTAL MODELING

Let us illustrate obtained result on the example. Consider
the following model:

q̇1(t) = α(t) + kq2(t)− u1(t)

q̇2(t) = v − u2(t)

This model was implemented in discrete event network sim-
ulation framework OMNeT++ . It has a generic architecture,
so it can be used for modeling of wired and wireless commu-
nication networks protocol modeling modeling of queueing
networks modeling of multiprocessors and other distributed
hardware systems validating of hardware architectures eval-
uating performance aspects of complex software systems.
OMNeT++ itself is not a simulator of anything concrete, but it
rather provides infrastructure and tools for writing simulations.
One of the fundamental ingredients of this infrastructure is a
component architecture for simulation models. Models are as-
sembled from reusable components termed modules. Modules
can be connected with each other via gates (other systems
would call them ports), and combined to form compound
modules. Modules communicate through message passing,
where messages may carry arbitrary data structures. Modules
can may messages along predefined paths via gates and
connections, or directly to their destination; the latter is useful
for wireless simulations, for example. Modules may have
parameters, which can be used to customize module behaviour,
and/or to parameterize the model’s topology. Graphical, ani-
mating user interfaces are highly useful for demonstration and
debugging purposes. Consider the following model OMNeT++
(Figure 2.).

Figure 3.

Figure 4.

Users generate traffic of requests that have to be served by
server. Server consists of queue and resource pool. Illustrate
system dynamic by examples. Simulation parameters given by
table, queue dynamic given by Figure 3.

Example 1:

αmax αint µ color T = αmax

µ

1 2 500 1 blue 500
2 10 500 1 red 500
3 1 500 1 black 500

Attack source present attack party. It generates traffic under
assumptions made in section 3. Classifier is a part of system
defense. During attack phase clasifier cut off part of attack
traffic. This situation described by coeficient k. On figure 4
we can see dynamic of phase variable q1(t), during attack.

Example 2:

αmax αint µ vmax k color
1 1 300 1 0.1 0.5 green
2 1 300 1 1 0.5 yellow
3 1 300 1 1 1 red
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