Micro and macro views of discrete state Markov models and their application to efficient simulation with Phase-type distributions

Philipp Reinecke¹, Miklós Telek², Katinka Wolter¹

¹ Institut für Informatik, ² Department of Telecommunications, Freie Universität Berlin, Technical University of Budapest,

e-mail: {philipp.reinecke,katinka.wolter}@fu-berlin.de, telek@hit.bme.hu

Part 1: Outline

- Starting point: CTMC
- Processes with matrix exponential functions
 - Phase type distributions
 - Matrix exponential distributions
 - Markov arrival process
 - Rational arrival process
- Compositional models
 - Markovian/non-Markovian components
 - Equivalence relations
 - Congruence results

Starting point: CTMC

 $X(t) \in S$ is a CTMC.

 $S = \{1, 2, \dots, n\}$: discrete finite state space.

 $Q = \{q_{ij}\}$ infinitesimal generator matrix.

 q_{ij} : transition rate from state *i* to state *j* ($i \neq j$).

 $-q_{ii}$: departure rate from state *i*.

For a regular CTMC $q_{ii} = -\sum_{j \in S} q_{ij} \Rightarrow Q\mathbb{I} = 0$,

where $\mathbb{1}$ is a column vector of ones.

 $Pr(X(t) = j | X(0) = i) = \left[e^{Qt} \right]_{ij}$

$$e^{Qt}$$
 is a stochastic matrix: $e^{Qt}\mathbb{I} = I\mathbb{I} + \sum_{\substack{i=1 \ 0}}^{\infty} Q^i\mathbb{I} t^i/i! = \mathbb{I}$

Starting point: transient CTMC

 $X(t) \in S$ is a transient CTMC.

 $S = \{1, 2, \dots, n\}$: discrete finite state space.

 $A = \{a_{ij}\}$ transient infinitesimal generator matrix.

 a_{ij} : transition rate from state *i* to state *j* ($i \neq j$).

 $-a_{ii}$: departure rate from state *i*.

For a transient CTMC $a_{ii} \leq -\sum_{j \in S} a_{ij} \Rightarrow A\mathbb{I} \leq 0.$

 $Pr(X(t) = j | X(0) = i) = [e^{At}]_{ij}$

 e^{At} is a sub-stochastic matrix: $e^{At}\mathbb{I} \leq \mathbb{I}$

Phase type distributions

T: time to absorption in a Markov chain with n transient, 1 absorbing state, initial probability vector α and transient generator \pmb{A} .

Generator matrix:
$$\mathbf{Q} = \begin{bmatrix} \mathbf{A} & \mathbf{a} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$
 $(\mathbf{a} = -\mathbf{A}\mathbf{I})$

5

Properties of the generator matrix

Generator matrix:
$$\mathbf{Q} = \begin{bmatrix} \mathbf{A} & \mathbf{a} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$
 $(\mathbf{a} = -\mathbf{A}\mathbb{I})$

Transition probability matrix:
$$e^{\mathbf{Q}t} = \begin{bmatrix} e^{\mathbf{A}t} & \star \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

For $i, j \le n$: $Pr(X(t) = j | X(0) = i) = [e^{Qt}]_{ij} = [e^{At}]_{ij}$

Properties of the generator matrix

- States $1, 2, \ldots, n$ are transient
- $\Rightarrow \lim_{t \to \infty} \Pr(X(t) < n+1) = 0$
- \Rightarrow the eigenvalues of ${\bf A}$ have negative real part
- $\Rightarrow A \text{ is non-singular}$
- \Rightarrow $(-\mathbf{A})^{-1}$ has an important stochastic interpretation

Assumption: the CTMC starts from a transient state ($\alpha I = 1$).

Properties of phase type distributions

$$Pr(T < t) = Pr(X(t) = n + 1) = 1 - \sum_{i=1}^{n} Pr(X(t) = i) =$$
$$= 1 - \sum_{k=1}^{n} \sum_{i=1}^{n} \underbrace{Pr(X(0) = k)}_{\alpha_{k}} \underbrace{Pr(X(t) = i | X(0) = k)}_{[e^{At}]_{ki}}$$
$$= 1 - \alpha e^{At} \mathbb{I}$$

Representation: $PH(\alpha, A)$ initial probability distribution (α) /n - 1 parameters/ + transient infinitesimal generator matrix (A) $/n^2/$

