Compositional Fluid Stochastic Petri Net model
for operational software system performance

A. Bobbid*, S. Garg, M. Gribaudd, A. Horvathf, M. Sereno, and M. Telek
*Dipartimento di Informatica,Universitdel Piemonte Orientale, Alessandria, Italy
fYahoo! Labs, Bangalore, India
iDipartimento di Informatica, Universitdi Torino, Italy
SDepartment of Telecommunications, Technical University of Budapest, Hungary

Abstract—Software systems experience gradual performance and deployed since the pioneering work of Young [7] and a
degradation due to several reasons and different preventive and survey can be found in [8].

corrective techniques can be applied to restore their performance Software rejuvenation is a preventive maintenance action

level. This paper presents a unified model to describe the behavior _. d at toring th t t “ol " state bef th
of long running software systems with performance degrading aimed at resforing the system 10 a ‘ciean” state beiore the

fac’[ors SUCh as system aging and Various recovery techniqueseﬁect Of SOftWare ag'ng manlfeStS as afa”ure S'nce the source

such as rejuvenation, checkpointing, rollback recovery, restart of the problem is typically unknown, bug-fix is not possible or

and replication. , . , ~ not convenient and the only available solution is to periodically
The proposed unified model is described as a fluid stochastic stop processing and restart the system environment and the

Petri net (FSPN). The FSPN formalism offers a descriptive . - -)
language that allows a compact and precise description of the software itself. Rejuvenation was first proposed by Huang et al.

model behavior. Various analysis methods can be applied to [9], and has been subsequently the object of extensive research.
obtain numerical results for the performance indices of interest. For an extensive list of references see: [4], [10]).
We illustrate the use of the model by means of a simple numerical ~ Proactive and reactive techniques to counteract software
example which captures rejuvenation, restart and replication. system failures are non-exclusive. In fact, they effectively com-
plement each other to enhance system availability and correct
. INTRODUCTION software execution. Hence, a unified modeling framework is
beneficial to capture both proactive and reactive techniques
an to model inter-dependencies between these techniques. In
is unable to do useful work with the productUnder the rﬁ.]' the completion_time ofaprqgram i§ minimiz_ed byjointly
sing both checkpointing and rejuvenation. [10] includes reju-

broad umbrella of this definition, commercial software syste 2 nation, restoration and checkpointing and [6] considers, but
exhibit various malfunctions, performance degradation or out- ' . "CKP 9 o '
arately, restart, rejuvenation and checkpointing.

right failures. These are either due to the faults that arise in tﬁ%he present paper is an extension of [12]. In this paper,

hardware or in the software code or in error conditions Whi(.‘tlp]) . . .
. N . the central idea is to provide a compositional reusable block
arise because of hardware / software fault combinations. Given

. .model, in which, different components of a software system
the current hardware and software complexity, the forecastin . X

. . . d the possible recovery techniques are presented as blocks
and handling of software system malfunctions is a fundamental . : :
. . In_isolation. These can then be composed according to the
and challenging task. Software bugs may assume variou e .

: . . - actual specification of the system under study. In this sense,

forms, as surveyed in [2]. Even if the debugging and testin

phase is aimed at removing bugs, residual faults still remapqI0r work in modeling would become specific compositions

Furthermore, the dynamic interaction of the running softwafgt;1r our general modeling framework. The proposed modeling

with the hardware may result in degradation of softwarg 19Uage 1S that of Fluid Stochastic Petri Nets (FSPN) [13],

. . : 4], since FSPNs combine discrete and continuous random
performance or even in a complete failure. This phenomendn

: : variables in the same formalism.
is usually referred to asoftware aging3], [4], [2]. :) .
. A Section Il presents a narrative on the dynamics of a software
Because of varied causes of faults, which induce perfor-

ST . wstem with degradation, rejuvenation, self restoration, restart
mance degradation in software systems, appropriate preveniive

. X %nd checkpointing. In Section Ill we describe the FSPN
and corrective mechanisms are employed to counteract the S :
models of individual blocks and illustrate how to compose

effects in which the faults manifest. For example, when tqﬁem according to the software system behavior. In Section

time to complete a transaction or a task becomes too Iop ; . : .
. , ; . . , we present the numerical analysis of a simple system with
with respect to user’s expectation, an obvious and simplée

remedy is to restart the application [5], [6]. A common Warejuvenatlon, restart and replication, using a composition of

: X *¥SPN modules.
for preventing the loss of work of long-running programs in

the presence of failures, is to resort to checkpointing with
rollback recovery. Checkpoint techniques have been studiedA

Chillarege [1] defined a software failure to be wh#rhe
customer’s expectation has not been met and/or the custo

Il. SYSTEM DESCRIPTION

s there are multiple potential causes of degradation and
978-1-4244-3417-6/08/$25.00 2008 |IEEE failure and, accordingly, multiple potential combinations of

restarts, and crashes.

