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Abstract. The paper deals with the continuous-time BMAP/G/1 queue with
multiple vacations and with its application to IEEE 802.16e sleep mode. The
lengths of the vacation periods have general distribution and they depend on
the number of preceding vacations (dependent multiple vacation). We give
the expressions for the vector generating function of the stationary number
of customers and its mean. Moreover we obtain new formulas for the vector
Laplace-Stieljes transform of the stationary virtual waiting time and for its
first two moments in case of First-Come First-Serve scheduling.

We apply this vacation model to the IEEE 802.16e sleep mode mechanism,
and we evaluate its performance as a function of the traffic intensity and the
traffic correlation parameter. We give an example for determining the best
sleep mode parameters for a simple optimization criteria and we also develop
a cost model for the more general case. For traffic modeling we use a two-
phase Markovian Arrival Process, which is appropriate to model a fairly general
correlated traffic.

1. Introduction. Queueing models with server vacation are effective instruments
in modeling and analysis of computer and manufacturing systems as well as in
analysis of telecommunication models. For more details on vacation models we
refer to the excellent book of Takagi [19] and the survey of Doshi [4].

Since the introduction of batch Markovian arrival process (BMAP ) by Lucantoni
[13] many authors investigated queueing models with BMAP . The reason is that
BMAP enables more realistic and more accurate traffic modeling, since it can also
capture dependency in traffic processes. Most of these works apply the standard
matrix analytic-method pioneered by Neuts [15] and further extended by many
others, see e.g. [14]. However only a few works are available on BMAP queueing
models with server vacation.

Chang and Takine [2] considered a class of BMAP queues with generalized
vacation and determined the vector probability generating function (vector GF) of
the stationary queue length and its factorial moments for models with exhaustive
discipline. In our previous work [17] we considered BMAP vacation queue with
gated and G-limited disciplines and derived the vector GF of the stationary number
of customers at an arbitrary instant and its mean.
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In this paper we analyze BMAP queue model with multiple vacations and ex-
haustive discipline, in which the vacation periods depend on the number of preceding
vacations. We call this vacation strategy as dependent multiple vacation. To the
best knowledge of the authors, no results are available for this continuous-time va-
cation model. This vacation system is capable of modeling sleep mode mechanism
in wireless networks. The incoming traffic has self-similar and bursty nature also
in wireless networks causing correlation in inter-arrival times, which influences the
performance of the system. Our motivation for using BMAP is that it can model
such traffic correlation. Hence applying BMAP in the queueing model enables the
traffic correlation dependent performance evaluation of the system.

The principal goal of this work is to give a general continuous-time BMAP

queueing model for evaluating the performance of the sleep mode mechanisms in
wireless networks and for optimal tuning of the sleep mode parameters on traffic
correlation dependent manner.

The IEEE 802.16 standard [12] is recommended for Wireless Metropolitan Area
Networks (WMAN). It is also called as WiMAX (from “Worldwide Interoperability
for Microwave Access”) as it has been commercialized under this name. In the
application part of this paper we focus on the IEEE 802.16e sleep mode mechanism
with power saving class of type I. The three types of power saving classes in IEEE
802.16e sleep mode mechanism representing different sleep mode operations. The
power saving class of type I is recommended for connections having best effort (BE)
service and non-real time polling service (nrtPS).

Most of the performance analysis of the IEEE 802.16e sleep mode assumes un-
correlated traffic. In [23], [5] and [18] the incoming traffic is modeled by Poisson
process while the performance evaluation in [6] is based on an appropriate discrete-
time Geom/G/1 vacation queue model. Recent works on performance analysis of
power saving mechanisms in IEEE 802.16e are [8] and [7], in which also Poisson
process is used as traffic model.

Turck et al. [21] investigated a discrete-time BMAP (D − BMAP ) queue with
multiple vacations, exhaustive discipline and First-Come First-Serve (FCFS) sched-
uling. Their time-slotted model also allows that the fixed lengths vacation periods
depend on the number of preceding vacations. They derived the vector GF of the
number of packets in the queue and the vector GF of the packet delay. They applied
the so-called ON-OFF traffic model, which generates bursty, correlated traffic, to
investigate the performance of the IEEE 802.16e sleep mode mechanism in terms
of the burst-length factor.

Our model can be seen also as the generalized continuous-time counterpart of
the model of [21], in which the lengths of the vacation periods can have a general
distribution. We apply the canonical form of the two-phase MAP [1] for modeling
correlated traffic and evaluate the effect of the traffic correlation on the performance
measures and on the optimal parameters of the IEEE 802.16e sleep mode.

The queueing theoretic contribution of this paper is the expressions for the vector
GF of the stationary number of customers at an arbitrary instant and for its mean
as well as the new formulas for the vector Laplace-Stieljes transform (vector LST)
of the stationary virtual waiting time and for its first two moments. The derivation
of them is based on determination of two joint transforms. The first one is the joint
transform of the stationary number of customers in the system and the forward
recurrence vacation time. The second one is the joint transform of the stationary
number of customers in the system and the forward recurrence customer service
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time at an arbitrary instant in service period. In the derivation of the vector GF
of the stationary number of customers at an arbitrary instant we also apply results
from [17].

The application specific contribution of the paper is the capability of the con-
sidered model to predict the influence of the sleep mode parameters on the mean
packet delay and the mean power savings also in presence of traffic correlation.
We show an example for traffic correlation dependent determination of the optimal
sleep mode parameters for the simple strategy, in which the mean power savings
practically prioritized over mean packet delay (for BE and nrtPS services). It turns
out that the optimal sleep mode strategy depends on the correlation parameter. We
also describe how to take into account an upper bound on mean delay in optimizing
the sleep mode parameters. Moreover we also introduce a cost model, which takes
into account the Quality of Service (QoS) on delay constraint and the mean power
savings. These optimizations facilitate the tuning of the sleep mode parameters to
the requirements of the actual application scenario and thus they have potential
applications in network control.

Moreover applying BMAP in the considered queueing model enables the ap-
plication of correlated traffic models in the analysis of the considered sleep mode
mechanism. Such data traffic models have been developed for simulation based
performance analysis of the IEEE 802.16, e.g. in [9].

The rest of this paper is organized as follows. In section 2 we introduce the
model and the notations. The derivation of the joint transforms follows in section
3. In section 4 the expressions for the vector GF of the stationary number of
customers and its mean follow. The new formulas of vector LST of the stationary
virtual waiting time and its first two moments are derived in section 5. In section
6 we determine the stationary probability vector at start of the whole vacation.
The application to IEEE 802.16e sleep mode mechanism together with numerical
examples are described in section 7. Our conclusion is given in section 8. Finally
the Appendix with the proof of theorem 5.2 closes the paper.

2. Model and notation.

2.1. BMAP process. The BMAP batch arrival process ([13]) is characterized by
{(Λ(t), J(t)) ; t ≥ 0} bivariate continuous-time Markov chain (CTMC) on the state
space (Λ(t), J(t)); where (Λ(t) ∈ {0, 1, . . .}) denotes the number of arrivals in (0, t]
and (J(t) ∈ {1, 2, . . . , L}) is the phase, the state of a background CTMC (phase
process), at time t. The infinitesimal generator of BMAP is given as




D0 D1 D2 D3 . . .

0 D0 D1 D2 . . .

0 0 D0 D1 . . .

0 0 0 D0 . . .
...

...
...

...
. . .




,

where 0 and {Dk; k ≥ 0} are L × L matrices.
D0 and {Dk; k ≥ 1} govern the transitions corresponding to no arrivals and to

batch arrivals with size k, respectively. The irreducible infinitesimal generator of
the phase process is D =

∑
∞

k=0 Dk. Let π be the stationary probability vector of
the phase process. Then πD = 0 and πe = 1 uniquely determine π, where e is

the column vector having all elements equal to one. D̂(z), the matrix generating
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function (matrix GF) of Dk is defined as

D̂(z) =

∞∑

k=0

Dkzk, |z| ≤ 1. (1)

The stationary arrival rate of the BMAP,

λ = π
d

dz
D̂(z)

∣∣∣∣
z=1

e = π

∞∑

k=0

kDke, (2)

is supposed to be positive and finite.