Only for transient states. $/n^2 + n - 1/$

8

Properties of phase type distributions

CDF:
$$F(t) = 1 - \alpha e^{At} \mathbb{I}$$

PDF: $f(t) = \alpha e^{At} a$
moments: $\mu_k = E(T^k) = k! \alpha (-A)^{-k} \mathbb{I}$
LST:

$$f^{*}(s) = \alpha(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{a} = \alpha \left[\frac{det(s\mathbf{I} - \mathbf{A})_{ji}}{det(s\mathbf{I} - \mathbf{A})}\right]\mathbf{a} = \frac{s^{n-1} + a_{n-2}s^{n-2} + \dots + a_{1}s + a_{0}}{s^{n} + b_{n-1}s^{n-1} + \dots + b_{1}s + b_{0}}$$

$$f^*(s)|_{s\to 0} = \int_0^\infty f(t)dt = 1 \quad \Rightarrow \quad a_0 = b_0 \qquad /2n - 1/$$

9

Properties of phase type distributions

- rational Laplace tr.
- closed for min/max, mixture, summation, ...
- f(t) > 0
- support on $(0,\infty)$
- exponential tail decay

•
$$CV_{min} = \frac{1}{N}$$
 only for Erlang distribution

Similar PH distributions

If B is nonsingular, B1 = 1, $\gamma = \alpha B$ and $G = B^{-1}AB$ then $PH(\alpha, A) = PH(\gamma, G)$

$$F(t) = 1 - \gamma e^{\mathbf{G}t} \mathbb{I} = 1 - \alpha \mathbf{B} e^{\mathbf{B}^{-1} \mathbf{A} \mathbf{B}t} \mathbf{B}^{-1} \mathbb{I} = 1 - \alpha e^{\mathbf{A}t} \mathbb{I}$$

Identity of PH distributions of different sizes:

$$\left(\frac{\lambda_1}{\lambda_2}\right) \frac{\lambda_2}{s+\lambda_2} + \left(1 - \frac{\lambda_1}{\lambda_2}\right) \frac{\lambda_1}{s+\lambda_1} \frac{\lambda_2}{s+\lambda_2} = \frac{\lambda_1}{s+\lambda_1}$$

11

Special PH classes

A unique and minimal representation (canonical form) of the PH class is not available

- \rightarrow use of simple PH subclasses:
 - Acyclic PH distributions
 - Hypo-exponential distr. ("series", "cv < 1")
 - Hyper-exponential distr. ("parallel", "cv > 1")
 - ...

Acyclic PH distributions

Each transient state is visited at most ones

- \Rightarrow triangular generator
- \Rightarrow real eigenvalues

The acyclic PH class allows a unique and minimal (canonical) representation with only 2N - 1 parameters.

where $\lambda_i < \lambda_{i+1}$ and $\sum_i a_i = 1$ /2n - 1/.

13

Matching with PH distributions

Moments matching: Find a PH distribution with the same first K moments.

• Solution exists for K = 2n - 1,

but the result is not necessarily a distribution.

• Open problem for 3 < K < 2n - 1.

Fitting with PH distributions

Fitting:

given a non-negative distribution find a "similar" PH distribution.

Formally:

$$\min_{PH parameters} \left\{ \mathsf{Distance}(PH, Original) \right\}$$

Distance:

• squared CDF difference:
$$\int_0^\infty (F(t) - \hat{F}(t))^2 dt$$

• density difference:
$$\int_0^\infty |f(t) - \hat{f}(t)| dt$$

• relative entropy:
$$\int_0^\infty f(t) \log\left(\frac{f(t)}{\widehat{f}(t)}\right) dt$$

15

Fitting with PH distributions

Problems:

- vector-matrix representation:
 - $\sim n^2$ parameters ightarrow over-parameterized,
 - easy to check the PH conditions,
- moments or Laplace representation:
 - 2n-1 parameters \rightarrow minimal number of parameters,
 - hard to check the PH conditions.

One possible solution:

- Acyclic PH with canonical representation:
 - -2n-1 parameters,
 - easy to check the PH conditions,
 - but only for a subclass of PH distributions.

Fitting with PH distributions

17

Applications of Phase type distributions

Non-Markovian (non-exponential) models \rightarrow Markovian analysis (transient $p_0 e^{Q_t}$, stationary $pQ = 0, p \mathbb{1} = 1$)

- queueing models (matrix geometric methods)
- performance, performability models
- stochastic model description languages (Petri net, process algebra)

Matrix exponential distribution

T has a matrix exponential distribution is its CDF has the form

$$F(t) = 1 - \alpha e^{At} \mathbb{I}$$

where α is a row vector and A is a square matrix (without any structural restriction).

The vector matrix pair (α, A) define a distribution if $F(t) = 1 - \alpha e^{At} \mathbb{I}$ is monotone increasing.

- Easy to check necessary and sufficient conditions are not available.
- Closed form necessary and sufficient conditions are available for n = 3.

