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Part 1: Outline

• Starting point: CTMC

• Processes with matrix exponential functions

– Phase type distributions

– Matrix exponential distributions

– Markov arrival process

– Rational arrival process

• Compositional models

– Markovian/non-Markovian components

– Equivalence relations

– Congruence results
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Starting point: CTMC

X(t) ∈ S is a CTMC.

S = {1,2, . . . , n}: discrete finite state space.

Q = {qij} infinitesimal generator matrix.

qij: transition rate from state i to state j (i 6= j).

−qii: departure rate from state i.

For a regular CTMC qii = −
∑

j∈S qij ⇒ Q I1 = 0,

where I1 is a column vector of ones.

Pr(X(t) = j|X(0) = i) =
[
eQt
]

ij

eQt is a stochastic matrix: eQt I1 = I I1 +

∞∑

i=1

Qi I1 ti/i!

︸ ︷︷ ︸
0

= I1
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Starting point: transient CTMC

X(t) ∈ S is a transient CTMC.

S = {1,2, . . . , n}: discrete finite state space.

A = {aij} transient infinitesimal generator matrix.

aij: transition rate from state i to state j (i 6= j).

−aii: departure rate from state i.

For a transient CTMC aii ≤ −
∑

j∈S aij ⇒ A I1 ≤ 0.

Pr(X(t) = j|X(0) = i) =
[
eAt
]

ij

eAt is a sub-stochastic matrix: eAt I1 ≤ I1
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Phase type distributions

T : time to absorption in a Markov chain with n transient, 1 absorbing
state, initial probability vector α and transient generator A .

1

4

3

2

5

6

q26q36q52q35q45 q34
q21q41 q13p1 p2p3p4 p5

p6
Generator matrix: Q =

[

A a
0 0

]

(a = −A I1)
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Properties of the generator matrix

Generator matrix: Q =

[

A a
0 0

]

(a = −A I1)

Transition probability matrix: eQt =

[

eAt ?
0 1

]

For i, j ≤ n:

Pr(X(t) = j|X(0) = i) = [eQt]ij = [eAt]ij
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Properties of the generator matrix

States 1,2, . . . , n are transient

⇒ lim
t→∞

Pr(X(t) < n+ 1) = 0

⇒ the eigenvalues of A have negative real part

⇒ A is non-singular

⇒ (−A)−1 has an important stochastic interpretation

Assumption: the CTMC starts from a transient state (α I1 = 1).
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Properties of phase type distributions

Pr(T < t) = Pr(X(t) = n+ 1) = 1 −

n∑

i=1

Pr(X(t) = i) =

= 1 −

n∑

k=1

n∑

i=1

Pr(X(0) = k)
︸ ︷︷ ︸

αk

Pr(X(t) = i|X(0) = k)
︸ ︷︷ ︸

[eAt]ki

= 1 − αeAt I1

Representation: PH(α,A)

initial probability distribution (α) /n− 1 parameters/ +

transient infinitesimal generator matrix (A) /n2/

Only for transient states. /n2 + n− 1/
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Properties of phase type distributions

CDF: F (t) = 1 − αeAt I1

PDF: f(t) = αeAta

moments: µk = E(T k) = k! α(−A)−k I1

LST:

f∗(s) = α(sI − A)−1a = α

[
det(sI − A)ji

det(sI − A)

]

a =

=
sn−1 + an−2sn−2 + . . .+ a1s+ a0

sn + bn−1sn−1 + . . .+ b1s+ b0

f∗(s)|s→0 =

∫ ∞

0

f(t)dt = 1 ⇒ a0 = b0 /2n− 1/
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Properties of phase type distributions

• rational Laplace tr.

• closed for min/max, mixture, summation, ...

