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Abstract. In this paper we introduce the globally gated Markovian limited
service discipline in the cyclic polling model. Under this policy at most K
customers are served during the server visit to a station among the customers
that are present at the start of the actual polling cycle. Here the random limit
K is the actual value of a finite state Markov chain assigned to the actual
station. The model enables asymmetric Poisson arrival flows and each station
has an individual Markov chain. This model is analyzed and the numerical
solution for the mean of the stationary waiting time is provided.

This model is motivated by the problem of dynamic capacity allocation in
Media Access Control of wireless communication networks with Time-Division
Multiple Access mechanism. The “globally gated” character of the model is the
consequence of the applied reservation mechanisms. In a fixed length frame
after allocating the required capacity for the delay sensitive real-time traffic
the random remaining capacity is shared among the subscriber stations for the
non real-time traffic. The Markovian character of the random limits enables to
model the inter frame dependencies of the required real-time capacity at each
station individually.

In the second part of the paper the application of this model to the uplink
traffic in the IEEE 802.16 network is discussed.

1. Introduction. Polling models have been applied in the performance modeling
of telecommunication systems from the beginning of 1980s. In the classical cyclic
polling model the single server attends the stations in cyclic manner and the cus-
tomer arrival process is Poisson at each station. Polling models are differentiated
according to the service discipline, which determines the duration of the service at
a station. The most common disciplines are the exhaustive, the gated and the G-
limited disciplines. For the analysis of cyclic polling models we refer to the excellent
book of Takagi [11].

In this paper we introduce a new service discipline for better modeling of a
dynamic capacity allocation mechanism in Media Access Control (MAC) of wireless
communication networks with Time-Division Multiple Access (TDMA) mechanism.
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Under the globally gated Markovian limited service policy at most K customers are
served during the server visit to a station among the customers that are present at
the start of the actual polling cycle. Here each station has an individual Markov
chain and the random limit K of the considered station is determined by the help
of the actual values of these finite state Markov chains. The “globally gated”
character of the model is the consequence of the applied contention-free reservation
mechanisms, since for every stations the capacity allocation is ensured only once
in a cycle. After allocating the required capacity for the delay sensitive real-time
traffic in a fixed length frame the random remaining capacity is shared among the
stations for the non real-time traffic. This is realized by the dependency of the
random limit K of a station on the actual values of the finite state Markov chains,
which represent the capacity demands for the real-time traffic at the stations.

The principal goal of this paper is to introduce and to analyze the cyclic polling
model with globally gated Markovian limited service policy and to show its appli-
cation to IEEE 802.16 network [10].

Related works on delay analysis of IEEE 802.16 network are [5], [3] and [12]. In
[1] an analytical model is established for the exact overall delay of the non real-time
service flow with unicast polling in the IEEE 802.16 system. In contrast to these
references the polling model presented in this paper enables to incorporate the effect
of the real-time traffic capacity on the delay of the non real-time traffic.

The queueing theoretic contribution of this paper is the analysis and the results
for the polling model with the newly introduced globally gated Markovian limited
service discipline. For the analysis we use service discipline independent results
from [6] and the numerical solution takes several elements from the computational
procedure described in [8]. The model counts for the capacity allocation of both
the real-time and non real-time traffic. The capacity allocation for the non real-
time traffic of a station is dynamic in the dependency of the capacity needs of the
real-time traffic at every stations. The model enables also priorities among the
stations for their non real-time traffic flows. Furthermore the Markovian character
of the random limits enables to model the inter frame dependencies of the required
real-time capacity at each station individually.

We demonstrate the application of this polling model to the uplink non real-
time traffic in the IEEE 802.16 network. It enables to study the effect of the mean
and the maximum of the real-time capacity and the correlation of its consecutive
values on the delay of the non real-time traffic. We also describe how to take into
account an upper bound on mean delay in setting the mean or the maximum of the
reserved capacity for the real-time traffic flows. Furthermore we introduce a cost
model, which takes into account the Quality of Service (QoS) on delay constraint
and the real-time capacity parameters. These tunings have potential applications
in network control, since they facilitate the setting of the service flow parameters
to the requirements of the actual application scenario.

The rest of this paper is organized as follows. In section 2 we introduce the
model and the notations. The joint probabilities at different epochs are derived
in section 3. The probability-generating function (PGF) of the stationary number
of customers is given in section 4. The Laplace-Stieljes transform (LST) of the
stationary waiting time and its mean are provided in section 5. In section 6 the
details of the numerical solution are described. Section 7 closes the paper with the
discussion of the application to IEEE 802.16 network.
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2. Model and notation.

2.1. The basic cyclic polling model. We consider a continuous-time asymmetric
polling model with N stations [11]. A single server attends the stations in cyclic
manner and serves their infinite buffer queues during their visits. If no customer
is present at a station at server arrival, the server leaves the station and attends
the next station. At station i customers arrive according to Poisson arrival process
with arrival rate λi for i = 1, . . . , N . The customer who arrives to station i is
called i-customer. The customer service time at station i is constant and it is the
same for every i = 1, . . . , N and thus it is denoted by b. Random switchover time
is enabled at switching from station i to the next one. The switchover times are
integer multiple of the constant customer service time. Let Ri, for i = 1, . . . , N ,
stand for the length of the switchover time after the service of station i in number
of constant customer service times, i.e. the switchover time equals Rib. The server
utilization at station i and the overall utilization are ρi = λib and ρ =

∑N
i=1 ρi,

respectively.
The cycle time of the system is defined as the time elapsed between the starts of

two consecutive visits to station 1. The cycle time is also called as polling cycle. Let
the length of the cycle time be fixed, which is denoted by c in number of constant
customer service times, i.e. the cycle time is cb. The arrival of the server to a
station and the departure of the server from a station are called polling epoch and
departure epoch, respectively. We call the polling epoch of station i as i-polling
epoch. Similarly the departure epoch of station i is an i-departure epoch. The
station time of a given station is defined as the time elapsed from the arrival of the
server to station i until its next departure. The station time of station i is called
i-station time.

2.2. Globally gated Markovian limited service discipline. We introduce the
globally gated Markovian limited service discipline, in which the service is both
globally gated and limited as well as the random limit is determined from cycle to
cycle on Markovian manner.