2.2. The BMAP/G/1 queue with dependent multiple vacation and ex-
haustive service. Batch of customers arrive to the infinite buffer queue according

to a BMAP process defined by D̂(z). The service times are independent and iden-

tically distributed. B, B(t), B̃ (s), b, b(2), b(3) denote the service time r.v., its
cumulated distribution function, its LST and its first three moments, respectively.
The mean service time is positive and finite, 0 < b < ∞. Due to the exhaustive
service the customers are served until the queue becomes empty. Then the server
takes the first vacation period. If the server, upon return from the r-th (r ≥ 1)
vacation period, finds the queue empty then it immediately takes the next vacation
period, whose length depends on the number of preceding vacation periods. We
call the model with this vacation strategy as dependent multiple vacation model.
We define the total vacation period as the sum of all vacation periods until the
next service. In addition we define the cycle time as a service period and the total
vacation period together. The server utilization is ρ = λb.

For every r ≥ 1 the consecutive r-th vacation periods are independent and iden-
tically distributed. Thus let Vr, Vr(t), vr denote the length of the r-th (r ≥ 1)
vacation period, its cumulated distribution function and its mean, respectively.

Ṽr (s) denotes the LST of Vr, which is defined as Ṽr (s) =
∫
∞

t=0
e−stdVr(t). The

arrival process, the customer service times and the vacation periods are mutually
independent. The service is nonpreemtive. The FCFS scheduling is applied.

Although the length of total vacation period depends only on the phase of the
BMAP process at the start of total vacation period, the length of an interval
until an arbitrary instant in total vacation period also depends on the whole arrival
process. However the length of any interval inside of the r-th vacation period (r ≥ 1)
is independent of the arrival process, as r already implicitly includes a condition on
the arrival process. Therefore, in order to utilize this independency, the description
of the internal structure of the total vacation period is necessary.

In the following [Y ]i,j stands for the i, j-th element of matrix Y. Similarly [y]j
denotes the j-th element of vector y.

We define matrix Ak, whose (i, j)-th element denotes the conditional probability
that during a customer service time the number of arrivals is k and the initial and
final phases of the BMAP are i and j, respectively. That is, for k ≥ 0, 1 ≤ i, j ≤ L,

[Ak]i,j = P {Λ(B) = k, J (B) = j|J (0) = i} .

The matrix GF Â(z) is defined as Â (z) =
∑

∞

k=1 Akzk. Â (z) can be expressed
explicitly as [13]

Â (z) =

∫
∞

t=0

eD̂(z)tdB(t). (3)
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Since matrix Â (1) is stochastic, we assume that Â (z) can be inverted for |z| ≤ 1.
To describe the arrivals during the r-th vacation period, for r ≥ 1, we define

matrices Ur,k, whose (i, j)-th element, for k ≥ 0, 1 ≤ i, j ≤ L, is given as [Ur,k]i,j =
P {Λ(Vr) = k, J (Vr) = j|J (0) = i}. The matrix GFs,

Ûr (z) =
∑

∞

k=0 Ur,kzk, are given as

Ûr (z) =

∫
∞

t=0

eD̂(z)tdVr(t). (4)

Similarly to describe the arrivals during the total vacation period, we define
matrices U(k). Let V denote the length of the total vacation period. The matrices
U(k) are defined by their (i, j)-th elements, for k ≥ 1, 1 ≤ i, j ≤ L, as [U(k)]i,j =
P {Λ(V ) = k, J (V ) = j|J (0) = i}. Using them the matrix GF of the number of
arriving customers during the total vacation period is defined as

Û (z) =

∞∑

k=1

U(k)z
k. (5)

The case when the r-th vacation period occurs is described by means of matrix∏r−1
k=1 Ûk (0), whose (i, j)-th element denotes the conditional probability that during

the first r − 1 vacation periods no arrivals occur and the phases of the BMAP at
the start of the first vacation and at the end of the r − 1-th vacation are i and j,
respectively. We remark here that the empty product of matrices equals the unity
matrix, which is denoted by I. The model implies that in case of exactly r vacation
periods definitely there is at least one arrival in the last vacation period and it is
the only vacation period having arrival. Consequently the partial matrix GF of the
number of customers arriving during the total vacation period consisting of exactly

r vacation periods can be expressed by
∏r−1

k=1 Ûk (0) (Ûr (z) − Ûr (0)). Summing
up over r results in the matrix GF of the number of customers arriving during the
total vacation period as

Û (z) =

∞∑

r=1

r−1∏

k=1

Ûk (0) (Ûr (z) − Ûr (0)). (6)

We define matrix Ṽ (s), which is related to the LST of the last vacation period,
as

Ṽ (s) =
∞∑

r=1

r−1∏

k=1

Ûk (0)
(
Ṽr (s) I− Ûr (0)

)
, (7)

Note that Ṽ (0) = I, since Ṽr (0) = 1 and
∏

∞

k=1 Ûk (0) = 0, because matrices Ûk (1)
are stochastic for k ≥ 1.

Let tmℓ denote the start of total vacation period in the ℓ-th cycle. The probability
vector m, is defined by its elements as

[m]j = lim
ℓ→∞

P {J(tmℓ ) = j} .

m is interpreted as the stationary probability vector of the phase process at starts
of total vacation periods.
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We define the vectors pr, r ≥ 1, by their i-th entry, which is the probability that
during a total vacation period, there are at least r vacation periods, and the phase
of BMAP at the start of the r-th vacation period is i. The vectors pr are given as

pr = m

r−1∏

k=1

Ûk (0) . (8)

The mean total vacation period, which is denoted by v, can be expressed by the
help of pr, r ≥ 1 as

v =

∞∑

r=1

vrpre = m

∞∑

r=1

vr

r−1∏

k=1

Ûk (0)e. (9)

The stability of the model requires that the mean cycle time is finite. This
directly implies that also the mean total vacation period must be finite. This leads
to

v = m

∞∑

r=1

vr

r−1∏

k=1

Ûk (0) e < ∞. (10)

Under this condition the model is stable if and only if ρ < 1.

3. The joint transforms. In this section we derive expressions of joint transforms,
which are needed to get the LST of the stationary virtual waiting time.

Let N(t) be the number of customers in the system at time t. We introduce
F v(t), which is the forward recurrence vacation time at time t in total vacation
period, given that there is a virtual arrival at time t. It is defined as the interval
from time t until the end of the total vacation period. The vector joint transform,
q̂v (z, s), is defined by its elements as

[q̂v (z, s)]j = lim
t→∞

∞∑

n=0

∫
∞

τ=0

e−sτdP
{

F v (t) ≤ τ, N (t) = n,

J(t) = j | t ∈ t.v.p.
}
zn, |z| ≤ 1, Re(s) ≥ 0,

where t.v.p. stands for total vacation period. The q̂v (z, s) is interpreted as the
vector joint transform of the number of customers in the system and the forward
recurrence vacation time at an arbitrary instant in total vacation period.

Similarly we introduce F c(t), which is the forward recurrence customer service
time at time t in a service period, given that there is a virtual arrival at time t. It
is defined as the interval from time t until the end of the service of the customer,
which is under service at time t. The vector joint transform, q̂c (z, s), is defined by
its elements as

[q̂c (z, s)]j = lim
t→∞

∞∑

n=0

∫
∞

τ=0

e−sτdP
{

F c (t) ≤ τ, N (t) = n,

J(t) = j | t ∈ s.p.
}
zn, |z| ≤ 1, Re(s) ≥ 0,
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where s.p. stands for service period. The q̂c (z, s) is interpreted as the vector joint
transform of the number of customers in the system and the forward recurrence
customer service time at an arbitrary instant in service period.