• f(t) > 0

• support on (0,∞)

• exponential tail decay

• CVmin =
1

N
only for Erlang distribution

1 0

λλ

0

λ
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Similar PH distributions

If B is nonsingular, B I1 = I1, γ = αB and G = B−1AB

then PH(α,A) =PH(γ,G)

F (t) = 1 − γeGt I1 = 1 − αB eB
−1

ABt B−1 I1 = 1 − αeAt I1

Identity of PH distributions of different sizes:

λ1

λ2

:

1−
λ1

λ2

:

λ1

λ2

λ1 λ2

λ1 < λ2

(
λ1

λ2

)
λ2

s+ λ2

+

(

1 −
λ1

λ2

)
λ1

s+ λ1

λ2

s+ λ2

=
λ1

s+ λ1

11



Special PH classes

A unique and minimal representation (canonical form) of the PH class
is not available

→ use of simple PH subclasses:

• Acyclic PH distributions

• Hypo-exponential distr. (“series”, “cv < 1”)

• Hyper-exponential distr. (“parallel”, “cv > 1”)

• ...
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Acyclic PH distributions

Each transient state is visited at most ones

⇒ triangular generator

⇒ real eigenvalues

The acyclic PH class allows a unique and minimal (canonical) repre-
sentation with only 2N − 1 parameters.

a1 a2 an

λnλ2λ1

where λi < λi+1 and
∑

i

ai = 1 /2n− 1/.
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Matching with PH distributions

Moments matching:
Find a PH distribution with the same first K moments.

• Solution exists for K = 2n− 1,

but the result is not necessarily a distribution.

• Open problem for 3 < K < 2n− 1.
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Fitting with PH distributions

Fitting:
given a non-negative distribution find a “similar” PH distribution.

Formally:

min
PHparameters

{

Distance(PH,Original)

}

Distance:

• squared CDF difference:

∫ ∞

0

(F (t) − F̂ (t))2dt

• density difference:

∫ ∞

0

|f(t) − f̂(t)|dt

• relative entropy:

∫ ∞

0

f(t) log

(
f(t)

f̂(t)

)

dt
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Fitting with PH distributions

Problems:

• vector-matrix representation:

– ∼ n2 parameters → over-parameterized,

– easy to check the PH conditions,

• moments or Laplace representation:

– 2n− 1 parameters → minimal number of parameters,

– hard to check the PH conditions.

One possible solution:

• Acyclic PH with canonical representation:

– 2n− 1 parameters,

– easy to check the PH conditions,

– .... but only for a subclass of PH distributions.
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Fitting with PH distributions

0 0.5 1 1.5 2 2.5 3
t

0.2

0.4

0.6

0.8

Density

PH-2
PH-4
PH-8
Orig. dist.

W1 - Weibull [1, 1.5]

0 0.5 1 1.5 2 2.5 3
t

0.2

0.4

0.6

0.8

1

1.2

Density

PH-2
PH-4
PH-8
Orig. dist.

W2 - Weibull [1, 0.5]

0 0.2 0.4 0.6 0.8 1 1.2
t

1

2

3

4

Density

PH-2
PH-4
PH-8
Orig. dist.

L1 - Lognormal [1, 1.8]

0 0.5 1 1.5 2 2.5
t

0.2

0.4

0.6

0.8

1

Density

PH-2
PH-4
PH-8
Orig. dist.

L2 - Lognormal [1, 0.8]

0 0.5 1 1.5 2 2.5
t

0.5

1

1.5

2

Density

PH-2
PH-4
PH-8
Orig. dist.

L3 - Lognormal [1, 0.2]

0 0.5 1 1.5 2
t

0.2

0.4

0.6

0.8

1

1.2

1.4

Density

PH-2
PH-4
PH-8
Orig. dist.

U1 - Uniform [0-1]

0 0.5 1 1.5 2 2.5 3
t

0.2

0.4

0.6

0.8

1

Density

PH-2
PH-4
PH-8
Orig. dist.

U2 - Uniform [1-2]

0 0.5 1 1.5 2 2.5 3
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Density

PH-2
PH-4
PH-8
Orig. dist.