In the globally gated service (introduced by Boxma, Levy and Yechiali in [2])
only those i-customers can be served during a visit to station i that are present at
the start of the cycle. Thus the starts of the cycles represent a global gate. Every
i-customer arriving to the system after this epoch must wait until the start of the
next cycle to get a service opportunity. Hence the start of the polling cycle we also
call as global gate epoch. We refer to the start of the m-th cycle as m-th global
gate epoch, for m ≥ 1.

According to the limited service the number of i-customers that can be served
during a server visit to station i is limited by a limit Ki > 0.

The random limit Ki is governed by background discrete-time Markov chains
(DTMCs) for each i = 1, . . . , N . Let tf0 ( m) be the global gate epoch at the start
of the m-th polling cycle, for m ≥ 1. For each i = 1, . . . , N let {Yi(t

f
0 ( m)); m ∈

{1, . . .}} homogenous DTMC on the state space Ω = {ω1, . . . , ωL}, where ω1, . . . , ωL

are positive integers. We call {Yi(t
f
0 ( m)); m ∈ {1, . . .}} the i-th background

Markov chain. Let u ≤ c stand for a length of a fixed portion of the cycle time in
number of constant customer service times. The values Yi(t

f
0 ( m)), for i = 1, . . . , N ,

are disjunct parts of u and
∑N

i=1 Yi(t
f
0 ( m)) < u, for m ≥ 1. Let Ki( m) be the

random limit in the m-th cycle. It is determined as a function of the values of the
background Markov chains as follows
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Ki( m) =

ζi(u−
N∑

j=1

Yj(t
f
0 ( m)))

 , m ∈ {1, . . .}},

ζi ≥ 0, i = 1, . . . , N, and
N∑

i=1

ζi = 1, (1)

where bdc stands for the integer part of d (flooring operation). In (1) the function
bc is necessary because the random limit Ki( m) must be an integer as it represents
number of i-customers. The random limits Ki( m), for i = 1, . . . , N , are disjunct
parts of u−∑N

j=1 Yj(t
f
0 ( m)), for m ≥ 1.

In the stationary analysis we use the limiting version of (1), which is given by

Ki =

ζi(u−
N∑

j=1

Yj)

 , ζi ≥ 0, i = 1, . . . , N and
N∑

i=1

ζi = 1, (2)

where Ki = limd
m→∞Ki( m) and Yj = limd

m→∞ Yj(t
f
0 ( m)) and limd stands for

the convergence in distribution. It follows from (2) that the sum of all Ki-s is upper
bounded, i.e.

∑N
i=1 Ki ≤ u−∑N

i=1 Yi.
Yi can represent a reserved capacity at station i from the total capacity u, where

the capacity is in the number of constant customer service times. Thus u−∑N
j=1 Yj

is the total remaining capacity in the system, from which station i gets Ki according
to its priority weight ζi. The non-covered capacity c − u = T + D is reserved for
model specific purpose, where T is typically used for protocol overhead purposes
and D is reserved for the traffic in the reverse direction. Note that the capacity
values c, u, T and D are not necessarily integers.

Note that in the globally gated Markovian limited service discipline the random
Ki represents both capacity and limit on the number of i-customers that can be
served. It follows that the constant customer service time assumption is crucial in
this model, since otherwise the capacity Ki would represent a limit on the service
time, which would lead to another service discipline.

2.3. Globally gated Markovian limited cyclic polling model. The globally
gated Markovian limited cyclic polling model is a cyclic polling model in which the
service discipline at each of the N stations is the globally gated Markovian limited
one. Additionally in this model a cycle setup time is inserted between the global
gate epoch and the start of the server visit to station 1. The length of the cycle
setup time, in the number of constant customer service times, is denoted by R0 and
it is defined as

R0 = T +
N∑

j=1

Yj .

Thus the cycle setup time at the begin of the cycle represents T plus the total
reserved capacity. The capacity remaining from the cycle time is divided among
the random limits Ki, for i = 1, . . . , N , the difference u−∑N

i=1(Yi +Ki) due to the
flooring operation in (2) and the reserved capacity part D. The random limit Ki

is a part of this remaining capacity allocated to station i according to its priority
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weight. For m ≥ 1 let Gi( m) stand for the number of served i-customers during
the m-th cycle. Then the stationary number of served i-customers during a cycle
is given as Gi = limd

m→∞Gi( m). In fact Gi is also the stationary length of the
i-station time in the number of constant customer service times, since it equals the
stationary number of served i-customers during a cycle. The switchover time Ri is
defined as

Ri = Ki −Gi, i = 1, . . . , N − 1,

RN ≥ KN −GN + D. (3)

Thus for every i = 1, . . . , N the switchover time Ri is an unused part of the
random limit Ki. Note that besides of the unused capacity at station N the last
switchover part (RN ) incorporates also the difference u − ∑N

i=1(Yi + Ki) due to
the flooring operation in (2) and the reserved capacity part D. The globally gated
Markovian limited cyclic polling model is illustrated for the case of RN = KN −
GN + D in Fig. 1.
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N−departure
epoch

global gate
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R_N
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epoch
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...
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Figure 1. Globally gated Markovian limited cyclic model

Note that it follows from the expression (3) and from the model definition that
the switchover time Ri is independent of the arrival processes during it for i =
1, . . . , N − 1. Additionally on the globally gated Markovian limited cyclic polling
model we impose the following assumptions:

A.1 For every i = 1, . . . , N the i-th background Markov chain is irreducible.
This ensures the existence of the limiting distributions of these Markov chains.

A.2 At each station the arrival rate and the customer service time is positive
and finite, 0 < λi < ∞, 0 < b < ∞.

A.3 The arrival processes, and the service times and are mutually independent.
Moreover the switchover time Ri is independent of the arrival processes during it
for i = 1, . . . , N .

A.4 The following relation holds for each i = 1, . . . , N , for which ζi > 0

bζi(u−Nωmax)c ≥ 1,
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where ωmax is the maximal among the values ω1, . . . , ωL.
This ensures that the average remaining capacity is at least one for each station,

for which ζi > 0, which implies that the traffic at these stations can not be blocked
by the total reserved capacity.

A.5 The model is stable.
A.6 The queueing discipline is the First-In-First-Out (FIFO) order at each sta-

tion.

