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Phase-Type (PH) Distributions
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A PH distribution is the distribution of the time to absorption
in a Markov chain with one absorbing state

Examples:

Exponential distribution
Hyperexponential distribution
Erlang distribution
Hypoexponential distribution
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PH Distributions: Notation

Size: n ≥ 1

Initial vector α = (α1, . . . , αn)

Subgenerator matrix

Q =













−λ11 λ12 . . . λ1n

λ21

. . .
...

...
λn1 . . . −λnn













Markovian representation:

α ≥ 0

α1I = 1

λii > 0, i = 1, . . . , n

λij ≥ 0, i 6= j
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PH Distributions: Properties

Support: t ∈ [0,∞)

Density function:

f(t) = αeQt(−Q1I)

The density is strictly positive: f(t) > 0 for t > 0

Cumulative density function:

F (t) = 1 − αeQt1I

kth moment:
E[Xk] = k!α(−Q)−k1I

Bound on the squared coefficient of variation (SCV) [1]:

cv2 ≥
1

n

Equality holds for the Erlang distribution.
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The (α,Q) representation is not unique

Let (α,Q) be a PH distribution of size n and let S ∈ IRn×n

be non-singular and S1I = 1I.

(αS,S−1QS) represents the same distribution:

F (t) = 1 − αSeS
−1QtS1I

= 1 − αSS−1eQtS1I

= 1 − αeQt

Can be used to compute a new initialisation vector for a new
representation

Solve:

Q′ = S−1QS

S1I = 1I
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General PH distributions

λ1 λ2 λ2 (1 − z2)λ2

z2λ2

General PH distributions may have cycles

Every general PH distribution has a monocyclic
representation [11]

Monocyclic representation: Feedback-Erlang blocks on the
diagonal, ordered by dominant eigenvalues

Representation: Feedback blocks
Υ = ((b1, z1, λ1), . . . , (bm, zm, λm)), initial vector
α = (α1, . . . , αn)
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λ1 λ2 λ3 λ4

Acyclic PH distributions (ACPH) have a representation
without cycles

CF-1: Every acyclic PH distribution has a bi-diagonal
representation of the same size [6]

Phase-type in CF-1 form: n rates λ1 ≤ · · · ≤ λn, n initial
probabilities α = (α1, . . . , αn).

Representation: Rate vector Λ = (λ1, . . . , λn), initial vector
α = (α1, . . . , αn)

6 / 95



PH-Distributions in System Evaluation

7 / 95



PH-Distributions in System Evaluation

Use PH distributions to model delays, response-times,
failure-times, etc. in test-beds, simulations, and abstract
models

7 / 95



PH-Distributions in System Evaluation

Use PH distributions to model delays, response-times,
failure-times, etc. in test-beds, simulations, and abstract
models

Approach:

Obtain samples from measurements or simulation
Fit PH distribution to samples
Draw random variates from PH distribution

7 / 95



PH-Distributions in System Evaluation

Use PH distributions to model delays, response-times,
failure-times, etc. in test-beds, simulations, and abstract
models

Approach:

Obtain samples from measurements or simulation
Fit PH distribution to samples
Draw random variates from PH distribution

Advantages over other distributions:

7 / 95



PH-Distributions in System Evaluation

Use PH distributions to model delays, response-times,
failure-times, etc. in test-beds, simulations, and abstract
models

Approach:

Obtain samples from measurements or simulation
Fit PH distribution to samples
Draw random variates from PH distribution

Advantages over other distributions:

Flexibility → Capture important system properties by fitting
PH distributions to measurements

7 / 95



PH-Distributions in System Evaluation

Use PH distributions to model delays, response-times,
failure-times, etc. in test-beds, simulations, and abstract
models

Approach:

Obtain samples from measurements or simulation
Fit PH distribution to samples
Draw random variates from PH distribution

Advantages over other distributions:

Flexibility → Capture important system properties by fitting
PH distributions to measurements
Generic representations → Catch-all routines for
random-variate generation

7 / 95



PH-Distributions in System Evaluation

Use PH distributions to model delays, response-times,
failure-times, etc. in test-beds, simulations, and abstract
models

Approach:

Obtain samples from measurements or simulation
Fit PH distribution to samples
Draw random variates from PH distribution

Advantages over other distributions:

Flexibility → Capture important system properties by fitting
PH distributions to measurements
Generic representations → Catch-all routines for
random-variate generation
Markovian representations → Suitable for analytical approaches
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Frequency-Synchronisation in Mobile Backhaul Networks

Network service providers need guarantees in order to provide
services, e.g. on frequency synchronisation of base-stations