SE - Shifted Exponential

0 0.5 1 1.5 2 2.5 3
t

0.2

0.4

0.6

0.8

1

1.2

Density

PH-2
PH-4
PH-8
Orig. dist.

ME - Matrix Exponential

17



Applications of Phase type distributions

Non-Markovian (non-exponential) models → Markovian analysis

(transient p0eQt, stationary pQ = 0, p I1 = 1)

• queueing models (matrix geometric methods)

• performance, performability models

• stochastic model description languages (Petri net, process alge-
bra)
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Matrix exponential distribution

T has a matrix exponential distribution is its CDF has the form

F (t) = 1 − αeAt I1

where α is a row vector and A is a square matrix (without any structural
restriction).

The vector matrix pair (α,A) define a distribution if F (t) = 1 − αeAt I1
is monotone increasing.

• Easy to check necessary and sufficient conditions are not available.

• Closed form necessary and sufficient conditions are available for
n = 3.
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Properties of matrix exponential distributions

• rational Laplace tr.

• closed for min/max, mixture, summation, ...

• f(t) ≤ 0

• support on (0,∞)

• exponential tail decay

• CVmin <<
1

n

(n = 3: CVmin ∼ 1/5, n = 15: CVmin ∼ 1/100)

• CVmin ↔ only conjectures exit
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Applications of matrix exponential distributions

Non-Markovian models → easy to compute non-Markovian analysis

(transient p0eQt, stationary pQ = 0, p I1 = 1)

• queueing models (matrix geometric methods)

• performance, performability models

• stochastic model description languages (Petri net, process alge-
bra)
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Markov arrival process

A point process characterized by a modulating CTMC.

• D0: state (phase) transition rate without arrival

• D1: state (phase) transition rate with arrival

• D1ii: arrival rate when the CTMC is in state i.

D = D0 + D1 generator of the modulating CTMC.

D I1 = 0.
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Properties of Markov arrival process

MAP: correlated arrivals

the phase distribution after an arrival depends on the previous inter-
arrival time

{N(t), J(t)} is a Markov chain, where

• N(t): number of arrivals

• J(t): phase of the CTMC

i

j

D1

D1

D1
D1

ii

ij

ji
jj

i

j

D1

D1

D1
D1

ii

ij

ji
jj

i

j

D1

D1

D1
D1

ii

ij

ji
jj

D0 D0 D0
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Markov arrival process

Structure of the generator matrix:

Q =

D0 D1

D0 D1

D0 D1

D0 D1

. . .

On the block level it is similar to the structure of a Poisson process.

−→ “quasi” birth process.
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Properties of Markov arrival process

• the phase distribution at arrival instances form a DTMC with
P = (−D0)−1D1

−→ correlated initial phase distributions,

• inter-arrival time is PH distributed with representation (α0,D0),
(α1,D0), (α2,D0), . . .

−→ correlated inter-arrival times,

• phase process (J(t)) is a CTMC with generator
D = D0 + D1
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Properties of Markov arrival process

• (embedded) stationary phase distribution after an arrival π is the
solution of πP = π, π I1 = 1.

• stationary inter arrival time is PH(π,D0).

• the stationary arrival intensity is λ =
1

π(−D0)−1 I1
.
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Properties of Markov arrival process

The joint pdf of X0 and Xk is

fX0,Xk
(x, y) = πeD0xD1P

k−1eD0yD1 I1.

Due to the Markovian behaviour of MAPs X0 and Xk depend only via
their initial states !!

