
Micro and Macro Views of Discrete-State Markov
Models and their Application to Efficient
Simulation with Phase-type Distributions

Philipp Reinecke, Miklós Telek, and Katinka Wolter

HP Labs, Bristol, UK and Freie Universität Berlin

BME Budapest

Newcastle University, UK and Freie Universität Berlin

August 25, 2012

Phase-Type (PH) Distributions

λ1

λ2 λ3 λ4 λ5

λ6

1 / 95

Phase-Type (PH) Distributions

λ1

λ2 λ3 λ4 λ5

λ6

A PH distribution is the distribution of the time to absorption
in a Markov chain with one absorbing state

1 / 95

Phase-Type (PH) Distributions

λ1

λ2 λ3 λ4 λ5

λ6

A PH distribution is the distribution of the time to absorption
in a Markov chain with one absorbing state

Examples:

1 / 95

Phase-Type (PH) Distributions

λ

A PH distribution is the distribution of the time to absorption
in a Markov chain with one absorbing state

Examples:

Exponential distribution

1 / 95

Phase-Type (PH) Distributions

λ1

λ2

λ3

λ4

A PH distribution is the distribution of the time to absorption
in a Markov chain with one absorbing state

Examples:

Exponential distribution
Hyperexponential distribution

1 / 95

Phase-Type (PH) Distributions

λ λ λ λ

A PH distribution is the distribution of the time to absorption
in a Markov chain with one absorbing state

Examples:

Exponential distribution
Hyperexponential distribution
Erlang distribution

1 / 95

Phase-Type (PH) Distributions

λ1 λ2 λ3 λ4

A PH distribution is the distribution of the time to absorption
in a Markov chain with one absorbing state

Examples:

Exponential distribution
Hyperexponential distribution
Erlang distribution
Hypoexponential distribution

1 / 95

PH Distributions: Notation

Size: n ≥ 1

Initial vector α = (α1, . . . , αn)

Subgenerator matrix

Q =













−λ11 λ12 . . . λ1n

λ21

. . .
...

...
λn1 . . . −λnn













Markovian representation:

α ≥ 0

α1I = 1

λii > 0, i = 1, . . . , n

λij ≥ 0, i 6= j

2 / 95

PH Distributions: Properties

Support: t ∈ [0,∞)

Density function:

f(t) = αeQt(−Q1I)

The density is strictly positive: f(t) > 0 for t > 0

Cumulative density function:

F (t) = 1 − αeQt1I

kth moment:
E[Xk] = k!α(−Q)−k1I

Bound on the squared coefficient of variation (SCV) [1]:

cv2 ≥
1

n

Equality holds for the Erlang distribution.

3 / 95

Similarity Transformations

4 / 95

Similarity Transformations

The (α,Q) representation is not unique

4 / 95

Similarity Transformations

The (α,Q) representation is not unique

Let (α,Q) be a PH distribution of size n and let S ∈ IRn×n

be non-singular and S1I = 1I.

4 / 95

Similarity Transformations

The (α,Q) representation is not unique

Let (α,Q) be a PH distribution of size n and let S ∈ IRn×n

be non-singular and S1I = 1I.

(αS,S−1QS) represents the same distribution:

4 / 95

Similarity Transformations

The (α,Q) representation is not unique

Let (α,Q) be a PH distribution of size n and let S ∈ IRn×n

be non-singular and S1I = 1I.

(αS,S−1QS) represents the same distribution:

F (t) = 1 − αSeS
−1QtS1I

4 / 95

Similarity Transformations

The (α,Q) representation is not unique

Let (α,Q) be a PH distribution of size n and let S ∈ IRn×n

be non-singular and S1I = 1I.

(αS,S−1QS) represents the same distribution:

F (t) = 1 − αSeS
−1QtS1I

= 1 − αSS−1eQtS1I

4 / 95

Similarity Transformations

The (α,Q) representation is not unique

Let (α,Q) be a PH distribution of size n and let S ∈ IRn×n

be non-singular and S1I = 1I.

(αS,S−1QS) represents the same distribution:

F (t) = 1 − αSeS
−1QtS1I

= 1 − αSS−1eQtS1I

= 1 − αeQt

Can be used to compute a new initialisation vector for a new
representation

4 / 95

Similarity Transformations

The (α,Q) representation is not unique

Let (α,Q) be a PH distribution of size n and let S ∈ IRn×n

be non-singular and S1I = 1I.

(αS,S−1QS) represents the same distribution:

F (t) = 1 − αSeS
−1QtS1I

= 1 − αSS−1eQtS1I

= 1 − αeQt

Can be used to compute a new initialisation vector for a new
representation

Solve:

Q′ = S−1QS

S1I = 1I

4 / 95

General PH distributions

λ1

λ2 λ3 λ4 λ5

λ6

5 / 95

General PH distributions

λ1

λ2 λ3 λ4 λ5

λ6

General PH distributions may have cycles

5 / 95

General PH distributions

λ1

λ2 λ3 λ4 λ5

λ6

General PH distributions may have cycles

Every general PH distribution has a monocyclic
representation [11]

5 / 95

General PH distributions

λ1 λ2 λ2 (1 − z2)λ2

z2λ2

General PH distributions may have cycles

Every general PH distribution has a monocyclic
representation [11]

Monocyclic representation: Feedback-Erlang blocks on the
diagonal, ordered by dominant eigenvalues

5 / 95

General PH distributions

λ1 λ2 λ2 (1 − z2)λ2

z2λ2

General PH distributions may have cycles

Every general PH distribution has a monocyclic
representation [11]

Monocyclic representation: Feedback-Erlang blocks on the
diagonal, ordered by dominant eigenvalues

Representation: Feedback blocks
Υ = ((b1, z1, λ1), . . . , (bm, zm, λm)), initial vector
α = (α1, . . . , αn)

5 / 95

Acyclic Phase-type distributions

λ1

λ2 λ3 λ4 λ5

λ6

6 / 95

Acyclic Phase-type distributions

λ1

λ2 λ3 λ4 λ5

λ6

Acyclic PH distributions (ACPH) have a representation
without cycles

6 / 95

Acyclic Phase-type distributions

λ1

λ2 λ3 λ4 λ5

λ6

Acyclic PH distributions (ACPH) have a representation
without cycles

CF-1: Every acyclic PH distribution has a bi-diagonal
representation of the same size [6]

6 / 95

Acyclic Phase-type distributions

λ1 λ2 λ3 λ4

Acyclic PH distributions (ACPH) have a representation
without cycles

CF-1: Every acyclic PH distribution has a bi-diagonal
representation of the same size [6]

Phase-type in CF-1 form: n rates λ1 ≤ · · · ≤ λn, n initial
probabilities α = (α1, . . . , αn).

6 / 95

Acyclic Phase-type distributions

λ1 λ2 λ3 λ4

Acyclic PH distributions (ACPH) have a representation
without cycles

CF-1: Every acyclic PH distribution has a bi-diagonal
representation of the same size [6]

Phase-type in CF-1 form: n rates λ1 ≤ · · · ≤ λn, n initial
probabilities α = (α1, . . . , αn).

Representation: Rate vector Λ = (λ1, . . . , λn), initial vector
α = (α1, . . . , αn)

6 / 95

PH-Distributions in System Evaluation

7 / 95

PH-Distributions in System Evaluation

Use PH distributions to model delays, response-times,
failure-times, etc. in test-beds, simulations, and abstract
models

7 / 95

PH-Distributions in System Evaluation

Use PH distributions to model delays, response-times,
failure-times, etc. in test-beds, simulations, and abstract
models

Approach:

Obtain samples from measurements or simulation
Fit PH distribution to samples
Draw random variates from PH distribution

7 / 95

PH-Distributions in System Evaluation

Use PH distributions to model delays, response-times,
failure-times, etc. in test-beds, simulations, and abstract
models

Approach:

Obtain samples from measurements or simulation
Fit PH distribution to samples
Draw random variates from PH distribution

Advantages over other distributions:

7 / 95

PH-Distributions in System Evaluation

Use PH distributions to model delays, response-times,
failure-times, etc. in test-beds, simulations, and abstract
models

Approach:

Obtain samples from measurements or simulation
Fit PH distribution to samples
Draw random variates from PH distribution

Advantages over other distributions:

Flexibility → Capture important system properties by fitting
PH distributions to measurements

7 / 95

PH-Distributions in System Evaluation

Use PH distributions to model delays, response-times,
failure-times, etc. in test-beds, simulations, and abstract
models

Approach:

Obtain samples from measurements or simulation
Fit PH distribution to samples
Draw random variates from PH distribution

Advantages over other distributions:

Flexibility → Capture important system properties by fitting
PH distributions to measurements
Generic representations → Catch-all routines for
random-variate generation

7 / 95

PH-Distributions in System Evaluation

Use PH distributions to model delays, response-times,
failure-times, etc. in test-beds, simulations, and abstract
models

Approach:

Obtain samples from measurements or simulation
Fit PH distribution to samples
Draw random variates from PH distribution

Advantages over other distributions:

Flexibility → Capture important system properties by fitting
PH distributions to measurements
Generic representations → Catch-all routines for
random-variate generation
Markovian representations → Suitable for analytical approaches

7 / 95

Frequency-Synchronisation in Mobile Backhaul Networks

8 / 95

Frequency-Synchronisation in Mobile Backhaul Networks

Network service providers need guarantees in order to provide
services, e.g. on frequency synchronisation of base-stations

8 / 95

Frequency-Synchronisation in Mobile Backhaul Networks

Network service providers need guarantees in order to provide
services, e.g. on frequency synchronisation of base-stations

Bit-synchronous connection networks are being replaced by
packet-switched networks

8 / 95

Frequency-Synchronisation in Mobile Backhaul Networks

Network service providers need guarantees in order to provide
services, e.g. on frequency synchronisation of base-stations

Bit-synchronous connection networks are being replaced by
packet-switched networks

8 / 95

Frequency-Synchronisation in Mobile Backhaul Networks

Network service providers need guarantees in order to provide
services, e.g. on frequency synchronisation of base-stations

Bit-synchronous connection networks are being replaced by
packet-switched networks

8 / 95

Frequency-Synchronisation in Mobile Backhaul Networks

PTP Master

PTP Slave
PTD PTD PTD

Network service providers need guarantees in order to provide
services, e.g. on frequency synchronisation of base-stations

Bit-synchronous connection networks are being replaced by
packet-switched networks

Precision Time Protocol (PTP) provides frequency
synchronisation

8 / 95

Frequency-Synchronisation in Mobile Backhaul Networks

PTP Master

PTP Slave
PTD PTD PTD

Network service providers need guarantees in order to provide
services, e.g. on frequency synchronisation of base-stations

Bit-synchronous connection networks are being replaced by
packet-switched networks

Precision Time Protocol (PTP) provides frequency
synchronisation

PTP cannot tolerate packet-delay variation (PDV) above
216µs

8 / 95

Frequency-Synchronisation in Mobile Backhaul Networks

Network service providers need guarantees in order to provide
services, e.g. on frequency synchronisation of base-stations

Bit-synchronous connection networks are being replaced by
packet-switched networks

Precision Time Protocol (PTP) provides frequency
synchronisation

PTP cannot tolerate packet-delay variation (PDV) above
216µs

Will PTP work?
8 / 95

Precision Time Protocol (PTP)

PTP Master

PTP Slave

9 / 95

Precision Time Protocol (PTP)

PTP Master

PTP Slave

PTP Master transmits Sync packets at clock steps

9 / 95

Precision Time Protocol (PTP)

PTP Master

PTP Slave

PTP Master transmits Sync packets at clock steps

PTP Slave derives clock frequency from the interarrival-times
of the fastest packets (1% quantile)

9 / 95

Precision Time Protocol (PTP)

PTP Master

PTP Slave

PTP Master transmits Sync packets at clock steps

PTP Slave derives clock frequency from the interarrival-times
of the fastest packets (1% quantile)

Constant delays do not matter

9 / 95

Precision Time Protocol (PTP)

PTP Master

PTP Slave

PTP Master transmits Sync packets at clock steps

PTP Slave derives clock frequency from the interarrival-times
of the fastest packets (1% quantile)

Constant delays do not matter

9 / 95

Precision Time Protocol (PTP)

PTP Master

PTP Slave

PTP Master transmits Sync packets at clock steps

PTP Slave derives clock frequency from the interarrival-times
of the fastest packets (1% quantile)

Constant delays do not matter

. . . but variation does

9 / 95

Precision Time Protocol (PTP)

PTP Master

PTP Slave

PTP Master transmits Sync packets at clock steps

PTP Slave derives clock frequency from the interarrival-times
of the fastest packets (1% quantile)

Constant delays do not matter

. . . but variation does

9 / 95

Precision Time Protocol (PTP)

PTP Master

PTP Slave
PTD PTD PTD

PTP Master transmits Sync packets at clock steps

PTP Slave derives clock frequency from the interarrival-times
of the fastest packets (1% quantile)

Constant delays do not matter

. . . but variation does

9 / 95

Precision Time Protocol (PTP)

PTP Master

PTP Slave
PTD PTD PTD

PTP Master transmits Sync packets at clock steps

PTP Slave derives clock frequency from the interarrival-times
of the fastest packets (1% quantile)

Constant delays do not matter

. . . but variation does
Metrics:

9 / 95

Precision Time Protocol (PTP)

PTP Master

PTP Slave
PTD PTD PTD

PTP Master transmits Sync packets at clock steps

PTP Slave derives clock frequency from the interarrival-times
of the fastest packets (1% quantile)

Constant delays do not matter

. . . but variation does
Metrics:

PDV: PDV = PTD − PTDmin

9 / 95

Precision Time Protocol (PTP)

PTP Master

PTP Slave
PTD PTD PTD

PTP Master transmits Sync packets at clock steps

PTP Slave derives clock frequency from the interarrival-times
of the fastest packets (1% quantile)

Constant delays do not matter

. . . but variation does
Metrics:

PDV: PDV = PTD − PTDmin

Peak-to-Peak PDV: p2pPDV = PTDmax − PTDmin

9 / 95

Precision Time Protocol (PTP)

PTP Master

PTP Slave
PTD PTD PTD

PTP Master transmits Sync packets at clock steps

PTP Slave derives clock frequency from the interarrival-times
of the fastest packets (1% quantile)

Constant delays do not matter

. . . but variation does
Metrics:

PDV: PDV = PTD − PTDmin

Peak-to-Peak PDV: p2pPDV = PTDmax − PTDmin

1% quantile of PDV

9 / 95

Insights in PTP analysis

Delay variation is highest for fast links and small PTP packets

10 / 95

Insights in PTP analysis

Delay variation is highest for fast links and small PTP packets

Delay variation is lower the slower the links,

10 / 95

Insights in PTP analysis

Delay variation is highest for fast links and small PTP packets

Delay variation is lower the slower the links, more important:

10 / 95

Insights in PTP analysis

Delay variation is highest for fast links and small PTP packets

Delay variation is lower the slower the links, more important:

PDV can be minimised by increasing PTP packet size

10 / 95

Simulation for Mobile Backhaul Network Evaluation

Discrete-event simulations using ns-2

11 / 95

Simulation for Mobile Backhaul Network Evaluation

Discrete-event simulations using ns-2
Highly-detailed models for typical network equipment

11 / 95

Simulation for Mobile Backhaul Network Evaluation

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 80 85 90 95 100 105 110

tim
e

(m
ic

ro
-s

ec
on

ds
)

background load

Model without transmit FIFO buffer

Model with transmit FIFO buffer

Model with transmit FIFO buffer and
 leaky-bucket egress shaper

Discrete-event simulations using ns-2
Highly-detailed models for typical network equipment
Simplified simulation skips important effects

11 / 95

Simulation for Mobile Backhaul Network Evaluation

Flow NFlow 1 Flow 2 Flow 3

Foreground packet flow
(PTP Sync messages)

Background traffic flows

Discrete-event simulations using ns-2
Highly-detailed models for typical network equipment
Simplified simulation skips important effects
Consider independent background traffic

11 / 95

Simulation for Mobile Backhaul Network Evaluation

Flow 1

Foreground packet flow
(PTP Sync messages)

Background traffic flows

Discrete-event simulations using ns-2
Highly-detailed models for typical network equipment
Simplified simulation skips important effects
Consider independent background traffic
10 000 PTP packets ⇔ 312.5 s simulated time (32 PTP
packets per second)
One link ⇒ 1883.25 s runtime

11 / 95

Simulation for Mobile Backhaul Network Evaluation

Flow 1 Flow 2

Foreground packet flow
(PTP Sync messages)