Bit-synchronous connection networks are being replaced by
packet-switched networks

Precision Time Protocol (PTP) provides frequency
synchronisation

PTP cannot tolerate packet-delay variation (PDV) above
216µs

Will PTP work?
8 / 95
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Precision Time Protocol (PTP)

PTP Master

PTP Slave
PTD PTD PTD

PTP Master transmits Sync packets at clock steps

PTP Slave derives clock frequency from the interarrival-times
of the fastest packets (1% quantile)

Constant delays do not matter

. . . but variation does
Metrics:

PDV: PDV = PTD − PTDmin

Peak-to-Peak PDV: p2pPDV = PTDmax − PTDmin

1% quantile of PDV
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Insights in PTP analysis

Delay variation is highest for fast links and small PTP packets

Delay variation is lower the slower the links, more important:

PDV can be minimised by increasing PTP packet size
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Simulation for Mobile Backhaul Network Evaluation

Discrete-event simulations using ns-2
Highly-detailed models for typical network equipment
Simplified simulation skips important effects
Consider independent background traffic
10 000 PTP packets ⇔ 312.5 s simulated time (32 PTP
packets per second)
One link ⇒ 1883.25 s runtime
2 links = 3815.63s, 3 links = 5822.63s, 4 links = 7516.72s,
5 links = 9718.97s, 10 links = 19,616.97s, 20 links 36,519.38s.
Drawback: Simulation-times become prohibitively large

Solution: Approximate delay distributions of complex nodes
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Use 20 PH RVs. Result still good for low quantiles

Error reasonably small
Run time reduced by 2-3 orders of magnitude, analytical
folding might achieve more.

12 / 95



The Libphprng Library

13 / 95



The Libphprng Library

A library for generating random variates from PH distributions

13 / 95



The Libphprng Library

A library for generating random variates from PH distributions

Part of the Butools collection
http://webspn.hit.bme.hu/~butools

13 / 95

http://webspn.hit.bme.hu/~butools


The Libphprng Library

A library for generating random variates from PH distributions

Part of the Butools collection
http://webspn.hit.bme.hu/~butools

Advantages:

13 / 95

http://webspn.hit.bme.hu/~butools


The Libphprng Library

A library for generating random variates from PH distributions

Part of the Butools collection
http://webspn.hit.bme.hu/~butools

Advantages:

easy to use

13 / 95

http://webspn.hit.bme.hu/~butools


The Libphprng Library

A library for generating random variates from PH distributions

Part of the Butools collection
http://webspn.hit.bme.hu/~butools

Advantages:

easy to use
portable between simulators

13 / 95

http://webspn.hit.bme.hu/~butools


The Libphprng Library

A library for generating random variates from PH distributions

Part of the Butools collection
http://webspn.hit.bme.hu/~butools

Advantages:

easy to use
portable between simulators
fast
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Libphprng Features

RandomSourceWrapper
Uniform Random

Source

Simulation Codelibphprng Core BuToolsGenerator

Shared library with small wrapper code for the uniform
random number stream

Libphprng implements efficient algorithms and optimises the
structure for random-variate generation
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Libphprng Application

Link simulator code with libphprng.so

Changes to the code:

1 Create BuToolsGenerator object for the distribution
2 Register uniform random number stream
3 Draw random variates

Wrappers exist for NS-2 and OMNeT++

For other simulators: Write your own wrapper
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Wrapper implementation

Implement UniformRandomSourceWrapper interface

Class must implement a method that returns a uniform
random number in (0, 1) drawn using the simulator’s random
number stream
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Summary

Phase-type distributions enable efficient simulation

Several tools exist for PH fitting:

PhFit
G-FIT
Hyper-*

The libphprng library allows integration of PH distributions
into simulation
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The Magic Behind the Scenes

Fitting phase-type distributions to data sets

Analytical evaluation using phase-type distributions

Generating random variates from phase-type distributions
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Find a Markovian tuple (α,Q) that describes the distribution
of the data well

Different criteria may be applied

Special structures of (α,Q). . .

may reduce fitting to sub-classes
may improve fitting efficiency and fitting quality
may enable more efficient evaluation

Many approaches exist
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Approaches

Moment-matching: Match moments of the PH to empirical
moments

Expectation-Maximisation (EM): Maximise (log-)likelihood

Optimisation: Minimise a distance function

Splitting the data set: break up the data set, then fit with
simpler distributions
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Moment-Matching

Derive parameters from explicit expressions for the moments:

E
[

Xk
]

= k!α(−Q)−k1I.