Lag k joint moment (→ correlation):

E(X0Xk) =

∫ ∞

t=0

∫ ∞

τ=0

t τ πeD0tD1P
k−1eD0τD1 I1 dτ dt

= π

∫ ∞

t=0

t eD0t dt

︸ ︷︷ ︸

(−D0)−2

D1P
k−1

∫ ∞

τ=0

τ eD0τ

︸ ︷︷ ︸

(−D0)−2

dτD1 I1

= π(−D0)−1Pk(−D0)−1 I1
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Properties of Markov arrival process

Generally for a0 = 0 < a1 < a2 < . . . < ak
the joint density is:

fXa0
,Xa1

,...,Xak
(x0, x1, . . . , xk) =

= πeD0x0D1P
a1−a0−1eD0x1D1P

a2−a1−1 . . . eD0xkD1 I1 ,

and the joint moment is:

E(Xi0
a0
, Xi0

a1
, . . . , Xi0

ak) =

= πi0!(−D0)−i0Pa1−a0i1!(−D0)−i1Pa2−a1 . . . ik!(−D0)−ik I1 .

28



Batch Markov arrival process

MAP with batch arrivals

• D0 – phase transitions without arrival

• Dk – phase transitions with k arrivals

ii

D2jj

D3jj

D2jj

D2ii

D2ij D2ij

D2ii

D1 D1
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ii

ij

ji
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i

j
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ji
jj

i

j

D1

D1

D1
D1

ii

ij

ji
jj

i

j

D0 D0

−→ {N(t), J(t)} is still a Markov chain.
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Batch Markov arrival process

Structure of the generator matrix:

Q =

D0 D1 D2 D3 D4

D0 D1 D2 D3

D0 D1 D2

D0 D1

. . .

Properties of matrices Dk:

• D0: D0ij ≥ 0 for i 6= j, and D0ii ≤ 0

• for k ≥ 1: Dkij ≥ 0
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Examples of (batch) Markov arrival processes

• bath PH renewal process:
D0 = A, Dk = pkaα.

• MMPP (Markov modulated Poisson process):
D0 = Q − diag<λ>, D1 = diag<λ>.

• IPP (Interrupted Poisson process):

D0 =
−α−λ α

0 −β
, D1 =

λ 0
0 0

.

• batch MMPP :
D0 = Q − diag<λ>, Dk = pk diag<λ>.
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Examples of (batch) Markov arrival processes

• filtered MAP (arrivals discarded with probability p):

D0 = D̂0 + pD̂1, D1 = (1 − p)D̂1.

• cyclicly filtered MAP (every second arrivals are discarded with
probability p):

D0 =
D̂0 0

pD̂1 D̂0

, D1 =
0 D̂1

(1−p)D̂1 0
.

• superposition of BMAPs:
Dk = D̂k

⊕
D̃k,

Kronecker product: A
⊗

B =

A11B . . . A1nB
...

...
An1B . . . AnnB

Kronecker sum: A
⊕

B = A
⊗

IB + IA
⊗

B
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Examples of (batch) Markov arrival processes

• Departure process of an M/M/1/2 queue:

D0 =
−λ λ

−λ−µ λ
−µ

D1 = µ
µ

• Overflow process of an M/M/1/2 queue:

D0 =
−λ λ
µ −λ−µ λ

µ −λ−µ
D1 =

λ

• Correlated inter-arrivals (λ1 6= λ2):

D0 =
−λ1 0
0 −λ2

D1 =
pλ1 (1 − p)λ1

(1 − p)λ2 pλ2

p ∼ 1 → positive correlated consecutive inter-arrivals

p ∼ 0 → negative correlated consecutive inter-arrivals
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Rational arrival process

A point process with inter-arrival time X0, X1, . . . is a Rational arrival
process if its joint density for a0 = 0 < a1 < a2 < . . . < ak has the form:

fXa0
,Xa1

,...,Xak
(x0, x1, . . . , xk) =

= πeD0x0D1P
a1−a0−1eD0x1D1P

a2−a1−1 . . . eD0xkD1 I1 ,

The matrix pair D0,D1 (without any structural description) define a
Rational arrival process if

fXa0
,Xa1

,...,Xak
(x0, x1, . . . , xk)

is non-negative for ∀k, a0 < a1 < a2 < . . . < ak, x0, x1, . . . , xk.
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Queues with PH, MAP arrival/departure

Example: PH/M/1 queue

• arrival process: PH(τ,T) renewal process (t = −T I1)

• service time: exponentially distributed with parameter µ.