Background traffic flows

Discrete-event simulations using ns-2
Highly-detailed models for typical network equipment
Simplified simulation skips important effects
Consider independent background traffic
10 000 PTP packets ⇔ 312.5 s simulated time (32 PTP
packets per second)
One link ⇒ 1883.25 s runtime
2 links = 3815.63s,

11 / 95

Simulation for Mobile Backhaul Network Evaluation

Flow 1 Flow 2 Flow 3

Foreground packet flow
(PTP Sync messages)

Background traffic flows

Discrete-event simulations using ns-2
Highly-detailed models for typical network equipment
Simplified simulation skips important effects
Consider independent background traffic
10 000 PTP packets ⇔ 312.5 s simulated time (32 PTP
packets per second)
One link ⇒ 1883.25 s runtime
2 links = 3815.63s, 3 links = 5822.63s,

11 / 95

Simulation for Mobile Backhaul Network Evaluation

Flow 1 Flow 2 Flow 3

Foreground packet flow
(PTP Sync messages)

Background traffic flows
Flow 4

Discrete-event simulations using ns-2
Highly-detailed models for typical network equipment
Simplified simulation skips important effects
Consider independent background traffic
10 000 PTP packets ⇔ 312.5 s simulated time (32 PTP
packets per second)
One link ⇒ 1883.25 s runtime
2 links = 3815.63s, 3 links = 5822.63s, 4 links = 7516.72s,

11 / 95

Simulation for Mobile Backhaul Network Evaluation

Flow 1 Flow 2 Flow 3

Foreground packet flow
(PTP Sync messages)

Background traffic flows
Flow 4 Flow 5

Discrete-event simulations using ns-2
Highly-detailed models for typical network equipment
Simplified simulation skips important effects
Consider independent background traffic
10 000 PTP packets ⇔ 312.5 s simulated time (32 PTP
packets per second)
One link ⇒ 1883.25 s runtime
2 links = 3815.63s, 3 links = 5822.63s, 4 links = 7516.72s,
5 links = 9718.97s,

11 / 95

Simulation for Mobile Backhaul Network Evaluation

Flow 10Flow 1 Flow 2 Flow 3

Foreground packet flow
(PTP Sync messages)

Background traffic flows
Flow 4 Flow 5

Discrete-event simulations using ns-2
Highly-detailed models for typical network equipment
Simplified simulation skips important effects
Consider independent background traffic
10 000 PTP packets ⇔ 312.5 s simulated time (32 PTP
packets per second)
One link ⇒ 1883.25 s runtime
2 links = 3815.63s, 3 links = 5822.63s, 4 links = 7516.72s,
5 links = 9718.97s, 10 links = 19,616.97s,

11 / 95

Simulation for Mobile Backhaul Network Evaluation

Flow 10Flow 1 Flow 2 Flow 3

Foreground packet flow
(PTP Sync messages)

Background traffic flows
Flow 20Flow 4 Flow 5

Discrete-event simulations using ns-2
Highly-detailed models for typical network equipment
Simplified simulation skips important effects
Consider independent background traffic
10 000 PTP packets ⇔ 312.5 s simulated time (32 PTP
packets per second)
One link ⇒ 1883.25 s runtime
2 links = 3815.63s, 3 links = 5822.63s, 4 links = 7516.72s,
5 links = 9718.97s, 10 links = 19,616.97s, 20 links 36,519.38s.

11 / 95

Simulation for Mobile Backhaul Network Evaluation

Flow 10Flow 1 Flow 2 Flow 3

Foreground packet flow
(PTP Sync messages)

Background traffic flows
Flow 20Flow 4 Flow 5

Discrete-event simulations using ns-2
Highly-detailed models for typical network equipment
Simplified simulation skips important effects
Consider independent background traffic
10 000 PTP packets ⇔ 312.5 s simulated time (32 PTP
packets per second)
One link ⇒ 1883.25 s runtime
2 links = 3815.63s, 3 links = 5822.63s, 4 links = 7516.72s,
5 links = 9718.97s, 10 links = 19,616.97s, 20 links 36,519.38s.
Drawback: Simulation-times become prohibitively large

11 / 95

Simulation for Mobile Backhaul Network Evaluation

Discrete-event simulations using ns-2
Highly-detailed models for typical network equipment
Simplified simulation skips important effects
Consider independent background traffic
10 000 PTP packets ⇔ 312.5 s simulated time (32 PTP
packets per second)
One link ⇒ 1883.25 s runtime
2 links = 3815.63s, 3 links = 5822.63s, 4 links = 7516.72s,
5 links = 9718.97s, 10 links = 19,616.97s, 20 links 36,519.38s.
Drawback: Simulation-times become prohibitively large

Solution: Approximate delay distributions of complex nodes
11 / 95

Highly-detailed Simulation

0 2000 4000 6000 8000 10000 12000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PTD (ns)

F
n(

x)

Detailed Simulation
Approximating PH distribution

Flow 1

Foreground packet flow
(PTP Sync messages)

Background traffic flows

Fit one link result using PhFit. Important feature: 1%quantile

12 / 95

Highly-detailed Simulation

50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PTD (ns)

F
n(

x)

Detailed Simulation
PH Approximation

Flow 10Flow 1 Flow 2 Flow 3

Foreground packet flow
(PTP Sync messages)

Background traffic flows
Flow 20Flow 4 Flow 5

Fit one link result using PhFit. Important feature: 1%quantile
Use 20 PH RVs. Result still good for low quantiles

12 / 95

Highly-detailed Simulation

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20

T
im

e
(n

an
o-

se
co

nd
s)

Number of network links

PDV (simulation)
PDV (PH approximation)

absolute PDV error
relative PDV error

Fit one link result using PhFit. Important feature: 1%quantile
Use 20 PH RVs. Result still good for low quantiles

Error reasonably small

12 / 95

Highly-detailed Simulation

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20

T
im

e
(s

ec
on

ds
)

Number of network links

Runtime (simulation)
Runtime (PH approximation)

Fit one link result using PhFit. Important feature: 1%quantile
Use 20 PH RVs. Result still good for low quantiles

Error reasonably small
Run time reduced by 2-3 orders of magnitude, analytical
folding might achieve more.

12 / 95

The Libphprng Library

13 / 95

The Libphprng Library

A library for generating random variates from PH distributions

13 / 95

The Libphprng Library

A library for generating random variates from PH distributions

Part of the Butools collection
http://webspn.hit.bme.hu/~butools

13 / 95

http://webspn.hit.bme.hu/~butools

The Libphprng Library

A library for generating random variates from PH distributions

Part of the Butools collection
http://webspn.hit.bme.hu/~butools

Advantages:

13 / 95

http://webspn.hit.bme.hu/~butools

The Libphprng Library

A library for generating random variates from PH distributions

Part of the Butools collection
http://webspn.hit.bme.hu/~butools

Advantages:

easy to use

13 / 95

http://webspn.hit.bme.hu/~butools

The Libphprng Library

A library for generating random variates from PH distributions

Part of the Butools collection
http://webspn.hit.bme.hu/~butools

Advantages:

easy to use
portable between simulators

13 / 95

http://webspn.hit.bme.hu/~butools

The Libphprng Library

A library for generating random variates from PH distributions

Part of the Butools collection
http://webspn.hit.bme.hu/~butools

Advantages:

easy to use
portable between simulators
fast

13 / 95

http://webspn.hit.bme.hu/~butools

Libphprng Features

14 / 95

Libphprng Features

RandomSourceWrapper
Uniform Random

Source

Simulation Codelibphprng Core BuToolsGenerator

Shared library with small wrapper code for the uniform
random number stream

14 / 95

Libphprng Features

RandomSourceWrapper
Uniform Random

Source

Simulation Codelibphprng Core BuToolsGenerator

Shared library with small wrapper code for the uniform
random number stream

Libphprng implements efficient algorithms and optimises the
structure for random-variate generation

14 / 95

Libphprng Application

Link simulator code with libphprng.so

Changes to the code:

15 / 95

Libphprng Application

Link simulator code with libphprng.so

Changes to the code:

1 Create BuToolsGenerator object for the distribution

15 / 95

Libphprng Application

Link simulator code with libphprng.so

Changes to the code:

1 Create BuToolsGenerator object for the distribution
2 Register uniform random number stream

15 / 95

Libphprng Application

Link simulator code with libphprng.so

Changes to the code:

1 Create BuToolsGenerator object for the distribution
2 Register uniform random number stream
3 Draw random variates

Wrappers exist for NS-2 and OMNeT++

For other simulators: Write your own wrapper

15 / 95

Wrapper implementation

Implement UniformRandomSourceWrapper interface

Class must implement a method that returns a uniform
random number in (0, 1) drawn using the simulator’s random
number stream

16 / 95

Summary

Phase-type distributions enable efficient simulation

Several tools exist for PH fitting:

PhFit
G-FIT
Hyper-*

The libphprng library allows integration of PH distributions
into simulation

17 / 95

The Magic Behind the Scenes

Fitting phase-type distributions to data sets

Analytical evaluation using phase-type distributions

Generating random variates from phase-type distributions

18 / 95

PH Fitting: General problem

19 / 95

PH Fitting: General problem

Find a Markovian tuple (α,Q) that describes the distribution
of the data well

19 / 95

PH Fitting: General problem

Find a Markovian tuple (α,Q) that describes the distribution
of the data well

Different criteria may be applied

19 / 95

PH Fitting: General problem

Find a Markovian tuple (α,Q) that describes the distribution
of the data well

Different criteria may be applied

Special structures of (α,Q). . .

19 / 95

PH Fitting: General problem

Find a Markovian tuple (α,Q) that describes the distribution
of the data well

Different criteria may be applied

Special structures of (α,Q). . .

may reduce fitting to sub-classes

19 / 95

PH Fitting: General problem

Find a Markovian tuple (α,Q) that describes the distribution
of the data well

Different criteria may be applied

Special structures of (α,Q). . .

may reduce fitting to sub-classes
may improve fitting efficiency and fitting quality

19 / 95

PH Fitting: General problem

Find a Markovian tuple (α,Q) that describes the distribution
of the data well

Different criteria may be applied

Special structures of (α,Q). . .

may reduce fitting to sub-classes
may improve fitting efficiency and fitting quality
may enable more efficient evaluation

19 / 95

PH Fitting: General problem

Find a Markovian tuple (α,Q) that describes the distribution
of the data well

Different criteria may be applied

Special structures of (α,Q). . .

may reduce fitting to sub-classes
may improve fitting efficiency and fitting quality
may enable more efficient evaluation

Many approaches exist

19 / 95

Approaches

20 / 95

Approaches

Moment-matching: Match moments of the PH to empirical
moments

20 / 95

Approaches

Moment-matching: Match moments of the PH to empirical
moments

Expectation-Maximisation (EM): Maximise (log-)likelihood

20 / 95

Approaches

Moment-matching: Match moments of the PH to empirical
moments

Expectation-Maximisation (EM): Maximise (log-)likelihood

Optimisation: Minimise a distance function

20 / 95

Approaches

Moment-matching: Match moments of the PH to empirical
moments

Expectation-Maximisation (EM): Maximise (log-)likelihood

Optimisation: Minimise a distance function

Splitting the data set: break up the data set, then fit with
simpler distributions

20 / 95

Moment-Matching

21 / 95

Moment-Matching

Derive parameters from explicit expressions for the moments:

E
[

Xk
]

= k!α(−Q)−k1I.

21 / 95

Moment-Matching

Derive parameters from explicit expressions for the moments:

E
[

Xk
]

= k!α(−Q)−k1I.

Examples:

21 / 95

Moment-Matching

Derive parameters from explicit expressions for the moments:

E
[

Xk
]

= k!α(−Q)−k1I.

Examples:

[19]: Match first three moments with an APH(2)

21 / 95

Moment-Matching

Derive parameters from explicit expressions for the moments:

E
[

Xk
]

= k!α(−Q)−k1I.

Examples:

[19]: Match first three moments with an APH(2)
[7]: Match first five moments with PH(3)

21 / 95

Moment-Matching

Derive parameters from explicit expressions for the moments:

E
[

Xk
]

= k!α(−Q)−k1I.

Examples:

[19]: Match first three moments with an APH(2)
[7]: Match first five moments with PH(3)
[5]: Uses moment-matching in MAP matching

21 / 95

Example: Moment-Matching for APH(2) [19]

22 / 95

Example: Moment-Matching for APH(2) [19]

Use canonical form:

α = (α, 1 − α)

Q =

(

−λ1 λ1

0 −λ2

)

22 / 95

Example: Moment-Matching for APH(2) [19]

Use canonical form:

α = (α, 1 − α)

Q =

(

−λ1 λ1

0 −λ2

)

Explicit expressions for the moments:

m1 =
λ1 + αλ2

λ1λ2

m2 =
2(λ2

1 + αλ1λ2 + αλ2
2)

λ2
1
λ2

2

m3 =
6(λ3

1 + αλ2
1 + αλ1λ

2
2 + αλ3

2)

λ3
1
λ3

2

22 / 95

Example: Moment-Matching for APH(2) [19]

Use canonical form:

α = (α, 1 − α)

Q =

(

−λ1 λ1

0 −λ2

)

Explicit expressions for the moments:

m1 =
λ1 + αλ2

λ1λ2

m2 =
2(λ2

1 + αλ1λ2 + αλ2
2)

λ2
1
λ2

2

m3 =
6(λ3

1 + αλ2
1 + αλ1λ

2
2 + αλ3

2)

λ3
1
λ3

2

Compute empirical moments of the data set

22 / 95

Example: Moment-Matching for APH(2) [19]

Use canonical form:

α = (α, 1 − α)

Q =

(

−λ1 λ1

0 −λ2

)

Explicit expressions for the moments:

m1 =
λ1 + αλ2

λ1λ2

m2 =
2(λ2

1 + αλ1λ2 + αλ2
2)

λ2
1
λ2

2

m3 =
6(λ3

1 + αλ2
1 + αλ1λ

2
2 + αλ3

2)

λ3
1
λ3

2

Compute empirical moments of the data set
Set parameters using the explict expressions

22 / 95

Moment-Matching

23 / 95

Moment-Matching

Advantages:

23 / 95

Moment-Matching

Advantages:

Fast

23 / 95

Moment-Matching

Advantages:

Fast
Exact match possible

23 / 95

Moment-Matching

Advantages:

Fast
Exact match possible

Disadvantages:

23 / 95

Moment-Matching

Advantages:

Fast
Exact match possible

Disadvantages:

Only matches moments; shape can differ significantly

23 / 95

Moment-Matching

Advantages:

Fast
Exact match possible

Disadvantages:

Only matches moments; shape can differ significantly
Exact match is only possible if the moments are within the
bounds of the selected sub-class. E.g. PH(2) cannot match
data sets with cv2 < 1

2 [1] (approximate matching may be
used)

23 / 95

Expectation-Maximisation

24 / 95

Expectation-Maximisation

Let θ be the parameters of a phase-type distribution

24 / 95

Expectation-Maximisation

Let θ be the parameters of a phase-type distribution

Maximise likelihood
∏

fθ(ti) or log-likelihood ln
∑

fθ(ti)

24 / 95

Expectation-Maximisation

Let θ be the parameters of a phase-type distribution

Maximise likelihood
∏

fθ(ti) or log-likelihood ln
∑

fθ(ti)

Steps:

24 / 95

Expectation-Maximisation

Let θ be the parameters of a phase-type distribution

Maximise likelihood
∏

fθ(ti) or log-likelihood ln
∑

fθ(ti)

Steps:

Estimate unknown parameters

24 / 95

Expectation-Maximisation

Let θ be the parameters of a phase-type distribution

Maximise likelihood
∏

fθ(ti) or log-likelihood ln
∑

fθ(ti)

Steps:

Estimate unknown parameters
Compute new parameter vector θ to maximise likelihood

24 / 95

Expectation-Maximisation

Let θ be the parameters of a phase-type distribution

Maximise likelihood
∏

fθ(ti) or log-likelihood ln
∑

fθ(ti)

Steps:

Estimate unknown parameters
Compute new parameter vector θ to maximise likelihood

Examples:

24 / 95

Expectation-Maximisation

Let θ be the parameters of a phase-type distribution

Maximise likelihood
∏

fθ(ti) or log-likelihood ln
∑

fθ(ti)

Steps:

Estimate unknown parameters
Compute new parameter vector θ to maximise likelihood

Examples:

G-FIT [20]: Fit Hyper-Erlang distributions

24 / 95

Expectation-Maximisation

Let θ be the parameters of a phase-type distribution

Maximise likelihood
∏

fθ(ti) or log-likelihood ln
∑

fθ(ti)

Steps:

Estimate unknown parameters
Compute new parameter vector θ to maximise likelihood

Examples:

