
1

Compositional Fluid Stochastic Petri Net model
for operational software system performance

A. Bobbio∗, S. Garg†, M. Gribaudo‡, A. Horváth‡, M. Sereno‡, and M. Telek§
∗Dipartimento di Informatica,Università del Piemonte Orientale, Alessandria, Italy

†Yahoo! Labs, Bangalore, India
‡Dipartimento di Informatica, Università di Torino, Italy

§Department of Telecommunications, Technical University of Budapest, Hungary

Abstract—Software systems experience gradual performance
degradation due to several reasons and different preventive and
corrective techniques can be applied to restore their performance
level. This paper presents a unified model to describe the behavior
of long running software systems with performance degrading
factors such as system aging and various recovery techniques
such as rejuvenation, checkpointing, rollback recovery, restart
and replication.

The proposed unified model is described as a fluid stochastic
Petri net (FSPN). The FSPN formalism offers a descriptive
language that allows a compact and precise description of the
model behavior. Various analysis methods can be applied to
obtain numerical results for the performance indices of interest.
We illustrate the use of the model by means of a simple numerical
example which captures rejuvenation, restart and replication.

I. I NTRODUCTION

Chillarege [1] defined a software failure to be when”The
customer’s expectation has not been met and/or the customer
is unable to do useful work with the product”. Under the
broad umbrella of this definition, commercial software systems
exhibit various malfunctions, performance degradation or out-
right failures. These are either due to the faults that arise in the
hardware or in the software code or in error conditions which
arise because of hardware / software fault combinations. Given
the current hardware and software complexity, the forecasting
and handling of software system malfunctions is a fundamental
and challenging task. Software bugs may assume various
forms, as surveyed in [2]. Even if the debugging and testing
phase is aimed at removing bugs, residual faults still remain.
Furthermore, the dynamic interaction of the running software
with the hardware may result in degradation of software
performance or even in a complete failure. This phenomenon
is usually referred to assoftware aging[3], [4], [2].

Because of varied causes of faults, which induce perfor-
mance degradation in software systems, appropriate preventive
and corrective mechanisms are employed to counteract the
effects in which the faults manifest. For example, when the
time to complete a transaction or a task becomes too long
with respect to user’s expectation, an obvious and simple
remedy is to restart the application [5], [6]. A common way
for preventing the loss of work of long-running programs in
the presence of failures, is to resort to checkpointing with
rollback recovery. Checkpoint techniques have been studied

978-1-4244-3417-6/08/$25.00 2008 IEEE

and deployed since the pioneering work of Young [7] and a
survey can be found in [8].

Software rejuvenation is a preventive maintenance action
aimed at restoring the system to a “clean” state before the
effect of software aging manifests as a failure. Since the source
of the problem is typically unknown, bug-fix is not possible or
not convenient and the only available solution is to periodically
stop processing and restart the system environment and the
software itself. Rejuvenation was first proposed by Huang et al.
[9], and has been subsequently the object of extensive research.
For an extensive list of references see: [4], [10]).

Proactive and reactive techniques to counteract software
system failures are non-exclusive. In fact, they effectively com-
plement each other to enhance system availability and correct
software execution. Hence, a unified modeling framework is
beneficial to capture both proactive and reactive techniques
and to model inter-dependencies between these techniques. In
[11], the completion time of a program is minimized by jointly
using both checkpointing and rejuvenation. [10] includes reju-
venation, restoration and checkpointing and [6] considers, but
separately, restart, rejuvenation and checkpointing.

The present paper is an extension of [12]. In this paper,
the central idea is to provide a compositional reusable block
model, in which, different components of a software system
and the possible recovery techniques are presented as blocks
in isolation. These can then be composed according to the
actual specification of the system under study. In this sense,
prior work in modeling would become specific compositions
of our general modeling framework. The proposed modeling
language is that of Fluid Stochastic Petri Nets (FSPN) [13],
[14], since FSPNs combine discrete and continuous random
variables in the same formalism.