3.1. Joint transform in total vacation period.

Theorem 3.1. The vector joint transform of the number of customers in the system
and the forward recurrence vacation time at an arbitrary instant in total vacation
period is given as

q̂v (z, s)
(
D̂(z) + sI

)
=

m
(
Û (z) − Ṽ (s)

)

v
. (11)

Proof. We introduce the vectors p
∗

r , r ≥ 1, by their i-th entry, which is the proba-
bility that a random epoch in total vacation period (consisting of at least r vacation
periods) belongs to r-th vacation period and the phase of BMAP at the start of
r-th vacation period is i. Let us consider the Semi-Markov process in total vacation
period (t ≥ 0), whose state at time t composes from the phase of BMAP at the start
of current vacation period (e.g. the r-th) and the index of the this vacation period
(in that case r). Then [pr]i describes the probability of state (i, r) of the Markov
chain embedded at starts of vacation periods and p

∗

r is exactly the equilibrium
distribution of the Semi-Markov process. Therefore vectors p

∗

r can be expressed as

p
∗

r =
vrpr

v
=

vrm
∏r−1

k=1 Ûk (0)

v
. (12)

First we express q̂v
r (z, s), which is the partial vector joint transform of the num-

ber of customers in the system and the forward recurrence vacation time at an
arbitrary instant in the r-th vacation period for r ≥ 1.

The vector GF of the stationary number of customers in the system at instant,

when time τ ellapsed in r-th vacation period, is p
∗

r eD̂(z)τ . The first term captures
that a random epoch belongs to the r-th vacation period and the phase probability
vector at the beginning of the r-th vacation period. The second term stands for the
number of customers arriving in the (0, τ) interval of the r-th vacation period. The
forward recurrence vacation time at instant τ equals t − τ , where t is the length
of the r-th vacation period. This is because the definition of forward recurrence
vacation time includes a virtual arrival at time τ . To obtain the partial vector joint
transform q̂v

r (z, s) we need to take the LST of forward recurrence vacation time
over the range of τ and to average the generating function of the stationary number
of customers in the system over the duration of the r-th vacation period. This yields

q̂v
r (z, s) =

p
∗

r

∫
∞

t=0

∫ t

τ=0
e−s(t−τ)eD̂(z)τdτ dVr(t)

vr

. (13)

Multiplying both sides of (13) by
(
D̂(z) + sI

)
we have

q̂v
r (z, s)

(
D̂(z) + sI

)
= (14)

p
∗

r

vr

∫
∞

t=0

e−st

∫ t

τ=0

e(D̂(z)+sI)τ
(
D̂(z) + sI

)
dτ dVr(t).
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The internal integral term can be rewritten as

∫ t

τ=0

e(D̂(z)+sI)τ
(
D̂(z) + sI

)
dτ

=

∫ t

τ=0

∞∑

k=0

τk
(
D̂(z) + sI

)k

k!

(
D̂(z) + sI

)
dτ

=

∞∑

k=0

∫ t

τ=0

τk dτ

(
D̂(z) + sI

)k+1

k!

=

∞∑

k=0

tk+1

k + 1

(
D̂(z) + sI

)k+1

k!
= e(D̂(z)+sI)t − I.

(15)

Substituting (15) into (14), applying (4) and rearranging yields

q̂v
r (z, s)

(
D̂(z) + sI

)
=

p
∗

r

vr

∫
∞

t=0

(
eD̂(z)t − e−stI

)
dVr(t)

=
p
∗

r

(
Ûr (z) − Ṽr (s) I

)

vr

. (16)

The joint transform q̂v (z, s) is given as q̂v (z, s) =∑
∞

r=1 q̂v
r (z, s), from which

q̂v (z, s)
(
D̂(z) + sI

)
=

∞∑

r=1

p
∗

r

(
Ûr (z) − Ṽr (s) I

)

vr

. (17)

Applying (12) and rearranging results in

q̂
v (z, s)

(
D̂(z) + sI

)
(18)

=
m

∑
∞

r=1

∏r−1
k=1 Ûk (0)

(
Ûr (z) − Ṽr (s) I

)

v

=
m

∑
∞

r=1

∏r−1
k=1 Ûk (0)

(
Ûr (z) − Ûr (0)

)

v

−
m

∑
∞

r=1

∏r−1
k=1 Ûk (0)

(
Ṽr (s) I− Ûr (0)

)

v
.

The statement comes by applying (6) and (7) in (18).

3.2. Joint transform in service period. Let G(ℓ) denote the number of cus-
tomer services during the ℓ-th cycle, for ℓ ≥ 1. Additionally ts(ℓ, r) denotes the
instants of service start of the r-th customer in the ℓ-th cycle, for ℓ ≥ 1 and
1 ≤ r ≤ G(ℓ). We define the vector GF of the stationary number of customers
at service start epochs q̂s (z) by its elements as
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[q̂s (z)]j =

lim
ℓ→∞

∞∑

n=0

∑G(ℓ)
r=1 P {N(ts(ℓ, r)) = n, J(ts(ℓ, r)) = j}

E[G(ℓ)]
z

n
, |z| ≤ 1.

Theorem 3.2. The vector joint transform of the number of customers in the system
and the forward recurrence customer service time at an arbitrary instant in service
period is given as

q̂c (z, s)
(
D̂(z) + sI

)
=

q̂s (z)
(
Â (z) − B̃ (s) I

)

b
. (19)

Proof. To get the expression of q̂c (z, s) the same line of argument can be applied
as for obtaining (16) to express the partial vector joint transform q̂v

r (z, s). We have

to replace p
∗

r by q̂s (z), Ûr (z) by Â (z), Ṽr (s) by B̃ (s) and vr by b and it results
in the statement.

In the next proposition we give the expression of q̂s (z), the only unknown in
(19).

Proposition 1. The vector GF of the stationary number of customers at customer
service start epochs can be expressed as

λq̂s (z)
(
zI− Â(z)

)
= (1 − ρ) z

m
(
Û (z) − I

)

v
. (20)

Proof. Let td(ℓ, r) denote the instants at the departure of the r-th customer in the
ℓ-th cycle, for ℓ ≥ 1 and 1 ≤ r ≤ G(ℓ). Similar to q̂s (z) we also define the vector
GF of the stationary number of customers at customer departure epochs q̂d (z) by
its elements as

[q̂d (z)]j =

lim
ℓ→∞

∞∑

n=0

∑G(ℓ)
r=1 P

{
N(td(ℓ, r)) = n, J(td(ℓ, r)) = j

}

E[G(ℓ)]
z

n
, |z| ≤ 1.

Now we relate q̂d (z) to q̂s (z). The number of customers just before an arbi-
trary departure epoch equals the number of customers at previous customer service
start plus the number of customers arriving during that service. This leads to the
following BMAP specific relation:

zq̂d (z) = q̂s (z) Â(z). (21)

We also define the vector GF of the stationary number of customers at an arbi-
trary instant q̂ (z) by its elements as

[q̂ (z)]j = lim
t→∞

∞∑

n=0

P {N (t) = n, J (t) = j} zn, |z| ≤ 1.

Takine and Takahashi proved a stationary relationship between q̂ (z) and q̂d (z)
[20], which is given as
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q̂ (z) D̂ (z) = λ (z − 1) q̂d (z) . (22)

Finally we also need the factorization formula of Chang et al. [3], which is written
as

q̂ (z)
(
zI− Â(z)

)
= q̂v (z) (1 − ρ) (z − 1) Â(z). (23)

Post-multiplying (23) by zD̂ (z), utilizing that Â(z) and D̂(z) commute as well
as applying (22) and (21) leads to

λ (z − 1) q̂s (z)
(
zI− Â(z)

)
Â(z)

= (1 − ρ) (z − 1) zq̂v (z) D̂ (z) Â(z). (24)

Utilizing that the quantities occurring in (24) are continuous at z = 1 and post-

multiplying both sides by
(
Â(z)

)
−1

for |z| ≤ 1 yields

λq̂s (z)
(
zI− Â(z)

)
= (1 − ρ) z q̂v (z) D̂ (z) . (25)

Setting s = 0 in (11) gives q̂v (z) as

q̂v (z) D̂(z) =
m

(
Û (z) − I

)

v
. (26)

Applying (26) in (25) results in the statement.