2.4. Stability of the model. Due to the memoryless property of the Poisson
arrival process and the fixed length cycle the number of arriving i-customers during
a cycle is not dependent on the cycle index m. Thus let Ai stand for the number
of arriving i-customers during a cycle. In addition we define ai = E[Ai], which can
be interpreted as the mean (stationary) number of i-customers arriving during a
cycle. Let Ni(t) be the number of i-customers in the system at time t for t ≥ 0 and
i = 1, . . . , N . We define the state vector Z(tf0 ( m)) in the m-th global gate epoch
as

Z(tf0 ( m)) =
(

N1(t
f
0 ( m)), . . . , NN (tf0 ( m)),

Y1(t
f
0 ( m)), . . . , YN (tf0 ( m))

)
. (4)

Z(tf0 ( m)) describes the state of the system at global gate epochs. It follows from
the model definition that {Zi(t

f
0 ( m)); m ∈ {1, . . .}} is a homogenous embedded

Markov chain. Each component of Z(tf0 ( m)) has either finite valued or countable
infinite state space. This ensures that the stability analysis and results in [7] can be
extended for this model. According to it the sufficient and necessary condition of
the whole stability of the model is that, for each i = 1, . . . , N , the mean stationary
number of i-customers arrivals (ai) must be less than the maximum of the mean
number of i-customers, which can be served during an i-station time. This leads to

ai < E[Ki] for every i = 1, . . . , N. (5)

Applying (2) in (5) leads to

ai < E




ζi(u−
N∑

j=1

Yj)



 for every i = 1, . . . , N.

Using ai = λibc = ρic and rearranging results in the condition of the whole
stability as

ρi <
E

[⌊
ζi(u−

∑N
j=1 Yj)

⌋]

c
for every i = 1, . . . , N. (6)

3. The stationary joint probabilities. From now on [Y]j,l stands for the j, l-th
element of matrix Y. Similarly [y]j denotes the j-th element of vector y. We define
the transition probability matrix of the i-th background Markov chain, Πi, by its
(j, y)-th element as
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[Πi]j,y = Pr{Yi(t
f
0 ( m + 1)) = y | Yi(t

f
0 ( m)) = j},

j, y ∈ Ω m ≥ 1, i = 1, . . . , N.

3.1. The stationary joint probabilities at global gate epoch. It follows from
the model description that the number of i-customers together with the values
of every background Markov chains at a global gate epoch determine the num-
ber of i-customers and the values of every background Markov chains at the next
global gate epoch in stochastic sense. It means that for every i = 1, . . . , N the
{(Ni(t

f
0 ( m)), Y1(t

f
0 ( m)), . . . , YN (tf0 ( m))); m ∈ {1, . . .}} is also a homogenous em-

bedded Markov chain. Thus it is enough to establish relations among the joint
probabilities of the components of (Ni(t

f
0 ( m)), Y1(t

f
0 ( m)), . . . , YN (tf0 ( m))) instead

of relating joint probabilities of every components of the state vector Z(tf0 ( m)).
We define the joint probabilities of the stationary number of i-customers and the

values of every background Markov chains at the global gate epoch as

pf
0,i(ni, y1, . . . , yN ) = lim

m→∞
Pr

{
Ni(t

f
0 ( m)) = ni,

Y1(t
f
0 ( m)) = y1, . . . , YN (tf0 ( m)) = yN

}
,

ni ∈ {0, 1, . . .}, y1, . . . , yN ∈ Ω, i = 1, . . . , N. (7)

Theorem 3.1. The relations among the joint probabilities of the stationary number
of i-customers and the values of every background Markov chains at the global gate
epoch are given as

pf
0,i(ni, y1, . . . , yN ) =

∑

j1∈Ω

. . .
∑

jN∈Ω

[Π1]j1,y1 . . . [ΠN ]jN ,yN

ni+Ki∑

ki=0

pf
0,i(ki, j1, . . . , jN )

(λibc)ni−ki+si

(ni − ki + si)!
e−λibc,

si = min(ki,Ki) and Ki =

⌊
ζi(u−

N∑

`=1

j`)

⌋
,

ni ∈ {0, 1, . . .}, y1, . . . , yN ∈ Ω, i = 1, . . . , N, (8)

where min(ki,Ki) stands for the smallest value of a set (ki, Ki).

Proof. Assuming that ki i-customers are present at the actual global gate epoch,
the number of remaining i-customers after the next service is ki − si, where si =
min(ki,Ki) is the actual value of the number of i-customers served during a cycle.
The number of i-customers at the next global gate epoch is ni, therefore the number
of i-customers arriving during a cycle is ni−ki +si ≥ 0. Due to the fix cycle length
c, this has the probability (λibc)ni−ki+si

(ni−ki+si)!
e−λibc. Additionally ni− ki + si ≥ 0 implies

that ki ≤ ni + si ≤ ni + Ki. Thus ki must be summed up to ni + Ki. Putting all
these together leads to

ni+Ki∑

ki=0

pf
0,i(ki, j1, . . . , jN )

(λibc)ni−ki+si

(ni − ki + si)!
e−λibc.
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Using it the theorem comes by taking also into account the probabilities of every
possible transitions of every background Markov chains to states y`, for every ` =
1, . . . , N .

Relations (8) defines a system of linear equations for computing the joint prob-
abilities pf

0,i(ni, y1, . . . , yN ) for ni ∈ {0, 1, . . .}, y1, . . . , yN ∈ Ω, i = 1, . . . , N .