Properties of matrix exponential distributions

- rational Laplace tr.
- closed for min/max, mixture, summation, ...
- $f(t) \leq 0$
- support on $(0,\infty)$
- exponential tail decay
- $CV_{min} << \frac{1}{n}$ (n = 3: $CV_{min} \sim 1/5$, n = 15: $CV_{min} \sim 1/100$)
- $CV_{min} \leftrightarrow$ only conjectures exit

Applications of matrix exponential distributions

Non-Markovian models \rightarrow easy to compute non-Markovian analysis (transient $p_0 e^{Qt}$, stationary pQ = 0, pII = 1)

- queueing models (matrix geometric methods)
- performance, performability models
- stochastic model description languages (Petri net, process algebra)

Markov arrival process

A point process characterized by a modulating CTMC.

- D_0 : state (phase) transition rate without arrival
- D_1 : state (phase) transition rate with arrival
- D_{1ii} : arrival rate when the CTMC is in state *i*.

 $D = D_0 + D_1$ generator of the modulating CTMC. $D\mathbb{I} = 0.$

MAP: correlated arrivals

the phase distribution after an arrival depends on the previous interarrival time

 $\{N(t), J(t)\}$ is a Markov chain, where

- N(t): number of arrivals
- J(t): phase of the CTMC

Markov arrival process

Structure of the generator matrix:

On the block level it is similar to the structure of a Poisson process.

 \longrightarrow "quasi" birth process.

- the phase distribution at arrival instances form a DTMC with $P=(-D_0)^{-1}D_1$

 \longrightarrow correlated initial phase distributions,

• inter-arrival time is PH distributed with representation $(\alpha_0,D_0),$ $(\alpha_1,D_0),$ $(\alpha_2,D_0),$ \ldots

 \longrightarrow correlated inter-arrival times,

• phase process (J(t)) is a CTMC with generator $D = D_0 + D_1$

- (embedded) stationary phase distribution after an arrival π is the solution of $\pi \mathbf{P} = \pi, \pi \mathbf{I} = 1$.
- stationary inter arrival time is $PH(\pi, D_0)$.
- the stationary arrival intensity is $\lambda = \frac{1}{\pi (-D_0)^{-1} \mathbb{I}}.$

The joint pdf of X_0 and X_k is

$$f_{X_0,X_k}(x,y) = \pi e^{\mathbf{D}_0 x} \mathbf{D}_1 \mathbf{P}^{k-1} e^{\mathbf{D}_0 y} \mathbf{D}_1 \mathbb{I}.$$

Due to the Markovian behaviour of MAPs X_0 and X_k depend only via their initial states !!

Lag k joint moment (\rightarrow correlation):

$$E(X_0 X_k) = \int_{t=0}^{\infty} \int_{\tau=0}^{\infty} t \ \tau \ \pi e^{\mathbf{D}_0 t} \mathbf{D}_1 \mathbf{P}^{k-1} e^{\mathbf{D}_0 \tau} \mathbf{D}_1 \mathbb{1} d\tau \ dt$$
$$= \pi \underbrace{\int_{t=0}^{\infty} t \ e^{\mathbf{D}_0 t} \ dt}_{(-\mathbf{D}_0)^{-2}} \mathbf{D}_1 \mathbf{P}^{k-1} \underbrace{\int_{\tau=0}^{\infty} \tau \ e^{\mathbf{D}_0 \tau}}_{(-\mathbf{D}_0)^{-2}} d\tau \mathbf{D}_1 \mathbb{1}$$
$$= \pi (-\mathbf{D}_0)^{-1} \mathbf{P}^k (-\mathbf{D}_0)^{-1} \mathbb{1}$$

27

Generally for $a_0 = 0 < a_1 < a_2 < \ldots < a_k$ the joint density is:

$$f_{X_{a_0}, X_{a_1}, \dots, X_{a_k}}(x_0, x_1, \dots, x_k) =$$

= $\pi e^{\mathbf{D}_0 x_0} \mathbf{D}_1 \mathbf{P}^{a_1 - a_0 - 1} e^{\mathbf{D}_0 x_1} \mathbf{D}_1 \mathbf{P}^{a_2 - a_1 - 1} \dots e^{\mathbf{D}_0 x_k} \mathbf{D}_1 \mathbb{1}$,

and the joint moment is:

$$E(X_{a_0}^{i_0}, X_{a_1}^{i_0}, \dots, X_{a_k}^{i_0}) =$$

= $\pi i_0! (-\mathbf{D}_0)^{-i_0} \mathbf{P}^{a_1 - a_0} i_1! (-\mathbf{D}_0)^{-i_1} \mathbf{P}^{a_2 - a_1} \dots i_k! (-\mathbf{D}_0)^{-i_k} \mathbb{1}$

Batch Markov arrival process

MAP with batch arrivals

- D_0 phase transitions without arrival
- D_k phase transitions with k arrivals

 $\longrightarrow \{N(t), J(t)\}$ is still a Markov chain.

