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Starting point: CTMC

X(t)eSisa CTMC.

S ={1,2,...,n}: discrete finite state space.

Q = {qij} infinitesimal generator matrix.

gi;: transition rate from state ¢ to state 5 (i # j).
—q;;- departure rate from state «s.

For a regular CTMC q;; = _Zjes%' = QI=0,
where 1 is a column vector of ones.

Pr(X(t) = j1X(0) =) = [e¥] .
eQ! is a stochastic matrix: QM= IT+» QMU t'/il =1

=1
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Starting point: transient CTMC

X(t) € S is a transient CTMC.

S ={1,2,...,n}: discrete finite state space.

A = {a;j} transient infinitesimal generator matrix.
ai;. transition rate from state ¢ to state j (i # j).
—a4;. departure rate from state «s.

For a transient CTMC a;; < —) . _qai;; = Al<LO.

JjeSs
Pr(X(t) = j|X(0) =i) = [eAt]ij

eAt is a sub-stochastic matrix: AN <1



Phase type distributions

T: time to absorption in a Markov chain with n transient, 1 absorbing
state, initial probability vector o and transient generator A .




Properties of the generator matrix

Generator matrix: Q = [ ‘8‘ g ] (a = —Al)

eAt

Transition probability matrix: eQt = [ 0 ’{ ]

For 7,7 <n:

Pr(X(t) = j|X(0) = i) = [e¥];; = [e'];;



Properties of the generator matrix

States 1,2,...,n are transient

= lim Pr(X(t) <n+1) =0

= the eigenvalues of A have negative real part
= A is non-singular

= (—A)~! has an important stochastic interpretation

Assumption: the CTMC starts from a transient state (all=1).



Properties of phase type distributions

Pr(T<t) =Pr(X(t)=n+4+1)= 1—ZH:PT(X(t) =1) =

=1
=1-) ) Pr(X(0)=k)Pr(X(t) =iX(0) =k)
k=11i=1 a [eA],,

= 1 — el

Representation: PH(«, A)
initial probability distribution (o) /n — 1 parameters/ +
transient infinitesimal generator matrix (A) /n?/

Only for transient states. /n°>+n—1/



Properties of phase type distributions

CDF: F(t) =1 — ae®1
PDF: f(t) = ae™a
moments: u, = E(T*) = k! a(—A)~"I

LST:

() = a(sI-A)la=a [det(sI _ A)ji]

det(sI — A)

s 14 a, 08" 2+ ...+ ais+ ao
s+ b,_1s" 14+ ...+ bis+ bo

f*(8)|3_>o = / f(t)dt =1 = ag = bg /2n — 1/
0



Properties of phase type distributions

e rational Laplace tr.

e closed for min/max, mixture, summation, ...
e f(t)>0

e support on (0, )

e exponential tail decay

1
o CVyin = N only for Erlang distribution
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Similar PH distributions

If B is nonsingular, Bl=1, vy =aB and G = B 'AB

then PH(a, A) =PH(v, G)

F() =1—~eSM=1—aB 8 48! B lI=1 — ae*1

Identity of PH distributions of different sizes:

OT’O

AL < A Ar

—
1—£:<> .() .()
Ao A1 Ao
n 1_>\1 A1 Ao _ A1
)\2 S-I—)\l S-I—)\Q 8‘|‘)\1
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Special PH classes

A unique and minimal representation (canonical form) of the PH class
is not available

— use of simple PH subclasses:
e Acyclic PH distributions
e Hypo-exponential distr. (“series”, “cv < 1)

e Hyper-exponential distr. (“parallel”, “cv > 1")
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Acyclic PH distributions

Each transient state is visited at most ones
= triangular generator

= real eigenvalues

The acyclic PH class allows a unique and minimal (canonical) repre-
sentation with only 2N — 1 parameters.

ail an an

<>)\1'<>>\2' - '<>)\n'<>

where \; < \j+1 and Za’i =1 /2n—1/.
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Matching with PH distributions

Moments matching:

Find a PH distribution with the same first K moments.

e Solution exists for K =2n — 1,

but the result is not necessarily a distribution.

e Open problem for 3< K <2n—1.

14



Fitting with PH distributions

Fitting:
given a non-negative distribution find a “similar” PH distribution.