4. Stationary number of customers. In this section we provide expressions for
the vector GF of the stationary number of customers at an arbitrary instant and
for its mean.

Theorem 4.1. The vector GF of the stationary number of customers at an arbitrary
instant can be expressed as

q̂ (z) D̂ (z)
(
zI− Â(z)

)
=

m
(
Û (z) − I

)

v
(1 − ρ) (z − 1) Â(z). (27)

Proof. Multiplying (23) by D̂ (z) and utilizing again that Â(z) and D̂(z) commute
leads to:

q̂ (z) D̂ (z)
(
zI− Â(z)

)
= q̂v (z) D̂(z) (1 − ρ) (z − 1) Â(z). (28)

Applying (26) in (28) results in the statement.

We introduce the notations D(i), A(i), U(i) and q(i), i ≥ 1 for the i-th derivatives

of D̂ (z), Â (z), Û (z), q̂ (z) and m̂ (z) at z = 1, respectively. We also use the

notations D = D̂ (1), A = Â (1), U = Û (1) and q = q̂ (1).
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Theorem 4.2. The mean of the stationary number of customers at an arbitrary
instant is given by

q
(1) =

m

λv

(
1

2
U

(2)
eπ +

1

2
(U − I)A(2)

eπ + U
(1)

A
(1)

eπ

)
(29)

−
m

λv

(
U

(1)
A + (U − I)A(1)

)
(D + eπ)−1

D
(1)

eπ

+
m

λv

(
U

(1)
Aeπ + (U − I)A(1)

eπ

) (
C2eπ

λ
+ (1 − ρ)C1

)

+
m

λv
(U − I)A (D + eπ)−1

(
λI− D

(1)
eπ

) (
C2eπ

λ
+ (1 − ρ)C1

)

+ π

(
A(2)eπ

2 (1 − ρ)
−

(
I− A

(1)
)

C1

)
,

where matrices C1 and C2 are defined as

C1 = (I − A + eπ)−1

(
A(1)eπ

(1 − ρ)
+ I

)
, C2 = D

(1) (D + eπ)−1
D

(1) −
1

2
D

(2)
.

Proof. Starting from relation (28) and applying the arguments of the corresponding
theorem in [17] gives the theorem.

5. Stationary virtual waiting time. The virtual waiting time is the time period,
which an arriving customer would experience at a time t until the start of its service.
Note that there is not necessarily an arrival at time t, that is why it is called as
virtual.

The virtual waiting time depends on the phase of the BMAP . Let W (τ) be
the virtual waiting time in the system at time τ . We define the vector cumulated
distribution function of the stationary virtual waiting time, w(t), by its elements
as

[w(t)]j = lim
τ→∞

P {W (τ) ≤ t, J(τ) = j} .

The vector LST of the stationary virtual waiting time is defined as

w̃ (s) =

∫
∞

t=0

e−stdw(t), Re(s) ≥ 0.

5.1. LST of stationary virtual waiting time.

Theorem 5.1. The vector LST of stationary virtual waiting time can be expressed
as

w̃ (s)
(
D̂(B̃ (s)) + sI

)
= (1 − ρ)

m

v

(
I− Ṽ (s)

)
. (30)

Proof. Our argument to get the LST of stationary virtual waiting time is based on
the unfinished work in the system.

An arriving customer sees the system with probability ρ in service period and
with probability 1 − ρ in vacation period.

Due to FCFS scheduling the waiting time at arrival during the service period
is exactly the unfinished work, i.e. it consists of the forward recurrence customer
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service time of the customer currently under service and the customer service times
of the customers, who are already present in the queue at virtual arrival. Note
that the number of those customers is one less than the number of customers in
the system. Similarly the waiting time at virtual arrival during the vacation period
consists of the forward recurrence vacation time and the customer service times of
the customers, who are already present at virtual arrival (unfinished work). This
yields

w̃ (s) =

(
ρ

q̂c (z, s)

z
+ (1 − ρ) q̂v (z, s)

) ∣∣∣∣
z=B̃(s)

. (31)

Setting z = B̃ (s) in (19) and (20) gives

q̂c (z, s)
(
D̂(z) + sI

)∣∣∣
z=B̃(s)

=
q̂s

(
B̃ (s)

)(
Â(B̃ (s)) − B̃ (s) I

)

b
, (32)

λq̂s
(
B̃ (s)

)(
B̃ (s) I − Â(B̃ (s))

)

= (1 − ρ) B̃ (s)
m

(
Û(B̃ (s)) − I

)

v
, (33)

respectively. Combining them leads to

ρ
q̂c (z, s)

z

(
D̂(z) + sI

)∣∣∣∣
z=B̃(s)

= − (1 − ρ)
m

(
Û(B̃ (s)) − I

)

v
. (34)

Multiplying (31) by
(
D̂(B̃ (s)) + sI

)
and applying (34) as well as (11) yields

w̃ (s)
(
D̂(B̃ (s)) + sI

)
= − (1 − ρ)

m

v

(
Û(B̃ (s)) − I

)

+ (1 − ρ)
m

v

(
Û(B̃ (s)) − Ṽ (s)

)
. (35)

Rearranging (35) results in the statement.

5.2. First two moments of stationary virtual waiting time. Let w(k) and

V
(k) denote the k-th (k ≥ 1) moment of LSTs w̃ (s) and Ṽ (s), for Re(s) ≥ 0,

respectively. Thus w(k) = (−1)k dk

dsk w̃ (s) |s=0 and V
(k) = (−1)k dk

dsk Ṽ (s) |s=0.

Theorem 5.2. The first two vector moments of the stationary virtual waiting time
can be expressed as

w
(1) =

m

v

V
(2)eπ

2
− (1 − ρ)

m

v
V

(1)
C3 + πC4, (36)
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w
(2) =

m

v

V
(3)eπ

3
(37)

+
m

v

(
V

(2)
eπC4 − (1 − ρ)V

(2)
C3

)

− 2 (1 − ρ)
m

v
V

(1)
C3C4

+ π

(
2C4C4 −

(
b
2
D

(2) + b
(2)

D
(1)

)
C3

)

+ π
b3D(3)eπ + 3bb(2)D(2)eπ + b(3)D(1)eπ

3 (1 − ρ)
,

where matrices C3 and C4 are defined as

C3 = (D + eπ)−1



I −

(
I − bD(1)

)
eπ

(1 − ρ)



 ,

C4 =

(
b2D(2) + b(2)D(1)

)
eπ

2 (1 − ρ)
+

(
I− bD

(1)
)

C3.

Proof. The proof of the theorem can be found in the Appendix.

6. Computation of the stationary probability vector of the phase process
at start of t.v.p. In this section we give a computation method to determine the
unknown m in (29), (36) and (37).

We define the homogenous bivariate Markov chain{
(N(tdk), J(tdk)); k ∈ {1, . . .}

}
on the state space {0, 1, . . .} × {1, 2, . . . , L}, where tdk

denotes the k-th customer departure epoch for k ≥ 1. We define matrix G, whose
(i, j)-th elements is given as the probability that starting from state (n+1, i) in the
Markov chain the first state visited in level n is (n, j), n ∈ 0, 1, 2, . . ., 1 ≤ i, j ≤ L.

Theorem 6.1. The stationary probability vector of the phase process at starts of
total vacation periods is given by

m = eL

(
(I − K) || e

)
−1

,

K =

∞∑

r=1

r−1∏

k=1

Ûk (0)
(
Ûr (G) − Ûr (0)

)
, (38)

where Ûr (G) stands for
∑

∞

k=0 Ur,kG
k, for r ≥ 1.

For computing matrix G, the only unknown in (38), the standard algorithm of
Lucantoni [13] can be applied.

Proof. We define matrix K, whose (i, j)-th element is given as the probability that
the Markov chain embedded at the customer departure epochs (defined above),
starting from the state (0, i) returns to the level 0 for the first time by hitting the
state (0, j).