Batch Markov arrival process

Structure of the generator matrix:

	D_0	D_1	D_2	D_3	D_4
		D_{0}	D_1	D_2	D_3
$\mathbf{Q} =$			D_0	D_1	D_2
				D_{0}	D_1
					·

Properties of matrices D_k :

- \mathbf{D}_0 : $\mathbf{D}_{0ij} \ge 0$ for $i \ne j$, and $\mathbf{D}_{0ii} \le 0$
- for $k \geq 1$: $D_{kij} \geq 0$

Examples of (batch) Markov arrival processes

- bath PH renewal process: $D_0 = A$, $D_k = p_k a \alpha$.
- MMPP (Markov modulated Poisson process): $D_0 = Q - \text{diag} < \lambda >$, $D_1 = \text{diag} < \lambda >$.
- IPP (Interrupted Poisson process):

$$\mathbf{D}_0 = \boxed{\begin{array}{c|c} -\alpha - \lambda & \alpha \\ 0 & -\beta \end{array}}, \quad \mathbf{D}_1 = \boxed{\begin{array}{c|c} \lambda & 0 \\ 0 & 0 \end{array}}.$$

• batch MMPP : $\mathbf{D}_0 = \mathbf{Q} - \operatorname{diag} \langle \boldsymbol{\lambda} \rangle$, $\mathbf{D}_k = p_k \operatorname{diag} \langle \boldsymbol{\lambda} \rangle$. Examples of (batch) Markov arrival processes

- filtered MAP (arrivals discarded with probability p): $D_0 = \hat{D}_0 + p\hat{D}_1, D_1 = (1 - p)\hat{D}_1.$
- cyclicly filtered MAP (every second arrivals are discarded with probability p):

$$\mathbf{D}_{0} = \begin{bmatrix} \hat{\mathbf{D}}_{0} & 0 \\ p \hat{\mathbf{D}}_{1} & \hat{\mathbf{D}}_{0} \end{bmatrix}, \quad \mathbf{D}_{1} = \begin{bmatrix} 0 & \hat{\mathbf{D}}_{1} \\ (1-p)\hat{\mathbf{D}}_{1} & 0 \end{bmatrix}.$$

• superposition of BMAPs: $D_k = \hat{D}_k \bigoplus \tilde{D}_k,$

Kronecker product:
$$\mathbf{A} \bigotimes \mathbf{B} = \begin{bmatrix} A_{11}\mathbf{B} & \dots & A_{1n}\mathbf{B} \\ \vdots & & \vdots \\ A_{n1}\mathbf{B} & \dots & A_{nn}\mathbf{B} \end{bmatrix}$$

Kronecker sum: $A \bigoplus B = A \bigotimes I_B + I_A \bigotimes B$

Examples of (batch) Markov arrival processes

• Departure process of an M/M/1/2 queue:

• Overflow process of an M/M/1/2 queue:

	$-\lambda$	λ				
$D_0 =$	μ	$-\lambda - \mu$	λ	$D_1 =$		
		μ	$-\lambda - \mu$			λ

• Correlated inter-arrivals $(\lambda_1 \neq \lambda_2)$:

$$\mathbf{D}_0 = \boxed{\begin{array}{c|c} -\lambda_1 & \mathbf{0} \\ \mathbf{0} & -\lambda 2 \end{array}} \quad \mathbf{D}_1 = \boxed{\begin{array}{c|c} p\lambda_1 & (1-p)\lambda_1 \\ (1-p)\lambda_2 & p\lambda_2 \end{array}}$$

 $p \sim 1 \rightarrow$ positive correlated consecutive inter-arrivals $p \sim 0 \rightarrow$ negative correlated consecutive inter-arrivals

Rational arrival process

A point process with inter-arrival time X_0, X_1, \ldots is a Rational arrival process if its joint density for $a_0 = 0 < a_1 < a_2 < \ldots < a_k$ has the form:

$$f_{X_{a_0}, X_{a_1}, \dots, X_{a_k}}(x_0, x_1, \dots, x_k) =$$

= $\pi e^{\mathbf{D}_0 x_0} \mathbf{D}_1 \mathbf{P}^{a_1 - a_0 - 1} e^{\mathbf{D}_0 x_1} \mathbf{D}_1 \mathbf{P}^{a_2 - a_1 - 1} \dots e^{\mathbf{D}_0 x_k} \mathbf{D}_1 \mathbb{1}$,

The matrix pair D_0, D_1 (without any structural description) define a Rational arrival process if

 $f_{X_{a_0},X_{a_1},...,X_{a_k}}(x_0,x_1,\ldots,x_k)$

is non-negative for $\forall k, a_0 < a_1 < a_2 < \ldots < a_k, x_0, x_1, \ldots, x_k$.