Section II presents a narrative on the dynamics of a software
system with degradation, rejuvenation, self restoration, restart
and checkpointing. In Section III we describe the FSPN
models of individual blocks and illustrate how to compose
them according to the software system behavior. In Section
IV, we present the numerical analysis of a simple system with
rejuvenation, restart and replication, using a composition of
FSPN modules.

II. SYSTEM DESCRIPTION

As there are multiple potential causes of degradation and
failure and, accordingly, multiple potential combinations of

2

reactive and proactive techniques for counteraction, it is im-
portant to describe the scope of the terms before we delve into
the FSPN modeling framework. Below, we list and describe
the modeling assumptions (system behavior) included in our
compositional approach.

• Degradation. We assume that the degradation process,
which models the phenomenon of software aging, can
be represented by two time-dependent continuous vari-
ables, whose variations in time measure the level of
the degradation [15]. The first describes the degradation
of the hardware (also called node), while the second,
the degradation of the process under execution. The
way these quantities change can depend on various state
variables, for example, the number of jobs in the system,
the actual degradation levels themselves, the fact that
a self restoration process is being executed, the time
elapsed since the last rejuvenation or crash, etc.

• Rejuvenation. We assume that the decision of performing
a rejuvenation may depend on the degradation level [15]
and on the time spent since the last renewal event, or,
alternatively, rejuvenation is performed after an assigned
number of checkpoints [10]. It is natural to assume that
a rejuvenation always forces a checkpoint, otherwise the
work already completed since the last checkpoint is lost.

• Work. A continuous quantity, which captures the amount
of work done by the system. The work is occasionally
saved by a checkpoint or rejuvenation. If a crash occurs
the work done by the system not saved yet is lost.

• Time. It is also a continuous quantity that keeps track
of the time elapsed since the last occurred event, i.e.
checkpoint, crash or rejuvenation and is needed to model
dependencies as well as to calculate measures of interest.

• Checkpoint. When a checkpoint occurs the work done by
the system not saved yet is saved.

• Crash. We distinguish between the crash of the system
and crash of the process. When the system crashes, the
work done by the system not saved yet by a checkpoint is
lost. A crash initiates a recovery action that may or may
not be successful. When it is successful, a renewal event
occurs, i.e., the degradation level of the system gets reset.
Following [10] a crash may beactivewhen it is detected
immediately orpassivewhen the detection is deferred to
the next checkpoint.

• Self Restoration. By self-restoration, we mean the ac-
tions do not cause down-time in the system but result
only in performance overhead. When in progress, self-
restoration continually decreases the degradation level.
This mechanism is intended to model, for example, a
garbage collector.

• Workload. It is used to represent the arrivals and de-
partures of jobs. The service time may depend on the
degradation level and on the number of customers in the
system. We assume that the number of customers that
can be accepted by the system is limited by a buffer of
finite size. When the buffer is full or during a crash or a
rejuvenation the arrival process is stopped. On the other
hand, the service stops during checkpoints, rejuvenations,

restarts, and crashes.
• Restart. For a given task, when the system response

time has a decreasing hazard rate, preempting the task
and retrying might improve the perceived system perfor-
mance. The restart event influences only the task under
service. It does not affect the degradation level of the
system.

• Replication. Since we distinguish between two kinds of
crashes, system crash and process crash, we assume that
the system is able to survive a given number of process
crashes by replicating the process. After the failure of a
given number of replicas a system crash occurs.

III. FSPN MODELS

We apply the FSPN formalism to model the above system
behavior. We refer to [13], [12], [14] for details of this
formalism. For what concerns the notation, we use symbol
pj to indicate a standard PN place (with a discrete number
of tokens) andci to indicate a fluid (continuous place) whose
fluid level is denoted by the real positive variablexi with the
same index. CapitalT indicates stochastically timed transitions
with failure rateF (•) that can be function of the time, of the
number of tokens in some discrete place as well as the value
of some fluid levelx. Small t indicates immediate transitions.
Fluid places are drawn as double circles and fluid arcs by
pipes. The instantaneous flow rate for fluid arcs is denoted
with R(•) and may depend on discrete as well as continuous
elements of the FSPN.