Formally:

PHparameters

min {Distance(PH, Original)}

Distance:

e squared CDF difference: / (F(t) — F(t))%dt
0

e density difference: / |F(t) — f(t)|dt
0

e relative entropy: /oof(t) log (gg) dt
0
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Fitting with PH distributions

Problems:
e vector-matrix representation:

— ~ n2 parameters — over-parameterized,

— easy to check the PH conditions,

e moments or Laplace representation:
— 2n — 1 parameters — minimal number of parameters,

— hard to check the PH conditions.

One possible solution:
e Acyclic PH with canonical representation:

— 2n — 1 parameters,
— easy to check the PH conditions,

— .... but only for a subclass of PH distributions.
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Fitting with PH distributions

0.6

04

0.2

W1 - Weibull [1, 1.5]

-----PH-2
——PH-4

——PH-8
——————— Orig. dist.

W2 - Weibull [1, 0.5]

L1- Lognormal [1, 1.8]

Density

0.8

0.6

U2 - Uniform [1-2]
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Applications of Phase type distributions

Non-Markovian (non-exponential) models — Markovian analysis
(transient pge®?, stationary pQ =0,pI=1)

e queueing models (matrix geometric methods)
e performance, performability models

e stochastic model description languages (Petri net, process alge-
bra)

18



Matrix exponential distribution

T has a matrix exponential distribution is its CDF has the form
F(t) =1 — aetl

where « is a row vector and A is a square matrix (without any structural
restriction).

The vector matrix pair (a, A) define a distribution if F(t) = 1 — aedl
IS monotone increasing.

e Easy to check necessary and sufficient conditions are not available.

e Closed form necessary and sufficient conditions are available for
n=3.

19



Properties of matrix exponential distributions

e rational Laplace tr.

e closed for min/max, mixture, summation, ...
e f(1) <O

e support on (0, o)

e exponential tail decay

1
mn
(n = 3: Cme ~ 1/5, n = 15: Cme ~ 1/100)
o CV,n < Only conjectures exit
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Applications of matrix exponential distributions

Non-Markovian models — easy to compute non-Markovian analysis
(transient pge®?, stationary pQ = 0,pll = 1)

e queueing models (matrix geometric methods)
e performance, performability models

e stochastic model description languages (Petri net, process alge-
bra)

21



Markov arrival process

A point process characterized by a modulating CTMC.

e D,: state (phase) transition rate without arrival
e D,: state (phase) transition rate with arrival

e D, arrival rate when the CTMC is in state «z.

D = Dy + D, generator of the modulating CTMC.
D1 = 0.

22



Properties of Markov arrival process

MAP: correlated arrivals

the phase distribution after an arrival depends on the previous inter-
arrival time

{N(t),J(t)} is a Markov chain, where
e N(t): number of arrivals

e J(t): phase of the CTMC

i D1;; ~ D1;; fﬁ D1;;
D1;; D1; 7. D1;

. \

YR
N/ \
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Markov arrival process

Structure of the generator matrix:

Do | D

On the block level it is similar to the structure of a Poisson process.

—— "quasi”’ birth process.

24



Properties of Markov arrival process

e the phase distribution at arrival instances form a DTMC with
P = (—Do)_lDl
—— correlated initial phase distributions,

e inter-arrival time is PH distributed with representation (ag,Dy),
(Oél,Do), (ag,Do),
— correlated inter-arrival times,

e phase process (J(t)) is a CTMC with generator
D =Dy + Dy

25



Properties of Markov arrival process

e (embedded) stationary phase distribution after an arrival = is the
solution of 7P = 7w, nll = 1.

e stationary inter arrival time is PH(m, Dy).

1
W(—Do)_lﬂ.

e the stationary arrival intensity is A\ =

26



Properties of Markov arrival process

The joint pdf of Xg and X is

on,Xk(ma y) = 7T€D"xD1Pk_163D"yD1]I.

Due to the Markovian behaviour of MAPs Xg and X, depend only via
their initial states !!