The unknown vector m is the invariant probability vector of K and therefore it
satisfies mK = m. Rearranging yields

m (I − K) = 0. (39)
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Due to stability of the model (39) and me = 1 uniquely determine m, which
implies that matrix (I − K) has rank L − 1. Thus we use also the normalization
condition me = 1 to solve (39) for m. Let ei stand for the row vector, whose i-th
element equals to 1 and its other elements are 0. In addition let Y || x denote the
matrix Y with the last column replaced by the column vector x. Now combining
normalization condition with (39) gives m as

m = eL

(
(I− K) || e

)
−1

. (40)

Each customer arriving during the total vacation period generates a first passage
described by matrix G, and thus for K we get:

K =

∞∑

k=1

U(k)G
k. (41)

Applying (5), (6) and (41) results in the statement.

7. Application to the IEEE 802.16e sleep mode mechanism.

7.1. IEEE 802.16e sleep mode mechanism. The IEEE 802.16 standard speci-
fies an air interface for Broadband Wireless Access (BWA). It proposes a high-speed
access system supporting multimedia services and an extensive QoS guarantee. In
IEEE 802.16 protocol stack the Medium Access Control (MAC) layer supports mul-
tiple Physical (PHY) layer specifications, each of them covering different operational
environments.

The IEEE 802.16e sleep mode mechanism was originally specified in Corrigendum
1 [11] published along with IEEE 802.16e-2005 (amendment to IEEE 802.16-2004
Standard [10]. As a result of the recent revision of IEEE 802.16 standard, this sleep
mode mechanism is incorporated into the new base standard IEEE 802.16-2009 [12],
which consolidates the IEEE 802.16-2004 Standard with several amendments.

The purpose of the sleep mode mechanism is to enable a power consumption
reduction at the Mobile Stations (MSs). The sleep mode mechanism utilizes the
natural idle periods of the traffic, i.e. the periods without packet transmission.
The MS periodically inserts sleep intervals, whose lengths are predetermined and
negotiated with the Base Station (BS).

In the sleep interval the MS switches off its air interface and enters in the energy
saving mode. At the end of the sleep interval the MS switches back for a short
listening interval to check whether packets are waiting at BS for downlink traffic. If
not then the MS enters into the next sleep interval. However if any packet arrived
to the BS for the MS during the last sleep interval then the MS remains active and
an awake mode starts (see figure 1). Thus the price for the MS power reduction
is the higher packet delay, since the packets arriving during a sleep interval must
wait until the end of the next listening interval. If packets arrive to the MS for
uplink during a sleep interval, the MS immediately interrupts the sleep interval and
remains active until all packets are transmitted in both directions.

The standard defines three types of power saving classes. In class type I starting
with the initial-sleep interval the size of the next sleep interval is always doubled
until reaching the final-sleep interval, which is then repeated. This type is recom-
mended for the BE and nrtPS services. Class type II has fixed-length sleep interval
and it is recommended for unsolicited grant service (UGS). Finally in class type
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Figure 1. Operation of the IEEE 802.16e sleep mode mechanism.

III the sleep interval is negotiated only for one occasion, which is typically used for
management traffic.

7.2. Analytic model of the power saving class of type I. We apply the
presented queueing model for the power saving class of type I. This model can be
applied only for the downlink traffic, so the uplink traffic is ignored. Thus the
customers of the queueing model correspond to the packets sent from BS to MS.
Each vacation period models the actual sleep interval together with the listening
interval following it. Hence VR, for r ≥ R, is the sum of the fixed-length final-sleep
interval and the fixed-length listening interval. However the doubling rule is relaxed
on the way, which is given as:

Vr = VR, r ≥ R,

Vr < VR, r < R. (42)

We introduce the notation ν = E[number of vacation periods per t.v.p.]. Taking

(42) into account the quantities Û (z), Ṽ (s), ν and v can be expressed as

Û (z) =

R−1∑

r=1

r−1∏

k=1

Ûk (0)
(
Ûr (z) − Ûr (0)

)
(43)
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+

R−1∏

k=1

Ûk (0)
(
I− ÛR (0)

)
−1 (

ÛR (z) − ÛR (0)
)

,

Ṽ (s) =

R−1∑

r=1

r−1∏

k=1

Ûk (0)
(
Ṽr (s) I − Ûr (0)

)
(44)

+

R−1∏

k=1

Ûk (0)
(
I− ÛR (0)

)
−1 (

ṼR (s) I − ÛR (0)
)

,

ν = m

[ R−1∑

r=1

r

r−1∏

k=1

Ûk (0)
(
Ûr (1) − Ûr (0)

)
(45)

+

R−1∏

k=1

Ûk (0) ÛR (0)

((
I − ÛR (0)

)
−1

)2 (
ÛR (1) − ÛR (0)

)

+
R−1∏

k=1

Ûk (0)R
(
I − ÛR (0)

)
−1 (

ÛR (1) − ÛR (0)
)]

e,

v = m

[ R−1∑

r=1

vr

r−1∏

k=1

Ûk (0) + vR

R−1∏

k=1

Ûk (0)
(
I− ÛR (0)

)
−1

]
e. (46)

The primary performance measure in the IEEE 802.16e sleep mode mechanism
is the mean packet delay, E[W ], which is given by the help of w(1) (see (36)) as

E[W ] = w(1)e. (47)

Another object of interest is the savings in the energy consumption due to the
sleep intervals. For this purpose we use the mean power savings. Let Tl stand for
the length of the listening interval. We assume that the power consumption is the
same during all active periods, i.e. during transmitting, receiving and listening. Ps,
Pa and ∆P denote the constant power during the sleep intervals, the constant power
during the active periods and the power savings at an arbitrary time, respectively.
We also take into account the constant total extra energy needed for the switchings
between the sleep intervals and the listening intervals [7], which is denoted by Eon.
Let β be the time fraction of the listening intervals in the total vacation period,
which is given as

β =
E[number of vacation periods per t.v.p.] Tl

E[length of t.v.p.]
=

ν Tl

v
.

The power savings arises during sleep intervals and it can be determined from
the difference between the constant power during the active periods and the con-
stant power during the sleep intervals (Pa − Ps) as well as from a correction term
due to Eon. The time fraction of the sleep intervals equals the time fraction of
the vacation (1 − ρ) multiplied by the time fraction of the sleep intervals in the
total vacation period (1 − β). The mean of the total extra energy needed for
the switchings at the end of the sleep intervals in the total vacation period is
E[number of vacation periods per t.v.p.] Eon = ν Eon. Thus using the expression of
β the mean power savings can be expressed as
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E[∆P ] = (1 − ρ)

(
(1 − β) (Pa − Ps) −

ν Eon

v

)
(48)

= (1 − ρ)

(
(1 −

ν Tl

v
) (Pa − Ps) −

ν

v
Eon

)
.

7.3. Modeling correlated traffic with MAP(2). For traffic modeling we use a
two-phase Markovian Arrival Process, which is referred to as MAP (2). Although
MAP (2) is a special case of BMAP it is appropriate to model a fairly general cor-
related traffic. Recently it was shown in [1] that every MAP (2) can be transformed
to a specific form, which is referred to as canonical MAP (2). Hence for modeling
correlated traffic with MAP (2) we apply its canonical form. We summarize only
selected parts from the description of the canonical form of MAP (2). For more
detailed description we refer to [1].

The stationary distribution of the interarrival times of MAP (2) is a two states
phase-type (PH(2)). We use the notations µ1 and µ2 for its first two moments.
The correlation of two consecutive interarrival times are characterized by the lag-1
correlation coefficient, which is defined as

Corr(X0, X1) =
E[(X0 − E[X ])(X1 − E[X ])]

Var[X ]
= γ ·

µ2

2 − µ2
1

µ2 − µ2
1

, (49)

where −1 ≤ γ < 1 is a correlation parameter and random variable X stands for a
generic interarrival time.