For each one of the features listed in the previous section we
propose a FSPN block model that can be combined with other
blocks to compose the overall system model. Blocks can be
combined by sharing transitions (either immediate or timed).
Each block indicates which are the output transitions (only)
than can be shared with other blocks. Furthermore, triangular
icons with the same label are used to indicate inhibiting effects
among blocks without replicating the whole block structure.

The overall block structure and the block dependency rela-
tions are depicted in Figure 1.

Workload

(1)

Degradation

(2)

(4)

Chekpoint

(5)

(3)

Self-restoration

(6)
 Crash and

 Replication

(7)

 Restart

(8)

Rejuvenation

Work and Time

Fig. 1. Block model of software system with rejuvenation, checkpointing,
self restoration and replication.

Workload subnet (Figure 2): Arrival of jobs to a buffer
of size k is represented by transitionT11. This transition is
blocked when the buffer is full by means of an inhibitor
arc with multiplicity k. Moreover,T11 is blocked when the
system itself is down or it is under rejuvenation. This fact

3

is represented by the two triangular labels,n and r, which
refer to places of other submodels (r, for example, refers
to placep42 in Figure 5). Service of jobs is represented by
transitionT12 which is blocked if the node or the process is
crashed (triangular labelsn andp), or if restart, rejuvenation or
checkpointing is under execution (triangular labelss, r andc).
The firing rateF (m,x21, x22) of T12 depends on the number
of jobs in the systemm, and on the degradation levelsx21 and
x22 (described in the next submodels). Further dependencies
on other state variables could also be included.

Workload

p1
m

T12

T11

F12 (m,x21,x22)

k

n

n r

r

sp

c

Fig. 2. FSPN Model of the workload.

Degradation subnet (Figure 3): The degradation subnet
is divided in two parts representing the system degradation
and the process degradation, respectively. We assume that
the system degradation level can be measured by a single
continuous indexx21 representing the level of the continuous
placec21. TransitionT21 pumps fluid into placec21 at a rate
R21(m), i.e., the change of the degradation level depends on
the number of jobsm present in the system. Degradation of
the process under execution is measured by the fluid variable
x22 representing the level of fluid placec22. The change of
its level, modeled byT22 with flow rateR22(m,x21), depends
not only onm but on the actual node degradation level,x21,
as well. More complex dependencies could also be modeled;
for example, the intensity of the degradation could depend on
the time elapsed since the last crash by making the flow rate
function also dependent on the fluid variablex32 (seeWork &
Timeblock) R22(m,x21, x32). System degradation is stopped
in case of system crash and process degradation is stopped in
case of both system and process crash (triangular labelsn and
p).

The Degradationblock can be connected to other blocks
as depicted in Figure 3. The presence of transitions of other
subnets in Figure 3 is due to the fact that the level of places
c21 and c22 are changed by events of other submodels. For
example, firing of transitionT41, which models the end of
a rejuvenation action (see Figure 5), empties bothc21 and
c22, i.e., sets back to 0 the degradation levels. Transition
T61 instead models the fact that self restoration decreases the
process degradation level by gradually depleting placec22 with
a flow rateR62(m,x22).

Work and Timesubnet (Figure 4): TransitionT31 becomes
enabled each time there is a renewal action and is disabled
when the system is performing restart, rejuvenation or check-
pointing (labelss, r and c), or when a crash occurs (labels
n and p). Thus T31 remains enabled until the system works
correctly. This subnet describes the time elapsed and the work

Degradation

T21
c21

T22
c22

Node Degradation

Process Degradation

R 21 (m)
x21

T41,T71

Rejuvenation,
Crash,Restart

Self restoration

T61

R 62 (m,x22)R 22 (m,x21)
x22

t71

T74,T81

n

n

p

Fig. 3. FSPN Model of the system degradation.