Examples:

[19]: Match first three moments with an APH(2)
[7]: Match first five moments with PH(3)
[5]: Uses moment-matching in MAP matching
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(
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)

Explicit expressions for the moments:

m1 =
λ1 + αλ2

λ1λ2

m2 =
2(λ2

1 + αλ1λ2 + αλ2
2)

λ2
1
λ2

2

m3 =
6(λ3

1 + αλ2
1 + αλ1λ

2
2 + αλ3

2)

λ3
1
λ3

2

Compute empirical moments of the data set
Set parameters using the explict expressions
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Moment-Matching

Advantages:

Fast
Exact match possible

Disadvantages:

Only matches moments; shape can differ significantly
Exact match is only possible if the moments are within the
bounds of the selected sub-class. E.g. PH(2) cannot match
data sets with cv2 < 1

2 [1] (approximate matching may be
used)
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Let θ be the parameters of a phase-type distribution

Maximise likelihood
∏

fθ(ti) or log-likelihood ln
∑

fθ(ti)

Steps:

Estimate unknown parameters
Compute new parameter vector θ to maximise likelihood

Examples:

G-FIT [20]: Fit Hyper-Erlang distributions
EMPHT [2]: Fit general PH distributions
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G-FIT [20] fits Hyper-Erlang distributions

Parameters of Hyper-Erlang distributions:

Number of branches m
Branch lengths b1, . . . , bm

Branch probabilities β1, . . . , βm

Branch rates λ1, . . . , λm

Selection of m and b1, . . . , bm:

Manual
Automatic (enumeration)

β1, . . . , βm and λ1, . . . , λm fitted by EM algorithm
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Fix number of branches m and branch lengths b1, . . . , bm.
Choose initial parameters θ̂ = (β̂1, . . . , β̂m, λ̂1, . . . , λ̂m)
(E-Step): Estimate probability of sample assignments to
branches

q(i|xk, θ̂) :=
β̂ifi(xk|λ̂i)
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i=1

β̂ifi(xk|λ̂i)

(M-Step): Compute new parameter vector θ that maximises
the log-likelihood:

βi :=
1

K

K
∑

k=1

q(i|xk, θ̂) (1)

λi := bi

∑K
k=1

q(i|xk, θ̂)
∑K

k=1
(q(i|xk, θ̂)xk)

(2)

Replace old parameter vector: θ̂ := θ

Repeat until convergence occurs 26 / 95
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EM-Algorithm in G-FIT

Advantages:

Fast fitting, easy to automate
Little configuration required for good results
Well-suited for simulation

Disadvantages:

No graphical user-interface
Configuration (if required) may become difficult

27 / 95
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D(f, fθ) (or, equivalently, with F )

Example distance functions:

Relative Entropy:
∫

∞

0
f(t) ln f(t)

fθ(t)dt

PDF Area Distance:
∫

∞

0
|fθ(t) − f(t)|dt

Non-linear optimisation problem

May apply different methods from non-linear optimisation

Examples:

PhFit [8]: Frank/Wolfe method – linearisation and then linear
optimisation to find the optimal direction. Supports APH in
CF-1 form.
MonoFit: Nelder/Mead algorithm – direct optimisation
without computing derivatives. Supports PH in FE-diagonal
form (or in Monocyclic form).
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APH in CF-1 form

Parameter vector: θ = (α1, . . . , αn, λ1, . . . , λn)

Optimisation problem: Minimise D(f, fθ) subject to

α ≥ 0 (3)

α1I = 1 (4)

λi > 0 (5)

λi ≤ λi+1 (6)

Apply Frank/Wolfe method to linearise in a small
neighbourhood

Additional constraint: Do not leave the neighbourhood
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Optimisation in PhFit

Linearise in a small neighbourhood around the current
parameter vector θ: Compute partial derivatives

∂D(f, fθ)

∂θi
, i = 1, . . . , 2n

Total derivative is linear in dθ:

dD =
2n
∑

i=1

∂D(f, fθ)

∂θi
dθi

Minimise total derivative using Simplex method. This gives
the direction of steepest descent of D

Follow this direction to find the next point
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PhFit

Advantages:

Good fitting results
Mixed body/tail fitting for long tails
Well-suited for simulation
Graphical user-interface

Disadvantages:

Fitting can be slow with large PH
Configuration can be difficult
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Segmentation Approaches ([21], etc)

Whole family of methods

Goal: Handle heavy-tailed data

Sort data, split such that the segments have a specified
maximal coefficient of variation cv

Fit each segment by. . .

an exponential distribution [17, 18]
a Hyper-Erlang distribution [22, 21]

Fitting for the segments [21]: BEM and AEM algorithms

Build mixture of individual distributions.