Queues with PH, MAP arrival/departure

Example: PH/M/1 queue

- arrival process: $PH(\tau, T)$ renewal process (t = -TI)
- service time: exponentially distributed with parameter μ .

 $\longrightarrow \{N(t), J(t)\}$ is a Markov chain with generator

Queues with PH, MAP arrival/departure

Example: MAP/PH/1 queue

- arrival process: $MAP(D_0, D_1)$,
- service time: $PH(\tau, T)$, (t = -TI).

where $\mathbf{F} = \mathbf{D}_1 \bigotimes \mathbf{I}, \ \mathbf{L} = \mathbf{D}_0 \bigoplus \mathbf{T}, \ \mathbf{B} = \mathbf{I} \bigotimes t\tau,$ $\mathbf{F}' = \mathbf{D}_1 \bigotimes \tau, \ \mathbf{L}' = \mathbf{D}_0, \ \mathbf{B}' = \mathbf{I} \bigotimes \mathbf{T}.$

Quasi birth-death process

- N(t) is the "level" process (e.g., number of customers in a queue),
- J(t) is the "phase" process (e.g., state of the environment).

The CTMC $\{N(t), J(t)\}$ is a Quasi birth-death process if transitions are restricted to one level up or down or inside the same level.

Level 0 is irregular (e.g., no departure).

Quasi birth-death process

Structure of the transition probability matrix:

	\mathbf{L}'	\mathbf{F}			
	В	\mathbf{L}	\mathbf{F}		
$\mathbf{Q} =$		В	\mathbf{L}	\mathbf{F}	
			В	\mathbf{L}	\mathbf{F}
				·	·

On the block level it has a birth-death structure

 \longrightarrow "quasi" birth-death process.

Matrix geometric distribution

Stationary solution: $\pi \mathbf{Q} = \mathbf{0}, \ \pi \mathbb{I} = \mathbf{1}$. Partitioning π : $\pi = \{\pi_0, \pi_1, \pi_2, \ldots\}$ Decomposed stationary equations:

$$\pi_{0}\mathbf{L}' + \pi_{1}\mathbf{B} = 0$$

$$\pi_{n-1}\mathbf{F} + \pi_{n}\mathbf{L} + \pi_{n+1}\mathbf{B} = 0 \quad \forall n \ge 1$$

$$\sum_{n=0}^{\infty} \pi_{n}\mathbb{I} = 1$$
Conjecture: $\pi_{n} = \pi_{n-1}\mathbf{R} \quad \rightarrow \quad \pi_{n} = \pi_{0}\mathbf{R}^{n} \quad \text{and}$

$$\pi_{0}\mathbf{L}' + \pi_{0}\mathbf{R}\mathbf{B} = 0$$

$$\pi_{0}\mathbf{R}^{n-1}\mathbf{F} + \pi_{0}\mathbf{R}^{n}\mathbf{L} + \pi_{0}\mathbf{R}^{n+1}\mathbf{B} = 0 \quad \forall n \ge 1$$

$$\sum_{n=0}^{\infty} \pi_{0}\mathbf{R}^{n}\mathbb{I} = \pi_{0}(\mathbf{I} - \mathbf{R})^{-1}\mathbb{I} = 1$$

39

Matrix geometric distribution

The solution is defined by vector π_0 and matrix \mathbf{R} :

Matrix ${\bf R}$ is the solution of the matrix equation:

 $\mathbf{F} + \mathbf{R}\mathbf{L} + \mathbf{R}^2\mathbf{B} = \mathbf{0}$

Vector π_0 is the solution of linear system:

$$\pi_0(L' + RB) = 0$$

 $\pi_0(I - R)^{-1}I = 1$

Minimal solution of the quadratic equation

From

$$\mathbf{F} + \mathbf{R}\mathbf{L} + \mathbf{R}^2\mathbf{B} = \mathbf{0}$$

we have

 $R = F \left(-L - RB\right)^{-1}$

A simple numerical algorithm to calculate ${\bf R}:$

$$egin{aligned} \mathbf{R} &:= \mathbf{0}; \ \mathbf{R} \in \mathbf{PEAT} \ \mathbf{R}_{old} &:= \mathbf{R}; \ \mathbf{R} &:= \mathbf{F} \left(-\mathbf{L} - \mathbf{RB}
ight)^{-1}; \ \mathbf{UNTIL} ||\mathbf{R} - \mathbf{R}_{old}|| \leq \epsilon \end{aligned}$$

Performance measures

The typical performance measures can be computed in an efficient way based on the stationary distribution.