G-FIT [20]: Fit Hyper-Erlang distributions
EMPHT [2]: Fit general PH distributions

24 / 95

EM-Algorithm in G-FIT

25 / 95

EM-Algorithm in G-FIT

G-FIT [20] fits Hyper-Erlang distributions

25 / 95

EM-Algorithm in G-FIT

G-FIT [20] fits Hyper-Erlang distributions

Parameters of Hyper-Erlang distributions:

25 / 95

EM-Algorithm in G-FIT

G-FIT [20] fits Hyper-Erlang distributions

Parameters of Hyper-Erlang distributions:

Number of branches m

25 / 95

EM-Algorithm in G-FIT

G-FIT [20] fits Hyper-Erlang distributions

Parameters of Hyper-Erlang distributions:

Number of branches m
Branch lengths b1, . . . , bm

25 / 95

EM-Algorithm in G-FIT

G-FIT [20] fits Hyper-Erlang distributions

Parameters of Hyper-Erlang distributions:

Number of branches m
Branch lengths b1, . . . , bm

Branch probabilities β1, . . . , βm

25 / 95

EM-Algorithm in G-FIT

G-FIT [20] fits Hyper-Erlang distributions

Parameters of Hyper-Erlang distributions:

Number of branches m
Branch lengths b1, . . . , bm

Branch probabilities β1, . . . , βm

Branch rates λ1, . . . , λm

25 / 95

EM-Algorithm in G-FIT

G-FIT [20] fits Hyper-Erlang distributions

Parameters of Hyper-Erlang distributions:

Number of branches m
Branch lengths b1, . . . , bm

Branch probabilities β1, . . . , βm

Branch rates λ1, . . . , λm

Selection of m and b1, . . . , bm:

25 / 95

EM-Algorithm in G-FIT

G-FIT [20] fits Hyper-Erlang distributions

Parameters of Hyper-Erlang distributions:

Number of branches m
Branch lengths b1, . . . , bm

Branch probabilities β1, . . . , βm

Branch rates λ1, . . . , λm

Selection of m and b1, . . . , bm:

Manual

25 / 95

EM-Algorithm in G-FIT

G-FIT [20] fits Hyper-Erlang distributions

Parameters of Hyper-Erlang distributions:

Number of branches m
Branch lengths b1, . . . , bm

Branch probabilities β1, . . . , βm

Branch rates λ1, . . . , λm

Selection of m and b1, . . . , bm:

Manual
Automatic (enumeration)

25 / 95

EM-Algorithm in G-FIT

G-FIT [20] fits Hyper-Erlang distributions

Parameters of Hyper-Erlang distributions:

Number of branches m
Branch lengths b1, . . . , bm

Branch probabilities β1, . . . , βm

Branch rates λ1, . . . , λm

Selection of m and b1, . . . , bm:

Manual
Automatic (enumeration)

β1, . . . , βm and λ1, . . . , λm fitted by EM algorithm

25 / 95

EM-Algorithm in G-FIT

26 / 95

EM-Algorithm in G-FIT

Fix number of branches m and branch lengths b1, . . . , bm.

26 / 95

EM-Algorithm in G-FIT

Fix number of branches m and branch lengths b1, . . . , bm.
Choose initial parameters θ̂ = (β̂1, . . . , β̂m, λ̂1, . . . , λ̂m)

26 / 95

EM-Algorithm in G-FIT

Fix number of branches m and branch lengths b1, . . . , bm.
Choose initial parameters θ̂ = (β̂1, . . . , β̂m, λ̂1, . . . , λ̂m)
(E-Step): Estimate probability of sample assignments to
branches

q(i|xk, θ̂) :=
β̂ifi(xk|λ̂i)

∑m
i=1

β̂ifi(xk|λ̂i)

26 / 95

EM-Algorithm in G-FIT

Fix number of branches m and branch lengths b1, . . . , bm.
Choose initial parameters θ̂ = (β̂1, . . . , β̂m, λ̂1, . . . , λ̂m)
(E-Step): Estimate probability of sample assignments to
branches

q(i|xk, θ̂) :=
β̂ifi(xk|λ̂i)

∑m
i=1

β̂ifi(xk|λ̂i)

(M-Step): Compute new parameter vector θ that maximises
the log-likelihood:

26 / 95

EM-Algorithm in G-FIT

Fix number of branches m and branch lengths b1, . . . , bm.
Choose initial parameters θ̂ = (β̂1, . . . , β̂m, λ̂1, . . . , λ̂m)
(E-Step): Estimate probability of sample assignments to
branches

q(i|xk, θ̂) :=
β̂ifi(xk|λ̂i)

∑m
i=1

β̂ifi(xk|λ̂i)

(M-Step): Compute new parameter vector θ that maximises
the log-likelihood:

βi :=
1

K

K
∑

k=1

q(i|xk, θ̂) (1)

λi := bi

∑K
k=1

q(i|xk, θ̂)
∑K

k=1
(q(i|xk, θ̂)xk)

(2)

26 / 95

EM-Algorithm in G-FIT

Fix number of branches m and branch lengths b1, . . . , bm.
Choose initial parameters θ̂ = (β̂1, . . . , β̂m, λ̂1, . . . , λ̂m)
(E-Step): Estimate probability of sample assignments to
branches

q(i|xk, θ̂) :=
β̂ifi(xk|λ̂i)

∑m
i=1

β̂ifi(xk|λ̂i)

(M-Step): Compute new parameter vector θ that maximises
the log-likelihood:

βi :=
1

K

K
∑

k=1

q(i|xk, θ̂) (1)

λi := bi

∑K
k=1

q(i|xk, θ̂)
∑K

k=1
(q(i|xk, θ̂)xk)

(2)

Replace old parameter vector: θ̂ := θ

26 / 95

EM-Algorithm in G-FIT

Fix number of branches m and branch lengths b1, . . . , bm.
Choose initial parameters θ̂ = (β̂1, . . . , β̂m, λ̂1, . . . , λ̂m)
(E-Step): Estimate probability of sample assignments to
branches

q(i|xk, θ̂) :=
β̂ifi(xk|λ̂i)

∑m
i=1

β̂ifi(xk|λ̂i)

(M-Step): Compute new parameter vector θ that maximises
the log-likelihood:

βi :=
1

K

K
∑

k=1

q(i|xk, θ̂) (1)

λi := bi

∑K
k=1

q(i|xk, θ̂)
∑K

k=1
(q(i|xk, θ̂)xk)

(2)

Replace old parameter vector: θ̂ := θ

Repeat until convergence occurs 26 / 95

EM-Algorithm in G-FIT

27 / 95

EM-Algorithm in G-FIT

Advantages:

27 / 95

EM-Algorithm in G-FIT

Advantages:

Fast fitting, easy to automate

27 / 95

EM-Algorithm in G-FIT

Advantages:

Fast fitting, easy to automate
Little configuration required for good results

27 / 95

EM-Algorithm in G-FIT

Advantages:

Fast fitting, easy to automate
Little configuration required for good results
Well-suited for simulation

27 / 95

EM-Algorithm in G-FIT

Advantages:

Fast fitting, easy to automate
Little configuration required for good results
Well-suited for simulation

Disadvantages:

27 / 95

EM-Algorithm in G-FIT

Advantages:

Fast fitting, easy to automate
Little configuration required for good results
Well-suited for simulation

Disadvantages:

No graphical user-interface

27 / 95

EM-Algorithm in G-FIT

Advantages:

Fast fitting, easy to automate
Little configuration required for good results
Well-suited for simulation

Disadvantages:

No graphical user-interface
Configuration (if required) may become difficult

27 / 95

Optimisation

28 / 95

Optimisation

Find a parameter vector θ that minimises a distance function
D(f, fθ) (or, equivalently, with F)

28 / 95

Optimisation

Find a parameter vector θ that minimises a distance function
D(f, fθ) (or, equivalently, with F)

Example distance functions:

28 / 95

Optimisation

Find a parameter vector θ that minimises a distance function
D(f, fθ) (or, equivalently, with F)

Example distance functions:

Relative Entropy:
∫

∞

0
f(t) ln f(t)

fθ(t)dt

28 / 95

Optimisation

Find a parameter vector θ that minimises a distance function
D(f, fθ) (or, equivalently, with F)

Example distance functions:

Relative Entropy:
∫

∞

0
f(t) ln f(t)

fθ(t)dt

PDF Area Distance:
∫

∞

0
|fθ(t) − f(t)|dt

28 / 95

Optimisation

Find a parameter vector θ that minimises a distance function
D(f, fθ) (or, equivalently, with F)

Example distance functions:

Relative Entropy:
∫

∞

0
f(t) ln f(t)

fθ(t)dt

PDF Area Distance:
∫

∞

0
|fθ(t) − f(t)|dt

Non-linear optimisation problem

28 / 95

Optimisation

Find a parameter vector θ that minimises a distance function
D(f, fθ) (or, equivalently, with F)

Example distance functions:

Relative Entropy:
∫

∞

0
f(t) ln f(t)

fθ(t)dt

PDF Area Distance:
∫

∞

0
|fθ(t) − f(t)|dt

Non-linear optimisation problem

May apply different methods from non-linear optimisation

28 / 95

Optimisation

Find a parameter vector θ that minimises a distance function
D(f, fθ) (or, equivalently, with F)

Example distance functions:

Relative Entropy:
∫

∞

0
f(t) ln f(t)

fθ(t)dt

PDF Area Distance:
∫

∞

0
|fθ(t) − f(t)|dt

Non-linear optimisation problem

May apply different methods from non-linear optimisation

Examples:

28 / 95

Optimisation

Find a parameter vector θ that minimises a distance function
D(f, fθ) (or, equivalently, with F)

Example distance functions:

Relative Entropy:
∫

∞

0
f(t) ln f(t)

fθ(t)dt

PDF Area Distance:
∫

∞

0
|fθ(t) − f(t)|dt

Non-linear optimisation problem

May apply different methods from non-linear optimisation

Examples:

PhFit [8]: Frank/Wolfe method – linearisation and then linear
optimisation to find the optimal direction. Supports APH in
CF-1 form.

28 / 95

Optimisation

Find a parameter vector θ that minimises a distance function
D(f, fθ) (or, equivalently, with F)

Example distance functions:

Relative Entropy:
∫

∞

0
f(t) ln f(t)

fθ(t)dt

PDF Area Distance:
∫

∞

0
|fθ(t) − f(t)|dt

Non-linear optimisation problem

May apply different methods from non-linear optimisation

Examples:

PhFit [8]: Frank/Wolfe method – linearisation and then linear
optimisation to find the optimal direction. Supports APH in
CF-1 form.
MonoFit: Nelder/Mead algorithm – direct optimisation
without computing derivatives. Supports PH in FE-diagonal
form (or in Monocyclic form).

28 / 95

Optimisation in PhFit

29 / 95

Optimisation in PhFit

APH in CF-1 form

29 / 95

Optimisation in PhFit

APH in CF-1 form

Parameter vector: θ = (α1, . . . , αn, λ1, . . . , λn)

29 / 95

Optimisation in PhFit

APH in CF-1 form

Parameter vector: θ = (α1, . . . , αn, λ1, . . . , λn)

Optimisation problem: Minimise D(f, fθ) subject to

α ≥ 0 (3)

α1I = 1 (4)

λi > 0 (5)

λi ≤ λi+1 (6)

29 / 95

Optimisation in PhFit

APH in CF-1 form

Parameter vector: θ = (α1, . . . , αn, λ1, . . . , λn)

Optimisation problem: Minimise D(f, fθ) subject to

α ≥ 0 (3)

α1I = 1 (4)

λi > 0 (5)

λi ≤ λi+1 (6)

Apply Frank/Wolfe method to linearise in a small
neighbourhood

29 / 95

Optimisation in PhFit

APH in CF-1 form

Parameter vector: θ = (α1, . . . , αn, λ1, . . . , λn)

Optimisation problem: Minimise D(f, fθ) subject to

α ≥ 0 (3)

α1I = 1 (4)

λi > 0 (5)

λi ≤ λi+1 (6)

Apply Frank/Wolfe method to linearise in a small
neighbourhood

Additional constraint: Do not leave the neighbourhood

29 / 95

Optimisation in PhFit

30 / 95

Optimisation in PhFit

Linearise in a small neighbourhood around the current
parameter vector θ: Compute partial derivatives

∂D(f, fθ)

∂θi
, i = 1, . . . , 2n

30 / 95

Optimisation in PhFit

Linearise in a small neighbourhood around the current
parameter vector θ: Compute partial derivatives

∂D(f, fθ)

∂θi
, i = 1, . . . , 2n

Total derivative is linear in dθ:

dD =
2n
∑

i=1

∂D(f, fθ)

∂θi
dθi

30 / 95

Optimisation in PhFit

Linearise in a small neighbourhood around the current
parameter vector θ: Compute partial derivatives

∂D(f, fθ)

∂θi
, i = 1, . . . , 2n

Total derivative is linear in dθ:

dD =
2n
∑

i=1

∂D(f, fθ)

∂θi
dθi

Minimise total derivative using Simplex method. This gives
the direction of steepest descent of D

30 / 95

Optimisation in PhFit

Linearise in a small neighbourhood around the current
parameter vector θ: Compute partial derivatives

∂D(f, fθ)

∂θi
, i = 1, . . . , 2n

Total derivative is linear in dθ:

dD =
2n
∑

i=1

∂D(f, fθ)

∂θi
dθi

Minimise total derivative using Simplex method. This gives
the direction of steepest descent of D

Follow this direction to find the next point

30 / 95

PhFit

31 / 95

PhFit

Advantages:

31 / 95

PhFit

Advantages:

Good fitting results

31 / 95

PhFit

Advantages:

Good fitting results
Mixed body/tail fitting for long tails

31 / 95

PhFit

Advantages:

Good fitting results
Mixed body/tail fitting for long tails
Well-suited for simulation

31 / 95

PhFit

Advantages:

Good fitting results
Mixed body/tail fitting for long tails
Well-suited for simulation
Graphical user-interface

31 / 95

PhFit

Advantages:

Good fitting results
Mixed body/tail fitting for long tails
Well-suited for simulation
Graphical user-interface

Disadvantages:

31 / 95

PhFit

Advantages:

Good fitting results
Mixed body/tail fitting for long tails
Well-suited for simulation
Graphical user-interface

Disadvantages:

Fitting can be slow with large PH

31 / 95

PhFit

Advantages:

Good fitting results
Mixed body/tail fitting for long tails
Well-suited for simulation
Graphical user-interface

Disadvantages:

Fitting can be slow with large PH
Configuration can be difficult

31 / 95

Clustering/Segmentation

32 / 95

Clustering/Segmentation

Goal: Make fitting more efficient/accurate/user-friendly

32 / 95

Clustering/Segmentation

Goal: Make fitting more efficient/accurate/user-friendly

Approach:

32 / 95

Clustering/Segmentation

Goal: Make fitting more efficient/accurate/user-friendly

Approach:

Split the data set S into subsets S1, . . . , Sm

32 / 95

Clustering/Segmentation

Goal: Make fitting more efficient/accurate/user-friendly

Approach:

Split the data set S into subsets S1, . . . , Sm

Fit each subset by a distribution with density
fi(t), i = 1, . . . ,m

32 / 95

Clustering/Segmentation

Goal: Make fitting more efficient/accurate/user-friendly

Approach:

Split the data set S into subsets S1, . . . , Sm

Fit each subset by a distribution with density
fi(t), i = 1, . . . ,m
Combine densities:

32 / 95

Clustering/Segmentation

Goal: Make fitting more efficient/accurate/user-friendly

Approach:

Split the data set S into subsets S1, . . . , Sm

Fit each subset by a distribution with density
fi(t), i = 1, . . . ,m
Combine densities:

f(t) =
m

∑

i=1

βifi(t) (7)

βi =
|Si|

|S|
(8)

32 / 95

Clustering/Segmentation

Goal: Make fitting more efficient/accurate/user-friendly

Approach:

Split the data set S into subsets S1, . . . , Sm

Fit each subset by a distribution with density
fi(t), i = 1, . . . ,m
Combine densities:

f(t) =
m

∑

i=1

βifi(t) (7)

βi =
|Si|

|S|
(8)

Segmentation Approaches

32 / 95

Clustering/Segmentation

Goal: Make fitting more efficient/accurate/user-friendly

Approach:

Split the data set S into subsets S1, . . . , Sm

Fit each subset by a distribution with density
fi(t), i = 1, . . . ,m
Combine densities:

f(t) =
m

∑

i=1

βifi(t) (7)

βi =
|Si|

|S|
(8)

Segmentation Approaches

Clustering Approaches

32 / 95

Segmentation Approaches ([21], etc)

33 / 95

Segmentation Approaches ([21], etc)

Whole family of methods

33 / 95

Segmentation Approaches ([21], etc)

Whole family of methods

Goal: Handle heavy-tailed data

33 / 95

Segmentation Approaches ([21], etc)

Whole family of methods

Goal: Handle heavy-tailed data

Sort data, split such that the segments have a specified
maximal coefficient of variation cv

33 / 95

Segmentation Approaches ([21], etc)

Whole family of methods

Goal: Handle heavy-tailed data

Sort data, split such that the segments have a specified
maximal coefficient of variation cv

Fit each segment by. . .