performed between two renewals. TransitionT31 pumps fluid
in place c32 with rate R32 = 1, hence the fluid levelx32

counts the elapsed time since last renewal event (i.e., crash
or rejuvenation), whereasc32 is filled with rateR31(m,x21)
and the levelx31 represents the work of the system not
saved yet by a checkpoint. The flow rateR31(m,x21) which
determines the work accumulation, depends on the number
of jobs in the system and the actual system degradation
level (further dependencies could also be included). Placec31

is flushed out by the firing of transitionsT41 (rejuvenation
forces checkpoint),T51 (checkpoint without rejuvenation),T71

and t71 (occurrence of a system crash). Placec32 is flushed
out by firing of transitions that represents renewal events
(rejuvenation or crash).

Work and Time

R 31 (m,x21)

T31

1

c32 c31
x31x32

Crash,
Rejuvenation

T71,T41

Checkpoint

T51

n sp

c r

t71

Fig. 4. FSPN Model of the work done by the system.

Rejuvenationsubnet (Figure 5): We consider two possible
modeling alternatives. In Figure 5a) the decision to initiate a
rejuvenation is represented by the timed transitionT42 whose
firing time is independent of other recovery measures, while in
in Figure 5b) we model the case considered in [10] where the
rejuvenation takes place aftern checkpoints and the immediate
transitiont42 fires whenn tokens are deposited inp43. In both
cases transitionT41 models the duration of the rejuvenation
and its firing rate can depend on various state variables of the
model (for example, degradation levels or the time elapsed
since the last crash or rejuvenation). We assume that when
the system performs a rejuvenation, a checkpoint is forced
but not vice versa. Firing ofT41 sets to zero the degradation
levels (fluid placesc21 and c22, see Figure 3), the work
accumulated and the time elapsed since the last renewal event
(fluid placesc31 andc32, Figure 4), and the time elapsed since
the last checkpoint (fluid placec51, Figure 6). As represented
by the triangular labelsr in other submodels (connected to
place p42 in Figure 5), several activities are blocked when
a rejuvenation is under execution (for example, service of
customers, transitionT12 in Figure 2). In case of Figure 5a)
rejuvenation is not possible when restart, checkpointing or self

4

restoration is under execution (triangular labelss, c and e).
System and process crash not only inhibit but also preempt
execution of rejuvenation (triangular labelsn and p). As a
result of blocking other activities and setting fluid levels to
zero, the system is good as new after rejuvenation.

p41 p42

T41

T42

Rejuvenation

t41

s

n r
c

e

p

p41 p42

T41

t42

Rejuvenation
after n chekpoints

t41

r

p43

T52

Chekpoint

a) b)

n

T74,T71

Crash

t71

Fig. 5. FSPN Model of the rejuvenation action.

Checkpointsubnet (Figure 6): Fluid placec51 measures
the time elapsed since the last checkpoint. TransitionT52

represents the decision that a checkpoint is taken. In this
submodel we depict explicitly that the decision depends on
the amount of time elapsed since the last checkpoint (fluid
level x51) and on the amount of work accumulated since
the last checkpoint (fluid levelx31). Transition T51 models
the checkpoint overhead (although not shown explicitly, the
overhead can also depend onx51, x31 and/or other state
variables). Firing ofT51 flushes out placesc51 (time elapsed
since last checkpoint) andc31 (work accumulated since last
checkpoint). Rejuvenation and system crash reset the time
elapsed since the last checkpoint (transitionsT41, T71 and
t71). As represented by the triangular labelsc in other subnets
(connected to placep52 in Figure 5), several activities are
blocked when a checkpoint is under execution. Checkpointing
itself is not possible when restart or rejuvenation is under
execution (triangular labelss and r). System and process
crash do not only inhibit but also interrupt execution of
checkpointing (triangular labelsn andp).

p51 p52

T51

F52 (x51,x31)T52

Chekpoint

T53

c51

1

x51

T41,T71

Rejuvenation,
Crash

t51

n c

r s

p

t71

Fig. 6. FSPN Model of checkpointing.