Restart For a given task, when the system response
time has a decreasing hazard rate, preempting the task
and retrying might improve the perceived system perfor-
mance. The restart event influences only the task under
service. It does not affect the degradation level of the
system.

Replication Since we distinguish between two kinds of
crashes, system crash and process crash, we assume that
the system is able to survive a given number of process
crashes by replicating the process. After the failure of a
given number of replicas a system crash occurs.

reactive and proactive techniques for counteraction, it is im-

portant to describe the scope of the terms before we delve inta
the FSPN modeling framework. Below, we list and describe

the modeling assumptions (system behavior) included in our
compositional approach.

o Degradation We assume that the degradation process,
which models the phenomenon of software aging, cane
be represented by two time-dependent continuous vari-
ables, whose variations in time measure the level of
the degradation [15]. The first describes the degradation
of the hardware (also called node), while the second,
the degradation of the process under execution. The
way these quantities change can depend on various state

[I.
variables, for example, the number of jobs in the system,]
the actual degradation levels themselves, the fact that/Ve apply the FSPN formalism to model the above system
a self restoration process is being executed, the tirRghavior. We refer to [13], [12], [14] for details of this
elapsed since the last rejuvenation or crash, etc. formalism. For what concerns the notation, we use symbol
« RejuvenationWe assume that the decision of performing; © indicate a standard PN place (with a discrete number
a rejuvenation may depend on the degradation level [18] {okens) and; to indicate a fluid (continuous place) whose
and on the time spent since the last renewal event, 8pid level is denoted by the real positive variablewith the
alternatively, rejuvenation is performed after an assign€@Me index. Capitdl’ indicates stochastically timed transitions
number of checkpoints [10]. It is natural to assume th¥fith failure rateF"(e) that can be function of the time, of the
a rejuvenation always forces a checkpoint, otherwise tRember of tokens in some discrete place as well as the value
work already completed since the last checkpoint is lo&f some fluid levekz. Smallt indicates immediate transitions.
. Work A continuous quantity, which captures the amouritluid places are drawn as double circles and fluid arcs by
of work done by the system. The work is occasionalliPes. The instantaneous flow rate for fluid arcs is denoted
saved by a checkpoint or rejuvenation. If a crash occuféth fi(e) and may depend on discrete as well as continuous

the work done by the system not saved yet is lost. ~ €léments of the FSPN. . . _ .
. Time It is also a continuous quantity that keeps track Foreach one of the features listed in the previous section we

checkpoint, crash or rejuvenation and is needed to modpcks to compose the overall system model. Blocks can be
dependencies as well as to calculate measures of inter€8fnbined by sharing transitions (either immediate or timed).
« CheckpointWhen a checkpoint occurs the work done bﬁach block indicates which are the output transitions (only)
the system not saved yet is saved. than can be shared with other blocks. Furthermore, triangular
. Crash We distinguish between the crash of the systeiﬁons with the same label are used to indicate inhibiting effects
and crash of the process. When the system crashes, 3Nd blocks without replicating the whole block structure.
work done by the system not saved yet by a checkpoint isThe overall block structure and the block dependency rela-
lost. A crash initiates a recovery action that may or maijens are depicted in Figure 1.
not be successful. When it is successful, a renewal event
occurs, i.e., the degradation level of the system gets reset.
Following [10] a crash may bactivewhen it is detected
immediately orpassivewhen the detection is deferred to

FSPNMODELS

Rej uvenati on
(4)

ﬁ il

VWr ki oad
(1)

Chekpoi nt
(5)

the next checkpoint.

o Self RestorationBy self-restoration, we mean the ac-
tions do not cause down-time in the system but result
only in performance overhead. When in progress, self-
restoration continually decreases the degradation level.
This mechanism is intended to model, for example, a
garbage collector.