33 / 95

Segmentation Approaches ([21], etc)

Whole family of methods

Goal: Handle heavy-tailed data

Sort data, split such that the segments have a specified
maximal coefficient of variation cv

Fit each segment by. . .

an exponential distribution [17, 18]

33 / 95

Segmentation Approaches ([21], etc)

Whole family of methods

Goal: Handle heavy-tailed data

Sort data, split such that the segments have a specified
maximal coefficient of variation cv

Fit each segment by. . .

an exponential distribution [17, 18]
a Hyper-Erlang distribution [22, 21]

33 / 95

Segmentation Approaches ([21], etc)

Whole family of methods

Goal: Handle heavy-tailed data

Sort data, split such that the segments have a specified
maximal coefficient of variation cv

Fit each segment by. . .

an exponential distribution [17, 18]
a Hyper-Erlang distribution [22, 21]

Fitting for the segments [21]: BEM and AEM algorithms

33 / 95

Segmentation Approaches ([21], etc)

Whole family of methods

Goal: Handle heavy-tailed data

Sort data, split such that the segments have a specified
maximal coefficient of variation cv

Fit each segment by. . .

an exponential distribution [17, 18]
a Hyper-Erlang distribution [22, 21]

Fitting for the segments [21]: BEM and AEM algorithms

Build mixture of individual distributions.

33 / 95

Segmentation Approaches ([21], etc)

Whole family of methods

Goal: Handle heavy-tailed data

Sort data, split such that the segments have a specified
maximal coefficient of variation cv

Fit each segment by. . .

an exponential distribution [17, 18]
a Hyper-Erlang distribution [22, 21]

Fitting for the segments [21]: BEM and AEM algorithms

Build mixture of individual distributions.

Advantage: Requires only specification of maximal cv

33 / 95

Segmentation Approaches ([21], etc)

Whole family of methods

Goal: Handle heavy-tailed data

Sort data, split such that the segments have a specified
maximal coefficient of variation cv

Fit each segment by. . .

an exponential distribution [17, 18]
a Hyper-Erlang distribution [22, 21]

Fitting for the segments [21]: BEM and AEM algorithms

Build mixture of individual distributions.

Advantage: Requires only specification of maximal cv

Disadvantage: Results depend heavily on choice of
appropriate cv

33 / 95

Clustering (Hyper-*, [15])

34 / 95

Clustering (Hyper-*, [15])

Goal: Fit empirical distributions with peaks well

34 / 95

Clustering (Hyper-*, [15])

Goal: Fit empirical distributions with peaks well

Use k-means algorithm to create clusters

34 / 95

Clustering (Hyper-*, [15])

Goal: Fit empirical distributions with peaks well

Use k-means algorithm to create clusters

User selects cluster centres

34 / 95

Clustering (Hyper-*, [15])

Goal: Fit empirical distributions with peaks well

Use k-means algorithm to create clusters

User selects cluster centres

Fit samples in each cluster by a user-specified PH class and
method

34 / 95

Clustering (Hyper-*, [15])

Goal: Fit empirical distributions with peaks well

Use k-means algorithm to create clusters

User selects cluster centres

Fit samples in each cluster by a user-specified PH class and
method

Moment-Matching for Erlang distributions

34 / 95

Clustering (Hyper-*, [15])

Goal: Fit empirical distributions with peaks well

Use k-means algorithm to create clusters

User selects cluster centres

Fit samples in each cluster by a user-specified PH class and
method

Moment-Matching for Erlang distributions
PhFit, G-FIT, or other external tools

34 / 95

Clustering (Hyper-*, [15])

Goal: Fit empirical distributions with peaks well

Use k-means algorithm to create clusters

User selects cluster centres

Fit samples in each cluster by a user-specified PH class and
method

Moment-Matching for Erlang distributions
PhFit, G-FIT, or other external tools
Mathematica modules, . . .

34 / 95

Clustering (Hyper-*, [15])

Goal: Fit empirical distributions with peaks well

Use k-means algorithm to create clusters

User selects cluster centres

Fit samples in each cluster by a user-specified PH class and
method

Moment-Matching for Erlang distributions
PhFit, G-FIT, or other external tools
Mathematica modules, . . .

Build mixture of individual distributions

34 / 95

Clustering (Hyper-*, [15])

Goal: Fit empirical distributions with peaks well

Use k-means algorithm to create clusters

User selects cluster centres

Fit samples in each cluster by a user-specified PH class and
method

Moment-Matching for Erlang distributions
PhFit, G-FIT, or other external tools
Mathematica modules, . . .

Build mixture of individual distributions

Advantages:

34 / 95

Clustering (Hyper-*, [15])

Goal: Fit empirical distributions with peaks well

Use k-means algorithm to create clusters

User selects cluster centres

Fit samples in each cluster by a user-specified PH class and
method

Moment-Matching for Erlang distributions
PhFit, G-FIT, or other external tools
Mathematica modules, . . .

Build mixture of individual distributions

Advantages:

Good fitting, especially with Erlang distributions for the
clusters

34 / 95

Clustering (Hyper-*, [15])

Goal: Fit empirical distributions with peaks well

Use k-means algorithm to create clusters

User selects cluster centres

Fit samples in each cluster by a user-specified PH class and
method

Moment-Matching for Erlang distributions
PhFit, G-FIT, or other external tools
Mathematica modules, . . .

Build mixture of individual distributions

Advantages:

Good fitting, especially with Erlang distributions for the
clusters
Intuitive configuration

34 / 95

Clustering (Hyper-*, [15])

Goal: Fit empirical distributions with peaks well

Use k-means algorithm to create clusters

User selects cluster centres

Fit samples in each cluster by a user-specified PH class and
method

Moment-Matching for Erlang distributions
PhFit, G-FIT, or other external tools
Mathematica modules, . . .

Build mixture of individual distributions

Advantages:

Good fitting, especially with Erlang distributions for the
clusters
Intuitive configuration

Disadvantage: Fitted distributions can become very large

34 / 95

Comparison of Fitting Tools

35 / 95

Comparison of Fitting Tools

Three data sets

35 / 95

Comparison of Fitting Tools

Three data sets

APH distribution

35 / 95

Comparison of Fitting Tools

Three data sets

APH distribution
Packet-delivery ratios from the DES-Testbed [3]

35 / 95

Comparison of Fitting Tools

Three data sets

APH distribution
Packet-delivery ratios from the DES-Testbed [3]
PTP packet transmission delays

35 / 95

Comparison of Fitting Tools

Three data sets

APH distribution
Packet-delivery ratios from the DES-Testbed [3]
PTP packet transmission delays

Parameters chosen similarly, if possible

35 / 95

APH distribution

0 2 4 6 8 10 12
TimeHsL0.0

0.1

0.2

0.3

0.4

0.5

0.6

PDF

ph-Fit
G-Fit
Hyper-* prob
Hyper-* 100
Hyper-* 1
data

36 / 95

Packet-delivery ratio distribution

0.0 0.2 0.4 0.6 0.8 1.0
PDR

1

2

3

4
PDF

ph-Fit
G-Fit
Hyper-* prob
Hyper-* 100
Hyper-* 1
data

37 / 95

PTD distribution

2000 4000 6000 8000 10 000 12 000 14 000
PTDHnsL0.0

0.2

0.4

0.6

0.8

1.0
CDF

ph-Fit
G-Fit
Hyper-* prob
Hyper-* 100
Hyper-* 1
data

38 / 95

APH distribution (Segmentation approach)

0 2 4 6 8 10 12
TimeHsL0.0

0.1

0.2

0.3

0.4

0.5

0.6
PDF

cv = 1.01
cv = .6
cv = .5
cv = .1
data

39 / 95

Packet-delivery ratio distribution (Segmentation approach)

0.2 0.4 0.6 0.8 1.0
PDR

1

2

3

4
PDF

cv = 1.01
cv = .6
cv = .5
cv = .1
data

40 / 95

Summary

41 / 95

Summary

Many different approaches to PH fitting exist

41 / 95

Summary

Many different approaches to PH fitting exist

Suitability of approaches depends on

41 / 95

Summary

Many different approaches to PH fitting exist

Suitability of approaches depends on

Required quality of fit

41 / 95

Summary

Many different approaches to PH fitting exist

Suitability of approaches depends on

Required quality of fit
Shape of the empirical density

41 / 95

Summary

Many different approaches to PH fitting exist

Suitability of approaches depends on

Required quality of fit
Shape of the empirical density
Intended application of the distribution

41 / 95

Summary

Many different approaches to PH fitting exist

Suitability of approaches depends on

Required quality of fit
Shape of the empirical density
Intended application of the distribution
Expertise of the user and user-friendliness of the tool

41 / 95

Queueing Theory

Job DeparturesJob Arrivals Service

42 / 95

Queueing Theory

Job DeparturesJob Arrivals Service

Jobs arrive, are processed, and leave

42 / 95

Queueing Theory

Job DeparturesJob Arrivals Service

Jobs arrive, are processed, and leave
Kendall notation:

Arrival process/Service process/Number of servers(/ . . .)

42 / 95

Queueing Theory

Job DeparturesJob Arrivals Service

Jobs arrive, are processed, and leave
Kendall notation:

Arrival process/Service process/Number of servers(/ . . .)

Examples
M/M/1
M/PH/1
PH/PH/1

42 / 95

Queueing Theory

Job DeparturesJob Arrivals Service

Jobs arrive, are processed, and leave
Kendall notation:

Arrival process/Service process/Number of servers(/ . . .)

Examples
M/M/1
M/PH/1
PH/PH/1

Typical questions:
Average number of jobs in the system?
Quantiles of the queue-length distribution?

42 / 95

Analysis

Queue only changes on arrivals or departures

43 / 95

Analysis

Queue only changes on arrivals or departures → ‘Birth/Death
process’:

1 20

43 / 95

Analysis

Queue only changes on arrivals or departures → ‘Birth/Death
process’:

1 20

For the M/M/1 queue, this is a CTMC with infinite
state-space:

1 20

λ

µ

λ λ

µ µ

43 / 95

Analysis

Queue only changes on arrivals or departures → ‘Birth/Death
process’:

1 20

For the M/M/1 queue, this is a CTMC with infinite
state-space:

1 20

λ

µ

λ λ

µ µ

For the M/PH/1 queue, things get a bit more interesting:
Infinite state-space and phase-transitions
Finite number of phases for any number of jobs

43 / 95

Analysis

Queue only changes on arrivals or departures → ‘Birth/Death
process’:

1 20

For the M/M/1 queue, this is a CTMC with infinite
state-space:

1 20

λ

µ

λ λ

µ µ

For the M/PH/1 queue, things get a bit more interesting:
Infinite state-space and phase-transitions
Finite number of phases for any number of jobs

Block-transitions → ‘Quasi-Birth/Death process’:

1 20

λ

(α,Q)

λ λ

(α,Q) (α,Q) 43 / 95

What can we do?

44 / 95

What can we do?

Compute transient measures, e.g. time until we first have m
jobs in the queue

44 / 95

What can we do?

Compute transient measures, e.g. time until we first have m
jobs in the queue

Compute steady-state distribution, i.e. stochastic vector x

such that

xQ = 0 (9)

x1I = 1 (10)

44 / 95

What can we do?

Compute transient measures, e.g. time until we first have m
jobs in the queue

Compute steady-state distribution, i.e. stochastic vector x

such that

xQ = 0 (9)

x1I = 1 (10)

Prerequisite for steady-state solution: Queue must be stable,
i.e. jobs must not arrive faster than they can be served:

ρ =
E[S]

E[A]
< 1

44 / 95

Matrix-Geometric Methods

Generator matrix of the CTMC:

Q =















−λ λα

q (Q − λI) λI

qα (Q − λI) λI

qα (−Q − λI) λI
. . .















45 / 95

Matrix-Geometric Methods

Generator matrix of the CTMC:

Q =















−λ λα

q (Q − λI) λI

qα (Q − λI) λI

qα (−Q − λI) λI
. . .















. . . nice, regular structure, leading to

xQ = 0 ⇔











x0(−λ) + x1q = 0

x0(λα) + x1(Q − λI) + x2(qα) = 0

xi−1(λI) + xi(Q − λI) + xi+1(qα) = 0 i ≥ 2,

where
x = (x0,x1,x2, . . .)

gives the steady-state probabilities.
45 / 95

Solution for M/PH/1

Theorem 3.2.1 in [13]:

ρ = λE[S]

x0 = 1 − ρ

xi = (1 − ρ)βRi i ≥ 1,

where

R = λ(λI − λeβ − Q)−1

46 / 95

Solution for M/PH/1

Theorem 3.2.1 in [13]:

ρ = λE[S]

x0 = 1 − ρ

xi = (1 − ρ)βRi i ≥ 1,

where

R = λ(λI − λeβ − Q)−1

Note:

x: steady-state distribution of number of jobs in system and
phase of the job in service
Phases have no physical interpretation with a fitted
phase-type distribution → We are only interested in the
distribution of the number of jobs in the system:

x̄ = (x0,x11I,x21I, . . .)
46 / 95

Summary

Closed-form expressions allow analytical approaches

Efficient solution methods due to special structures of the
resulting models

In queueing-analysis, matrix-geometric methods utilise block
structures

Solutions for more general systems are available, e.g.
PH/PH/1, or queues with bounded queue size

47 / 95

Random-variate Generation

48 / 95

Random-variate Generation

Goal: Efficiently generate random variates from a given PH
distribution

48 / 95

Random-variate Generation

Goal: Efficiently generate random variates from a given PH
distribution

Different methods:

48 / 95

Random-variate Generation

Goal: Efficiently generate random variates from a given PH
distribution

Different methods:

Inversion methods

48 / 95

Random-variate Generation

Goal: Efficiently generate random variates from a given PH
distribution

Different methods:

Inversion methods
Acceptance/Rejection methods

48 / 95

Random-variate Generation

Goal: Efficiently generate random variates from a given PH
distribution

Different methods:

Inversion methods
Acceptance/Rejection methods
Characterisation/Play methods

48 / 95

Elementary and Atomic Operations

49 / 95

Elementary and Atomic Operations

Uniform random number in (0, 1): u

49 / 95

Elementary and Atomic Operations

Uniform random number in (0, 1): u

Random variate from the geometric distribution on 0, 1, . . . :

tGeo(p) :=

⌊

ln(u)

ln(p)

⌋

49 / 95

Elementary and Atomic Operations

Uniform random number in (0, 1): u

Random variate from the geometric distribution on 0, 1, . . . :

tGeo(p) :=

⌊

ln(u)

ln(p)

⌋

Random variate from the exponential distribution with rate λ:

tExp(λ) := −
1

λ
lnu

49 / 95

Elementary and Atomic Operations

Uniform random number in (0, 1): u

Random variate from the geometric distribution on 0, 1, . . . :

tGeo(p) :=

⌊

ln(u)

ln(p)

⌋

Random variate from the exponential distribution with rate λ:

tExp(λ) := −
1

λ
lnu

Matrix exponential eQ:

49 / 95

Elementary and Atomic Operations

Uniform random number in (0, 1): u

Random variate from the geometric distribution on 0, 1, . . . :

tGeo(p) :=

⌊

ln(u)

ln(p)

⌋

Random variate from the exponential distribution with rate λ:

tExp(λ) := −
1

λ
lnu

Matrix exponential eQ:

Many different methods (‘19 dubious ways. . . ’ [12])

49 / 95

Elementary and Atomic Operations

Uniform random number in (0, 1): u

Random variate from the geometric distribution on 0, 1, . . . :

tGeo(p) :=

⌊

ln(u)

ln(p)

⌋

Random variate from the exponential distribution with rate λ:

tExp(λ) := −
1

λ
lnu

Matrix exponential eQ:

Many different methods (‘19 dubious ways. . . ’ [12])
Can be reduced to computation of n scalar exponentials