Self Restorationsubnet (Figure 7): TransitionT62 represents
the beginning of self restoration whileT61 its duration. Firing
rates of these transitions can depend on other state variables of
the system (for example, degradation levels). During the self
restoration process degradation is decreased by the pumping
out action enabled by transitionT61 on placec22 (see Figure
3). When the self restoration mechanism is active, restart
and rejuvenation cannot be started (triangular labelse). Self
restoration cannot be started during restart, rejuvenation and
checkpointing. System and process crash inhibit and interrupt
execution of self restoration.

Crash and Replication subnet (Figure 8): TransitionT71

p61 p62

T61

T62

Self restoration

t61

s

n e
c

r

p

Fig. 7. FSPN Model of system self restoration.

and T74 model the crash of the system and the crash of the
process under execution, respectively. In the actual setting,
their firing rates depend on the number of jobs and on the
degradation levels but other state variables could be taken into
account as well. We assume that crashes are not observed
immediately and the time to discover the crash is modeled by
T72 for system crash and byT75 for process crash. Recovery
is modeled byT73 for system crash and byT76 for process
crash. The firing rate of these transitions can depend on
various state variables. Recovery from process crash is either
successful (T76) or unsuccessful (T77). Number of process
crashes without successful recovery is counted in placep76

and afterr such unsuccessful recoveries the system crashes
(firing of t71). Triangular labelsn and p are used to block
activities in other submodels during crash.

t71

p71

T71

T74

p72

n

p74

p

T72
p73

nF71 (m,x21)

F74 (m,x22)

Replication and crash

T73

T75

p75

p

T76 r

p76T77

Fig. 8. FSPN Model of crash and replication.

In a recent paper Okamura and Dohi [10] assume that
a system crash may manifest in anactive mode (that is
immediately detected activating a rollback recovery from the
last checkpoint), and in apassive modein which the detection
is deferred until the successive checkpoint. The two failure
modes can be modeled by modifying the subnet of Figure 8
in the new subnet of Figure 9. Timed transitionT71 represents
the system crash, that with probabilityp manifests in theactive
mode (immediate transitiont72) and with probability1− p in
the passivemode (immediate transitiont74) and the recovery
is deferred until the next checkpoint.

t74

p71 T71

p72

n

p74

T72

p73

n

F71 (m,x21)

Process crash with late detection

T73

t75

p75

p72

t72

T74

n

p76

T52

Chekpoint

t76

Fig. 9. FSPN Model of system crash with 2 failure modes after [10].

Restart subnet (Figure 10: TransitionT82 represents the

5

beginning of restart of a process whileT81 its duration. Firing
rates of these transitions can depend on other state variables
of the system (for example, degradation levels). Restart sets to
zero the process degradation level by transitionT81 (see Figure
3). During the restart mechanism the system cannot start
rejuvenation, self restoration, checkpointing and the service of
the jobs are blocked (triangular labelss). System and process
crash inhibit and interrupt execution of self restoration.

p81 p82

T81

T82

Restart

t81

r

n s
c

e

p

Fig. 10. FSPN Model of the restart mechanism.

A. Model composition and analysis

The individual FSPN blocks illustrated in the previous
section can be combined, according to the user needs, to
model the characteristics and the property of the system at
hand. A software system might be provided with periodical
rejuvenation but not checkpointing or viceversa; a system
might not have self-restoration capabilities or the degradation
level might not be measurable. This is why the compositional
capability offers to the modeler the required level of flexibility.

Furthermore, FSPN may provide a set of performance mea-
sures that encompasses those that can be evaluated in discrete
SPN models. In fact, we can define measures connected to the
discrete part of the FSPN (discrete performance measures)
and, in addition, measures connected to the continuous part
(continuous performance measures) [12].

IV. N UMERICAL EXAMPLE

In order to illustrate the use of the model and the associated
analysis, we present a simple compositional model with related
performance measures. The considered model contains a sub-
set of the features introduced in the previous section, namely,
degradation, replication, restart and rejuvenation. Figure 11
presents the FSPN description of the whole model depicting
also the way of connecting the submodels.