3.2. The stationary joint probabilities at polling and departure epochs.
For m ≥ 1 let tfi ( m) and tmi ( m) be the i-polling and the i-departure epoch in the
m-th polling cycle, respectively. We define the joint probabilities of the stationary

number of i-customers and the values of every background Markov chains at the
i-polling epoch as

pf
i (ni, y1, . . . , yN ) = lim

m→∞
Pr

{
Ni(t

f
i ( m)) = ni,

Y1(t
f
i ( m)) = y1, . . . , YN (tfi ( m)) = yN

}
,

ni ∈ {0, 1, . . .}, y1, . . . , yN ∈ Ω, i = 1, . . . , N. (9)

Similarly we define the joint probabilities of the stationary number of i-customers
and the values of every background Markov chains at the i-departure epoch as

pm
i (ni, y1, . . . , yN ) = lim

m→∞
Pr

{
Ni(tmi ( m)) = ni,

Y1(tmi ( m)) = y1, . . . , YN (tmi ( m)) = yN

}
,

ni ∈ {0, 1, . . .}, y1, . . . , yN ∈ Ω, i = 1, . . . , N. (10)

Theorem 3.2. The joint probabilities at the i-polling and i-departure epochs defined
in (9) and (10) can be expressed by the joint probabilities at global gate epoch defined
in (7) as

pf
i (ni, y1, . . . , yN ) =

ni∑

ki=0

pf
0,i(ki, y1, . . . , yN )

(λib(R0 +
∑i−1

`=1 K`))ni−ki

(ni − ki)!
e−λib(R0+

Pi−1
`=1 K`),

pm
i (ni, y1, . . . , yN ) =

ni+Ki∑

ki=0

pf
0,i(ki, y1, . . . , yN )

(λib(R0 +
∑i−1

`=1 K` + si))ni−ki+si

(ni − ki + si)!
e−λib(R0+

Pi−1
`=1 K`+si),

R0 = T +
N∑

`=1

y`, Ki =

⌊
ζi(u−

N∑

`=1

y`)

⌋
, si = min(ki,Ki)

ni ∈ {0, 1, . . .}, y1, . . . , yN ∈ Ω, i = 1, . . . , N. (11)

Proof. Assuming that ki i-customers are present at the global gate epoch and
the number of i-customers at the next i-polling epoch is ni, it follows that the
number of i-customers arriving in between is ni − ki ≥ 0. The length of this
interval is R0 +

∑i−1
`=1 K`. As this length does not depend on the Poisson ar-

rivals during it, the probability that ni − ki i-customers arrive during this interval
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is (λib(R0+
Pi−1

`=1 K`))
ni−ki

(ni−ki)!
e−λib(R0+

Pi−1
`=1 K`). Additionally ni − ki ≥ 0 implies that

ki ≤ ni, thus ki must be summed up to ni. Putting all these together gives the first
relation of (11).

Similarly assuming that ki i-customers are present at the global gate epoch, ki−si

i-customers remains among them at the next i-departure epoch. The number of
i-customers at this i-departure epoch is ni, therefore the number of i-customers
arriving in between is ni− ki + si ≥ 0. As the length of the interval from the global
gate epoch to the next i-departure epoch does not depend on the Poisson arrivals
during it, the probability that ni − ki + si i-customers arrive during this interval
is (λib(R0+

Pi−1
`=1 K`+si))

ni−ki+si

(ni−ki+si)!
e−λib(R0+

Pi−1
`=1 K`+si). Additionally ni − ki + si ≥ 0

implies that ki ≤ ni + si ≤ ni + Ki. Thus ki must be summed up to ni + Ki.
Putting all these together results in the second relation of (11).

4. The stationary number of customers. Let pf
i (ni) and pm

i (ni) denote
the probabilities of the stationary number of i-customers at i-polling and i-
departure epochs, respectively. They can be calculated from the joint probabilities
pf

i (ni, y1, . . . , yN ) and pm
i (ni, y1, . . . , yN ) as

pf
i (ni) =

∑

y1∈Ω

. . .
∑

yN∈Ω

pf
i (ni, y1, . . . , yN ),

pm
i (ni) =

∑

y1∈Ω

. . .
∑

yN∈Ω

pm
i (ni, y1, . . . , yN ),

ni ∈ {0, 1, . . .}, i = 1, . . . , N. (12)

Based on these quantities we define the PGFs of the stationary number of cus-
tomers at i-polling and i-departure epochs as

F̂i(z) =
∞∑

n=0

pf
i (n)zn,

M̂i(z) =
∞∑

n=0

pm
i (n)zn, |z| ≤ 1, i = 1, . . . , N.

Furthermore we define the PGF of the stationary number of customers at an
arbitrary instant as

Q̂i(z) = lim
t→∞

∞∑
n=0

Pr{Ni(t) = n}zn, |z| ≤ 1, i = 1, . . . , N.

Let fi and mi stand for the means of the stationary number of i-customers at
i-polling epoch and at i-departure epoch, respectively.

Theorem 4.1. The PGF of the stationary number of i-customers at a random
instant is given by

Q̂i(z) =
(1− ρi) (1− z) e−(λi−λiz)b

e−(λi−λiz)b − z
(13)

· M̂i(z)− F̂i(z)
(fi −mi) (1− z)

.
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Proof. Since the state space of the multidimensional embedded Markov chain de-
scribing the state of the system at the global gate epochs {Zi(t

f
0 ( m)); m ∈ {1, . . .}}

is countable, the Markov regenerative process (MRP) framework in [6] can be ex-
tended to the globally gated Markovian limited cyclic polling model. The statement
(13) is proven in [6] for the classical cyclic polling model for the case of more gen-
eral customer service times. As the assumptions used for the proof hold also for the
globally gated Markovian limited cyclic polling model, the statement holds also for
this model.

5. The stationary waiting time. The waiting time of an i-customer is defined
as the time elapsed from the arrival of the i-customer to the start of its service.
Let Wi,` denote the waiting time of the i-customer that arrives as the `-th into
the system, ` ≥ 1. We define the cumulated distribution function of the stationary
waiting time of an i-customer, Wi(t), as

Wi(t) = lim
`→∞

Pr{Wi,` ≤ t}, t ≥ 0, i = 1, . . . , N.

The LST of the stationary waiting time of an i-customer is defined as

W̃i(s) =
∫ ∞

t=0

e−stdWi(t), Re(s) ≥ 0, i = 1, . . . , N.

Theorem 5.1. The LST of the stationary waiting time of an i-customer is given
by

W̃i(s) =
s (1− ρi)

s− λi + λie−sb
(14)

·
M̂i

(
1− s

λi

)
− F̂i

(
1− s

λi

)

s
λi

(fi −mi)
.