N

Degr adat i on
(2)

Work and Tine
(3)

il

N

Sel f-restoration
(6)

Crash and
Replication

Restart

(7) (8)

Workload It is used to represent the arrivals and dq:ig. 1. Block model of software system with rejuvenation, checkpointing,

partures of jobs. The service time may depend on tkelf restoration and replication.

degradation level and on the number of customers in the

system. We assume that the number of customers thaWorkload subnet (Figure 2): Arrival of jobs to a buffer
can be accepted by the system is limited by a buffer of size k is represented by transitiofy;;. This transition is
finite size. When the buffer is full or during a crash or &#locked when the buffer is full by means of an inhibitor
rejuvenation the arrival process is stopped. On the othenc with multiplicity £. Moreover,T;; is blocked when the
hand, the service stops during checkpoints, rejuvenatiosgstem itself is down or it is under rejuvenation. This fact

Degr adat i on Rej uvenat i on,
! : Crash, Restart

is represented by the two triangular labelsand r, which
refer to places of other submodels, for example, refers

to placepys in Figure 5). Service of jobs is represented by]T -
transition 77, which is blocked if the node or the process is e f L e
crashed (triangular labeilsandp), or if restart, rejuvenation or o 100808 PRUR0BION [el restoration

checkpointing is under execution (triangular labgels andc). fmm 62@ j D
The firing rateF (m, za1, x2) of T1» depends on the number AR ma)” T R (min

of jobs in the systemn, and on the degradation levelg; and oo
x99 (described in the next submodels). Further dependenci€g 3. FSPN Model of the system degradation.
on other state variables could also be included.

... \arkload)

performed between two renewals. Transitibn pumps fluid

in place c3o with rate Rz = 1, hence the fluid levels,

counts the elapsed time since last renewal event (i.e., crash

or rejuvenation), whereag is filled with rate Rs;(m, z21)

and the levelzs; represents the work of the system not

saved yet by a checkpoint. The flow ra; (m, z21) which

determines the work accumulation, depends on the number

of jobs in the system and the actual system degradation

level (further dependencies could also be included). Pigce

Fig. 2. FSPN Model of the workload. is flushed out by the firing of transition®,; (rejuvenation

forces checkpoint)]s; (checkpoint without rejuvenation];;

Degradation subnet (Figure 3): The degradation subnetndi;; (occurrence of a system crash). Plagg is flushed

is divided in two parts representing the system degradationt by firing of transitions that represents renewal events

and the process degradation, respectively. We assume {iejuvenation or crash).

the system degradation level can be measured by a single

continuous index:o; representing the level of the continuous ;

placecy;. TransitionT,; pumps fluid into places; at a rate :

Rs1(m), i.e., the change of the degradation level depends on

the number of jobsn present in the system. Degradation of

the process under execution is measured by the fluid variable

oo representing the level of fluid placg,. The change of

its level, modeled by/, with flow rate Ros (m, x21), depends

not only onm but on the actual node degradation level;,

as well. More complex dependencies could also be modeled;. 4. FSPN Model of the work done by the system.

for example, the intensity of the degradation could depend on

the time elapsed since the last crash by making the flow rateRejuvenationsubnet (Figure 5): We consider two possible

function also dependent on the fluid variablg (seeWork & modeling alternatives. In Figure 5a) the decision to initiate a

Timeblock) Ras(m, z21, 232). System degradation is stoppedejuvenation is represented by the timed transifion whose

in case of system crash and process degradation is stoppefiring time is independent of other recovery measures, while in

case of both system and process crash (triangular labatel in Figure 5b) we model the case considered in [10] where the

D). rejuvenation takes place aftercheckpoints and the immediate
The Degradationblock can be connected to other blocksransitiont,, fires whenn tokens are deposited 3. In both

as depicted in Figure 3. The presence of transitions of othegses transitiorf,; models the duration of the rejuvenation

subnets in Figure 3 is due to the fact that the level of placasd its firing rate can depend on various state variables of the

co1 and coo are changed by events of other submodels. Forodel (for example, degradation levels or the time elapsed

example, firing of transitiorily;, which models the end of since the last crash or rejuvenation). We assume that when

a rejuvenation action (see Figure 5), empties bath and the system performs a rejuvenation, a checkpoint is forced

coo, i.€., sets back to O the degradation levels. Transitidt not vice versa. Firing ofy; sets to zero the degradation