Q =

T tτ

µI T−µI tτ

µI T−µI tτ

µI T−µI tτ

. . . . . .

−→ {N(t), J(t)} is a Markov chain with generator

35



Queues with PH, MAP arrival/departure

Example: MAP/PH/1 queue

• arrival process: MAP(D0,D1),

• service time: PH(τ,T), (t = −T I1).

Q =

L′ F′

B′ L F

B L . . .

. . . . . .

where

F = D1

⊗
I, L = D0

⊕
T, B = I

⊗
tτ ,

F′ = D1

⊗
τ , L′ = D0, B′ = I

⊗
T.
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Quasi birth-death process

• N(t) is the “level” process (e.g., number of customers in a queue),

• J(t) is the “phase” process (e.g., state of the environment).

The CTMC {N(t), J(t)} is a Quasi birth-death process if transitions
are restricted to one level up or down or inside the same level.

Bii

Fij
Bkk

Fji
Fjj

L ij Bkk

Fij

Bii

Fji
Fjj

L ij

Fjj

Fji

Bkk

Fij

Bii

ijL’

i

j

i

j

i

j

L L

k kk

L’

Level 0 is irregular (e.g., no departure).
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Quasi birth-death process

Structure of the transition probability matrix:

Q =

L′ F

B L F

B L F

B L F

. . . . . .

On the block level it has a birth-death structure

−→ “quasi” birth-death process.
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Matrix geometric distribution

Stationary solution: πQ = 0, π I1 = 1.

Partitioning π: π = {π0,π1,π2, . . .}

Decomposed stationary equations:

π0L
′ + π1B = 0

πn−1F + πnL + πn+1B = 0 ∀n ≥ 1

∞∑

n=0

πn I1 = 1

Conjecture: πn = πn−1R → πn = π0R
n and

π0L
′ + π0RB = 0

π0R
n−1F + π0R

nL + π0R
n+1B = 0 ∀n ≥ 1

∞∑

n=0

π0R
n I1 = π0(I − R)−1 I1 = 1
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Matrix geometric distribution

The solution is defined by vector π0 and matrix R:

Matrix R is the solution of the matrix equation:

F + RL + R2B = 0

Vector π0 is the solution of linear system:

π0(L
′ + RB) = 0

π0(I − R)−1 I1 = 1

40



Minimal solution of the quadratic equation

From

F + RL + R2B = 0

we have

R = F (−L − RB)−1

A simple numerical algorithm to calculate R:

R := 0;
REPEAT

Rold := R;

R := F (−L − RB)−1 ;
UNTIL||R − Rold|| ≤ ε
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Performance measures

The typical performance measures can be computed in an efficient way
based on the stationary distribution.

For example, the mean number of customers in the queue is

∞∑

i=0

iπi I1 = π0

∞∑

i=0

iRi I1 = π0R(I − R)−2 I1
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Queues with ME, RAP arrival/departure

Example: RAP/ME/1 queue

• arrival process: RAP(D0,D1),

• service time: ME(τ,T), (t = −T I1).

Q =

L′ F′

B′ L F

B L . . .

. . . . . .

where

F = D1

⊗
I, L = D0

⊕
T, B = I

⊗
tτ ,

F′ = D1

⊗
τ , L′ = D0, B′ = I

⊗
T .

The same analysis applies as for the Markovian models!!!
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Open problems

• Markovian models

– canonical representation of the PH class

– structural restrictions of MAPs

– efficient PH fitting (whole PH class)

– efficient MAP fitting

• non-Markovian models

– efficient check if (α,A) defines an ME distribution.

– efficient check if (D0,D1) defines a RAP.