Advantage: Requires only specification of maximal cv

Disadvantage: Results depend heavily on choice of
appropriate cv
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Clustering (Hyper-*, [15])

Goal: Fit empirical distributions with peaks well

Use k-means algorithm to create clusters

User selects cluster centres

Fit samples in each cluster by a user-specified PH class and
method

Moment-Matching for Erlang distributions
PhFit, G-FIT, or other external tools
Mathematica modules, . . .

Build mixture of individual distributions

Advantages:

Good fitting, especially with Erlang distributions for the
clusters
Intuitive configuration

Disadvantage: Fitted distributions can become very large
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Comparison of Fitting Tools

Three data sets

APH distribution
Packet-delivery ratios from the DES-Testbed [3]
PTP packet transmission delays

Parameters chosen similarly, if possible
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APH distribution
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PTD distribution
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APH distribution (Segmentation approach)
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Summary

Many different approaches to PH fitting exist

Suitability of approaches depends on

Required quality of fit
Shape of the empirical density
Intended application of the distribution
Expertise of the user and user-friendliness of the tool
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Queueing Theory

Job DeparturesJob Arrivals Service

Jobs arrive, are processed, and leave
Kendall notation:

Arrival process/Service process/Number of servers(/ . . . )

Examples
M/M/1
M/PH/1
PH/PH/1

Typical questions:
Average number of jobs in the system?
Quantiles of the queue-length distribution?

42 / 95
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Queue only changes on arrivals or departures → ‘Birth/Death
process’:

1 20

For the M/M/1 queue, this is a CTMC with infinite
state-space:

1 20

λ

µ

λ λ

µ µ

For the M/PH/1 queue, things get a bit more interesting:
Infinite state-space and phase-transitions
Finite number of phases for any number of jobs

Block-transitions → ‘Quasi-Birth/Death process’:

1 20

λ

(α,Q)

λ λ

(α,Q) (α,Q) 43 / 95
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What can we do?

Compute transient measures, e.g. time until we first have m
jobs in the queue

Compute steady-state distribution, i.e. stochastic vector x

such that

xQ = 0 (9)

x1I = 1 (10)

Prerequisite for steady-state solution: Queue must be stable,
i.e. jobs must not arrive faster than they can be served:

ρ =
E[S]

E[A]
< 1

44 / 95



Matrix-Geometric Methods

Generator matrix of the CTMC:

Q =















−λ λα

q (Q − λI) λI

qα (Q − λI) λI

qα (−Q − λI) λI
. . .














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Matrix-Geometric Methods

Generator matrix of the CTMC:

Q =















−λ λα

q (Q − λI) λI

qα (Q − λI) λI

qα (−Q − λI) λI
. . .















. . . nice, regular structure, leading to

xQ = 0 ⇔











x0(−λ) + x1q = 0

x0(λα) + x1(Q − λI) + x2(qα) = 0

xi−1(λI) + xi(Q − λI) + xi+1(qα) = 0 i ≥ 2,

where
x = (x0,x1,x2, . . . )

gives the steady-state probabilities.
45 / 95



Solution for M/PH/1

Theorem 3.2.1 in [13]:

ρ = λE[S]

x0 = 1 − ρ

xi = (1 − ρ)βRi i ≥ 1,

where

R = λ(λI − λeβ − Q)−1
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Solution for M/PH/1

Theorem 3.2.1 in [13]:

ρ = λE[S]

x0 = 1 − ρ

xi = (1 − ρ)βRi i ≥ 1,

where

R = λ(λI − λeβ − Q)−1

Note:

x: steady-state distribution of number of jobs in system and
phase of the job in service
Phases have no physical interpretation with a fitted
phase-type distribution → We are only interested in the
distribution of the number of jobs in the system:

x̄ = (x0,x11I,x21I, . . . )
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Summary

Closed-form expressions allow analytical approaches

Efficient solution methods due to special structures of the
resulting models

In queueing-analysis, matrix-geometric methods utilise block
structures

Solutions for more general systems are available, e.g.
PH/PH/1, or queues with bounded queue size
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Random-variate Generation

Goal: Efficiently generate random variates from a given PH
distribution

Different methods:

Inversion methods
Acceptance/Rejection methods
Characterisation/Play methods
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Elementary and Atomic Operations

Uniform random number in (0, 1): u

Random variate from the geometric distribution on 0, 1, . . . :

tGeo(p) :=

⌊

ln(u)

ln(p)