For example, the mean number of customers in the queue is

$$\sum_{i=0}^{\infty} i\pi_i \mathbb{I} = \pi_0 \sum_{i=0}^{\infty} iR^i \mathbb{I} = \pi_0 R(I-R)^{-2} \mathbb{I}$$

Queues with ME, RAP arrival/departure

Example: RAP/ME/1 queue

- arrival process: $RAP(D_0, D_1)$,
- service time: $ME(\tau, T)$, (t = -TI).

The same analysis applies as for the Markovian models!!!

Open problems

- Markovian models
 - canonical representation of the PH class
 - structural restrictions of MAPs
 - efficient PH fitting (whole PH class)
 - efficient MAP fitting
- non-Markovian models
 - efficient check if (α, A) defines an ME distribution.
 - efficient check if (D_0, D_1) defines a RAP.
 - structural restrictions of RAPs
 - ME fitting
 - RAP fitting

A wide range of complex stochastic models are composed by components which form a common stochastic model through simple interactions.

Compositional models

- describe the components $\mathcal{A}^{(i)}$ and
- composition roles the way as they form the system model $(\mathcal{A}^{(1)}\|_{\mathcal{C}}\mathcal{A}^{(2)})\|_{\mathcal{C}}\mathcal{A}^{(3)}\dots$

To avoid state space explosion the components are represented in a compact way using an equivalence relation

$$\begin{array}{ccc} \mathcal{A}^{(1)} & \thicksim & \mathcal{A}^{(1')} \\ \text{of size } m_1 & \quad \text{of size } n_1 < m_1 \end{array}$$

such that this relation is preserved during the composition components

$$\mathcal{A}^{(1)} \sim \mathcal{A}^{(1')} \quad \Rightarrow \quad \mathcal{A}^{(1)} \|_{\mathcal{C}} \mathcal{A}^{(2)} \sim \mathcal{A}^{(1')} \|_{\mathcal{C}} \mathcal{A}^{(2)}.$$

The currently applied compositional models uses

- Markovian components,
- stochastic bisimulation (different forms of lumpability) as equivalence relation ($\dot{\sim}$),
- Kronecker operators for composition of components.

The nice properties of setting are that

- the composed model is Markovian and
- the equivalence relation is preserved by composition of components.

An extension of Markovian compositional models

- non-Markovian components,
- a more general equivalence relation (similarity transformation) (\simeq) and
- the same Kronecker operators for composition of components.

The resulted compositional model

- is a non-Markovian system model, which can be computed by similar ODEs (transient) or linear system of equations (stationary) and
- the equivalence relation is preserved by composition of components.

When to use the proposed compositional model?

When $\mathcal{A}^{(1)} \stackrel{.}{\sim} \mathcal{A}^{(1')}$ of size $m_1 \rightarrow n_1$,

but $\mathcal{A}^{(1)} \simeq \mathcal{A}^{(1'')}$ of size $m_1 \rightarrow g_1 < n_1$.

Markovian components

A Markovian component is $\mathcal{A} = (\mathcal{S}, \pi, \mathbf{E}_e (e \in \mathcal{E}), \Lambda)$, where

- $\mathcal{S} = \{0, \dots, m-1\}$ is the finite state space,
- $\pi \in \mathbb{R}^{1,m}$ is the initial probability distribution,
- $\ensuremath{\mathcal{E}}$ is a finite set of events,
- $\mathbf{E}_e \in \mathbb{R}^{m,m}$ is the non-negative transition weight matrix according to event e
- $\Lambda = (\lambda_e(e \in \mathcal{E}))$ is a positive rate vector.

 ${\mathcal E}$ contains a specific event ϵ (local event of the component) that is not observable and

 $\mathcal{E}_s = \mathcal{E} \setminus \{\epsilon\}.$

Markovian components

Based on this description we define diagonal matrix

$$\mathbf{D}_e = diag(\mathbf{E}_e \mathbf{I}).$$

The generator matrix of a Markov component is

$$\mathbf{Q} = \underbrace{\lambda_{\epsilon}(\mathbf{E}_{\epsilon} - \mathbf{D}_{\epsilon})}_{\mathbf{Q}_{\epsilon}} + \sum_{e \in \mathcal{E}_{s}} \lambda_{e} \left(\mathbf{E}_{e} - \mathbf{D}_{e}\right)$$

with a unique stationary vector $\boldsymbol{\psi}$

$$\psi \mathbf{Q} = \mathbf{0}$$
 and $\psi \mathbf{I} = \mathbf{1}$.

The transient and the stationary throughput of event \boldsymbol{e} are

 $\pi e^{\mathbf{Q}t} \mathbf{D}_{e} \mathbb{I}$ and $\psi \mathbf{D}_{e} \mathbb{I}$.