Depending on the correlation characteristics of the interarrival time, there are
two variants of the canonical representation. The first and the second variants of
the canonical form MAP (2) are given as

D0 =

[
−λ1 (1 − a∗)λ1

0 −λ2

]
, D1 =

[
a∗λ1 0

(1 − b∗)λ2 b∗λ2

]

and

D0 =

[
−λ1 (1 − a∗)λ1

0 −λ2

]
, D1 =

[
0 a∗λ1

b∗λ2 (1 − b∗)λ2

]
,

respectively. Here 0 < λ1 ≤ λ2, 0 ≤ a∗ ≤ 1 and 0 ≤ b∗ ≤ 1. Additionally the
parameter ranges are restricted as

• a∗, b∗ 6= 1 in the first canonical form and
• b∗ 6= 0 in the second canonical form and
• λ1 6= λ2, if a∗ = 1 in the second canonical form.

For correlated processes, a∗ and b∗ must be nonzero.
The correlation parameter γ and the phase probability vector at stationary arrival

epochs π depend only on parameters a∗ and b∗ as

First canonical form : γ = a∗b∗, π =
[

1−b∗

1−a∗b∗
b∗−a∗b∗

1−a∗b∗

]
,

Second canonical form : γ = −a∗b∗, π =
[

b∗

1+a∗b∗
1 − b∗

1+a∗b∗

]
.

For modeling correlated traffic we set directly the parameters λ1, λ2, a∗ and
b∗ by utilizing the above properties of the canonical form. To set different loads
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(ρ) besides the same correlation parameter (γ), the actual matrix GF of the traffic

model MAP (2), D̂(z) = D0 + D1z, is scaled as

D̂(z) =
ρ

λbase b
D̂base(z), where λbase = π

d

dz
D̂base(z)

∣∣∣∣
z=1

e.

7.4. Examples for performance evaluation. In this section we provide numer-
ical examples for the performance of the IEEE 802.16e sleep mode mechanism by
the help of the presented vacation model. The IEEE 802.16 system operates with
slotted-time frame with length of 5ms. In the numerical examples we use normalized
time, in which the time unit equals the length of the frame.

The packet service time is constant with the length of 2 frames. The length of
the listening interval is set to 1 frame. The setting for the power parameters Pa and
Ps as well as for the energy parameter Eon are taken from [7]. Table 1 summarizes
the evaluation parameters. The parameter values imply that a sleep interval must
be longer than 1 frame length to achieve any power savings. Therefore the length
of the initial-sleep interval is at least 2 frames in the evaluation examples.

We use the simplified notation (2, 4, 8) for the sleep mode strategy, in which the
sequence of sleep intervals is specified by their lengthes as denoted in the bracket,
measured in frames, and the last sleep interval is repeated. Thus in the above
example the length of the initial-sleep interval equals 2 frames, the length of the
second sleep interval equals 4 frames and the length of the final-sleep interval equals
8 frames, which is then repeated.

Parameter Value

Frame duration 5 ms

Packet service time (constant) 2

Length of the listening interval 1

Power during active periods (Pa) 150 mW

Power during sleep intervals (Ps) 10 mW

Extra energy for switchings (Eon) 1 mJ

Table 1. Evaluation parameters

For γ = ±0.45 the parameters of D̂base(z) are set as λ1 = 0.07, λ2 = 1.47,
a∗ = 0.99 and b∗ = 5

11 . For the uncorrelated case (γ = 0) we use a∗ = 0 and
b∗ = 0.5.

In figure 2 we have plotted the dependency of the mean packet delay and the
standard deviation of packet delay on the load for different values of the correlation
parameter (γ). For this figure we used the sleep strategy (2, 4, 8, 16, 32).

The first observation, which is very interesting, is that the mean packet delay
has a minimum and it increases as ρ → 0. Similar tendency has been observed
also in [21]. The reason is that in low load range as the load decreases the first
arrival occurs with high probability later, i.e. in longer vacation period. Thus
the observed mean packet delay is also longer. This observation is specific for the
dependent multiple vacation model, in which the length of the consecutive vacation
periods are non-decreasing and at least once the next vacation period is longer
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Figure 2. Mean and standard deviation of packet delay (E[W ],
σ[W ]) versus load (ρ) for different correlation parameters (γ).

then the previous one. The same tendency can be observed also for the standard
deviation of the packet delay.

It can be also seen on the figure that the presence of correlation has major
influence on the values of both the mean and the standard deviation of the packet
delay. Moreover the sign of the change in the delay value (increment or decrement)
depends on the correlation parameter for both delay measures.

Figure 3 shows the dependency of the mean power savings on the load for different
values of the correlation parameter (γ). For this figure we used again the sleep
strategy (2, 4, 8, 16, 32). It can be seen from the figure that the dependency on the
load is close to linear and the presence of correlation has remarkable influence on
the values of the mean power savings. Again the sign of the difference in the mean
power savings values compared to the uncorrelated case depends on the value of the
correlation parameter.

In the next we show an example for determining the optimal sleep mode parame-
ters for a simple strategy. In case of the BE and nrtPS services (for which the power
saving class of type I is recommended) there is no strict prescription for the packet
delay. Therefore we apply a strategy, in which the mean power savings practically
prioritized over the mean packet delay. This is done in two steps. In the first one we
look for the best final-sleep interval while each of the sleep mode strategies starts
with 2 frames length initial-sleep interval. Then in the second step we find the best
initial-sleep interval while keeping the previously found best final-sleep interval.

In order to perform the first step of the selected optimization strategy, the mean
power savings are plotted in figure 4 as a function of the load for different sleep mode
strategies for two different values of the correlation parameter. The length of the
final-sleep interval is varied between 2 − 128. In this case the practical prioritizing
the mean power savings over the mean packet delay means to maximize the mean
power savings on the cost of the mean packet delay as far as it results in significant
plus in the mean power savings.

It can be observed from the figure that increasing the length of the final-sleep
interval up to 32 results in essential plus in the mean power savings in case of
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Figure 3. Mean power savings (E[∆P ]) versus load (ρ) for differ-
ent correlation parameters (γ).
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Figure 4. Mean power savings (E[∆P ])versus load (ρ) for differ-
ent sleep mode strategies for γ = −0.45 (left side) and γ = 0.45
(right side).

both values of the correlation parameter. However further increase of the length of
the final-sleep interval leads to different conclusions depending on the values of the
correlation parameter. In the following we consider the practically more important
range of ρ ≥ 0.2. For the case of γ = −0.45 the final-sleep interval with length of 64
yields to further considerable increment of mean power savings, while for the case
of γ = 0.45 it has only marginal effect on it. Thus in case of γ = −0.45 the optimal
length of the final-sleep interval is the one among 64 and 128 with the less mean
packet delay. Similarly in the case of γ = 0.45 the optimal length of the final-sleep
interval is the one among 32, 64 and 128 with the least mean packet delay. In the
figure 5 the mean packet delays are plotted as a function of the load for for the same
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group of sleep mode strategies and for the same values of the correlation parameter
as before.
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Figure 5. Mean packet delay (E[W ]) versus load (ρ) for different
sleep mode strategies for γ = −0.45 (left side) and γ = 0.45 (right
side).

From the figure it can be seen that the optimal values of the final-sleep interval
for the cases of γ = −0.45 and of γ = 0.45 are 64 and 32, respectively. Note
that taking into account also the load range below 0.2 would results in different,
but further on correlation parameter dependent optimal value for the length of the
final-sleep interval.

Another conclusion which can be drown from this figure is that in spite of the fact
that the mean packet delay values depend on the correlation parameter, the ten-
dencies among the mean packet delay curves for the different sleep mode strategies
are the same for both values of the correlation parameter. This can be explained
as follows. Comparing any pair of sleep mode strategies with the doubling rule,
the mean forward recurrence vacation time in the sleep mode strategy with longer
final-sleep interval is higher than that one in the other sleep mode strategy. As far
as the packet service time is small compared to the vacation periods, this effect,
which does not depend on the correlation parameter, has a major impact on the
tendencies between the mean packet delay curves.