⌋

Random variate from the exponential distribution with rate λ:

tExp(λ) := −
1

λ
lnu

Matrix exponential eQ:

Many different methods (‘19 dubious ways. . . ’ [12])
Can be reduced to computation of n scalar exponentials

49 / 95
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Atomic Operations and Cost Metrics

Computation of a uniform random number

Computation of a scalar exponential

Computation of a logarithm

Cost metrics:

Number of uniforms, #uni
Number of scalar exponentials, #exp
Number of logarithms, #ln

. . . for the worst case and for the average case
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Inversion method

F (t) ∼ U(0, 1) ⇒ t = F−1(u) ∼ F

Example: Exponential distribution

u = F (t) = 1 − e−λt (11)

⇔ t = −
1

λ
ln(1 − u), (12)

and, since u ∼ U(0, 1) ⇒ (1 − u) ∼ U(0, 1), we can simplify:

t = −
1

λ
lnu. (13)
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Direct inversion of

F (t) = 1 − α expQt 1I

impossible for n > 1

Numerical inversion [4]: Identify t close to F (u) by binary
search:

Let [a, b] be the interval, with center t = a+b
2

If F (t) > F (u), set a := t, else set b := t.
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Inversion

Direct inversion of

F (t) = 1 − α expQt 1I

impossible for n > 1

Numerical inversion [4]: Identify t close to F (u) by binary
search:

Let [a, b] be the interval, with center t = a+b
2

If F (t) > F (u), set a := t, else set b := t.
Stop and return t if F (t) ∼ F (t)

52 / 95
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Inversion (ctd.)

Valid for Matrix-Exponential and PH distributions in any form

Costs:

Number of steps: log 1
δ

for accuracy of δ
[4]: δ = 10−6 ⇒ 19 steps
One matrix exponential for each step
If the matrix exponential is computed from scalar exponentials,
n scalar exponentials for each step
One uniform random number
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=
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αigi(t) +
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f+(t) can be normalised to a PH density:
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Acceptance/Rejection [9]

Split the density into parts with positive and parts with
negative coefficients:

f(t) = αeQt(−Q1I)

=
∑

i∈A+

αigi(t) +
∑

i∈A
−

αigi(t)

= f+(t) + f−(t)

f+(t) can be normalised to a PH density:

f̂(t) =
1

∑

i∈A+
αi

f+(t).

A sample x from f̂(t) is accepted with

p =
f+(x) + f−(x)

f+(x)
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Acceptance/Rejection (ctd.)

Supports Matrix-Exponential and Phase-type distributions

Support PH distributions in non-Markovian representation

Enables efficient algorithms for PH:

Transform PH to e.g. Hyper-Feedback-Erlang form
. . . which may be non-Markovian
Draw random variates using Acceptance/Rejection

Costs:

Number of steps: 1
p

Number of uniforms and number of logarithms depends on the
method used for drawing from f̂
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Characterisation methods

Create random variates using the CTMC representation

Costs depend on

Number of traversed states
Costs per state

Methods support different classes and representations:

General PH: Play, Count
PH in FE-diagonal form: FE-Diagonal
APH in bi-diagonal form: SimplePlay
HErD in HErD form: SimpleCount
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Play the Markov chain: Select an initial state, then select
successive states until the absorbing state is reached. Draw
one exponential random variate for each visited state.
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Play
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λ2 λ3 λ4 λ5

λ6

Play the Markov chain: Select an initial state, then select
successive states until the absorbing state is reached. Draw
one exponential random variate for each visited state.

Worst-case number of traversals: Not defined

Average-case number of traversals:

n∗ = α(diag(Q)−1Q)−11I
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λ2 λ3 λ4 λ5
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2 uniforms for each visit to a state
1 logarithm for each visit to a state
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Count [14]

Observation: k visits to the same state are equal to drawing
an Erlang-k distribution.

Idea: Use
∑

ln = ln
∏

Algorithm: Play Markov chain, count numbers of visits, draw
n Erlangs with appropriate lengths

State traversals: Same as Play

Costs:

Worst-Case: #ln = n,#uni = ∞
Average: #ln = n,#uni = 1 + n∗
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1 λ 2 λ 2 λ 2

α 1 α 2 α 3 α 4

2z

λ 22z

λ )
21 3 4

(1−

FE−2FE−1

Use FE-diagonal form

Select an initial state according to α. This state belongs to
block 1 ≤ i ≤ m.

0 ≤ l ≤ bi states have to be traversed before the next
feedback loop

The number of loops c follows a geometric distribution with
parameter zi
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FE-diagonal Algorithm (ctd.)