51

Markovian components

The joint density for a sequence of k observations $(e_1, t_1, e_2, t_2, \ldots, e_k, t_k)$ is given by

$$f_{\mathcal{A}}(e_1, t_1, \ldots, e_k, t_k) = \pi \left(\prod_{i=1}^k e^{\mathbf{R}t_i} \lambda_{e_i} \mathbf{E}_{e_i}\right) \mathbb{I},$$

where

$$\mathbf{R} = \mathbf{Q}_{\epsilon} - \sum_{e \in \mathcal{E}_s} \lambda_e \mathbf{D}_e.$$

In case of Markov components

$$f_{\mathcal{A}}(e_1, t_1, \ldots, e_k, t_k) \geq 0$$

due to the non-negativity of π , $\mathbf{E}_e(e \in \mathcal{E})$ and Λ .

Non-Markovian components

A non-Markovian component is $\mathcal{A} = (\mathcal{S}, \pi, \mathbf{E}_e (e \in \mathcal{E}), \Lambda)$, where

- $\mathcal{S} = \{0, \dots, m-1\}$ is the finite state space,
- $\pi \in \mathbb{R}^{1,m}$ is a vector with possibly negative elements,
- \mathcal{E} is a finite set of events,
- $\mathbf{E}_e \in \mathbb{R}^{m,m}$ is the transition weight matrix according to event e with possibly negative elements,
- $\Lambda = (\lambda_e (e \in \mathcal{E}))$ is a positive rate vector.

AND

$$f_\mathcal{A}(e_1,t_1,\ldots,e_k,t_k) \geq 0$$

for every sequence of k > 0 observations $(e_1, t_1, e_2, t_2, \ldots, e_k, t_k)$.

Composition of components

To compose $\mathcal{A}^{(1)}$ and $\mathcal{A}^{(2)}$, without loss of generality, we assume that the event sets \mathcal{E} and the rate vectors Λ of length $|\mathcal{E}|$ are identical for all events.

Composition is performed over the set of signals \mathcal{E} :

- signals from $\mathcal{C}\subseteq\mathcal{E}_s$ occur as synchronized signals in both components,
- signals from $\mathcal{N} = \mathcal{E}_s \setminus \mathcal{C}$ and signal ϵ occur independently.

Composition of components

The composed model $\mathcal{A}^{(0)}=\mathcal{A}^{(1)}\|_{\mathcal{C}}\mathcal{A}^{(2)}$ is defined by

- state space $S = \{0, ..., m_1m_2 1\}$,
- vector $\pi^{(0)} = \pi^{(1)} \otimes \pi^{(2)}$.
- weight matrices

$$\mathbf{E}_{e}^{(0)} = \begin{cases} \mathbf{E}_{e}^{(1)} \oplus \mathbf{E}_{e}^{(2)} & \text{if } e \in \mathcal{N} \cup \{\epsilon\}, \\ \mathbf{E}_{e}^{(1)} \otimes \mathbf{E}_{e}^{(2)} & \text{if } e \in \mathcal{C}, \end{cases}$$

- rate vector $\Lambda = (\lambda_e (e \in \mathcal{E}))$.

Observed equivalence

Definition 1 Two components $\mathcal{A}^{(1)}$ and $\mathcal{A}^{(2)}$ observed to be equivalent, if and only if

$$f_{\mathcal{A}^{(1)}}(e_1, t_1, \dots, e_k, t_k) = f_{\mathcal{A}^{(2)}}(e_1, t_1, \dots, e_k, t_k)$$

for all k > 0, $e_i \in \mathcal{E}_s$ and $t_i > 0$.

The observable events of the components are stochastically identical.

Observed equivalence

 $\underline{\mathcal{A}^{(1)}} \sim \underline{\mathcal{A}^{(2)}}$: Two components $\mathcal{A}^{(1)}$ of size m and $\mathcal{A}^{(2)}$ of size n < m are observed equivalent if a matrix V of size $m \times n$ exists such that

-
$$V I I_n = I I_m$$
, $\pi^{(1)} V = \pi^{(2)}$,

-
$$\mathbf{R}^{(1)}\mathbf{V} = \mathbf{V}\mathbf{R}^{(2)}$$
 and $\mathbf{E}_e^{(1)}\mathbf{V} = \mathbf{V}\mathbf{E}_e^{(2)}$ for $\forall e \in \mathcal{S}$