Proof. Due to the FIFO queueing discipline the argument can be used that the num-
ber of i-customers left in the system at service completion of a tagged i-customers
equals with the number of i-customers arrived during the sojourn time of that i-
customer in the system. Due to the model assumptions a new arriving i-customers
do not affect the time in the system of the previously arrived i-customers, i.e. their
waiting and service time. Additionally the waiting time of an i-customer and its
service time are independent. Using the above argument it is shown in [6] that
under these conditions (14) can be derived from (13). It follows that (14) holds also
in the globally gated Markovian limited cyclic polling model.

Let f
(2)
i and m

(2)
i stand for the second factorial moments of the stationary number

of i-customers at i-polling epoch and at i-departure epoch, respectively.

Corollary 1. The mean stationary waiting time of an i-customer is given by

E[Wi] =
λib

2

2(1− ρi)
+

f
(2)
i −m

(2)
i

2λi(fi −mi)
(15)

Proof. (15) can be derived from (14).
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6. The numerical solution.

6.1. Computation of the joint probabilities. To keep the computation of the
joint probabilities in relations (8) tractable, we apply an upper limit ni ≤ Xi on the
number of i-customers, which results in finite number of unknowns and equations
in the system of linear equations. This technique is similar to the one used in
[8]. An appropriate value of Xi depends on the required precision level. In an
iterative realization Xi is increased until the difference of consecutive values of
pf
0,i(ni, y1, . . . , yN ) becomes less than the allowed error. In the computational steps

the probabilities pf
0,i(ni, y1, . . . , yN ) for ni > Xi can be neglected, therefore these

probabilities are set 0. This leads to

pf
0,i(ni, y1, . . . , yN ) =

∑

j1∈Ω

. . .
∑

jN∈Ω

[Π1]j1,y1 . . . [ΠN ]jN ,yN

min(ni+Ki,Xi)∑

ki=0

pf
0,i(ki, j1, . . . , jN )

(λibc)ni−ki+si

(ni − ki + si)!
e−λibc,

si = min(ki,Ki) and Ki =

⌊
ζi(u−

N∑

`=1

j`)

⌋
,

ni ∈ {0, 1, . . . Xi}, y1, . . . , yN ∈ Ω, i = 1, . . . , N. (16)

Similarly setting the same upper limit ni ≤ Xi on the number of i-customers in
equations (11) leads to the computation of the joint probabilities at i-polling and
i-departure epoch as

pf
i (ni, y1, . . . , yN ) =

min(ni,Xi)∑

ki=0

pf
0,i(ki, y1, . . . , yN )

(λib(R0 +
∑i−1

`=1 K`))ni−ki

(ni − ki)!
e−λib(R0+

Pi−1
`=1 K`),

pm
i (ni, y1, . . . , yN ) =

min(ni+Ki,Xi)∑

ki=0

pf
0,i(ki, y1, . . . , yN )

(λib(R0 +
∑i−1

`=1 K` + si))ni−ki+si

(ni − ki + si)!
e−λib(R0+

Pi−1
`=1 K`+si),

R0 = T +
N∑

`=1

y`, Ki =

⌊
ζi(u−

N∑

`=1

y`)

⌋
, si = min(ki,Ki)

ni ∈ {0, 1, . . . Xi}, y1, . . . , yN ∈ Ω, i = 1, . . . , N. (17)

6.2. The steps of the numerical procedure. The computation of the first mo-
ment of the stationary waiting time of an i-customer consists of several steps.

1. Build up a matrix form system of linear equations for computation of the joint
probabilities at global gate epoch.

The system of linear equation (16) is rearranged into a matrix form. Let
eXi+1

` = (0, . . . , 0, 1, 0, . . . , 0) denote the 1× (Xi +1) vector with 1 at the `-th
position. Furthermore ⊗ stands for the Kronecker product. We define the
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1× LN (Xi + 1) vector θi, representing the unknowns of the above system of
linear equations as

θi =
X

y1∈Ω

. . .
X

yN∈Ω

XiX
ni=0

pf
0,i(ni, y1, . . . , yN )

eL
I(y1) . . .⊗ eL

I(yN ) ⊗ eXi+1
ni+1 i = 1, . . . , N, (18)

where I(y1) denotes the index of y1 in the set Ω, which can be 1, . . . , L.
Note that each element of θi is a probability. We also introduce the LN (Xi +
1)×LN (Xi +1) matrix Υi representing the coefficients on the right-hand side
(r.h.s.) of the equation (16). It is defined as

Υi =
X
j1∈Ω

. . .
X

jN∈Ω

XiX

ki=0

X
y1∈Ω

. . .
X

yN∈Ω

XiX
ni=0

I(ki≤min(ni+Ki,Xi))[Π1]j1,y1 . . . [ΠN ]jN ,yN

(λibc)
ni−ki+si

(ni − ki + si)!
e−λibc

“
eL
I(j1) . . .⊗ eL

I(jN ) ⊗ eXi+1
ki+1

”T

“
eL
I(y1) . . .⊗ eL

I(yN ) ⊗ eXi+1
ni+1

”
i = 1, . . . , N, (19)

where I(con) denote the indicator of condition “con”. In this matrix the
values of j1, . . ., jN , ki and the values of y1, . . ., yN , ni specify the row and
the column indices of the corresponding coefficient. Using definitions (18) and
(19) the matrix form of the system of linear equation (16) can be given as

θi = θiΥi, i = 1, . . . , N. (20)

The sums on the r.h.s. of (16) realize the product of vector θi by matrix
Υi in (20). The normalization condition for the probabilities in vector θi can
be given as

θieLN (Xi+1) = 1, i = 1, . . . , N, (21)

where eLN (Xi+1) denotes the (LN (Xi + 1))× 1 column vector having all ele-
ments equal to one.

Matrix Υi in (20) relates the probabilities of vector θi and hence
it can be interpreted as the transition probability matrix of the
{(Ni(t

f
0 ( m)), Y1(t

f
0 ( m)), . . . , YN (tf0 ( m))); m ∈ {1, . . .}} embedded Markov

chain, whose unique limiting distribution exists due to the stability of the
model. It follows that the joint probabilities pf

0,i(ni, y1, . . . , yN ) for ni ∈
{0, 1, . . . Xi}, y1, . . . , yN ∈ Ω, i = 1, . . . , N can be uniquely determined from
the system of linear equation (20) and (21).

2. Solving the matrix form system of linear equation (20) and (21) for the joint
probabilities at global gate epoch for every i = 1, . . . , N .