The model was solved analytically in transient time resort-
ing to the solution method provided in [16]. The numerical
values of the model parameters used in the computations are
reported in Table I

As a sake of illustration, we have computed a sample of
both discrete and continuous performance indices as a function
of the time. As an example of continuous measures we have
reported in Figure 12 the mean system degradation level
and the mean process degradation level. The mean system
(process) degradation level at timet is computed averaging
the value of the continuous random variablex21 (x22) over all
the model states. The ripple in the mean process degradation
level is mainly due to the restart mechanism.

As an example of discrete measures we have reported in
the same Figure 12 the system (process) crash probability, i.e.

t71

R 21 (m)

n21

Node degradation

x21n

T22

R 22 (m,x21)

n22

Process degradation

x22

n

p71

T21

p

T71

T74

p72

n

p74

p

T72
p73

nF71 (m,x21)

Workload

p1

m

T12

T11

F12 (m,x21,x22)

k

n F74 (m,x22)

Replication and crash

T73

T75

p75

p

T76 r

p76T77

n r

r

sp

p41 p42

T41

T42

Rejuvenation

t41

s

n r

p81 p82

T81

T82

Restart

t81

r

n sp p

Fig. 11. FSPN model of degrading software system with rejuvenation, restart
and replication.

the probability that discrete placep72 (p74) is marked at time
t (notice the logarithmic scale on the vertical axis).

0.001

0.01

0.1

1

0 20 40 60 80 100 120 140 160

Time

Mean System Degradation
Mean Process Degradation

System Crash Probability
Process Crash Probability

Fig. 12. Transient probability of crash failure.

Figure 13 reports again (in linear scale) the mean process
degradation level, and in the same scale the probability of
normal operation (token in placesp71 ∧ p81 ∧ p41), of restart
(token in placep82), of rejuvenation (token in placep42) and
of crash (probability of placesp72 + p73 + p74 + p75 + p76).
Notice that the last four probability values sum to 1 at any
time t. The probability of normal operation can be interpreted
as the system availability that tends to the steady state value
as the time goes to infinity.

V. CONCLUSIONS

The main contribution in this paper is the FSPN based
modeling framework, which is modular and able to capture
various combinations of fault-tolerance techniques, reactive
and proactive to enhance system availability and correct soft-
ware behavior. The choice of FSPN in each module enables
incorporating discrete and continuous variables which can be
time dependent. Further, the composition of the FSPN modules
via outgoing transitions allows rapid evaluation of different
combinations of the techniques. We illustrated the flexibility

6

Parameters Activities
m Number of parallel processes (m ≤ 3)
r Cold replication maximum number of retries (r ≤ 3)
x21 node degradation level (0 ≤ x21 ≤ 1)
x22 process degradation level (0 ≤ x22 ≤ 1)

Transitions Activities
T11 = 0.2 arrival of customers to the system
F12(m, x21, x22) = 1/(m(x21 + x22 + 1)) service of customers
F71(m, x21) = m(8x21 + 1)/2400 system crash rate
F74(m, x22) = m(8x22 + 1)/1920 process crash rate
T72 = 1 system crash identification rate
T75 = 2 process crash identification rate
T73 = 0.1 system crash repair rate
T76 = 0.32 process crash repair rate (successful restart)
T77 = 0.08 process crash repair rate (unsuccessful restart)
T81 = 1 1 / restart length (rate)
F82(x22) = {x22 > 0.75, 100, 0.0001} restart rate
T41 = 0.2 1 / rejuvenation length (rate)
T42 = 1/360 rejuvenation rate

Fluid transitions Activities
R21(m) = m/128 Increase of system degradation level
R22(m, x21) = m(x21 + 1)/96 Increase of process degradation level

TABLE I
MODEL PARAMETERS OF THEFSPNOF FIGURE 11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160

Time

Mean Process Degradation
Normal Operation

Restart
Rejuvenation

Crash

Fig. 13. Transient probability of various system degradation and restoration
events.

of the framework by constructing a representative model and
gave numerical solution for the model.