Ts1 instead models the fact that self restoration decreases linels (fluid placesce; and coo, see Figure 3), the work

process degradation level by gradually depleting ptagavith accumulated and the time elapsed since the last renewal event

a flow rate Rga(m, x22). (fluid placescs; andcess, Figure 4), and the time elapsed since
Work and Timesubnet (Figure 4): Transitiofiz; becomes the last checkpoint (fluid place;, Figure 6). As represented

enabled each time there is a renewal action and is disabl®dthe triangular labels in other submodels (connected to

when the system is performing restart, rejuvenation or cheqiace p4> in Figure 5), several activities are blocked when

pointing (labelss, r and c¢), or when a crash occurs (labelsa rejuvenation is under execution (for example, service of

n and p). ThusT3; remains enabled until the system workgustomers, transitiofi’ys in Figure 2). In case of Figure 5a)

correctly. This subnet describes the time elapsed and the wogluvenation is not possible when restart, checkpointing or self

Work and Tine

Sel f restoration

restoration is under execution (triangular labelsc and e).
System and process crash not only inhibit but also preempt
execution of rejuvenation (triangular labetsand p). As a
result of blocking other activities and setting fluid levels to
zero, the system is good as new after rejuvenation.

Fig. 7. FSPN Model of system self restoration.

and T4 model the crash of the system and the crash of the

process under execution, respectively. In the actual setting,

their firing rates depend on the number of jobs and on the

degradation levels but other state variables could be taken into
account as well. We assume that crashes are not observed
immediately and the time to discover the crash is modeled by

To for system crash and Wy, for process crash. Recovery

Checkpointsubnet (Figure 6): Fluid places; measures IS modeled byTz; for system crash and by for process
the time elapsed since the last checkpoint. Transifign crash. The firing rate of these transitions can depend on
represents the decision that a checkpoint is taken. In ti@rious state variables. Recovery from process crash is either
submodel we depict explicitly that the decision depends &hccessful T7¢) or unsuccessfullz). Number of process
the amount of time elapsed since the last checkpoint (fluf#@shes without successful recovery is counted in pfage
level z5;) and on the amount of work accumulated sincand afterr such unsuccessful recoveries the system crashes
the last checkpoint (fluid levets;). Transition T5; models (firing of ¢71). Triangular labelsn andp are used to block
the checkpoint overhead (although not shown explicitly, trctivities in other submodels during crash.
overhead can also depend am,, z3; and/or other state Repl caton and crash
variables). Firing offs; flushes out placess; (time elapsed L o s .
since last checkpoint) ands; (work accumulated since last ‘ !
checkpoint). Rejuvenation and system crash reset the time Doy Fri(ma) A f
elapsed since the last checkpoint (transitidghs, 77; and } Tz
t71). As represented by the triangular label& other subnets |
(connected to places, in Figure 5), several activities are
blocked when a checkpoint is under execution. Checkpointing
itself is not possible when restart or rejuvenation is under
execution (triangular labels and r). System and ProCesS_. o ooy Model of crash and replicat
crash do not only inhibit but also interrupt execution of 9 = odel ot crash and repleation.
checkpointing (triangular labels andp).

Fig. 5. FSPN Model of the rejuvenation action.

In a recent paper Okamura and Dohi [10] assume that
Chekpoi nt Rej uvenat | on, a system crash may manifest in active mode (that is

T T, e immediately detected activating a rollback recovery from the

last checkpoint), and in passive mod@ which the detection

is deferred until the successive checkpoint. The two failure

modes can be modeled by modifying the subnet of Figure 8

in the new subnet of Figure 9. Timed transitidy, represents

the system crash, that with probabilgymanifests in thective

mode (immediate transitiotys) and with probabilityl — p in

the passivemode (immediate transitioty,) and the recovery

is deferred until the next checkpoint.

Fig. 6. FSPN Model of checkpointing.

Self Restoratiosubnet (Figure 7): Transitidfs, represents
the beginning of self restoration whilg;, its duration. Firing Process crash with late detection
rates of these transitions can depend on other state variables of !

the system (for example, degradation levels). During the self

restoration process degradation is decreased by the pumping

out action enabled by transitidfs; on placecs, (see Figure Chekpoi nt
3). When the self restoration mechanism is active, restart LT,
and rejuvenation cannot be started (triangular lalglsSelf
restoration cannot be started during restart, rejuvenation and
checkpointing. System and process crash inhibit and interrg{. 9. FSPN Model of system crash with 2 failure modes after [10].
execution of self restoration.