Then

$$\begin{aligned} &f_{\mathcal{A}^{(1)}}((e_{1}, t_{1}, \dots, e_{k}, t_{k}) &= \\ &\pi^{(1)} \left(\prod_{i=1}^{k} \sum_{j=0}^{\infty} \frac{(\mathbf{R}^{(1)} t_{i})^{j}}{j!} \lambda_{e_{i}} \mathbf{E}_{e_{i}}^{(1)} \right) \mathbb{I}_{m} &= \\ &\pi^{(1)} \left(\prod_{i=1}^{k} \sum_{j=0}^{\infty} \frac{(\mathbf{R}^{(1)} t_{i})^{j}}{j!} \lambda_{e_{i}} \mathbf{E}_{e_{i}}^{(1)} \right) \mathbf{V} \mathbb{I}_{n} &= \\ &\pi^{(1)} \mathbf{V} \left(\prod_{i=1}^{k} \sum_{j=0}^{\infty} \frac{(\mathbf{R}^{(2)} t_{i})^{j}}{j!} \lambda_{e_{i}} \mathbf{E}_{e_{i}}^{(2)} \right) \mathbb{I}_{n} &= \\ &f_{\mathcal{A}^{(2)}}((e_{1}, t_{1}, \dots, e_{k}, t_{k})) . \end{aligned}$$

57

Compositional equivalence

Unfortunately, synchronized composition relates the internal (non-observable) structures of the components.

Observed equivalence is not enough for the equivalence of the composed models in case of synchronized composition.

 \downarrow

 $\underline{\mathcal{A}^{(1)}} \simeq \underline{\mathcal{A}^{(2)}}$: Two components $\mathcal{A}^{(1)}$ of size m and $\mathcal{A}^{(2)}$ of size n < m are compositional equivalent if a matrix V of size $m \times n$ exists such that

-
$$V I I_n = I I_m$$
, $\pi^{(1)} V = \pi^{(2)}$,

-
$$\mathbf{R}^{(1)}\mathbf{V} = \mathbf{V}\mathbf{R}^{(2)}$$
, $\mathbf{E}_e^{(1)}\mathbf{V} = \mathbf{V}\mathbf{E}_e^{(2)}$ for $\forall e \in \mathcal{S}$ and

- $\mathbf{D}_e^{(1)}\mathbf{V} = \mathbf{V}\mathbf{D}_e^{(2)}$ for $\forall e \in \mathcal{C}$.

 $\mathcal{A}^{(1)}{\simeq}\mathcal{A}^{(2)}$ implicitly depends on \mathcal{C} !!!!

Congruence of composition equivalence

Main Theorem: If $\mathcal{A}^{(1)} \simeq \mathcal{A}^{(2)}$, then $\mathcal{A}^{(1)} \|_{c} \mathcal{A}^{(3)} \simeq \mathcal{A}^{(2)} \|_{c} \mathcal{A}^{(3)}$ (and $\mathcal{A}^{(3)} \|_{c} \mathcal{A}^{(1)} \simeq \mathcal{A}^{(3)} \|_{c} \mathcal{A}^{(2)}$)

if the same set $\ensuremath{\mathcal{C}}$ is used.

Core of the proof:

If matrix $\mathbf{V}^{(1,2)}$ relates $\mathcal{A}^{(1)}$ and $\mathcal{A}^{(2)}$ then matrix $\mathbf{V}^{(13,23)} = \mathbf{V}^{(1,2)} \otimes \mathbf{I}_{n^{(3)}}$ relates $\mathcal{A}^{(1)} \|_{\mathcal{C}} \mathcal{A}^{(3)}$ and $\mathcal{A}^{(2)} \|_{\mathcal{C}} \mathcal{A}^{(3)}$.

A disk system

IO system proposed by Balbo, Bruell and Ghanta:

 \boldsymbol{k} disks, \boldsymbol{c} channels, \boldsymbol{n} requests

- t_a requests arrival,
- t_1 disk assignment if there is a free channel,
- t_{exp} disk operation,
- t₂ channel allocation,
- t_b data transmission.

A disk system

State space	sizes of	equivalent	representations	of the	IO	system:
-------------	----------	------------	-----------------	--------	----	---------

Parameters			State sp	ace size	5		
n	k	c	original	ordinary	weak	\sim	\simeq
4	2	1	59	27	31	27	27
4	2	2	41	23	23	23	23
4	4	1	842	47	61	43	46
4	4	2	444	45	45	43	43
8	2	1	229	101	117	101	101
8	2	2	145	77	77	77	77
8	4	1	15143	541	836	508	524
8	4	2	7779	494	494	433	433
8	6	1	326115	853	1501	738	752
8	6	2	205239	968	971	890	898
8	8	4	444496	530	528	482	482

Conclusions

• Non-exponential \neq non-solvable

matrix analytic methods

- Parameter estimation, moments matching
 - there are results,
 - but there are also several open problems.

Non-unique matrix representation.

- Model composition
 - important difference between the internal (micro view) and the external (macro view) transitions
- Efficient simulation