49 / 95

Atomic Operations and Cost Metrics

50 / 95

Atomic Operations and Cost Metrics

Computation of a uniform random number

50 / 95

Atomic Operations and Cost Metrics

Computation of a uniform random number

Computation of a scalar exponential

50 / 95

Atomic Operations and Cost Metrics

Computation of a uniform random number

Computation of a scalar exponential

Computation of a logarithm

50 / 95

Atomic Operations and Cost Metrics

Computation of a uniform random number

Computation of a scalar exponential

Computation of a logarithm

Cost metrics:

50 / 95

Atomic Operations and Cost Metrics

Computation of a uniform random number

Computation of a scalar exponential

Computation of a logarithm

Cost metrics:

Number of uniforms, #uni

50 / 95

Atomic Operations and Cost Metrics

Computation of a uniform random number

Computation of a scalar exponential

Computation of a logarithm

Cost metrics:

Number of uniforms, #uni
Number of scalar exponentials, #exp

50 / 95

Atomic Operations and Cost Metrics

Computation of a uniform random number

Computation of a scalar exponential

Computation of a logarithm

Cost metrics:

Number of uniforms, #uni
Number of scalar exponentials, #exp
Number of logarithms, #ln

50 / 95

Atomic Operations and Cost Metrics

Computation of a uniform random number

Computation of a scalar exponential

Computation of a logarithm

Cost metrics:

Number of uniforms, #uni
Number of scalar exponentials, #exp
Number of logarithms, #ln

. . . for the worst case and for the average case

50 / 95

Inversion method

51 / 95

Inversion method

F (t) ∼ U(0, 1) ⇒ t = F−1(u) ∼ F

51 / 95

Inversion method

F (t) ∼ U(0, 1) ⇒ t = F−1(u) ∼ F

Example: Exponential distribution

51 / 95

Inversion method

F (t) ∼ U(0, 1) ⇒ t = F−1(u) ∼ F

Example: Exponential distribution

u = F (t) = 1 − e−λt (11)

⇔ t = −
1

λ
ln(1 − u), (12)

51 / 95

Inversion method

F (t) ∼ U(0, 1) ⇒ t = F−1(u) ∼ F

Example: Exponential distribution

u = F (t) = 1 − e−λt (11)

⇔ t = −
1

λ
ln(1 − u), (12)

and, since u ∼ U(0, 1) ⇒ (1 − u) ∼ U(0, 1), we can simplify:

t = −
1

λ
lnu. (13)

51 / 95

Inversion

52 / 95

Inversion

Direct inversion of

F (t) = 1 − α expQt 1I

impossible for n > 1

52 / 95

Inversion

Direct inversion of

F (t) = 1 − α expQt 1I

impossible for n > 1

Numerical inversion [4]: Identify t close to F (u) by binary
search:

52 / 95

Inversion

Direct inversion of

F (t) = 1 − α expQt 1I

impossible for n > 1

Numerical inversion [4]: Identify t close to F (u) by binary
search:

Let [a, b] be the interval, with center t = a+b
2

52 / 95

Inversion

Direct inversion of

F (t) = 1 − α expQt 1I

impossible for n > 1

Numerical inversion [4]: Identify t close to F (u) by binary
search:

Let [a, b] be the interval, with center t = a+b
2

If F (t) > F (u), set a := t, else set b := t.

52 / 95

Inversion

Direct inversion of

F (t) = 1 − α expQt 1I

impossible for n > 1

Numerical inversion [4]: Identify t close to F (u) by binary
search:

Let [a, b] be the interval, with center t = a+b
2

If F (t) > F (u), set a := t, else set b := t.
Stop and return t if F (t) ∼ F (t)

52 / 95

Inversion (ctd.)

53 / 95

Inversion (ctd.)

Valid for Matrix-Exponential and PH distributions in any form

53 / 95

Inversion (ctd.)

Valid for Matrix-Exponential and PH distributions in any form

Costs:

53 / 95

Inversion (ctd.)

Valid for Matrix-Exponential and PH distributions in any form

Costs:

Number of steps: log 1
δ

for accuracy of δ

53 / 95

Inversion (ctd.)

Valid for Matrix-Exponential and PH distributions in any form

Costs:

Number of steps: log 1
δ

for accuracy of δ
[4]: δ = 10−6 ⇒ 19 steps

53 / 95

Inversion (ctd.)

Valid for Matrix-Exponential and PH distributions in any form

Costs:

Number of steps: log 1
δ

for accuracy of δ
[4]: δ = 10−6 ⇒ 19 steps
One matrix exponential for each step

53 / 95

Inversion (ctd.)

Valid for Matrix-Exponential and PH distributions in any form

Costs:

Number of steps: log 1
δ

for accuracy of δ
[4]: δ = 10−6 ⇒ 19 steps
One matrix exponential for each step
If the matrix exponential is computed from scalar exponentials,
n scalar exponentials for each step

53 / 95

Inversion (ctd.)

Valid for Matrix-Exponential and PH distributions in any form

Costs:

Number of steps: log 1
δ

for accuracy of δ
[4]: δ = 10−6 ⇒ 19 steps
One matrix exponential for each step
If the matrix exponential is computed from scalar exponentials,
n scalar exponentials for each step
One uniform random number

53 / 95

Acceptance/Rejection [9]

54 / 95

Acceptance/Rejection [9]

Split the density into parts with positive and parts with
negative coefficients:

f(t) = αeQt(−Q1I)

54 / 95

Acceptance/Rejection [9]

Split the density into parts with positive and parts with
negative coefficients:

f(t) = αeQt(−Q1I)

=
∑

i∈A+

αigi(t) +
∑

i∈A
−

αigi(t)

54 / 95

Acceptance/Rejection [9]

Split the density into parts with positive and parts with
negative coefficients:

f(t) = αeQt(−Q1I)

=
∑

i∈A+

αigi(t) +
∑

i∈A
−

αigi(t)

= f+(t) + f−(t)

54 / 95

Acceptance/Rejection [9]

Split the density into parts with positive and parts with
negative coefficients:

f(t) = αeQt(−Q1I)

=
∑

i∈A+

αigi(t) +
∑

i∈A
−

αigi(t)

= f+(t) + f−(t)

f+(t) can be normalised to a PH density:

f̂(t) =
1

∑

i∈A+
αi

f+(t).

54 / 95

Acceptance/Rejection [9]

Split the density into parts with positive and parts with
negative coefficients:

f(t) = αeQt(−Q1I)

=
∑

i∈A+

αigi(t) +
∑

i∈A
−

αigi(t)

= f+(t) + f−(t)

f+(t) can be normalised to a PH density:

f̂(t) =
1

∑

i∈A+
αi

f+(t).

A sample x from f̂(t) is accepted with

p =
f+(x) + f−(x)

f+(x)
54 / 95

Acceptance/Rejection (ctd.)

55 / 95

Acceptance/Rejection (ctd.)

Supports Matrix-Exponential and Phase-type distributions

55 / 95

Acceptance/Rejection (ctd.)

Supports Matrix-Exponential and Phase-type distributions

Support PH distributions in non-Markovian representation

55 / 95

Acceptance/Rejection (ctd.)

Supports Matrix-Exponential and Phase-type distributions

Support PH distributions in non-Markovian representation

Enables efficient algorithms for PH:

55 / 95

Acceptance/Rejection (ctd.)

Supports Matrix-Exponential and Phase-type distributions

Support PH distributions in non-Markovian representation

Enables efficient algorithms for PH:

Transform PH to e.g. Hyper-Feedback-Erlang form

55 / 95

Acceptance/Rejection (ctd.)

Supports Matrix-Exponential and Phase-type distributions

Support PH distributions in non-Markovian representation

Enables efficient algorithms for PH:

Transform PH to e.g. Hyper-Feedback-Erlang form
. . . which may be non-Markovian

55 / 95

Acceptance/Rejection (ctd.)

Supports Matrix-Exponential and Phase-type distributions

Support PH distributions in non-Markovian representation

Enables efficient algorithms for PH:

Transform PH to e.g. Hyper-Feedback-Erlang form
. . . which may be non-Markovian
Draw random variates using Acceptance/Rejection

55 / 95

Acceptance/Rejection (ctd.)

Supports Matrix-Exponential and Phase-type distributions

Support PH distributions in non-Markovian representation

Enables efficient algorithms for PH:

Transform PH to e.g. Hyper-Feedback-Erlang form
. . . which may be non-Markovian
Draw random variates using Acceptance/Rejection

Costs:

55 / 95

Acceptance/Rejection (ctd.)

Supports Matrix-Exponential and Phase-type distributions

Support PH distributions in non-Markovian representation

Enables efficient algorithms for PH:

Transform PH to e.g. Hyper-Feedback-Erlang form
. . . which may be non-Markovian
Draw random variates using Acceptance/Rejection

Costs:

Number of steps: 1
p

55 / 95

Acceptance/Rejection (ctd.)

Supports Matrix-Exponential and Phase-type distributions

Support PH distributions in non-Markovian representation

Enables efficient algorithms for PH:

Transform PH to e.g. Hyper-Feedback-Erlang form
. . . which may be non-Markovian
Draw random variates using Acceptance/Rejection

Costs:

Number of steps: 1
p

Number of uniforms and number of logarithms depends on the
method used for drawing from f̂

55 / 95

Characterisation methods

56 / 95

Characterisation methods

Create random variates using the CTMC representation

56 / 95

Characterisation methods

Create random variates using the CTMC representation

Costs depend on

56 / 95

Characterisation methods

Create random variates using the CTMC representation

Costs depend on

Number of traversed states

56 / 95

Characterisation methods

Create random variates using the CTMC representation

Costs depend on

Number of traversed states
Costs per state

56 / 95

Characterisation methods

Create random variates using the CTMC representation

Costs depend on

Number of traversed states
Costs per state

Methods support different classes and representations:

56 / 95

Characterisation methods

Create random variates using the CTMC representation

Costs depend on

Number of traversed states
Costs per state

Methods support different classes and representations:

General PH: Play, Count

56 / 95

Characterisation methods

Create random variates using the CTMC representation

Costs depend on

Number of traversed states
Costs per state

Methods support different classes and representations:

General PH: Play, Count
PH in FE-diagonal form: FE-Diagonal

56 / 95

Characterisation methods

Create random variates using the CTMC representation

Costs depend on

Number of traversed states
Costs per state

Methods support different classes and representations:

General PH: Play, Count
PH in FE-diagonal form: FE-Diagonal
APH in bi-diagonal form: SimplePlay

56 / 95

Characterisation methods

Create random variates using the CTMC representation

Costs depend on

Number of traversed states
Costs per state

Methods support different classes and representations:

General PH: Play, Count
PH in FE-diagonal form: FE-Diagonal
APH in bi-diagonal form: SimplePlay
HErD in HErD form: SimpleCount

56 / 95

Play

λ1

λ2 λ3 λ4 λ5

λ6

57 / 95

Play

λ1

λ2 λ3 λ4 λ5

λ6

Play the Markov chain: Select an initial state, then select
successive states until the absorbing state is reached. Draw
one exponential random variate for each visited state.

57 / 95

Play

λ1

λ2 λ3 λ4 λ5

λ6

Play the Markov chain: Select an initial state, then select
successive states until the absorbing state is reached. Draw
one exponential random variate for each visited state.

Worst-case number of traversals: Not defined

57 / 95

Play

λ1

λ2 λ3 λ4 λ5

λ6

Play the Markov chain: Select an initial state, then select
successive states until the absorbing state is reached. Draw
one exponential random variate for each visited state.

Worst-case number of traversals: Not defined

Average-case number of traversals:

n∗ = α(diag(Q)−1Q)−11I

57 / 95

Play (ctd.)

λ1

λ2 λ3 λ4 λ5

λ6

58 / 95

Play (ctd.)

λ1

λ2 λ3 λ4 λ5

λ6

Costs:

58 / 95

Play (ctd.)

λ1

λ2 λ3 λ4 λ5

λ6

Costs:

1 uniform for initial selection

58 / 95

Play (ctd.)

λ1

λ2 λ3 λ4 λ5

λ6

Costs:

1 uniform for initial selection
2 uniforms for each visit to a state

58 / 95

Play (ctd.)

λ1

λ2 λ3 λ4 λ5

λ6

Costs:

1 uniform for initial selection
2 uniforms for each visit to a state
1 logarithm for each visit to a state

58 / 95

Count [14]

59 / 95

Count [14]

Observation: k visits to the same state are equal to drawing
an Erlang-k distribution.

59 / 95

Count [14]

Observation: k visits to the same state are equal to drawing
an Erlang-k distribution.

Idea: Use
∑

ln = ln
∏

59 / 95

Count [14]

Observation: k visits to the same state are equal to drawing
an Erlang-k distribution.

Idea: Use
∑

ln = ln
∏

Algorithm: Play Markov chain, count numbers of visits, draw
n Erlangs with appropriate lengths

59 / 95

Count [14]

Observation: k visits to the same state are equal to drawing
an Erlang-k distribution.

Idea: Use
∑

ln = ln
∏

Algorithm: Play Markov chain, count numbers of visits, draw
n Erlangs with appropriate lengths

State traversals: Same as Play

59 / 95

Count [14]

Observation: k visits to the same state are equal to drawing
an Erlang-k distribution.

Idea: Use
∑

ln = ln
∏

Algorithm: Play Markov chain, count numbers of visits, draw
n Erlangs with appropriate lengths

State traversals: Same as Play

Costs:

59 / 95

Count [14]

Observation: k visits to the same state are equal to drawing
an Erlang-k distribution.

Idea: Use
∑

ln = ln
∏

Algorithm: Play Markov chain, count numbers of visits, draw
n Erlangs with appropriate lengths

State traversals: Same as Play

Costs:

Worst-Case: #ln = n,#uni = ∞

59 / 95

Count [14]

Observation: k visits to the same state are equal to drawing
an Erlang-k distribution.

Idea: Use
∑

ln = ln
∏

Algorithm: Play Markov chain, count numbers of visits, draw
n Erlangs with appropriate lengths

State traversals: Same as Play

Costs:

Worst-Case: #ln = n,#uni = ∞
Average: #ln = n,#uni = 1 + n∗

59 / 95

FE-diagonal Algorithm

1 λ 2 λ 2 λ 2

α 1 α 2 α 3 α 4

2z

λ 22z

λ)
21 3 4

(1−

FE−2FE−1

60 / 95

FE-diagonal Algorithm

1 λ 2 λ 2 λ 2

α 1 α 2 α 3 α 4

2z

λ 22z

λ)
21 3 4

(1−

FE−2FE−1

Use FE-diagonal form

60 / 95

FE-diagonal Algorithm

1 λ 2 λ 2 λ 2

α 1 α 2 α 3 α 4

2z

λ 22z

λ)
21 3 4

(1−

FE−2FE−1

Use FE-diagonal form

Select an initial state according to α. This state belongs to
block 1 ≤ i ≤ m.

60 / 95

FE-diagonal Algorithm

1 λ 2 λ 2 λ 2

α 1 α 2 α 3 α 4

2z

λ 22z

λ)
21 3 4

(1−

FE−2FE−1

Use FE-diagonal form

Select an initial state according to α. This state belongs to
block 1 ≤ i ≤ m.

0 ≤ l ≤ bi states have to be traversed before the next
feedback loop

60 / 95

FE-diagonal Algorithm

1 λ 2 λ 2 λ 2

α 1 α 2 α 3 α 4

2z

λ 22z

λ)
21 3 4

(1−

FE−2FE−1

Use FE-diagonal form

Select an initial state according to α. This state belongs to
block 1 ≤ i ≤ m.

0 ≤ l ≤ bi states have to be traversed before the next
feedback loop

The number of loops c follows a geometric distribution with
parameter zi

60 / 95

FE-diagonal Algorithm (ctd.)

1 λ 2 λ 2 λ 2

α 1 α 2 α 3 α 4

2z

λ 22z

λ)
21 3 4

(1−

FE−2FE−1

61 / 95

FE-diagonal Algorithm (ctd.)

1 λ 2 λ 2 λ 2

α 1 α 2 α 3 α 4

2z

λ 22z

λ)
21 3 4

(1−

FE−2FE−1

Note: All rates in a block are identical

61 / 95

FE-diagonal Algorithm (ctd.)

1 λ 2 λ 2 λ 2

α 1 α 2 α 3 α 4

2z

λ 22z

λ)
21 3 4

(1−

FE−2FE−1

Note: All rates in a block are identical . . . draw one
Erlang-(c · bi + l)-distributed sample

61 / 95

FE-diagonal Algorithm (ctd.)

1 λ 2 λ 2 λ 2

α 1 α 2 α 3 α 4

2z

λ 22z

λ)
21 3 4

(1−

FE−2FE−1

Note: All rates in a block are identical . . . draw one
Erlang-(c · bi + l)-distributed sample
Repeat for the remaining blocks j = i + 1, . . . , m, with l := bj

61 / 95

FE-diagonal Algorithm (ctd.)