Crash and Replicationsubnet (Figure 8): Transitiofi7; Restart subnet (Figure 10: Transitioffz, represents the

Replication and crash

beginning of restart of a process whilg, its duration. Firing .. Nde degradation.. —~— .~ - T T ;
rates of these transitions can depend on other state variables DTH ”21/\/ :

of the system (for example, degradation levels). Restart sets: ,Q, U Rym) ~ @ 3 j
zero the process degradation level by transifign(see Figure Py Fn(mxﬂ) T73
3). During the restart mechanism the system cannot sta a_* 2 3

rejuvenation, self restoration, checkpointing and the service df
the jobs are blocked (triangular labels System and process
crash inhibit and interrupt execution of self restoration.

Rest art

Fig. 11. FSPN model of degrading software system with rejuvenation, restart
Fig. 10. FSPN Model of the restart mechanism. and replication.

A. Model composition and analysis the probability that discrete plage. (pr4) is marked at time

The individual FSPN blocks illustrated in the previou (NOtice the logarithmic scale on the vertical axis).

section can be combined, according to the user needs, to
model the characteristics and the property of the system at
hand. A software system might be provided with periodical
rejuvenation but not checkpointing or viceversa; a system
might not have self-restoration capabilities or the degradation o1 lf
level might not be measurable. This is why the compositional ‘
capability offers to the modeler the required level of flexibility.
Furthermore, FSPN may provide a set of performance mea-)
sures that encompasses those that can be evaluated in discrete 001 | /
SPN models. In fact, we can define measures connected to the ‘

Mean System Degradation

discrete part of the FSPNdiscrete performance measuyes i Msg/ag;ogg?g%%;ﬁ; -

and, in addition, measures connected to the continuous part ‘ ‘ . Process Crash Probability

(continuous performance measur¢$2]. "0 20 40 60 80 100 120 140 160
Time

IV. NUMERICAL EXAMPLE Fig. 12. Transient probability of crash failure.

In order to illustrate the use of the model and the associated
analySiS, we present aSimple CompOSitional model with relatedl:igure 13 reports again (|n linear Sca|e) the mean process
performance measures. The considered model contains a g#yradation level, and in the same scale the probability of
set of the features introduced in the previous section, namedgrmal operation (token in places; A psi A pa1), of restart
degradation, replication, restart and rejuvenation. Figure {tbken in placeps.), of rejuvenation (token in placgs) and
presents the FSPN description of the whole model depictigg crash (probability of placesrs + pr3 + pra + prs + pre)-
also the way of connecting the submodels. Notice that the last four probability values sum to 1 at any

The model was solved analytically in transient time resoffime ¢. The probability of normal operation can be interpreted

ing to the solution method provided in [16]. The numericads the system availability that tends to the steady state value
values of the model parameters used in the computations gðe time goes to infinity.

reported in Table |

As a sake of illustration, we have computed a sample of
both discrete and continuous performance indices as a function
of the time. As an example of continuous measures we haveThe main contribution in this paper is the FSPN based
reported in Figure 12 the mean system degradation lewvabdeling framework, which is modular and able to capture
and the mean process degradation level. The mean systarious combinations of fault-tolerance techniques, reactive
(process) degradation level at tiniels computed averaging and proactive to enhance system availability and correct soft-
the value of the continuous random variablg (z22) over all ware behavior. The choice of FSPN in each module enables
the model states. The ripple in the mean process degradaiiwcorporating discrete and continuous variables which can be
level is mainly due to the restart mechanism. time dependent. Further, the composition of the FSPN modules

As an example of discrete measures we have reportedvia outgoing transitions allows rapid evaluation of different
the same Figure 12 the system (process) crash probability, cembinations of the techniques. We illustrated the flexibility

V. CONCLUSIONS

Parameters

Activities

m
r

21
T22

Number of parallel processesy < 3)]

Cold replication maximum number of retries € 3)
node degradation leved(< z2; < 1)

process degradation leve) K zo5 < 1)

Transitions

Activities

T, =0.2
Fia(m, x21,222) = 1/(m(x21 + x93 + 1))

arrival of customers o the system
service of customers

Fri(m,x21) = m(8xay + 1)/2400 system crash rate
Fry(m,xzo0) = m(8xas + 1 /1920 process crash rate
T7o =1 system crash identification rate
s = 2 process crash identification rate
T73 = 0.1 system crash repair rate
T76 = 0.32 process crash repair rate (successful restart)
T77 = 0.08 process crash repair rate (unsuccessful restart)
Tgy =1 I T restart Tength (rate)
Fgo(x22) = {x22 > 0.75,100,0.0001} restart rate
Ty = 0.2 1 7 rejuvenation Tength (rate)
Tyo = 1/360 rejuvenation rate

Fluid transitions

Activities

Rglgm) = m/128
Raa(m, xz21) = m(xz21 +1)/96

Increase of system degradation Tevel
Increase of process degradation level

MODEL PARAMETER;-%%LTI%-HIEFSPNOF FIGURE 11

Mean Process Degradation
Normal Operation -
Restart

0 20 40 60 80
Time

100 120 140 160

(3]

(4]

(5]

(6]

(7]

(8]

Fig. 13. Transient probability of various system degradation and restoratid)

events.