3. Calculation of the joint probabilities at i-polling and i-departure epochs from
the joint probabilities at global gate epoch by using equations (17).

4. Computation of the probabilities pf
i (ni) and pm

i (ni) for ni ∈ {0, 1, . . . Xi} by
using (12) for every i = 1, . . . , N .
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5. Calculation of the factorial moments of the stationary number of i-customers
at i-polling and i-departure epochs (fi, f

(2)
i , mi, m

(2)
i ) from the probabilities

pf
i (ni) and pm

i (ni) for n ∈ {0, 1, . . . Xi} on elementary way for every i =
1, . . . , N .

6. Computation of first moment of the stationary waiting time of an i-customers
from the factorial moments fi, f

(2)
i , mi, m

(2)
i by applying formula (15) for

every i = 1, . . . , N .

6.3. Numerical complexity. The most computational intensive parts of the pro-
cedure is the solution of the system of linear equations (20) and (21). The number
of equations and unknowns in these system of linear equations for all stations is
LN

∑N
i=1(Xi + 1). Thus the total number of operations required by the whole

numerical procedure is in the magnitude of L3N
∑N

i=1(Xi + 1)3.
Therefore the total number of required elementary computational steps increases

with the number of stations (N), with the number of states of the background
Markov chains (L) and with Xi-s.

7. Application to the IEEE 802.16 network.

7.1. Overview of IEEE 802.16. In this subsection we give a brief summary on
the basic characteristics of the IEEE 802.16.

7.1.1. Point-to-multipoint operational mode. The IEEE 802.16 standard supports
the mandatory point-to-multipoint (PMP) and the optional mesh mode. In the
centralized PMP IEEE 802.16 architecture there are one Base Station (BS) and one
or more Subscriber Stations (SSs). The packets are exchanged between BS and SSs
via separate channels. A DownLink (DL) channel is used for the traffic from the
BS to the SSs and the UpLink (UL) channel is used in the reverse direction.

7.1.2. Channel allocation schemes. The standard defines two mechanisms of multi-
plexing DL and UL channels: Time Division Duplex (TDD) and Frequency Division
Duplex (FDD). In FDD the the DL and the UL channels are assigned to different
sub-band frequencies. In TDD mode the channels are differentiated by assigning
different time intervals to them, i.e. MAC frame is divided into the DL sub-frame
and the UL sub-frame. The border between these parts may change dynamically
depending on the SSs bandwidth requirements. The SSs access the UL channel by
means of TDMA. The structure of the MAC frame in TDD/TDMA mode is shown
in Figure 2.

BW−Reqs

SS Transmission
Interval

SS Transmission
Interval

... ...
Reservation
Interval (RI)

Informing SSs about slots allocated for their UL transmissions

UL sub−frameDL sub−frame

Frame

...

D
L−

M
A

P
U

L−
M

A
P

P
re

am
bl

e

Figure 2. IEEE 802.16 MAC frame structure in TDD/TDMA mode.
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In the DL channel the BS - as the only sending station - broadcasts the packets
to all the SSs. Together with the data packets, the BS also transmits service infor-
mation about the slots which are allocated for each of the SSs in the UL channel.
This information is incorporated in the UL-MAP message and is used by the SSs
for scheduling their data packets in the UL channel of the next MAC frame. The
access procedure to the UL channel is the subject to one of the specified multiple
access protocols.

7.1.3. Bandwidth reservation. The BS also specifies a portion of channel resources
as the Reservation Interval (RI), which is used by the SSs for transmitting their
bandwidth requests (BW-Req), which are then processed by the BS. The access
procedure of the SSs to the RI could be either contention-free or contention-based.
The former is referred to as unicast polling and corresponds to the case when BS
assigns to each of the SSs a transmission opportunity for its bandwidth request.
The latter consists of two mechanisms, namely, multicast and broadcast polling.
When broadcast polling is enabled all the SSs are expected to send their bandwidth
requests by choosing one of all the transmission opportunities uniformly. During
the access to the RI collisions may occur, which may be subject to a subsequent
resolution. The specified collision resolution algorithm is the truncated binary expo-
nential backoff. In case of multicast polling the SSs are polled in groups and within a
group the rules of broadcast polling are applied. Furthermore, IEEE 802.16 enables
piggybacking for sending BW-Reqs attached to data packets.

7.1.4. Service flow types. To ensure QoS requirements for a variety of traffic types
the IEEE 802.16 standard defines the following five service flow types:

1. Unsolicited Grant Service (UGS) is planned for the real-time traffic where
fixed-size data packets are generated periodically such as T1/E1. No band-
width reservation mechanism is used.

2. Real-Time Polling Service (rtPS) supports real-time traffic where variable-size
data packets are generated periodically such as MPEG video. Unicast polling
is used for bandwidth reservation.

3. Non Real-Time Polling Service (nrtPS) is offered for non real-time traffic
where variable-size data packets are generated on a regular basis such as high
bandwidth FTP. Both contention-free unicast polling and contention-based
multicast and broadcast polling are allowed.

4. Best Effort (BE) is suitable for applications where no throughput or delay
guarantee is provided, since it utilizes the remaining bandwidth after band-
width allocation for the other service flows. Both reservation mechanisms are
allowed.

5. Extended Real-Time Variable Rate (ERT-VR) is like rtPS but with more
strict delay requirement (guaranteed jitter) to support real-time applications
like VoIP with silence suppression. This class is often referred to as Extended
Real-Time Polling Service (ertPS). It supports both contention-free polling
and contention-based random access reservation mechanisms.

7.2. Analytic model of the uplink nrtPS traffic in the IEEE 802.16 net-
work. The presented model can be applied to model the uplink nrtPS traffic in the
IEEE 802.16 network. The operational mode is PMP and TDD/TDMA channel
allocation scheme is used. Piggybacking is not used. The SSs are the stations of
the model. The nrtPS packets arriving to SS i are the i-customers. Thus we call
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them i-packets. b is the packet length in seconds, which is the integer multiple of
the length of the time slot, τ . The polling cycle of the model corresponds to the
interval from the start of UL sub-frame until the start of the UL sub-frame in the
next frame. Thus c equals the frame length in number of packets.