1 λ 2 λ 2 λ 2

α 1 α 2 α 3 α 4

2z

λ 22z

λ )
21 3 4

(1−

FE−2FE−1

Note: All rates in a block are identical . . . draw one
Erlang-(c · bi + l)-distributed sample
Repeat for the remaining blocks j = i + 1, . . . , m, with l := bj

Costs: 1 uniform for initial state, 1 uniform for each visit, 1
uniform and 3 logarithms for each block
Average number of traversed blocks:

ℓ∗ = α
(

m, m − 1, . . . , 1
)T
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SimplePlay

λ1 λ2 λ3 λ4

Bi-diagonal form: Blocks of length 1, no feedbacks

Draw initial state, then sum up exponential random variates
until the absorbing state is reached

Advantage: No random numbers for state selection required
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λ1 λ2 λ3 λ4

Worst-Case Costs:

#uni = 1 + n
#ln = n

Average Costs:

n∗ = α(n, n − 1, . . . , 1)T

#uni = 1 + n∗

#ln = n∗
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SimpleCount

λ1 λ1λ1

λ2 λ2

λ1

λ2

β1

β2

Hyper-Erlang is a mixture of Erlangs

Method: Select a branch, draw an Erlang sample
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SimpleCount (ctd.)

λ1 λ1λ1

λ2 λ2

λ1

λ2

β1

β2

Worst-Case Costs:

#uni = 1 + max{b1, . . . , bm}
#ln = 1

Average Costs:

n∗ = α(b1, . . . , bm)T
#uni = 1 + n∗

#ln = 1
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










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0 −1 0 0 0
0 0 −2 2 0
0 0 0 −2 2
0 0 0 0 −2













.

Same distribution in CF-1 form:

α′ = (0.0125, 0.0375, 0.925, 0.025, 0)

Q′ =













−1 1 0 0 0
0 −1 1 0 0
0 0 −2 2 0
0 0 0 −2 2
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
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




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.

66 / 95



Example: Worst-Case Costs

Method Worst Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp

67 / 95



Example: Worst-Case Costs

Method Worst Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln

67 / 95



Example: Worst-Case Costs

Method Worst Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln
Play 7 3 11 5

67 / 95



Example: Worst-Case Costs

Method Worst Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln
Play 7 3 11 5
Count 7 5 11 5

67 / 95



Example: Worst-Case Costs

Method Worst Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln
Play 7 3 11 5
Count 7 5 11 5
FE-diagonal – – 8 6

67 / 95



Example: Worst-Case Costs

Method Worst Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln
Play 7 3 11 5
Count 7 5 11 5
FE-diagonal – – 8 6
SimplePlay – – 6 5

67 / 95



Example: Worst-Case Costs

Method Worst Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln
Play 7 3 11 5
Count 7 5 11 5
FE-diagonal – – 8 6
SimplePlay – – 6 5
SimpleCount 4 1 – –

67 / 95



Example: Average Costs

Method Average Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp

68 / 95



Example: Average Costs

Method Average Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln

68 / 95



Example: Average Costs

Method Average Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln
Play 6.8 2.9 7.075 3.0375

68 / 95



Example: Average Costs

Method Average Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln
Play 6.8 2.9 7.075 3.0375
Count 6.8 5 7.075 5

68 / 95



Example: Average Costs

Method Average Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln
Play 6.8 2.9 7.075 3.0375
Count 6.8 5 7.075 5
FE-diagonal – – 5.0875 3.15

68 / 95



Example: Average Costs

Method Average Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
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Example: Average Costs

Method Average Case
(α,Q) (α′,Q′)

#uni #exp #uni #exp
NumericalInversion 1 95 1 95

#uni #ln #uni #ln
Play 6.8 2.9 7.075 3.0375
Count 6.8 5 7.075 5
FE-diagonal – – 5.0875 3.15
SimplePlay – – 4.0375 3.0375
SimpleCount 3.9 1 – –

68 / 95



Computational Costs
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Run-time for 108 operations on different machines.
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Observations

Costs differ by method and representation

Atomic operations have different costs

. . . logarithms are expensive

Optimisation problem: Given a Markovian representation
(α,Q), find the (not necessarily minimal) Markovian
representation that minimises the costs of random-variate
generation

Optimisation for bi-diagonal and FE-diagonal forms → cover
APH and PH

Focus on number of logarithms
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Optimisation for APH

λ1 λ2 λ3 λ4

Every APH has a bi-diagonal representation (the CF-1 form,
[6])
Costs for SimplePlay:

#uni = n∗ + 1

#ln = n∗

State-transitions for bi-diagonal representations:

n∗ =
n

∑

i=1

αi · (n − i + 1)
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Optimisation for APH (ctd.)