1 λ 2 λ 2 λ 2

α 1 α 2 α 3 α 4

2z

λ 22z

λ)
21 3 4

(1−

FE−2FE−1

Note: All rates in a block are identical . . . draw one
Erlang-(c · bi + l)-distributed sample
Repeat for the remaining blocks j = i + 1, . . . , m, with l := bj

Costs: 1 uniform for initial state, 1 uniform for each visit, 1
uniform and 3 logarithms for each block

61 / 95

FE-diagonal Algorithm (ctd.)

1 λ 2 λ 2 λ 2

α 1 α 2 α 3 α 4

2z

λ 22z

λ)
21 3 4

(1−

FE−2FE−1

Note: All rates in a block are identical . . . draw one
Erlang-(c · bi + l)-distributed sample
Repeat for the remaining blocks j = i + 1, . . . , m, with l := bj

Costs: 1 uniform for initial state, 1 uniform for each visit, 1
uniform and 3 logarithms for each block
Average number of traversed blocks:

ℓ∗ = α
(

m, m − 1, . . . , 1
)T

61 / 95

SimplePlay

λ1 λ2 λ3 λ4

62 / 95

SimplePlay

λ1 λ2 λ3 λ4

Bi-diagonal form: Blocks of length 1, no feedbacks

62 / 95

SimplePlay

λ1 λ2 λ3 λ4

Bi-diagonal form: Blocks of length 1, no feedbacks

Draw initial state, then sum up exponential random variates
until the absorbing state is reached

62 / 95

SimplePlay

λ1 λ2 λ3 λ4

Bi-diagonal form: Blocks of length 1, no feedbacks

Draw initial state, then sum up exponential random variates
until the absorbing state is reached

Advantage: No random numbers for state selection required

62 / 95

SimplePlay (ctd.)

λ1 λ2 λ3 λ4

63 / 95

SimplePlay (ctd.)

λ1 λ2 λ3 λ4

Worst-Case Costs:

#uni = 1 + n
#ln = n

63 / 95

SimplePlay (ctd.)

λ1 λ2 λ3 λ4

Worst-Case Costs:

#uni = 1 + n
#ln = n

Average Costs:

63 / 95

SimplePlay (ctd.)

λ1 λ2 λ3 λ4

Worst-Case Costs:

#uni = 1 + n
#ln = n

Average Costs:

n∗ = α(n, n − 1, . . . , 1)T

63 / 95

SimplePlay (ctd.)

λ1 λ2 λ3 λ4

Worst-Case Costs:

#uni = 1 + n
#ln = n

Average Costs:

n∗ = α(n, n − 1, . . . , 1)T

#uni = 1 + n∗

63 / 95

SimplePlay (ctd.)

λ1 λ2 λ3 λ4

Worst-Case Costs:

#uni = 1 + n
#ln = n

Average Costs:

n∗ = α(n, n − 1, . . . , 1)T

#uni = 1 + n∗

#ln = n∗

63 / 95

SimpleCount

λ1 λ1λ1

λ2 λ2

λ1

λ2

β1

β2

64 / 95

SimpleCount

λ1 λ1λ1

λ2 λ2

λ1

λ2

β1

β2

Hyper-Erlang is a mixture of Erlangs

64 / 95

SimpleCount

λ1 λ1λ1

λ2 λ2

λ1

λ2

β1

β2

Hyper-Erlang is a mixture of Erlangs

Method: Select a branch, draw an Erlang sample

64 / 95

SimpleCount (ctd.)

λ1 λ1λ1

λ2 λ2

λ1

λ2

β1

β2

65 / 95

SimpleCount (ctd.)

λ1 λ1λ1

λ2 λ2

λ1

λ2

β1

β2

Worst-Case Costs:

#uni = 1 + max{b1, . . . , bm}
#ln = 1

65 / 95

SimpleCount (ctd.)

λ1 λ1λ1

λ2 λ2

λ1

λ2

β1

β2

Worst-Case Costs:

#uni = 1 + max{b1, . . . , bm}
#ln = 1

Average Costs:

n∗ = α(b1, . . . , bm)T
#uni = 1 + n∗

#ln = 1

65 / 95

Example: Costs

66 / 95

Example: Costs

Hyper-Erlang distribution in Hyper-Erlang form:

α = (0.1, 0, 0.9, 0, 0, 0)

Q =













−1 1 0 0 0
0 −1 0 0 0
0 0 −2 2 0
0 0 0 −2 2
0 0 0 0 −2













.

66 / 95

Example: Costs

Hyper-Erlang distribution in Hyper-Erlang form:

α = (0.1, 0, 0.9, 0, 0, 0)

Q =













−1 1 0 0 0
0 −1 0 0 0
0 0 −2 2 0
0 0 0 −2 2
0 0 0 0 −2













.

Same distribution in CF-1 form:

α′ = (0.0125, 0.0375, 0.925, 0.025, 0)

Q′ =













−1 1 0 0 0
0 −1 1 0 0
0 0 −2 2 0
0 0 0 −2 2
0 0 0 0 −2













.

66 / 95

Example: Worst-Case Costs

Method Worst Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp

67 / 95

Example: Worst-Case Costs

Method Worst Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln

67 / 95

Example: Worst-Case Costs

Method Worst Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln
Play 7 3 11 5

67 / 95

Example: Worst-Case Costs

Method Worst Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln
Play 7 3 11 5
Count 7 5 11 5

67 / 95

Example: Worst-Case Costs

Method Worst Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln
Play 7 3 11 5
Count 7 5 11 5
FE-diagonal – – 8 6

67 / 95

Example: Worst-Case Costs

Method Worst Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln
Play 7 3 11 5
Count 7 5 11 5
FE-diagonal – – 8 6
SimplePlay – – 6 5

67 / 95

Example: Worst-Case Costs

Method Worst Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln
Play 7 3 11 5
Count 7 5 11 5
FE-diagonal – – 8 6
SimplePlay – – 6 5
SimpleCount 4 1 – –

67 / 95

Example: Average Costs

Method Average Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp

68 / 95

Example: Average Costs

Method Average Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln

68 / 95

Example: Average Costs

Method Average Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln
Play 6.8 2.9 7.075 3.0375

68 / 95

Example: Average Costs

Method Average Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln
Play 6.8 2.9 7.075 3.0375
Count 6.8 5 7.075 5

68 / 95

Example: Average Costs

Method Average Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln
Play 6.8 2.9 7.075 3.0375
Count 6.8 5 7.075 5
FE-diagonal – – 5.0875 3.15

68 / 95

Example: Average Costs

Method Average Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln
Play 6.8 2.9 7.075 3.0375
Count 6.8 5 7.075 5
FE-diagonal – – 5.0875 3.15
SimplePlay – – 4.0375 3.0375

68 / 95

Example: Average Costs

Method Average Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln
Play 6.8 2.9 7.075 3.0375
Count 6.8 5 7.075 5
FE-diagonal – – 5.0875 3.15
SimplePlay – – 4.0375 3.0375
SimpleCount 3.9 1 – –

68 / 95

Computational Costs

 0

 10

 20

 30

 40

 50

 60

 70

M1 M2 M3 M4 M5 M6

R
un

-t
im

e
(s

)

Machines

uniform()
log()
exp()

Run-time for 108 operations on different machines.
69 / 95

Observations

70 / 95

Observations

Costs differ by method and representation

70 / 95

Observations

Costs differ by method and representation

Atomic operations have different costs

70 / 95

Observations

Costs differ by method and representation

Atomic operations have different costs

. . . logarithms are expensive

70 / 95

Observations

Costs differ by method and representation

Atomic operations have different costs

. . . logarithms are expensive

Optimisation problem: Given a Markovian representation
(α,Q), find the (not necessarily minimal) Markovian
representation that minimises the costs of random-variate
generation

70 / 95

Observations

Costs differ by method and representation

Atomic operations have different costs

. . . logarithms are expensive

Optimisation problem: Given a Markovian representation
(α,Q), find the (not necessarily minimal) Markovian
representation that minimises the costs of random-variate
generation

Optimisation for bi-diagonal and FE-diagonal forms → cover
APH and PH

70 / 95

Observations

Costs differ by method and representation

Atomic operations have different costs

. . . logarithms are expensive

Optimisation problem: Given a Markovian representation
(α,Q), find the (not necessarily minimal) Markovian
representation that minimises the costs of random-variate
generation

Optimisation for bi-diagonal and FE-diagonal forms → cover
APH and PH

Focus on number of logarithms

70 / 95

Optimisation for APH

λ1 λ2 λ3 λ4

71 / 95

Optimisation for APH

λ1 λ2 λ3 λ4

Every APH has a bi-diagonal representation (the CF-1 form,
[6])

71 / 95

Optimisation for APH

λ1 λ2 λ3 λ4

Every APH has a bi-diagonal representation (the CF-1 form,
[6])
Costs for SimplePlay:

#uni = n∗ + 1

#ln = n∗

71 / 95

Optimisation for APH

λ1 λ2 λ3 λ4

Every APH has a bi-diagonal representation (the CF-1 form,
[6])
Costs for SimplePlay:

#uni = n∗ + 1

#ln = n∗

State-transitions for bi-diagonal representations:

n∗ =
n

∑

i=1

αi · (n − i + 1)

71 / 95

Optimisation for APH (ctd.)

λ1 λ2 λ3 λ4

72 / 95

Optimisation for APH (ctd.)

λ1 λ2 λ3 λ4

Idea: Re-order rates along the diagonal – preserves eigenvalues

72 / 95

Optimisation for APH (ctd.)

λ1 λ2 λ3 λ4

Idea: Re-order rates along the diagonal – preserves eigenvalues

Express by a similarity transformation – we keep the same
distribution

72 / 95

Optimisation for APH (ctd.)

λ1 λ2 λ3 λ4

Idea: Re-order rates along the diagonal – preserves eigenvalues

Express by a similarity transformation – we keep the same
distribution

Successive pairwise swappings can construct any ordering
(Steinhaus/Johnsohn/Trotter, [10])

72 / 95

Optimisation for APH (ctd.)

λ1 λ2 λ3 λ4

Idea: Re-order rates along the diagonal – preserves eigenvalues

Express by a similarity transformation – we keep the same
distribution

Successive pairwise swappings can construct any ordering
(Steinhaus/Johnsohn/Trotter, [10])

Check all n! permutations?

72 / 95

The Swap Operator

73 / 95

The Swap Operator

Swap(i, i + 1) exchanges the ith, and (i + 1)th rates

73 / 95

The Swap Operator

Swap(i, i + 1) exchanges the ith, and (i + 1)th rates

Similarity transformation:

Q′ = S−1QS

α′ = αS

73 / 95

The Swap Operator

Swap(i, i + 1) exchanges the ith, and (i + 1)th rates

Similarity transformation:

Q′ = S−1QS

α′ = αS

Exchange of adjacent rates λi, λi+1:

S =

















. . . 0 0 0 0
0 1 0 0 0

0 λi−λi+1

λi

λi+1

λi
0 0

0 0 0 1 0

0 0 0 0
. . .

















73 / 95

74 / 95

Local effect on initialisation vector:

α′
j = αj for j 6= i, i + 1

α′
i = αi +

λi − λi+1

λi
αi+1

α′
i+1 =

λi+1

λi
αi+1

74 / 95

Local effect on initialisation vector:

α′
j = αj for j 6= i, i + 1

α′
i = αi +

λi − λi+1

λi
αi+1

α′
i+1 =

λi+1

λi
αi+1

Effect on the number of traversed states:

n∗′ = n∗ + αi+1

(

1 −
λi+1

λi

)

n∗′ ≤ n∗ ⇔ λi+1 > λi

74 / 95

Local effect on initialisation vector:

α′
j = αj for j 6= i, i + 1

α′
i = αi +

λi − λi+1

λi
αi+1

α′
i+1 =

λi+1

λi
αi+1

Effect on the number of traversed states:

n∗′ = n∗ + αi+1

(

1 −
λi+1

λi

)

n∗′ ≤ n∗ ⇔ λi+1 > λi

⇒ costs can be reduced by moving larger rates to the left

74 / 95

Optimality result for bi-diagonal representations

Theorem ([16])

Given a Markovian representation (α,Q) in CF-1 form, the
representation (α∗,Q∗) that reverses the order of the rates is
optimal with respect to n∗ if α∗ is a stochastic vector. In this
case, all bi-diagonal representations constructed by the Swap

operator are Markovian.

Proof.

Follows from the fact that costs can only be reduced by moving
larger rates to the left.

75 / 95

Caveat: The reversed CF-1 is not always Markovian

76 / 95

Caveat: The reversed CF-1 is not always Markovian

Consider

Λ = (1, 2, 3, 4)

α = (0.5, 0.4, 0.05, 0.05)

76 / 95

Caveat: The reversed CF-1 is not always Markovian

Consider

Λ = (1, 2, 3, 4)

α = (0.5, 0.4, 0.05, 0.05)

Reversed CF-1:

Λ′ = (4, 3, 2, 1)

α′ = (−0.6, 1.4, 0, 0.2)

76 / 95

Caveat: The reversed CF-1 is not always Markovian

Consider

Λ = (1, 2, 3, 4)

α = (0.5, 0.4, 0.05, 0.05)

Reversed CF-1:

Λ′ = (4, 3, 2, 1)

α′ = (−0.6, 1.4, 0, 0.2)

. . . not Markovian

76 / 95

Caveat: The reversed CF-1 is not always Markovian

Consider

Λ = (1, 2, 3, 4)

α = (0.5, 0.4, 0.05, 0.05)

Reversed CF-1:

Λ′ = (4, 3, 2, 1)

α′ = (−0.6, 1.4, 0, 0.2)

. . . not Markovian

Optimal Markovian representation:

Λ∗ = (2, 4, 3, 1)

α∗ = (0.1, 0.7, 0, 0.2)

76 / 95

Optimisation Algorithms

77 / 95

Optimisation Algorithms

BubbleSortOptimise:

77 / 95

Optimisation Algorithms

BubbleSortOptimise:

Modified BubbleSort algorithm

77 / 95

Optimisation Algorithms

BubbleSortOptimise:

Modified BubbleSort algorithm
Sort rates in descending order

77 / 95

Optimisation Algorithms

BubbleSortOptimise:

Modified BubbleSort algorithm
Sort rates in descending order
Stop if no new Markovian representations can be found (or the
reversed CF-1 is reached)

77 / 95

Optimisation Algorithms

BubbleSortOptimise:

Modified BubbleSort algorithm
Sort rates in descending order
Stop if no new Markovian representations can be found (or the
reversed CF-1 is reached)

FindMarkovian:

77 / 95

Optimisation Algorithms

BubbleSortOptimise:

Modified BubbleSort algorithm
Sort rates in descending order
Stop if no new Markovian representations can be found (or the
reversed CF-1 is reached)

FindMarkovian:

Start from reversed CF-1 form

77 / 95

Optimisation Algorithms

BubbleSortOptimise:

Modified BubbleSort algorithm
Sort rates in descending order
Stop if no new Markovian representations can be found (or the
reversed CF-1 is reached)

FindMarkovian:

Start from reversed CF-1 form
Sort rates in ascending order

77 / 95

Optimisation Algorithms

BubbleSortOptimise:

Modified BubbleSort algorithm
Sort rates in descending order
Stop if no new Markovian representations can be found (or the
reversed CF-1 is reached)

FindMarkovian:

Start from reversed CF-1 form
Sort rates in ascending order
Stop if a Markovian representation is found

77 / 95

Optimisation: BubbleSortOptimise

Algorithm BubbleSortOptimise(α,Λ):

for i = 1, . . . , n − 1 do

for j = 1, . . . , n − 1 do

(α′,Λ′) := Swap(α,Λ, i)
if Λ[j] < Λ[j + 1] ∧ α′ ≥ 0 then

(α,Λ) := (α′,Λ′)
else

break
end if

end for

end for

return (α,Λ)

78 / 95

Optimisation: FindMarkovian

Algorithm FindMarkovian(α,Λ):

Let (α′,Λ′) be the reversed CF-1 of (α,Λ′)
while ¬(α′ ≥ 0) do

i := argmini {α
′
i < 0}

i := max {2, i}
while ¬(α′ ≥ 0) ∧ ∃k : Λ[k] ≥ Λ[k + 1] do

k := argminj {j | i − 1 ≤ j ≤ n − 1 ∧ Λ[j] ≥ Λ[j + 1]}
(α′,Λ′) := Swap(α′,Λ′, k)

end while

end while

return (α′,Λ′)

79 / 95

Optimisation: Examples

80 / 95

Optimisation: Examples

Generalised Erlang:

80 / 95

Optimisation: Examples

Generalised Erlang:

Λ = (1, 2, 3, 4),α = (1, 0, 0, 0)

80 / 95

Optimisation: Examples

Generalised Erlang:

Λ = (1, 2, 3, 4),α = (1, 0, 0, 0)
n∗ = 4 for every ordering

80 / 95

Optimisation: Examples

Generalised Erlang:

Λ = (1, 2, 3, 4),α = (1, 0, 0, 0)
n∗ = 4 for every ordering

APH with Markovian reversed CF-1:

80 / 95

Optimisation: Examples

Generalised Erlang:

Λ = (1, 2, 3, 4),α = (1, 0, 0, 0)
n∗ = 4 for every ordering

APH with Markovian reversed CF-1:

Λ = (1, 2, 3, 4),α = (0.7, 0.15, 0.09, 0.06)

80 / 95

Optimisation: Examples

Generalised Erlang:

Λ = (1, 2, 3, 4),α = (1, 0, 0, 0)
n∗ = 4 for every ordering

APH with Markovian reversed CF-1:

Λ = (1, 2, 3, 4),α = (0.7, 0.15, 0.09, 0.06)
n∗ = 3.49

80 / 95

Optimisation: Examples

Generalised Erlang:

Λ = (1, 2, 3, 4),α = (1, 0, 0, 0)
n∗ = 4 for every ordering

APH with Markovian reversed CF-1:

Λ = (1, 2, 3, 4),α = (0.7, 0.15, 0.09, 0.06)
n∗ = 3.49
Reversed CF-1: Λ′ = (4, 3, 2, 1),α′ = (0.46, 0.12, 0.18, 0.24)

80 / 95

Optimisation: Examples

Generalised Erlang:

Λ = (1, 2, 3, 4),α = (1, 0, 0, 0)
n∗ = 4 for every ordering

APH with Markovian reversed CF-1:

Λ = (1, 2, 3, 4),α = (0.7, 0.15, 0.09, 0.06)
n∗ = 3.49
Reversed CF-1: Λ′ = (4, 3, 2, 1),α′ = (0.46, 0.12, 0.18, 0.24)
n∗′ = 2.8

80 / 95

Optimisation: Examples

Generalised Erlang:

Λ = (1, 2, 3, 4),α = (1, 0, 0, 0)
n∗ = 4 for every ordering

APH with Markovian reversed CF-1:

Λ = (1, 2, 3, 4),α = (0.7, 0.15, 0.09, 0.06)
n∗ = 3.49
Reversed CF-1: Λ′ = (4, 3, 2, 1),α′ = (0.46, 0.12, 0.18, 0.24)
n∗′ = 2.8

APH with non-Markovian reversed CF-1:

80 / 95

Optimisation: Examples

Generalised Erlang:

Λ = (1, 2, 3, 4),α = (1, 0, 0, 0)
n∗ = 4 for every ordering

APH with Markovian reversed CF-1:

Λ = (1, 2, 3, 4),α = (0.7, 0.15, 0.09, 0.06)
n∗ = 3.49
Reversed CF-1: Λ′ = (4, 3, 2, 1),α′ = (0.46, 0.12, 0.18, 0.24)
n∗′ = 2.8

APH with non-Markovian reversed CF-1:

Λ = (1, 2, 3, 4),α = (0.5, 0.4, 0.05, 0.05)

80 / 95

Optimisation: Examples

Generalised Erlang:

Λ = (1, 2, 3, 4),α = (1, 0, 0, 0)
n∗ = 4 for every ordering

APH with Markovian reversed CF-1:

Λ = (1, 2, 3, 4),α = (0.7, 0.15, 0.09, 0.06)
n∗ = 3.49
Reversed CF-1: Λ′ = (4, 3, 2, 1),α′ = (0.46, 0.12, 0.18, 0.24)
n∗′ = 2.8

APH with non-Markovian reversed CF-1:

Λ = (1, 2, 3, 4),α = (0.5, 0.4, 0.05, 0.05)
n∗ = 3.35

80 / 95

Optimisation: Examples

Generalised Erlang:

Λ = (1, 2, 3, 4),α = (1, 0, 0, 0)
n∗ = 4 for every ordering

APH with Markovian reversed CF-1:

Λ = (1, 2, 3, 4),α = (0.7, 0.15, 0.09, 0.06)
n∗ = 3.49
Reversed CF-1: Λ′ = (4, 3, 2, 1),α′ = (0.46, 0.12, 0.18, 0.24)
n∗′ = 2.8

APH with non-Markovian reversed CF-1:

Λ = (1, 2, 3, 4),α = (0.5, 0.4, 0.05, 0.05)
n∗ = 3.35
Reversed CF-1: Λ = (4, 3, 2, 1),α′ = (−0.6, 1.4, 0, 0.2)

80 / 95

Optimisation: Examples

Generalised Erlang:

Λ = (1, 2, 3, 4),α = (1, 0, 0, 0)
n∗ = 4 for every ordering

APH with Markovian reversed CF-1:

Λ = (1, 2, 3, 4),α = (0.7, 0.15, 0.09, 0.06)
n∗ = 3.49
Reversed CF-1: Λ′ = (4, 3, 2, 1),α′ = (0.46, 0.12, 0.18, 0.24)
n∗′ = 2.8

APH with non-Markovian reversed CF-1:

Λ = (1, 2, 3, 4),α = (0.5, 0.4, 0.05, 0.05)
n∗ = 3.35
Reversed CF-1: Λ = (4, 3, 2, 1),α′ = (−0.6, 1.4, 0, 0.2)
Optimum: Λ′′ = (2, 4, 3, 1),α′′ = (0.1, 0.7, 0, 0.2),

80 / 95

Optimisation: Examples

Generalised Erlang:

Λ = (1, 2, 3, 4),α = (1, 0, 0, 0)
n∗ = 4 for every ordering

APH with Markovian reversed CF-1:

Λ = (1, 2, 3, 4),α = (0.7, 0.15, 0.09, 0.06)
n∗ = 3.49
Reversed CF-1: Λ′ = (4, 3, 2, 1),α′ = (0.46, 0.12, 0.18, 0.24)
n∗′ = 2.8

APH with non-Markovian reversed CF-1:

Λ = (1, 2, 3, 4),α = (0.5, 0.4, 0.05, 0.05)
n∗ = 3.35
Reversed CF-1: Λ = (4, 3, 2, 1),α′ = (−0.6, 1.4, 0, 0.2)
Optimum: Λ′′ = (2, 4, 3, 1),α′′ = (0.1, 0.7, 0, 0.2),
n∗(α′′,Λ′′) = 2.7

80 / 95

Summary for APH Optimisation

81 / 95

Summary for APH Optimisation

Optimisation is possible purely by modification of the ordering
of the rates

81 / 95

Summary for APH Optimisation

Optimisation is possible purely by modification of the ordering
of the rates

Moving a larger rate to the left reduces costs

81 / 95

Summary for APH Optimisation

Optimisation is possible purely by modification of the ordering
of the rates

Moving a larger rate to the left reduces costs

The reversed CF-1 is optimal if it is Markovian.

81 / 95

Summary for APH Optimisation

Optimisation is possible purely by modification of the ordering
of the rates

Moving a larger rate to the left reduces costs

The reversed CF-1 is optimal if it is Markovian.

Efficient optimisation algorithms

81 / 95

Summary for APH Optimisation

Optimisation is possible purely by modification of the ordering
of the rates

Moving a larger rate to the left reduces costs

The reversed CF-1 is optimal if it is Markovian.

Efficient optimisation algorithms

Only valid for APH → can we extend it to PH?

81 / 95

Optimisation for general PH

82 / 95

Optimisation for general PH

Use the FE-diagonal form

82 / 95

Optimisation for general PH

Use the FE-diagonal form
Every PH has an FE-diagonal representation (the Monocyclic
form, [11])

82 / 95

Optimisation for general PH

Use the FE-diagonal form
Every PH has an FE-diagonal representation (the Monocyclic
form, [11])
Elegant expression for the number of logarithms

82 / 95

Optimisation for general PH

Use the FE-diagonal form
Every PH has an FE-diagonal representation (the Monocyclic
form, [11])
Elegant expression for the number of logarithms

Costs for FE-diagonal representations:

#ln = 3ℓ∗

82 / 95

Optimisation for general PH

Use the FE-diagonal form
Every PH has an FE-diagonal representation (the Monocyclic
form, [11])
Elegant expression for the number of logarithms

Costs for FE-diagonal representations:

#ln = 3ℓ∗

Block visits for FE-diagonal representations:

ℓ∗ =
n

∑

i=1

αi · (m − i + 1)

82 / 95

Optimisation for general PH

Use the FE-diagonal form
Every PH has an FE-diagonal representation (the Monocyclic
form, [11])
Elegant expression for the number of logarithms

Costs for FE-diagonal representations:

#ln = 3ℓ∗

Block visits for FE-diagonal representations:

ℓ∗ =
n

∑

i=1

αi · (m − i + 1)

Idea: Re-order blocks along the diagonal – preserves
eigenvalues

82 / 95

Optimisation for general PH

Use the FE-diagonal form
Every PH has an FE-diagonal representation (the Monocyclic
form, [11])
Elegant expression for the number of logarithms

Costs for FE-diagonal representations:

#ln = 3ℓ∗

Block visits for FE-diagonal representations:

ℓ∗ =
n

∑

i=1

αi · (m − i + 1)

Idea: Re-order blocks along the diagonal – preserves
eigenvalues

Express by a similarity transformation

82 / 95

Optimisation for general PH

Use the FE-diagonal form
Every PH has an FE-diagonal representation (the Monocyclic
form, [11])
Elegant expression for the number of logarithms

Costs for FE-diagonal representations:

#ln = 3ℓ∗

Block visits for FE-diagonal representations:

ℓ∗ =
n

∑

i=1

αi · (m − i + 1)

Idea: Re-order blocks along the diagonal – preserves
eigenvalues

Express by a similarity transformation

Successive pairwise swappings can construct any ordering

82 / 95

The GSwap Operator

83 / 95

The GSwap Operator

GSwap(i, i + 1) exchanges the ith and (i + 1)th FE-blocks
along the diagonal

83 / 95

The GSwap Operator

GSwap(i, i + 1) exchanges the ith and (i + 1)th FE-blocks
along the diagonal

Similarity Transformation:

S =





Iν×ν 0 0

0 Ŝ 0

0 0 Iµ×µ



 ,

83 / 95

The GSwap Operator

GSwap(i, i + 1) exchanges the ith and (i + 1)th FE-blocks
along the diagonal

Similarity Transformation:

S =





Iν×ν 0 0

0 Ŝ 0

0 0 Iµ×µ



 ,

Ŝ is block-lower-triangular . . . but does not have a nice,
general explicit structure

83 / 95

The GSwap Operator

GSwap(i, i + 1) exchanges the ith and (i + 1)th FE-blocks
along the diagonal

Similarity Transformation:

S =





Iν×ν 0 0

0 Ŝ 0

0 0 Iµ×µ



 ,

Ŝ is block-lower-triangular . . . but does not have a nice,
general explicit structure

Ŝ needs to be computed for each possible swap as the
solution of

(

Fi −Fi1Ie1

0 Fi+1

)

Ŝ = Ŝ

(

Fi+1 −Fi+11Ie1

0 Fi

)

Ŝ1I = 1I.

83 / 95

Conjecture

The optimal ordering is achieved by computing the reversed
Monocyclic form.

84 / 95

Counterexample

85 / 95

Counterexample

Consider

Υ = ((1, 0.1, 0), (3, 1.5, 0.5), (3, 1, 0))

Υ′ = ((1, 0.1, 0), (3, 1, 0), (3, 1, 0.5))

85 / 95

Counterexample

Consider

Υ = ((1, 0.1, 0), (3, 1.5, 0.5), (3, 1, 0))

Υ′ = ((1, 0.1, 0), (3, 1, 0), (3, 1, 0.5))

Consider two initial vectors:

85 / 95

Counterexample

Consider

Υ = ((1, 0.1, 0), (3, 1.5, 0.5), (3, 1, 0))

Υ′ = ((1, 0.1, 0), (3, 1, 0), (3, 1, 0.5))

Consider two initial vectors:

α1 = (0.09 | 0.1, 0.3, 0.31 | 0.1, 0.1, 0)

85 / 95

Counterexample

Consider

Υ = ((1, 0.1, 0), (3, 1.5, 0.5), (3, 1, 0))

Υ′ = ((1, 0.1, 0), (3, 1, 0), (3, 1, 0.5))

Consider two initial vectors:

α1 = (0.09 | 0.1, 0.3, 0.31 | 0.1, 0.1, 0)

α2 = (0.09 | 0.1, 0.3, 0.31 | 0.2, 0, 0)

85 / 95

Counterexample

Consider

Υ = ((1, 0.1, 0), (3, 1.5, 0.5), (3, 1, 0))

Υ′ = ((1, 0.1, 0), (3, 1, 0), (3, 1, 0.5))

Consider two initial vectors:

α1 = (0.09 | 0.1, 0.3, 0.31 | 0.1, 0.1, 0)

α2 = (0.09 | 0.1, 0.3, 0.31 | 0.2, 0, 0)

Costs:

ℓ∗1 = ℓ∗2 = 1.89

85 / 95

Counterexample (ctd.)

86 / 95

Counterexample (ctd.)

Initial vectors after swapping:

86 / 95

Counterexample (ctd.)

Initial vectors after swapping:

α′
1 = (0.09 | 0.141852, 0.289630.271111

86 / 95

Counterexample (ctd.)

Initial vectors after swapping:

α′
1 = (0.09 | 0.141852, 0.289630.271111

| 0.118519, 0.0888889, 0)

α′
2 = (0.09 | 0.0492593, 0.426667, 0.315556

| 0.118519, 0, 0)

86 / 95

Counterexample (ctd.)

Initial vectors after swapping:

α′
1 = (0.09 | 0.141852, 0.289630.271111

| 0.118519, 0.0888889, 0)

α′
2 = (0.09 | 0.0492593, 0.426667, 0.315556

| 0.118519, 0, 0)

Costs:

86 / 95

Counterexample (ctd.)

Initial vectors after swapping:

α′
1 = (0.09 | 0.141852, 0.289630.271111

| 0.118519, 0.0888889, 0)

α′
2 = (0.09 | 0.0492593, 0.426667, 0.315556

| 0.118519, 0, 0)

Costs:

ℓ∗′1 = 1.8825939 < ℓ∗1 = 1.89

86 / 95

Counterexample (ctd.)

Initial vectors after swapping:

α′
1 = (0.09 | 0.141852, 0.289630.271111

| 0.118519, 0.0888889, 0)

α′
2 = (0.09 | 0.0492593, 0.426667, 0.315556

| 0.118519, 0, 0)

Costs:

ℓ∗′1 = 1.8825939 < ℓ∗1 = 1.89

ℓ∗′2 = 1.9714836 > ℓ∗2 = 1.89

86 / 95

Counterexample (ctd.)