– structural restrictions of RAPs

– ME fitting

– RAP fitting
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Compositional models

A wide range of complex stochastic models are composed by compo-
nents which form a common stochastic model through simple interac-
tions.

Compositional models

- describe the components A(i) and

- composition roles the way as they form the system model
(A(1)‖CA(2))‖CA(3) . . .
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Compositional models

To avoid state space explosion the components are represented in a
compact way using an equivalence relation

A(1) ∼ A(1′)

of size m1 of size n1 < m1

such that this relation is preserved during the composition components

A(1) ∼ A(1′) ⇒ A(1)‖CA(2) ∼ A(1′)‖CA(2).
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Compositional models

The currently applied compositional models uses

- Markovian components,

- stochastic bisimulation (different forms of lumpability) as equiva-
lence relation (∼̇),

- Kronecker operators for composition of components.

The nice properties of setting are that

- the composed model is Markovian and

- the equivalence relation is preserved by composition of compo-
nents.
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Compositional models

An extension of Markovian compositional models

- non-Markovian components,

- a more general equivalence relation (similarity transformation) (')
and

- the same Kronecker operators for composition of components.

The resulted compositional model

- is a non-Markovian system model,
which can be computed by similar ODEs (transient) or linear sys-
tem of equations (stationary) and

- the equivalence relation is preserved by composition of compo-
nents.
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Compositional models

When to use the proposed compositional model?

When A(1) ∼̇ A(1′) of size m1 → n1,

but A(1) ' A(1”) of size m1 → g1 < n1.
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Markovian components

A Markovian component is A = (S, π,Ee(e ∈ E),Λ), where

- S = {0, . . . ,m− 1} is the finite state space,

- π ∈ R1,m is the initial probability distribution,

- E is a finite set of events,

- Ee ∈ Rm,m is the non-negative transition weight matrix according
to event e

- Λ = (λe(e ∈ E)) is a positive rate vector.

E contains a specific event ε (local event of the component) that is
not observable and

Es = E \ {ε}.
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Markovian components

Based on this description we define diagonal matrix

De = diag(Ee I1).

The generator matrix of a Markov component is

Q = λε(Eε − Dε)
︸ ︷︷ ︸

Qε

+
∑

e∈Es

λe (Ee − De)

with a unique stationary vector ψ

ψQ = 0 and ψ I1 = 1.

The transient and the stationary throughput of event e are

πeQtDe I1 and ψDe I1.
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Markovian components

The joint density for a sequence of k observations (e1, t1, e2, t2, . . . , ek, tk)
is given by

fA(e1, t1, . . . , ek, tk) = π

(
k∏

i=1

eRtiλeiEei

)

I1,

where

R = Qε −
∑

e∈Es

λeDe.

In case of Markov components

fA(e1, t1, . . . , ek, tk) ≥ 0

due to the non-negativity of π, Ee(e ∈ E) and Λ.
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Non-Markovian components

A non-Markovian component is A = (S, π,Ee(e ∈ E),Λ), where

- S = {0, . . . ,m− 1} is the finite state space,

- π ∈ R1,m is a vector with possibly negative elements,

- E is a finite set of events,

- Ee ∈ Rm,m is the transition weight matrix according to event e with
possibly negative elements,

- Λ = (λe(e ∈ E)) is a positive rate vector.

AND

fA(e1, t1, . . . , ek, tk) ≥ 0

for every sequence of k > 0 observations (e1, t1, e2, t2, . . . , ek, tk).
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Composition of components

To compose A(1) and A(2), without loss of generality, we assume that
the event sets E and the rate vectors Λ of length |E| are identical for
all events.

Composition is performed over the set of signals E:

- signals from C ⊆ Es occur as synchronized signals in both compo-
nents,

- signals from N = Es \ C and signal ε occur independently.
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Composition of components

The composed model A(0) = A(1)‖CA(2) is defined by

- state space S = {0, . . . ,m1m2 − 1},

- vector π(0) = π(1) ⊗ π(2).