Lag k joint moment (— correlation):

0 oo
E(XoXy) :/ / t T weP'DPF 1P DI dr dt
t=0 J7=0
o0

= 7r/ t ePot dtDlPk_lf 7 P drDqI

(—Dy)-2 (—Dy)-2
= W(—Do)_lpk(—Do)_l]I
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Properties of Markov arrival process

Generally forag=0< a1 <asx < ... < ag
the joint density is:

XX, (0, 21,5+ Tg) =

— 7T€D0$0D1Pa1—ao—1€D0$1D1Pa2—a1—1 .

and the joint moment is:
E(X ng,...,ng) =

Qo)

= mio!(—Dg) P P® =, 1(—Dg) "1 P%—a

. eDOx’“Dl]I ,

ce ’ik!(—Do)_i’“]I .
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Batch Markov arrival process

MAP with batch arrivals
e Dy — phase transitions without arrival
e Dy — phase transitions with k arrivals

— {N(t),J(t)} is still a Markov chain.

29



Batch Markov arrival process

Structure of the generator matrix:

Do

Ds

Do

Properties of matrices Dy:

e Dy: DOij > 0 for 1 #j, and DOii <0

[ fOI’chl: kazo
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Examples of (batch) Markov arrival processes

e bath PH renewal process:
DO = A, Dk = pracx.

e MMPP (Markov modulated Poisson process):
Do=Q —diag<A>, D; =diag<A>.

e IPP (Interrupted Poisson process):

—a—\| «
DO I O _ﬁ 9 Dl

O| >~

o| O

e batch MMPP :
Do = Q —diag<A>, Dy = p, diag< A >.



Examples of (batch) Markov arrival processes

e filtered MAP (arrivals discarded with probability p):
Do = Dy + pD1, D1 = (1 — p)D1.

e cyclicly filtered MAP (every second arrivals are discarded with
probability p):

le D() (1—p)D1 O
e superposition of BMAPs:
Dy = Dy & Dy,
A1B ... A.,B
Kronecker product: AR B = : :
A,1B ... A,.B

Kronecker sum: A@GB=AQRIz+I.QXB

32



Examples of (batch) Markov arrival processes

e Departure process of an M/M/1/2 queue:
—A A
D() — —)\—,u A D1 == | K
—H Y

e Overflow process of an M/M/1/2 queue:

—A A
Do=| p | —A—p A D; =
0 —A— LU A

e Correlated inter-arrivals (A1 #& A\2):

—\1 O p>\1 (1 —p)>\1

Do = D1 = (1 —p)Xo PA2

0O | —A2
p ~ 1 — positive correlated consecutive inter-arrivals
p ~ 0 — negative correlated consecutive inter-arrivals



Rational arrival process

A point process with inter-arrival time Xgo, X1,... is a Rational arrival
process if its joint density for ap =0< a1 < az < ... < ap has the form:

Xy Xoron X (TO, 1, oy Tg) =

= mePom D Pu—t%— 1Dy, Paa—ai—l - oDom Dy
The matrix pair Dg,D; (without any structural description) define a
Rational arrival process if

X XX, (T0, X1, -, Th)

IS non-negative for Vk,ap0 < a1 < az < ... < ag,To,T1,.-.,Tk-
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Queues with PH, MAP arrival/departure

Example: PH/M/1 queue
e arrival process: PH(7,T) renewal process (t = —T1)

e service time: exponentially distributed with parameter pu.

— {N(t),J(t)} is a Markov chain with generator
35



Queues with PH, MAP arrival/departure

Example: MAP/PH/1 queue
e arrival process: MAP(Dy,D1),

e service time: PH(r,T), (t = —T1I).

L' | F
B Ll F where
Q= F=D:1QRI, L=DPT, B=Itr,
B| L |- -. F=DiQr, L'=Dyg, B=IKT.
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Quasi birth-death process

e N(t) is the “level” process (e.g., number of customers in a queue),
e J(t) is the “phase” process (e.g., state of the environment).

The CTMC {N(t),J(t)} is a Quasi birth-death process if transitions
are restricted to one level up or down or inside the same level.

(i i
Fij | Fij | Fij
i Bkk i o Bk Ao Bik

i

0 i o I/ Fi F F,

T

Level O is irregular (e.g., no departure).
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Quasi birth-death process

Structure of the transition probability matrix:

L' | F
B L|F
Q= B L|F

On the block level it has a birth-death structure

— “quasi” birth-death process.