λ1 λ2 λ3 λ4

Idea: Re-order rates along the diagonal – preserves eigenvalues

Express by a similarity transformation – we keep the same
distribution

Successive pairwise swappings can construct any ordering
(Steinhaus/Johnsohn/Trotter, [10])

Check all n! permutations?
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The Swap Operator

Swap(i, i + 1) exchanges the ith, and (i + 1)th rates

Similarity transformation:

Q′ = S−1QS

α′ = αS

Exchange of adjacent rates λi, λi+1:

S =

















. . . 0 0 0 0
0 1 0 0 0

0 λi−λi+1

λi

λi+1

λi
0 0

0 0 0 1 0

0 0 0 0
. . .
















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Local effect on initialisation vector:

α′
j = αj for j 6= i, i + 1

α′
i = αi +

λi − λi+1

λi
αi+1

α′
i+1 =

λi+1

λi
αi+1
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λi+1

λi
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Effect on the number of traversed states:

n∗′ = n∗ + αi+1

(

1 −
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λi

)
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Local effect on initialisation vector:

α′
j = αj for j 6= i, i + 1

α′
i = αi +

λi − λi+1

λi
αi+1

α′
i+1 =

λi+1

λi
αi+1

Effect on the number of traversed states:

n∗′ = n∗ + αi+1

(

1 −
λi+1

λi

)

n∗′ ≤ n∗ ⇔ λi+1 > λi

⇒ costs can be reduced by moving larger rates to the left
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Optimality result for bi-diagonal representations

Theorem ([16])

Given a Markovian representation (α,Q) in CF-1 form, the
representation (α∗,Q∗) that reverses the order of the rates is
optimal with respect to n∗ if α∗ is a stochastic vector. In this
case, all bi-diagonal representations constructed by the Swap

operator are Markovian.

Proof.

Follows from the fact that costs can only be reduced by moving
larger rates to the left.
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Caveat: The reversed CF-1 is not always Markovian

Consider

Λ = (1, 2, 3, 4)

α = (0.5, 0.4, 0.05, 0.05)

Reversed CF-1:

Λ′ = (4, 3, 2, 1)

α′ = (−0.6, 1.4, 0, 0.2)

. . . not Markovian

Optimal Markovian representation:

Λ∗ = (2, 4, 3, 1)

α∗ = (0.1, 0.7, 0, 0.2)
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Optimisation Algorithms

BubbleSortOptimise:

Modified BubbleSort algorithm
Sort rates in descending order
Stop if no new Markovian representations can be found (or the
reversed CF-1 is reached)

FindMarkovian:

Start from reversed CF-1 form
Sort rates in ascending order
Stop if a Markovian representation is found
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Optimisation: BubbleSortOptimise

Algorithm BubbleSortOptimise(α,Λ):

for i = 1, . . . , n − 1 do

for j = 1, . . . , n − 1 do

(α′,Λ′) := Swap(α,Λ, i)
if Λ[j] < Λ[j + 1] ∧ α′ ≥ 0 then

(α,Λ) := (α′,Λ′)
else

break
end if

end for

end for

return (α,Λ)
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Optimisation: FindMarkovian

Algorithm FindMarkovian(α,Λ):

Let (α′,Λ′) be the reversed CF-1 of (α,Λ′)
while ¬(α′ ≥ 0) do

i := argmini {α
′
i < 0}

i := max {2, i}
while ¬(α′ ≥ 0) ∧ ∃k : Λ[k] ≥ Λ[k + 1] do

k := argminj {j | i − 1 ≤ j ≤ n − 1 ∧ Λ[j] ≥ Λ[j + 1]}
(α′,Λ′) := Swap(α′,Λ′, k)

end while

end while

return (α′,Λ′)
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Λ = (1, 2, 3, 4),α = (1, 0, 0, 0)
n∗ = 4 for every ordering
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Summary for APH Optimisation

Optimisation is possible purely by modification of the ordering
of the rates

Moving a larger rate to the left reduces costs

The reversed CF-1 is optimal if it is Markovian.