- weight matrices

E(0)
e =

{

E
(1)
e ⊕ E

(2)
e if e ∈ N ∪ {ε},

E
(1)
e ⊗ E

(2)
e if e ∈ C,

- rate vector Λ = (λe(e ∈ E)) .
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Observed equivalence

Definition 1 Two components A(1) and A(2) observed to be equiva-

lent, if and only if

fA(1)(e1, t1, . . . , ek, tk) = fA(2)(e1, t1, . . . , ek, tk)

for all k > 0, ei ∈ Es and ti > 0.

The observable events of the components are stochastically identical.
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Observed equivalence

A(1)∼A(2): Two components A(1) of size m and A(2) of size n < m are
observed equivalent if a matrix V of size m× n exists such that

- V I1n = I1m, π(1)V = π(2),

- R(1)V = VR(2) and E
(1)
e V = VE

(2)
e for ∀e ∈ S

Then

fA(1)((e1, t1, . . . , ek, tk) =

π(1)

(
k∏

i=1

∞∑

j=0

(R(1)ti)j

j!
λeiE

(1)
ei

)

I1m =

π(1)

(
k∏

i=1

∞∑

j=0

(R(1)ti)j

j!
λeiE

(1)
ei

)

V I1n =

π(1)V

(
k∏

i=1

∞∑

j=0

(R(2)ti)j

j!
λeiE

(2)
ei

)

I1n =

fA(2)((e1, t1, . . . , ek, tk) .
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Compositional equivalence

Unfortunately, synchronized composition relates the internal (non-observable)
structures of the components.

⇓

Observed equivalence is not enough for the equivalence of the com-
posed models in case of synchronized composition.

A(1)'A(2): Two components A(1) of size m and A(2) of size n < m are
compositional equivalent if a matrix V of size m× n exists such that

- V I1n = I1m, π(1)V = π(2),

- R(1)V = VR(2), E
(1)
e V = VE

(2)
e for ∀e ∈ S and

- D
(1)
e V = VD

(2)
e for ∀e ∈ C.

A(1)'A(2) implicitly depends on C !!!!
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Congruence of composition equivalence

Main Theorem:

If A(1)'A(2),

then A(1)‖CA(3)'A(2)‖CA(3)

(and A(3)‖CA(1)'A(3)‖CA(2))

if the same set C is used.

Core of the proof:

If matrix V(1,2) relates A(1) and A(2)

then matrix V(13,23) = V(1,2) ⊗ In(3)

relates A(1)‖CA(3) and A(2)‖CA(3).
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A disk system

IO system proposed by Balbo, Bruell and Ghanta:

n

c

{d1,..,dk}

<d> <d>

<d>

<d> <d> <d> <d> <d>

<d>

<d>

t_a t_b

k disks, c channels, n requests

• ta requests arrival,

• t1 disk assignment if there is a free channel,

• texp disk operation,

• t2 channel allocation,

• tb data transmission.
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A disk system

State space sizes of equivalent representations of the IO system:

Parameters State space size
n k c original ordinary weak ∼ '
4 2 1 59 27 31 27 27
4 2 2 41 23 23 23 23
4 4 1 842 47 61 43 46
4 4 2 444 45 45 43 43
8 2 1 229 101 117 101 101
8 2 2 145 77 77 77 77
8 4 1 15143 541 836 508 524
8 4 2 7779 494 494 433 433
8 6 1 326115 853 1501 738 752
8 6 2 205239 968 971 890 898
8 8 4 444496 530 528 482 482
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Conclusions

• Non-exponential 6= non-solvable

matrix analytic methods

• Parameter estimation, moments matching

– there are results,

– but there are also several open problems.

Non-unique matrix representation.

• Model composition

– important difference between the internal (micro view)
and the external (macro view) transitions

• Efficient simulation ....
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