(10]

of the framework by constructing a representative model and

gave numerical solution for the model.

(11]

As new age of Internet and Web services pervade, it is
becoming increasingly common to have "software system” be
not composed of a software process running on a softwété
node. Rather, the system is now a set of software modules
running on a set of nodes with failure interdependencies. One
potential extension of the framework is to extend the formaft3l
ism to capture this. There has been prior work in evaluating
dependability of component based software systems. Howeves]
a unified framework, which allows for composition of fault-

tolerance techniques on a per component basis of a softwag?

system has not been explored.

ACKNOWLEDGMENTS

(16]

This work have been partially supported by grant MIUR-

PRIN No. 2007J4SKYP and OTKA No. K61709.

REFERENCES

[1] R. Chillarege, “What is software failure PEEE Transactions Reliabil-

ity, vol. 45, pp. 354-355, 1996.

[2] M. Grottke and K. Trivedi, “Fighting bugs: Remove, retry, replicate and

rejuvenate,lEEE Computerpp. 107-109, February 2007.

A. Avritzer and E. J. Weyuker, “Monitoring smoothly degrading systems
for increased dependabilityJburnal of Empirical Software Engineering
vol. 2, no. 1, 1997.

S. Garg, A. Puliafito, M. Telek, and K. Trivedi, “Analysis of preventive
maintenance in transaction based software systdiBEE Transactions
on Comuptersvol. 47, pp. 96-107, 1998.

A. van Moorsel and K. Wolter, “Analysis of restart mechanisms in
software systems,JJEEE Transactions Software Engineerjngpl. 32,

no. 8, pp. 547-558, 2006.

K. Wolter, “Stochastic models for restart, rejuvenation and check-
pointing,” Habilitation Thesis, Humboldt-University, Institut Informatik,
Berlin, Tech. Rep., 2008.

J. Young, “A first order approximation to the optimum checkpoint
interval,” Communications of the ACMol. 17, no. 9, pp. 530-531,
1974.

V. Nicola, “Checkpointing and modeling of program execution time,” in
Software Fault ToleranceM. Lyu, Ed. John Wiley & Sons, 1995, pp.
167-188.

Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software rejuve-
nation: analysis, module and applications,”"Rmoceedings of the 25-th
Fault Tolerant Computing Symposium (FTCS;2B)95, pp. 381-390.

H. Okamura and T. Dohi, “Analysis of a software system with rejuve-
nation, restoration and checkpointing,” Rroc ISAS 2008 Springer
Verlag - LNCS, Vol 5017, 2008, pp. 110-128.

S. Garg, Y. Huang, C. Kintala, and K. S. Trivedi, “Minimizing com-
pletion time of a program by checkpoint and rejuvenation,”Piroc.
1996 ACM SIGMETRICS Conferend#hiladelphia, PA, May 1996, pp.
252-261.

A. Bobbio, S. Garg, M. Gribaudo, A. Hoat, M. Sereno, and M. Telek,
“Modelling software systems with rejuvenation restoration and check-
pointing through Fluid Stochastic Petri Nets,”"®MNPM '99. IEEE CS
Press, Sept 1999, pp. 82-91.

G. Horton, V. Kulkarni, D. Nicol, and K. Trivedi, “Fluid stochastic
Petri nets: Theory, application and solution techniquésjtopean J
Operational Researghvol. 105, pp. 184-201, 1998.

M. Gribaudo, M. Sereno, A. Hoath, and A. Bobbio, “Fluid stochastic
petri nets augmented with flush-out arcs: Modelling and analysis,”
Discrete Event Dynamic Systol. 11, pp. 97-111, 2001.

A. Bobbio, M. Sereno, and C. Anglano, “Fine grained software degrada-
tion models for optimal rejuvenation policieferformance Evaluatign
vol. 46, pp. 45-62, September 2001.

M. Gribaudo and A. Hor&th, “Fluid stochastic petri nets augmented
with flush-out arcs: A transient analysis techniqU&EE Transactions
Software Engineeringvol. 28, pp. 944-955, 2002.