The SSs apply unicast polling for bandwidth reservation for their nrtPS service
flows. It is assumed that there are N polling slots in the RI, among which each of
them is dedicated to a SS. Thus each SS has a bandwidth request opportunity in
each frame. The uplink bandwidth needs of the nrtPS packets arriving to SS i until
the start of the RI are incorporated in the next bandwidth request, which is sent
in the dedicated polling slot of SS i in the actual RI. Hence the global gate epoch
is the start of the RI and the reserved capacity T of the model corresponds to the
RI. u is the total uplink capacity and thus the length of the UL sub-frame is T + u
and the length of the DL sub-frame is D.

We assume that the BS knows the number of rtPS and ertPS packets of SS i
in each frame and thus it can take them into account at reserving the capacity for
the real-time traffic. In the course of scheduling, the BS first assigns capacity for
the uplink UGS, rtPS and ertPS transmissions. This reserved capacity for SS i is
represented by the actual value of the i-th background Markov chain, Yi, for each
1, . . . , N . Thus the cycle setup time R0 is the RI plus the reserved capacity for
these real-time service flows. The remaining capacity is shared among the SSs for
their nrtPS traffic so that the available capacity for the nrtPS service flow at SS i
is Ki, for each 1, . . . , N . The capacity, which is not used by the nrtPS traffic of any
SS, is allowed to be used for the BE service flow of that SS. Thus Ri is the available
capacity for the BE service flow of SS i, for 1, . . . , N − 1. Besides of the BE service
flow of SS N , the last switchover time RN includes also the DL sub-frame of the
next frame. Hence the characteristics of this scheduling mechanism can be given as

• The capacity requirements of the UGS, rtPS and ertPS service flows are always
ensured.

• The capacity allocation enables priorities for the nrtPS service flows (ζi at
SS i for 1, . . . , N). This realizes a weighted round-robin scheduling of the
dynamically variable capacity, which remains available after the reservation
for the real-time traffic flows.

• The scheduling mechanism ensures an efficient capacity utilizing, since the BE
service flows utilize the capacity, which is not used by the nrtPS traffic flows.

The i-packet scheduled for transmission at BS gets service first only in the next
frame after informing SS i about the allocated time slots for their uplink trans-
mission. This causes an extra delay with length of one frame for every i-packets.
Taking it into account the mean i-packet delay, E[W p

i ], can be given as

E[W p
i ] = E[Wi] + cb, 1, . . . , N. (22)

7.3. Modeling correlated real-time traffic.

7.3.1. Real-time capacity characteristics. Let πi be the stationary probability vec-
tor of the i-th background Markov chain for i = 1, . . . , N . Then πiΠi = πi and
πie = 1 uniquely determine πi, where e is the column vector having all elements
equal to one.

Let ωi be the L × 1 column vector representing the possible values of Yi in
increasing order, i.e. if j > k and j, k ∈ {1, . . . L} then [ωi]j ≥ [ωi]k. The mean
capacity reservation for the real-time traffic flows is given as
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E[Yi] = πiωi, i = 1, . . . , N. (23)

Let Ξi be a diagonal matrix defined by its elements as [Ξi]j,j = [πi]j for i =
1, . . . , N and j = 1, . . . , L. Using it the variance of Yi can be expressed as

Var[Yi] = E[(Yi)2]− (E[Yi])2]

= (ωi)T Ξi ωi − (πiωi)2, 1, . . . , N. (24)

The correlation of two consecutive random capacity reservation for the real-time
traffic flows at station i, for 1, . . . , N , is defined as

γi = lim
m→∞

Corr(Yi(t
f
0 ( m)), Yi(t

f
0 ( m + 1)))

=
lim

m→∞
E[Yi(t

f
0 ( m)) Yi(t

f
0 ( m + 1))]− (E[Yi])2

Var[Yi]
. (25)

The term lim m→∞E[Yi(t
f
0 ( m)) Yi(t

f
0 ( m + 1))] can be expressed as

(ωi)T Ξi Πi ωi. Using it and applying (23) and (24) in (25) yields

γi =
(ωi)T Ξi Πi ωi − (πiωi)2

(ωi)T Ξi ωi − (πiωi)2
. (26)

If Πi = eπi, then (ωi)T Ξi Πi ωi = (ωi)T Ξi e πi ωi = (ωi)T (πi)T (πi ωi) =
(πiωi)2. It follows that in this case the correlation of two consecutive capacity
reservation for the real-time traffic flows at station i is 0.

7.3.2. Characterizing real-time traffic. Let ωmin is the smallest value among the
values ω1, . . . , ωL. The capacity requirement of the (e)rtPS service flow is usually
specified by the required minimum and maximum bandwidth, i.e. by ωmin and
ωmax. Thus increasing the capacity demand of the same type of (e)rtPS traffic
implies a multiplication on the values of ωmin and ωmax. On the other hand the
capacity requirement of the UGS service flow is usually specified as a fixed amount
of bandwidth. It follows that increasing the capacity demand of the same type
of UGS traffic means a shift on the values of ωmin and ωmax. Hence the amount
independent characterization of the real time traffic can be given by such normalized
quantities which are invariant for the above mentioned linear operations.

The normalized mean capacity for the real-time traffic flows at station i is defined
as

E[Yi] =
E[Yi]− ωmin

ωmax − ωmin
, i = 1, . . . , N. (27)

Similarly the normalized variance of the capacity for the real-time traffic flows
at station i is defined as

Var[Yi] =
Var[Yi]

(ωmax − ωmin)2
, i = 1, . . . , N. (28)

The definitions of the above normalized quantities imply that they are linear
invariant. Similarly it can be seen from the definition of the correlation γi that it is
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already linear invariant and hence there is no need to apply any normalization on
it.

Summarizing all these the characterization of the real time traffic (the UGS and
the (e)rtPS service flows) can be separated into amount independent characteriza-
tion and amount specifying characterization. The amount independent character-
ization is represented by the quantities E[Yi], Var[Yi] and γi, while the amount
specifying characterization is given by the values of ωmin and ωmax.

7.3.3. Computation of the transition probability matrix. For modeling the real time
capacity we use a two-state Markov chain, i.e. L = 2. In spite of having only two
states it is appropriate to model a correlated traffic.