Now we vary the length of initial-sleep interval, while keeping the length of final-
sleep interval at the above optimal values. The figure (6) shows the mean power
savings and the mean packet delay as a function of the load for sleep mode strategies
with different length of initial-sleep interval for γ = −0.45 and γ = 0.45.

The left side of the figure clearly shows that increasing the length of initial-sleep
interval above 16 (besides the same length final-sleep interval) has no essential
impact on the mean power savings. However it has significant influence on the
mean packet delay. In this case the practical prioritizing the mean power savings
over the mean packet delay means to minimize the mean packet delay among the
cases with initial-sleep interval of 16 and 32. This results in the optimal sleep mode
strategy for the case of γ = −0.45 as (16, 32, 64).
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Figure 6. Mean power savings (E[∆P ]) and mean packet de-
lay (E[W ]) versus load (ρ) for sleep mode strategies with differ-
ent length of initial-sleep intervals for γ = −0.45 (left side) and
γ = 0.45 (right side).

In the case of γ = 0.45 the mean power savings also benefits from increasing
the length of the initial-sleep interval from 16 to the highest possible value of 32.
Therefore the sleep mode strategy (32) is considered as optimal for the case of
γ = 0.45.

7.5. Effect of different steps of sleep intervals. Now we relax the doubling rule
of the sleep intervals and study different sleep mode strategies with the optimal
initial- and final-sleep intervals for the case of γ = −0.45. We can see from the
left side of figure 6 that the mean power savings is relative insensitive to the sleep
mode strategies having final-sleep interval with fixed length. This suggests that
essential further plus in mean power savings can not be reached by applying another
sequences of sleep intervals up to the final-sleep interval. Therefore we focus on
minimizing the mean packet delay.
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We utilize the rule that generally the sequence of shorter vacation periods results
in lower mean packet delay, which can be also observed on the figure 5 and on the
lower part of figure 6. Thus we gradually decrease the highest difference in the
length of the consecutive sleep intervals from 32 up to 2. This results in the sleep
mode strategies, for which the mean packet delay and the mean power savings as a
function of the load are shown in figure 7.
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Figure 7. Mean packet delay (E[W ]) and mean power savings
(E[∆P ]) versus load (ρ) for sleep mode strategies with different
steps of sleep intervals for γ = −0.45.

It can be seen from the figure that the mean power savings is practically the
same for the considered sleep mode strategies as expected. Thus the optimal sleep
mode strategy for the case of γ = −0.45 is the one with the minimal mean packet
delay, i.e. (16, 18, 20, ...64).

Finally in order to show the achieved performance of the out-of standard op-
timal sleep mode strategy (16, 18, 20, ...64) for the case of γ = −0.45, in figure 8
we position its curves among the curves of several reference sleep mode strategies
including the one with the lowest mean packet delay (2), the optimal one according
to the standard (16, 32, 64) and two other ones according to the standard with mean
packet delay curves closest to the mean packet delay curve of (16, 18, 20, ...64).

The figure shows that the out-of standard optimal sleep mode strategy
(16, 18, 20, ..., 64) results in better mean packet delay than the optimal sleep mode
strategy (16, 32, 64) at almost the same level of power savings.

7.6. Enforcing an upper bound on mean delay. The analytic model of the
power saving class of type I applied in previous subsections enables also to determine
the optimal sleep mode parameters while satisfying an upper bound on mean delay.
Usually this can be given for the practically important range of load, which can
be e.g. 0.2 ≤ ρ ≤ 0.7. In a first step every sets of sleep mode parameters are
determined, which satisfy the specified mean delay bound in the given load range.
Afterwards in a second step the optimal set of sleep mode parameters is selected
by maximizing the mean power savings over the previously determined parameter
sets.
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Figure 8. Mean packet delay (E[W ]) and mean power savings
(E[∆P ]) versus load (ρ) for the selected and reference sleep mode
strategies for γ = −0.45.

7.7. Cost model. In case of more general QoS requirement on delay constraint
an appropriate cost model can be built up to determine the optimal sleep mode
strategy. We developed a steady-state average cost function F(ς), where the sleep
mode strategy ς is the decision variable. The parameters of the cost function are
defined as

c1 ≡ Cost of the mean packet delay,

c2 ≡ Reward of the mean power savings.

Then the optimal sleep mode strategy can be obtained by minimizing the total
average system cost, which is given as

F(ς) = c1E[W ] +
c2

E[∆P ]
. (50)

The minimum can be numerically determined as a function of the load and the
correlation parameter by applying the expressions of the mean packet delay (47)
and the mean power savings (48).

8. Conclusion. The considered BMAP queue with dependent multiple vacation
can be also applied to model and analyze other sleep mode mechanisms in wireless
systems having similar multiple vacation model.

The canonical form of MAP (2) is a flexible traffic model of correlated arrival
processes which is applicable to investigate the effect of the traffic parameters such
as the correlation parameter in the performance evaluation of systems modeled by
BMAP queuing models.

Based on the numerical examples the following conclusions can be drawn for
IEEE 802.16e sleep mode mechanism with power saving class of type I for BE and
nrtPS services:
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• The presence of correlation in the downlink traffic has considerable influence
both on the packet delay and on the mean power savings. Depending on the
correlation parameter both the packet delay and the mean power savings can
be changed in both directions, i.e. they can be increased or decreased.

• The optimal sleep mode strategy depends on the correlation parameter (at
least for the applied settings).

• The tendencies of the mean packet delay in the dependency on the applied
sleep mode strategies do not show any dependency on the correlation param-
eter (at least for the applied settings).

• In the considered example, applying the power savings maximization strategy,
in which the mean power savings practically prioritized over mean packet
delay, the optimal sleep mode strategies are found as (16, 32, 64) for the case
of γ = −0.45 and (32) for the case of γ = 0.45.

Moreover we found that in the considered example for the case of γ = −0.45
the out-of standard sleep mode strategy (16, 18, 20, ..., 64) outperforms the optimal
sleep mode strategy (16, 32, 64) in terms of mean packet delay, while their power
savings do not differ considerable.

The presented analytic model of the power saving class of type I also enables
to enforce a specified upper bound on the mean delay in a given range of load. In
this case the optimal sleep mode parameters can be determined by maximizing the
mean power savings over the relevant sets of parameters as described in subsection
7.6.

In case of more general QoS requirement on delay constraint, the optimal IEEE
802.16e sleep mode strategy can be determined by minimizing the cost function
(50).

In order to simulate the performance of the IEEE 802.16 network numerous
correlated traffic models have been elaborated for various data, voice and video
traffic types [9], [22]. The data traffic models in [9] are based on the superposition
of Interrupted Poisson Processes (IPP), which are special cases of MAP. Therefore
they can be directly modeled by BMAP. The other traffic models can be modeled
by BMAPs approximately. In theses cases appropriate fitting procedures can be
applied to determine the suitable BMAPs. Hence applying BMAP in the considered
queueing model opens the way for applying traffic models in the analysis of the
considered sleep mode mechanism, which is left for future research.

Appendix A. Proof of theorem 5.2. The vector r̃ (s) is defined as

r̃ (s) = w̃ (s)
(
D̂(B̃ (s)) + sI

)
. (51)

Additionally we introduce the notation r(k) = (−1)k dk

dsk r̃ (s) |s=0, for k ≥ 1.
To prove the theorem we need the following lemma.

Lemma A.1. The terms w(1) and w(2) can be expressed from (51) in terms of r(1),
r(2)e, r(2) and r(3)e as follows:
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w(1) = −
r(2)eπ

2 (1 − ρ)
+ r(1)C3 + πC4, (52)

w(2) = −
r(3)eπ

3 (1 − ρ)
+ r(2)

(
C3 −

eπ

1 − ρ
C4

)
+ 2r(1)C3C4 (53)

+ π

(
2C4C4 − (b2D(2) + b(2)D(1))C3

)

+ π

(
b3D(3) + 3bb(2)D(2) + b(3)D(1)

)
eπ

3 (1 − ρ)
.