Efficient optimisation algorithms

Only valid for APH → can we extend it to PH?
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Use the FE-diagonal form
Every PH has an FE-diagonal representation (the Monocyclic
form, [11])
Elegant expression for the number of logarithms

Costs for FE-diagonal representations:

#ln = 3ℓ∗

Block visits for FE-diagonal representations:

ℓ∗ =
n

∑

i=1

αi · (m − i + 1)

Idea: Re-order blocks along the diagonal – preserves
eigenvalues

Express by a similarity transformation

Successive pairwise swappings can construct any ordering
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The GSwap Operator

GSwap(i, i + 1) exchanges the ith and (i + 1)th FE-blocks
along the diagonal

Similarity Transformation:

S =





Iν×ν 0 0

0 Ŝ 0

0 0 Iµ×µ



 ,

Ŝ is block-lower-triangular . . . but does not have a nice,
general explicit structure

Ŝ needs to be computed for each possible swap as the
solution of

(

Fi −Fi1Ie1

0 Fi+1

)

Ŝ = Ŝ

(

Fi+1 −Fi+11Ie1

0 Fi

)

Ŝ1I = 1I.
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Conjecture

The optimal ordering is achieved by computing the reversed
Monocyclic form.
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Counterexample (ctd.)

Initial vectors after swapping:

α′
1 = (0.09 | 0.141852, 0.289630.271111

| 0.118519, 0.0888889, 0)

α′
2 = (0.09 | 0.0492593, 0.426667, 0.315556

| 0.118519, 0, 0)

Costs:

ℓ∗′1 = 1.8825939 < ℓ∗1 = 1.89

ℓ∗′2 = 1.9714836 > ℓ∗2 = 1.89

⇒ Effect of the swap depends on the initialisation vector
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Optimisation Algorithms

GBubbleSortOptimise:

Modified BubbleSort algorithm
Sort blocks in descending order
Stop if no Markovian representations can be found (or the
reversed CF-1 is reached)

GFindMarkovian:

Start from reversed Monocyclic form
Sort blocks in ascending order
Stop if a Markovian representation is found

Order determined by a heuristic
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Optimisation: BubbleSortOptimise

Algorithm GBubbleSortOptimise(α,Υ):

for i = 1, . . . , m − 1 do

for j = 1, . . . , m − 1 do

(α′,Υ′) :=Swap(α,Υ, i)
if ComparisonHeuristic(α,Υ, j) = true ∧ α′ ≥ 0 then

(α,Υ) := (α′,Υ′)
else

break
end if

end for

end for

return (α,Υ)
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Optimisation: FindMarkovian

Let (α′,Υ′) be the reversed Monocyclic form of (α,Υ′)
r:=0
while ¬(α′ ≥ 0) do

i := argmini {α
′
i < 0}

i := max {2, i}
while ¬(α′ ≥ 0) ∧ ∃k :
ComparisonHeuristic(Υ[k],Υ[k + 1]) = false do

k := argminj {j | i − 1 ≤ j ≤ m − 1 ∧ Υ[j] ≥ Υ[j + 1]}
(α′,Υ′) := Swap(α′,Υ′, k)
if (α′,Υ′) is a new representation then

r + +
end if

if r = m! then

goto END
end if

end while

end while
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Swapping Criteria for APH

Assume blocks of length 1 (bi-diagonal case)
We swap blocks i, i + 1 if λi < λi+1

Equivalent to
Block i has dominant eigenvalue of smaller magnitude than
block i + 1:

|ri| < |ri+1| ⇔ λi < λi+1

Block i has larger mean than block i + 1:

Mi > Mi+1 ⇔
1

λi

>
1

λi+1
⇔ λi < λi+1

Block i has smaller exit-rate:

λi < λi+1

The determinant of the transformation matrix is larger than 1:
∣

∣

∣Ŝ

∣

∣

∣ =
λi+1

λi

> 1
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Means:

Start at the first state: M̂i = e1(−Fi)
−11I

Start at all states: Mi =
αi

αi1I
(−Fi)

−11I

Exit-rates:
(1 − zi)λi < (1 − zi+1)λi+1

Determinant:
∣

∣

∣Ŝ

∣

∣

∣ > 1
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Heuristics are not perfect

Correct?
F1 F2 Swap? α1 α2

Eigenvalue −0.3095 −1 yes X ✗

Mean (first state) 4 3 yes X ✗

Mean (all states, α1) 4 1.7042 yes X ✗

Mean (all states, α2) 2.5 1.7042 yes X ✗

Exit rate 0.75 1 yes X ✗

Determinant 0.208 no ✗ X
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Example

Generate 100 random PH distributions

Compute Monocyclic form

Apply exhaustive search for the optimum

Apply heuristics in BubbleSort algorithm

Results shown here: n = 6
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General optimum for APH
No general optimum for PH, but heuristics exist
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