The stationary probability vector of the i-th background Markov chain, πi is
determined from E[Yi]. Using (23) and πie = 1 after some rearranging leads to

πi = (1− E[Yi], E[Yi]). (29)

The 2× 2 transition probability matrix at station i has the form

Πi =




1− pi,12 pi,12

pi,21 1− pi,21,


 (30)

where we already utilized that matrix Πi is stochastic. Using the relation πiΠi = πi

and (26) yields 2 equations for the unknowns pi,12 and pi,21. Solving this system of
linear equations results in the expressions of the elements of Πi as

pi,12 =
Var[Yi](1− γi)

1− E[Yi]
, pi,21 =

Var[Yi](1− γi)
E[Yi]

. (31)

pi,12 ≥ 0 implies γi ≤ 1. For this case of two states Markov chain Var[Yi] can
be expressed by E[Yi] as

Var[Yi] = E[Yi](1− E[Yi]). (32)

Using pi,12 ≤ 1, pi,21 ≤ 1 and (32) after some rearrangement we get

γi ≥ 1−min(
1

E[Yi]
,

1
1− E[Yi]

). (33)

The minimum value of right-hand side of (33) is −1 at E[Yi] = 0.5. Thus
−1 ≤ γi ≤ 1 as expected and the actual minimum value of γi depends on E[Yi]
according to the relation (33).

7.4. Examples for performance evaluation. In this section we provide exam-
ples for the performance evaluation of the IEEE 802.16 uplink nrtPS service flow by
applying the presented polling model. For the numerical computations we assume
10 MHz TDD system with 5 ms frame duration, in which the UL sub-frame com-
prises 175 slots and the IEEE 802.16-2009 system transmits 16 bytes per UL slot.
These parameters are taken from [9]. For the sake of simplicity we set the length of
DL sub-frame to 0. We model the nrtPS traffic with Peer-To-Peer (P2P) workload.
According to [4] P2P workload is one of the major data source on the internet and
the packets size is fixed 128 bytes for one of the dominant P2P application.
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Parameter Value
Frame duration (c) 5 ms

Packet service time (b) 1/21.875 frames

DL sub-frame length (D) 0 packets

RI length (T ) 0.875 packet

Total uplink capacity (u) 21 packets

E[Yi], i = 1, 2 0.5
γi, i = 1, 2 0.3
ωmin 1 packets

ωmax 7 packets

ζi, i = 1, 2 0.5

Table 1. Evaluation parameters

Hence the packet service time is constant with the length of 8 slots and the frame
duration has a length of 21.875 packets. The length of the RI is 0.875 packet service
time (7 slots) and thus the total uplink capacity consists of 21 packet service times.
In the numerical examples we use normalized time, in which the time unit equals
the length of the frame. The number of SSs are 2 and both the real time traffic and
nrtPS traffic parameter setting is symmetric. Table 1 summarizes the evaluation
parameters.

In figure 3 we have plotted the dependency of the mean packet delay on the load
for different values of the normalized mean real time traffic capacity (E[Yi]) and of
the correlation parameter (γi).
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Figure 3. Mean packet delay (E[W ]) versus load (ρ) for different
normalized mean real time traffic capacity - E[Yi]=yn (left side)
and correlation parameters - γi=γ (right side).

It can be seen on the left side of the figure that increasing E[Yi] leads to higher
mean nrtPS packet delay. It is due to the effect that increasing E[Yi] at fixed values
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of ωmin and ωmax yields higher mean real time capacity E[Yi]. Another effect is
that increasing E[Yi] restricts the maximum allowed value of the offered nrtPS load.
This is because higher mean real time capacity implies smaller stability boundary
for the offered nrtPS traffic (6). Another conclusion which can be drawn from the
right side of this figure is that the effect of changing the correlation parameter (γi)
is not so crucial for the mean nrtPS packet delay. The positive correlation increases
the mean nrtPS packet delay.

Figure 4 shows the dependency of the mean packet delay on the load for different
values of ωmin and ωmax, i.e. for different amount of (e)rtPS traffic and UGS traffic.
In general it can be seen from the figure that the effects of increasing both the
(e)rtPS traffic and UGS traffic are similar. The mean nrtPS packet delay becomes
higher in both cases and the maximum allowed value of the offered nrtPS load
decreases. The reason for the second effect is again that the higher mean real time
capacity implies smaller stability boundary for the offered nrtPS traffic (6). The
concrete differences in the runs of the curves are rather the implications of the
applied parameter settings than possible consequences of any other modeled effects.
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Figure 4. Mean packet delay (E[W ]) versus load (ρ) for different
amount of (e)rtPS traffic - ω (left side) and UGS traffic - ω (right
side).

7.5. Enforcing an upper bound on mean delay. This modeling can be also
used to enforcing specified upper bounds on mean nrtPS packet delays at every
SSs in a specified range of load. These bounds can be different for the individual
SSs. The characteristics of the real time traffic (E[Yi] and γi) as well as the priority
weight for the nrtPS service flow (ζi) at SS i are given for every i = 1, . . . , N . In this
case the amount of the reserved capacity for the real-time traffic flows (in terms of
ωmin and ωmax) is maximized over a restricted parameter set, which is determined
by the specified upper bounds on mean nrtPS packet delays and by the specified
range of load. Additionally a further relation is needed among ωmin and ωmax,
which can be established from the (e)rtPS and UGS bandwidth requirements.
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7.6. Cost model. In case of more general QoS requirement on delay constraint
an appropriate cost model can be built to determine the optimal parameters of the
real-time traffic flows. We developed a steady-state average cost function F(ω),
where the real-time capacity range ω = (ωmin, ωmax) is the decision variable. The
parameters of the cost function for i = 1, . . . , N are defined as

$i ≡ Cost of the mean packet delay at station i,
ϑi ≡ Reward of the mean real-time capacity at station i.

Then the optimal parameters of the real-time traffic flows can be obtained by
minimizing the total average system cost, which is given as

F(ω) =
N∑

i=1

(
$iE[W p

i ] +
ϑi

E[Yi]

)
. (34)

The minimum can be numerically determined as a function of the load, the
normalized mean real time traffic capacities (E[Yi]), the correlation parameters
(γi) and the priority weights for the nrtPS service flows (ζi), for i = 1, . . . , N , by
applying the expressions (22), (27), (31) and (32).
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