Initial vectors after swapping:

α′
1 = (0.09 | 0.141852, 0.289630.271111

| 0.118519, 0.0888889, 0)

α′
2 = (0.09 | 0.0492593, 0.426667, 0.315556

| 0.118519, 0, 0)

Costs:

ℓ∗′1 = 1.8825939 < ℓ∗1 = 1.89

ℓ∗′2 = 1.9714836 > ℓ∗2 = 1.89

⇒ Effect of the swap depends on the initialisation vector

86 / 95

Optimisation Algorithms

87 / 95

Optimisation Algorithms

GBubbleSortOptimise:

87 / 95

Optimisation Algorithms

GBubbleSortOptimise:

Modified BubbleSort algorithm

87 / 95

Optimisation Algorithms

GBubbleSortOptimise:

Modified BubbleSort algorithm
Sort blocks in descending order

87 / 95

Optimisation Algorithms

GBubbleSortOptimise:

Modified BubbleSort algorithm
Sort blocks in descending order
Stop if no Markovian representations can be found (or the
reversed CF-1 is reached)

87 / 95

Optimisation Algorithms

GBubbleSortOptimise:

Modified BubbleSort algorithm
Sort blocks in descending order
Stop if no Markovian representations can be found (or the
reversed CF-1 is reached)

GFindMarkovian:

87 / 95

Optimisation Algorithms

GBubbleSortOptimise:

Modified BubbleSort algorithm
Sort blocks in descending order
Stop if no Markovian representations can be found (or the
reversed CF-1 is reached)

GFindMarkovian:

Start from reversed Monocyclic form

87 / 95

Optimisation Algorithms

GBubbleSortOptimise:

Modified BubbleSort algorithm
Sort blocks in descending order
Stop if no Markovian representations can be found (or the
reversed CF-1 is reached)

GFindMarkovian:

Start from reversed Monocyclic form
Sort blocks in ascending order

87 / 95

Optimisation Algorithms

GBubbleSortOptimise:

Modified BubbleSort algorithm
Sort blocks in descending order
Stop if no Markovian representations can be found (or the
reversed CF-1 is reached)

GFindMarkovian:

Start from reversed Monocyclic form
Sort blocks in ascending order
Stop if a Markovian representation is found

87 / 95

Optimisation Algorithms

GBubbleSortOptimise:

Modified BubbleSort algorithm
Sort blocks in descending order
Stop if no Markovian representations can be found (or the
reversed CF-1 is reached)

GFindMarkovian:

Start from reversed Monocyclic form
Sort blocks in ascending order
Stop if a Markovian representation is found

Order determined by a heuristic

87 / 95

Optimisation: BubbleSortOptimise

Algorithm GBubbleSortOptimise(α,Υ):

for i = 1, . . . , m − 1 do

for j = 1, . . . , m − 1 do

(α′,Υ′) :=Swap(α,Υ, i)
if ComparisonHeuristic(α,Υ, j) = true ∧ α′ ≥ 0 then

(α,Υ) := (α′,Υ′)
else

break
end if

end for

end for

return (α,Υ)

88 / 95

Optimisation: FindMarkovian

Let (α′,Υ′) be the reversed Monocyclic form of (α,Υ′)
r:=0
while ¬(α′ ≥ 0) do

i := argmini {α
′
i < 0}

i := max {2, i}
while ¬(α′ ≥ 0) ∧ ∃k :
ComparisonHeuristic(Υ[k],Υ[k + 1]) = false do

k := argminj {j | i − 1 ≤ j ≤ m − 1 ∧ Υ[j] ≥ Υ[j + 1]}
(α′,Υ′) := Swap(α′,Υ′, k)
if (α′,Υ′) is a new representation then

r + +
end if

if r = m! then

goto END
end if

end while

end while

89 / 95

Swapping Criteria for APH

90 / 95

Swapping Criteria for APH

Assume blocks of length 1 (bi-diagonal case)

90 / 95

Swapping Criteria for APH

Assume blocks of length 1 (bi-diagonal case)
We swap blocks i, i + 1 if λi < λi+1

90 / 95

Swapping Criteria for APH

Assume blocks of length 1 (bi-diagonal case)
We swap blocks i, i + 1 if λi < λi+1

Equivalent to

90 / 95

Swapping Criteria for APH

Assume blocks of length 1 (bi-diagonal case)
We swap blocks i, i + 1 if λi < λi+1

Equivalent to
Block i has dominant eigenvalue of smaller magnitude than
block i + 1:

|ri| < |ri+1| ⇔ λi < λi+1

90 / 95

Swapping Criteria for APH

Assume blocks of length 1 (bi-diagonal case)
We swap blocks i, i + 1 if λi < λi+1

Equivalent to
Block i has dominant eigenvalue of smaller magnitude than
block i + 1:

|ri| < |ri+1| ⇔ λi < λi+1

Block i has larger mean than block i + 1:

Mi > Mi+1 ⇔
1

λi

>
1

λi+1
⇔ λi < λi+1

90 / 95

Swapping Criteria for APH

Assume blocks of length 1 (bi-diagonal case)
We swap blocks i, i + 1 if λi < λi+1

Equivalent to
Block i has dominant eigenvalue of smaller magnitude than
block i + 1:

|ri| < |ri+1| ⇔ λi < λi+1

Block i has larger mean than block i + 1:

Mi > Mi+1 ⇔
1

λi

>
1

λi+1
⇔ λi < λi+1

Block i has smaller exit-rate:

λi < λi+1

90 / 95

Swapping Criteria for APH

Assume blocks of length 1 (bi-diagonal case)
We swap blocks i, i + 1 if λi < λi+1

Equivalent to
Block i has dominant eigenvalue of smaller magnitude than
block i + 1:

|ri| < |ri+1| ⇔ λi < λi+1

Block i has larger mean than block i + 1:

Mi > Mi+1 ⇔
1

λi

>
1

λi+1
⇔ λi < λi+1

Block i has smaller exit-rate:

λi < λi+1

The determinant of the transformation matrix is larger than 1:
∣

∣

∣Ŝ

∣

∣

∣ =
λi+1

λi

> 1
90 / 95

Swapping Criteria for PH

91 / 95

Swapping Criteria for PH

Criteria are different for the FE-diagonal case:

91 / 95

Swapping Criteria for PH

Criteria are different for the FE-diagonal case:
Eigenvalues:

∣

∣

∣

∣

−

(

1 − z
1
bi

i

)∣

∣

∣

∣

<

∣

∣

∣

∣

−

(

1 − z
1

bi+1

i+1

)∣

∣

∣

∣

91 / 95

Swapping Criteria for PH

Criteria are different for the FE-diagonal case:
Eigenvalues:

∣

∣

∣

∣

−

(

1 − z
1
bi

i

)∣

∣

∣

∣

<

∣

∣

∣

∣

−

(

1 − z
1

bi+1

i+1

)∣

∣

∣

∣

Means:

Start at the first state: M̂i = e1(−Fi)
−11I

Start at all states: Mi =
αi

αi1I
(−Fi)

−11I

91 / 95

Swapping Criteria for PH

Criteria are different for the FE-diagonal case:
Eigenvalues:

∣

∣

∣

∣

−

(

1 − z
1
bi

i

)∣

∣

∣

∣

<

∣

∣

∣

∣

−

(

1 − z
1

bi+1

i+1

)∣

∣

∣

∣

Means:

Start at the first state: M̂i = e1(−Fi)
−11I

Start at all states: Mi =
αi

αi1I
(−Fi)

−11I

Exit-rates:
(1 − zi)λi < (1 − zi+1)λi+1

91 / 95

Swapping Criteria for PH

Criteria are different for the FE-diagonal case:
Eigenvalues:

∣

∣

∣

∣

−

(

1 − z
1
bi

i

)∣

∣

∣

∣

<

∣

∣

∣

∣

−

(

1 − z
1

bi+1

i+1

)∣

∣

∣

∣

Means:

Start at the first state: M̂i = e1(−Fi)
−11I

Start at all states: Mi =
αi

αi1I
(−Fi)

−11I

Exit-rates:
(1 − zi)λi < (1 − zi+1)λi+1

Determinant:
∣

∣

∣Ŝ

∣

∣

∣ > 1

91 / 95

Heuristics are not perfect

Correct?
F1 F2 Swap? α1 α2

92 / 95

Heuristics are not perfect

Correct?
F1 F2 Swap? α1 α2

Eigenvalue −0.3095 −1 yes X ✗

92 / 95

Heuristics are not perfect

Correct?
F1 F2 Swap? α1 α2

Eigenvalue −0.3095 −1 yes X ✗

Mean (first state) 4 3 yes X ✗

Mean (all states, α1) 4 1.7042 yes X ✗

Mean (all states, α2) 2.5 1.7042 yes X ✗

92 / 95

Heuristics are not perfect

Correct?
F1 F2 Swap? α1 α2

Eigenvalue −0.3095 −1 yes X ✗

Mean (first state) 4 3 yes X ✗

Mean (all states, α1) 4 1.7042 yes X ✗

Mean (all states, α2) 2.5 1.7042 yes X ✗

Exit rate 0.75 1 yes X ✗

92 / 95

Heuristics are not perfect

Correct?
F1 F2 Swap? α1 α2

Eigenvalue −0.3095 −1 yes X ✗

Mean (first state) 4 3 yes X ✗

Mean (all states, α1) 4 1.7042 yes X ✗

Mean (all states, α2) 2.5 1.7042 yes X ✗

Exit rate 0.75 1 yes X ✗

Determinant 0.208 no ✗ X

92 / 95

Example

93 / 95

Example

Generate 100 random PH distributions

93 / 95

Example

Generate 100 random PH distributions

Compute Monocyclic form

93 / 95

Example

Generate 100 random PH distributions

Compute Monocyclic form

Apply exhaustive search for the optimum

93 / 95

Example

Generate 100 random PH distributions

Compute Monocyclic form

Apply exhaustive search for the optimum

Apply heuristics in BubbleSort algorithm

93 / 95

Example

Generate 100 random PH distributions

Compute Monocyclic form

Apply exhaustive search for the optimum

Apply heuristics in BubbleSort algorithm

Results shown here: n = 6

93 / 95

Some Empirical Results

 0

 2

 4

 6

 8

 10

 12

R Mono Opt. EV Mean Exit Rate Det

A
ve

ra
ge

 n
um

be
r

of
 lo

ga
rit

hm
s

94 / 95

Some Empirical Results

 0

 2

 4

 6

 8

 10

 12

R Mono Opt. EV Mean Exit Rate Det

A
ve

ra
ge

 n
um

be
r

of
 lo

ga
rit

hm
s

94 / 95

Some Empirical Results

 0

 2

 4

 6

 8

 10

 12

R Mono Opt. EV Mean Exit Rate Det

A
ve

ra
ge

 n
um

be
r

of
 lo

ga
rit

hm
s

94 / 95

Some Empirical Results

 0

 2

 4

 6

 8

 10

 12

R Mono Opt. EV Mean Exit Rate Det

A
ve

ra
ge

 n
um

be
r

of
 lo

ga
rit

hm
s

94 / 95

Some Empirical Results

 0

 2

 4

 6

 8

 10

 12

R Mono Opt. EV Mean Exit Rate Det

A
ve

ra
ge

 n
um

be
r

of
 lo

ga
rit

hm
s

94 / 95

Some Empirical Results

 0

 2

 4

 6

 8

 10

 12

R Mono Opt. EV Mean Exit Rate Det

A
ve

ra
ge

 n
um

be
r

of
 lo

ga
rit

hm
s

94 / 95

Some Empirical Results

 0

 2

 4

 6

 8

 10

 12

R Mono Opt. EV Mean Exit Rate Det

A
ve

ra
ge

 n
um

be
r

of
 lo

ga
rit

hm
s

94 / 95

Some Empirical Results

 0

 2

 4

 6

 8

 10

 12

R Mono Opt. EV Mean Exit Rate Det

A
ve

ra
ge

 n
um

be
r

of
 lo

ga
rit

hm
s

94 / 95

Summary

95 / 95

Summary

Efficiency of random-variate generation depends on

95 / 95

Summary

Efficiency of random-variate generation depends on

Representation

95 / 95

Summary

Efficiency of random-variate generation depends on

Representation
Algorithm

95 / 95

Summary

Efficiency of random-variate generation depends on

Representation
Algorithm

Canonical representations are efficient and allow optimisation

95 / 95

Summary

Efficiency of random-variate generation depends on

Representation
Algorithm

Canonical representations are efficient and allow optimisation

Optimisation of canonical representations:

95 / 95

Summary

Efficiency of random-variate generation depends on

Representation
Algorithm

Canonical representations are efficient and allow optimisation

Optimisation of canonical representations:

General optimum for APH

95 / 95

Summary

Efficiency of random-variate generation depends on

Representation
Algorithm

Canonical representations are efficient and allow optimisation

Optimisation of canonical representations:

General optimum for APH
No general optimum for PH, but heuristics exist

95 / 95

fin.

D. Aldous and L. Shepp.
The least variable phase-type distribution is erlang.
Stochastic Models, 3:467–473, 1987.

S. Asmussen, O. Nerman, and M. Olsson.
Fitting Phase-Type Distribution Via the EM Algorithm.
Scand. J. Statist., 23:419–441, 1996.

B. Blywis, M. Günes, F. Juraschek, O. Hahm, and
N. Schmittberger.
Properties and Topology of the DES-Testbed (2nd Extended
Revision).
Technical Report TR-B-11-04, Freie Universität Berlin, July
2011.

E. F. Brown.

A distribution-free random number generator via a
matrix-exponential representation.
In Proceedings of the 1992 ACM/SIGAPP symposium on
Applied computing: technological challenges of the 1990’s,
SAC ’92, pages 960–969, New York, NY, USA, 1992. ACM.

G. Casale, E. Z. Zhang, and E. Smirni.
Kpc-toolbox: Simple yet effective trace fitting using markovian
arrival processes.
In Proceedings of the 2008 Fifth International Conference on
Quantitative Evaluation of Systems, pages 83–92, Washington,
DC, USA, 2008. IEEE Computer Society.

A. Cumani.
On the Canonical Representation of Homogeneous Markov
Processes Modelling Failure-time Distributions.
Microelectronics and Reliability, 22:583–602, 1982.

A. Horváth, S. Rácz, and M. Telek.
Moments characterization of order 3 matrix exponential
distributions.
In ASMTA ’09: Proceedings of the 16th International
Conference on Analytical and Stochastic Modeling Techniques
and Applications, pages 174–188, Berlin, Heidelberg, 2009.
Springer-Verlag.

A. Horváth and M. Telek.
PhFit: A General Phase-Type Fitting Tool.
In TOOLS ’02: Proceedings of the 12th International
Conference on Computer Performance Evaluation, Modelling
Techniques and Tools, pages 82–91, London, UK, 2002.
Springer-Verlag.

G. Horváth and M. Telek.

Acceptance-rejection methods for generating random variates
from matrix exponential distributions and rational arrival
processes.
In Int. Conf. on Martix Analytic Methods (MAM), New York,
New York, USA, june 2011.

S. M. Johnson.
Generation of Permutations by Adjacent Transposition.
Mathematics of Computation, 17(83):282–285, July 1963.

S. Mocanu and C. Commault.
Sparse Representations of Phase-type Distributions.
Commun. Stat., Stochastic Models, 15(4):759 – 778, 1999.

C. Moler and C. V. Loan.
Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later.

SIAM Review, 45(1):3–49, 2003.

M. F. Neuts.
Matrix-Geometric Solutions in Stochastic Models. An
Algorithmic Approach.
Dover Publications, Inc., New York, 1981.

M. F. Neuts and M. E. Pagano.
Generating random variates from a distribution of phase type.
In WSC ’81: Proceedings of the 13th Winter Simulation
Conference, pages 381–387, Piscataway, NJ, USA, 1981. IEEE
Press.

P. Reinecke, T. Krau, K. Wolter, P. Reinecke, T. Krauß, and
K. Wolter.
Cluster-based fitting of phase-type distributions to empirical
data.

Computers & Mathematics with Applications, (0):–, 2012.
To appear.

P. Reinecke, M. Telek, and K. Wolter.
Reducing the Costs of Generating APH-Distributed Random
Numbers.
In B. Müller-Clostermann, K. Echtle, and E. Rathgeb, editors,
MMB & DFT 2010, number 5987 in LNCS, pages 274–286.
Springer-Verlag Berlin Heidelberg, 2010.

A. Riska, V. Diev, and E. Smirni.
Efficient fitting of long-tailed data sets into phase-type
distributions.
SIGMETRICS Perform. Eval. Rev., 30:6–8, December 2002.

R. Sadre and B. Haverkort.

Fitting heavy-tailed http traces with the new stratified
em-algorithm.
In 4th International Telecommunication Networking Workshop
on QoS in Multiservice IP Networks (IT-NEWS), pages
254–261, Los Alamitos, February 2008. IEEE Computer
Society Press.

M. Telek and A. Heindl.
Matching Moments for Acyclic Discrete and Continous
Phase-Type Distributions of Second Order.
International Journal of Simulation Systems, Science &
Technology, 3(3–4):47–57, Dec. 2002.

A. Thümmler, P. Buchholz, and M. Telek.
A Novel Approach for Phase-Type Fitting with the EM
Algorithm.
IEEE Trans. Dependable Secur. Comput., 3(3):245–258, 2006.

J. Wang, J. Liu, and C. She.
Segment-based adaptive hyper-erlang model forlong-tailed
network traffic approximation.
The Journal of Supercomputing, 45:296–312, 2008.
10.1007/s11227-008-0173-5.

J. Wang, H. Zhou, F. Xu, and L. Li.
Hyper-erlang based model for network traffic approximation.
In Y. Pan, D. Chen, M. Guo, J. Cao, and J. Dongarra, editors,
Parallel and Distributed Processing and Applications, volume
3758 of Lecture Notes in Computer Science, pages 1012–1023.
Springer Berlin / Heidelberg, 2005.
10.1007/11576235 101.

	Application to Frequency Synchronisation
	Insights gained from PTP analysis
	The Libphprng Library for Simulation
	Introduction
	Fitting Methods
	Discussion
	Introduction
	Methods for Random-Variate Generation
	Methods for General PH
	Methods for Subclasses

	Costs of Random-Variate Generation
	Optimisation of Representations