As new age of Internet and Web services pervade, it is
becoming increasingly common to have ”software system” be
not composed of a software process running on a software
node. Rather, the system is now a set of software modules
running on a set of nodes with failure interdependencies. One
potential extension of the framework is to extend the formal-
ism to capture this. There has been prior work in evaluating
dependability of component based software systems. However,
a unified framework, which allows for composition of fault-
tolerance techniques on a per component basis of a software
system has not been explored.

ACKNOWLEDGMENTS

This work have been partially supported by grant MIUR-
PRIN No. 2007J4SKYP and OTKA No. K61709.

REFERENCES

[1] R. Chillarege, “What is software failure ?”IEEE Transactions Reliabil-
ity, vol. 45, pp. 354–355, 1996.

[2] M. Grottke and K. Trivedi, “Fighting bugs: Remove, retry, replicate and
rejuvenate,”IEEE Computer, pp. 107–109, February 2007.

[3] A. Avritzer and E. J. Weyuker, “Monitoring smoothly degrading systems
for increased dependability,”Journal of Empirical Software Engineering,
vol. 2, no. 1, 1997.

[4] S. Garg, A. Puliafito, M. Telek, and K. Trivedi, “Analysis of preventive
maintenance in transaction based software systems,”IEEE Transactions
on Comupters, vol. 47, pp. 96–107, 1998.

[5] A. van Moorsel and K. Wolter, “Analysis of restart mechanisms in
software systems,”IEEE Transactions Software Engineering, vol. 32,
no. 8, pp. 547–558, 2006.

[6] K. Wolter, “Stochastic models for restart, rejuvenation and check-
pointing,” Habilitation Thesis, Humboldt-University, Institut Informatik,
Berlin, Tech. Rep., 2008.

[7] J. Young, “A first order approximation to the optimum checkpoint
interval,” Communications of the ACM, vol. 17, no. 9, pp. 530–531,
1974.

[8] V. Nicola, “Checkpointing and modeling of program execution time,” in
Software Fault Tolerance, M. Lyu, Ed. John Wiley & Sons, 1995, pp.
167–188.

[9] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software rejuve-
nation: analysis, module and applications,” inProceedings of the 25-th
Fault Tolerant Computing Symposium (FTCS-25), 1995, pp. 381–390.

[10] H. Okamura and T. Dohi, “Analysis of a software system with rejuve-
nation, restoration and checkpointing,” inProc ISAS 2008. Springer
Verlag - LNCS, Vol 5017, 2008, pp. 110–128.

[11] S. Garg, Y. Huang, C. Kintala, and K. S. Trivedi, “Minimizing com-
pletion time of a program by checkpoint and rejuvenation,” inProc.
1996 ACM SIGMETRICS Conference, Philadelphia, PA, May 1996, pp.
252–261.

[12] A. Bobbio, S. Garg, M. Gribaudo, A. Horvát, M. Sereno, and M. Telek,
“Modelling software systems with rejuvenation restoration and check-
pointing through Fluid Stochastic Petri Nets,” inPNPM ’99. IEEE CS
Press, Sept 1999, pp. 82–91.

[13] G. Horton, V. Kulkarni, D. Nicol, and K. Trivedi, “Fluid stochastic
Petri nets: Theory, application and solution techniques,”European J
Operational Research, vol. 105, pp. 184–201, 1998.

[14] M. Gribaudo, M. Sereno, A. Horváth, and A. Bobbio, “Fluid stochastic
petri nets augmented with flush-out arcs: Modelling and analysis,”
Discrete Event Dynamic Syst, vol. 11, pp. 97–111, 2001.

[15] A. Bobbio, M. Sereno, and C. Anglano, “Fine grained software degrada-
tion models for optimal rejuvenation policies,”Performance Evaluation,
vol. 46, pp. 45–62, September 2001.

[16] M. Gribaudo and A. Horv́ath, “Fluid stochastic petri nets augmented
with flush-out arcs: A transient analysis technique,”IEEE Transactions
Software Engineering, vol. 28, pp. 944–955, 2002.