38



Matrix geometric distribution

Stationary solution: wQ =0, Il = 1.
Partitioning w: @ = {mo, ™1, 72,...}
Decomposed stationary equations:
ol +m™mB =0
w1 F+m,L+m, 41 B=0 Vn > 1

i w,I=1
n=0

Conjecture: w, = ®,—1R — 7, = moR" and
7ToL/ —|— 71'0RB =0
woR" 'F 4+ noR"L 4+ noR*™ 1B =0 Vvn>1

Y wRM=m(I-R) =1

n=0

39



Matrix geometric distribution

The solution is defined by vector mo and matrix R:

Matrix R is the solution of the matrix equation:

F+RL+R°B=0

Vector mg is the solution of linear system:
o(L'4+RB) =0
mo(I-R) M =1

40



Minimal solution of the quadratic equation

From
F+RL+R°B=0

we have
R=F(-L-RB)!

A simple numerical algorithm to calculate R:

R :=0;
REPEAT
Roq =R,

R:=F(-L-RB)*';
UNTIL|R —Ryy|| < e

41



Performance measures

The typical performance measures can be computed in an efficient way
based on the stationary distribution.

For example, the mean number of customers in the queue is

Y imll=m Y iRMT=mR(I - R) I
i=0 1=0

42



Queues with ME, RAP arrival/departure

Example: RAP/ME/1 queue
e arrival process: RAP(Dy,Dy),

e service time: ME(r,T), (t = —TI).

L' | F
BIL!|lF where
Q= F=D:RI, L=DPT, B=Itr,
B| L | -. F=DiQQr, L'=Dg, B=IXT .

The same analysis applies as for the Markovian models!!!

43



Open problems

e Markovian models

— canonical representation of the PH class

— structural restrictions of MAPS

efficient PH fitting (whole PH class)
efficient MAP fitting

e non-Markovian models

efficient check if (o, A) defines an ME distribution.
efficient check if (Dg,D1) defines a RAP.
structural restrictions of RAPSs

ME fitting

RAP fitting

44



Compositional models

A wide range of complex stochastic models are composed by compo-
nents which form a common stochastic model through simple interac-

tions.

Compositional models
- describe the components A® and

- composition roles the way as they form the system model
(A(1)||CA(2))||CA(3) o

45



Compositional models

To avoid state space explosion the components are represented in a
compact way using an equivalence relation

A ~ A@)
of size m of size n1 < m1

such that this relation is preserved during the composition components

AD ~ AT =AM, AR~ A0, AP),

46



Compositional models

The currently applied compositional models uses

- Markovian components,

- stochastic bisimulation (different forms of lumpability) as equiva-
lence relation (~),

- Kronecker operators for composition of components.

The nice properties of setting are that
- the composed model is Markovian and

- the equivalence relation is preserved by composition of compo-
nents.

47



Compositional models

An extension of Markovian compositional models

- non-Markovian components,

- a more general equivalence relation (similarity transformation) (~)
and

- the same Kronecker operators for composition of components.

The resulted compositional model

- is a non-Markovian system model,
which can be computed by similar ODEs (transient) or linear sys-

tem of equations (stationary) and

- the equivalence relation is preserved by composition of compo-
nents.

48



Compositional models

When to use the proposed compositional model?
When AL &~ AD) of size mq1 — nq,

but AD ~ AQ") of size mi — g1 < ni.

49



Markovian components

A Markovian component is A = (S, m, Ec.(e € £),N\), where

- §=10,...,m — 1} is the finite state space,

7 € RL™ s the initial probability distribution,

£ is a finite set of events,

E. € R™™ is the non-negative transition weight matrix according
to event e

N = (X(e€&)) is a positive rate vector.

£ contains a specific event ¢ (local event of the component) that is
not observable and

Es =E\ {€}.

50



Markovian components

Based on this description we define diagonal matrix

D. = diag(E.DI).

The generator matrix of a Markov component is

Q=)(E.—D)+ ) A (E.—D.)

Q. ect,

with a unique stationary vector
YQ =0 and ylI = 1.