Proof. Since
(
D̂(B̃ (s)) + sI

)∣∣∣
s=0

= D in (30) is singular we apply the method used

by Lucantoni in [13] and Neuts in [16], which utilizes that (D + eπ) is nonsingular.

The first three derivatives of
(
D̂(B̃ (s)) + sI

)
at s = 0 can be expressed as:

d
(
D̂(B̃ (s)) + sI

)

ds

∣∣∣∣∣∣
s=0

= I− bD(1), (54)

d2
(
D̂(B̃ (s)) + sI

)

ds2

∣∣∣∣∣∣
s=0

= b2D(2) + b(2)D(1),

d3
(
D̂(B̃ (s)) + sI

)

ds3

∣∣∣∣∣∣
s=0

= −
(
b3D(3) + 3bb(2)D(2) + b(3)D(1)

)
.

Taking the first three derivatives of (51) at s = 0, applying the expressions (54)
and rearranging yields

w(1)D = r(1) + π(I − bD(1)), (55)

w(2)D = r(2) + 2w(1)(I − bD(1)) − π

(
b2D(2) + b(2)D(1)

)
. (56)

w(3)D = r(3) + 3w(2)(I − bD(1)) − 3w(1)
(
b2D(2) + b(2)D(1)

)

− π

(
b3D(3) + 3bb(2)D(2) + b(3)D(1)

)
. (57)

Adding w(1)eπ to both sides of (55) and using π (D + eπ)−1 = π leads to

w
(1) =

(
w

(1)
e
)

π +
(
r
(1) + π(I − bD

(1))
)

(D + eπ)−1
. (58)

The next step is to get the unknown term
(
w(1)e

)
in (58). Post-multiplying (56)

by e and post-multiplying (58) by
(
I− bD(1)

)
e and rearranging gives
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w(1)
(
I − bD(1)

)
e = −

1

2
r(2)e +

1

2
π

(
b2D(2) + b(2)D(1)

)
e, (59)

w(1)
(
I − bD(1)

)
e =

(
w(1)e

)
π(I − bD(1))e (60)

+
(
r(1) + π(I − bD(1))

)
(D + eπ)

−1
(I− bD(1))e,

respectively. Combining (59) and (60) and applying π

(
I− bD(1)

)
e = 1− ρ results

in the expression of the required term:

w(1)e =
1

2 (1 − ρ)

(
−r(2)e + π(b2D(2) + b(2)D(1))e

)
(61)

−
1

(1 − ρ)

(
r(1) + π(I − bD(1))

)
(D + eπ)

−1
(I − bD(1))e.

Substituting (61) into (58) leads to

w
(1) = −

r(2)eπ

2 (1 − ρ)
+ r

(1) (D + eπ)−1

(
I−

(I− bD(1))eπ

1 − ρ

)
(62)

+ π

(
(b2D(2) + b(2)D(1))eπ

2 (1 − ρ)

)

+ π(I− bD
(1)) (D + eπ)−1

(
I−

(I− bD(1))eπ

1 − ρ

)
.

Substituting matrices C3 and C4 into (62) results in the first statement.

Now we add w(2)eπ to both sides of (56). Using π (D + eπ)
−1

= π leads to

w
(2) =

(
w

(2)
e
)

π +
(
r
(2) + 2w(1)(I − bD

(1)) − π(b2
D

(2) + b
(2)

D
(1))

)
(D + eπ)−1

. (63)

The next step is again to determine the unknown term
(
w(2)e

)
in (63). Post-

multiplying (57) by e and post-multiplying (63) by
(
I− bD(1)

)
e and rearranging

gives

w(2)
(
I − bD(1)

)
e = −

1

3
r(3)e + w(1)

(
b2D(2)e + b(2)D(1)

)
e (64)

+
1

3
π

(
b3D(3) + 3bb(2)D(2) + b(3)D(1)

)
e,

w(2)
(
I − bD(1)

)
e =

(
w(2)e

)
π(I − bD(1))e (65)

+
(
r(2) + 2w(1)(I − bD(1))

)
(D + eπ)

−1
(I − bD(1))e,

−
(
π(b2D(2) + b(2)D(1))

)
(D + eπ)−1 (I − bD(1))e.

respectively. Combining (64) and (65) and applying π
(
I− bD(1)

)
e = 1− ρ results

in the expression of the required term:
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w(2)e = −
1

3 (1 − ρ)

(
r(3)e− π(b3D(3) + 3bb(2)D(2) + b(3)D(1))e

)
(66)

−
1

(1 − ρ)

(
r(2) + 2w(1)(I − bD(1))

)
(D + eπ)−1(I − bD(1))e

+
1

(1 − ρ)
w(1)

(
b2D(2)e + b(2)D(1)

)
e,

+
1

(1 − ρ)

(
π(b2D(2) + b(2)D(1))

)
(D + eπ)

−1
(I − bD(1))e.

Applying (66) in (63) leads to:

w
(2) = −

r(3)eπ

3 (1 − ρ)
+ r

(2) (D + eπ)−1

(
I −

(I− bD(1))eπ

1 − ρ

)
(67)

+2w(1)

((
(b2D(2) + b(2)D(1))eπ

2 (1 − ρ)

)
+ (I− bD

(1)) (D + eπ)−1

(
I −

(I − bD(1))eπ

1 − ρ

))

−π(b2
D

(2) + b
(2)

D
(1)) (D + eπ)−1

(
I −

(I − bD(1))eπ

1 − ρ

)

+π

(
b3D(3) + 3bb(2)D(2) + b(3)D(1)

)
eπ

3 (1 − ρ)
.

Substituting matrices C3 and C4 into (67) leads to

w(2) = −
r(3)eπ

3 (1 − ρ)
+ r(2)C3 + 2w(1)C4 (68)

− π(b2D(2) + b(2)D(1))C3

+ π

(
b3D(3) + 3bb(2)D(2) + b(3)D(1)

)
eπ

3 (1 − ρ)
.

Applying (52) in (68) gives the second statement.

Substituting (30) into (51) yields

r̃ (s) = (1 − ρ)
m

v

(
I − Ṽ (s)

)
. (69)

Taking the first three derivatives of r̃ (s) at s = 0 gives
r(k) for k = 1, 2, 3 can be computed by means of taking the first three derivatives

of r̃ (s) at s = 0, which results in

r(1) = − (1 − ρ)
m

v
V(1), (70)

r(2) = − (1 − ρ)
m

v
V(2), (71)

r(3) = − (1 − ρ)
m

v
V(3). (72)

Substituting (70), (71), (72) into (52) and (53) gives the theorem.
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[22] WiMAX Forum, “WiMAX System Evaluation Methodology V2.0,” December 2007.
[23] Y. Xiao, Energy saving mechanism in the IEEE 802.16e wireless MAN, IEEE Communica-

tions Letters, 9 (2005), 595-597.

Received September 2009; 1st revision January 2010; final revision April 2010.

E-mail address: safferzs@hit.bme.hu

E-mail address: telek@hit.bme.hu


	1. Introduction
	2. Model and notation
	2.1. BMAP process
	2.2. The BMAP/G/1 queue with dependent multiple vacation and exhaustive service

	3. The joint transforms
	3.1. Joint transform in total vacation period
	3.2. Joint transform in service period

	4. Stationary number of customers
	5. Stationary virtual waiting time
	5.1. LST of stationary virtual waiting time
	5.2. First two moments of stationary virtual waiting time

	6. Computation of the stationary probability vector of the phase process at start of t.v.p.
	7. Application to the IEEE 802.16e sleep mode mechanism
	7.1. IEEE 802.16e sleep mode mechanism
	7.2. Analytic model of the power saving class of type I
	7.3. Modeling correlated traffic with MAP(2)
	7.4. Examples for performance evaluation
	7.5. Effect of different steps of sleep intervals
	7.6. Enforcing an upper bound on mean delay
	7.7. Cost model

	8. Conclusion
	Appendix A. Proof of theorem 5.2
	Acknowledgments
	REFERENCES