The transient and the stationary throughput of event e are

7e¥DJIA  and YD

51



Markovian components

The joint density for a sequence of k observations (e1,t1,e2,t2,..., €L, tx)
IS given by

k
fA(el7 l1,..., €, tk) s (H eRtZAGzEei> ]Ia
=1
where

R=Q.— ) AD..

ecé&,

In case of Markov components

faler,t1,... e ty) >0

due to the non-negativity of w, Ec.(e € £) and A.
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Non-Markovian components

A non-Markovian component is A = (S, m,Ec.(e € £),A\), where
- §=10,...,m — 1} is the finite state space,

- m € RY™ js a vector with possibly negative elements,

£ is a finite set of events,

- E. € R™™ js the transition weight matrix according to event e with
possibly negative elements,

A= (X(e€&)) is a positive rate vector.

AND

fA(elatla ceey ekatk) Z 0
for every sequence of k > 0 observations (e1,t1,e0,t2,..., €k, tr).

53



Composition of components

To compose A and A®@), without loss of generality, we assume that
the event sets £ and the rate vectors A of length |£| are identical for

all events.

Composition is performed over the set of signals &:

- signals from C C & occur as synchronized signals in both compo-
nents,

- signals from N = &\ C and signal e occur independently.
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Composition of components

The composed model A® = AM)||AR) is defined by
- state space § = {0,...,mimo — 1},
- vector 70 = 7(1) @ 7(2),

- weight matrices

EO) — EN @ EP if e e NU{e},
e T\ gD o g®
e’ QEs if eeC,

- rate vector A = (A\(e € &)) .
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Observed equivalence

Definition 1 Two components A and A®) observed to be equiva-
lent, if and only if

fao(er,ty, ... ex ty) = fao(e1,t1,. .., ex t;)
for all k > 0, e; € & and t; > 0.

The observable events of the components are stochastically identical.
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Observed equivalence

AMD AR Two components A of size m and A(2) of size n < m are
observed equivalent if a matrix V of size m x n exists such that

- VI, =1, 7OV = 72,

- ROV =VR® and EVV = VE® for Ve e S

Then
fAm((el,tl, ceey Chy b)) =

(1) H Z (R(l)t )J)\ E(l) 1, —

1=1 5=0
ey H Z (R(l)t )J)\ E(l) Vi, =
1=1j5=
v (H ) BAED |1, =
1=17=
A(z>((el, tl, c ey €k,tk) .
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Compositional equivalence

Unfortunately, synchronized composition relates the internal (non-observable)
structures of the components.

U

Observed equivalence is not enough for the equivalence of the com-
posed models in case of synchronized composition.

AMD~ A2 Two components AL of size m and A®2) of size n < m are
compositional equivalent if a matrix V of size m x n exists such that

- VI, =1, 7OV = 72,
- ROV = VR® EMV = VE® for Ve € S and
- DMV = VD@ for ve € C.

AW~ A2) implicitly depends on C !
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Congruence of composition equivalence

Main T heorem:

If AW~ AR
then AW, AR~ A@)||,.AR)
(and A®[cAD=A®) [ AD)

if the same set C is used.

Core of the proof:

If matrix V(1.2 relates A and A3
then matrix V(13:23) = v(1.2) o T
relates AM||cA® and A@]|cA®.

59



A disk system

IO system proposed by Balbo, Bruell and Ghanta:

.,dk}

<d>

ta
- <d> N\ <d> <d <d>~ <d> <d
A=O=E0

k disks, ¢ channels, n requests

t, requests arrival,

t1 disk assignment if there is a free channel,
teap disk operation,

t> channel allocation,

t, data transmission.
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A disk system

State space sizes of equivalent representations of the IO system:

Parameters State space size

n k c original ordinary weak ~ ~
4 2 1 59 27 31 27 27
4 2 2 41 23 23 23 23
4 4 1 842 47 61 43 46
4 4 2 444 45 45 43 43
8 2 1 229 101 117 101 101
8 2 2 145 77 77 77 77
8 4 1 15143 541 836 508 524
8 4 2 7779 494 494 433 433
8 6 1 326115 853 1501 738 752
8 6 2 205239 968 971 890 898
8 8 4 444496 530 528 482 482
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Conclusions

e Non-exponential = non-solvable

matrix analytic methods

e Parameter estimation, moments matching
— there are results,

— but there are also several open problems.
Non-unique matrix representation.

e Model composition

— important difference between the internal (micro view)
and the external (macro view) transitions

e Efficient simulation ....
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