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Abstract

Minimum Spanning Tree (MST) based clustering algorithms effectively identify clusters of different shapes and
densities within data sets. Conventional MST algorithms typically start by creating a distance matrix of the n(n−
1)/2 pairs of data points, leading to a time complexity of O(n2). However, this initial step poses a computational
bottleneck. To overcome this limitation, we present a novel method that constructs an initial random k-neighbor graph
and optimizes this graph by employing a crawling technique to approximate the k Nearest Neighbors (kNN) graph
efficiently. This crawling approach allows us to approximate the closest neighbors of each node. Subsequently, we
use the approximate kNN graph to build an initial approximate MST and iteratively refine it by the same crawling
process. Using this approach, we can obtain an approximate MST for a data set of size n with empirical cost around
O(n1.07) and a minimal O(n) memory consumption. We have shown that the proposed method achieves such a level
of performance with only a marginal accuracy reduction between 0.5% and 6%. The magnitude of the efficiency
reduction depends on intrinsic data set characteristics and the value of k.

1 Introduction
Minimum Spanning Tree (MST) algorithms have numerous applications in the domain of big data due to their ability
to extract essential structures from large data sets. Some of the notable applications are clustering, network design
and optimization, and anomaly detection. In clustering, the goal is to group similar data points together into clusters
while keeping dissimilar points separate. MST is a graph-theoretic concept that can be used to identify groups of
closely related data points that can be clustered together [1, 2, 3]. MST is a tree that spans all the nodes of a graph
while minimizing the total weight of the edges. In the context of clustering, the nodes represent data points, and the
weights of the edges represent the similarity or dissimilarity between the points. A low-weight edge between two
nodes indicates a high similarity, while a high-weight edge indicates a low similarity.

MST can be used to identify clusters of data points by partitioning the tree into subtrees, where each subtree
represents a cluster [4, 5]. The subtrees can be identified by cutting the edges of the tree at a certain threshold
weight. The resulting subtrees consist of groups of closely related points that can be clustered together. Additionally,
MST can also be used as a pre-processing step for clustering algorithms [6, 7, 8]. It can reduce the complexity of
clustering algorithms by focusing on the most relevant pairwise relationships and filtering out noisy or less informative
connections. The resulting MST can serve as a compact representation of the data, facilitating faster and more efficient
clustering.

Although numerous algorithms construct MST accurately and efficiently, these algorithms typically require a graph
that reflects the relationships among the data points [9, 10]. However, building such a graph can be computationally
expensive. In recent years, many algorithms have utilized the k Nearest Neighbors (kNN) graph to construct the MST.
The kNN graph approximates the underlying data relationships by connecting each data point to its k nearest neighbors.
By leveraging the kNN graph, MST construction algorithms can effectively capture the data structure and generate an
MST that represents the relationships among the data points. This approach offers a computationally feasible and
scalable solution for constructing MSTs in large data sets.
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There are many algorithms that use kNN for classification and regression tasks in the field of machine learning
and data mining. These algorithms are non-parametric (do not make any assumptions about the underlying data
distribution) and instance-based (relies on the entire data set during the prediction phase) learning algorithms [11, 12].
However, finding the exact k nearest neighbors in high dimensional data sets is computationally expensive, especially
for large data sets [13], since the brute force approach, which involves computing the distance between all point pairs
in the data set, has a time complexity of O(n2). Therefore, approximate kNN search techniques have gained significant
attention, since they are able to find near neighbors in large data sets much more efficiently [14].

While the approximate kNN intends to approximate the true kNN closely, due to the reduced computational com-
plexity, the two can be different. The accuracy of approximate kNN search techniques for the entire data set can be
measured by the difference between the approximate kNN distances and the true kNN distances:

Accuracy =
n

∑
i=1

k

∑
j=1

D̃i j−Di j, (1)

where n is the number of data points in the data set, k is the considered number of nearest neighbors, Di j is the true
distance to the jth nearest neighbor of the ith data point, and D̃i j refers to the distance of the ith data point to its jth
nearest neighbor in the approximate kNN.

These techniques aim to get a balance between accuracy and computational complexity, allowing for faster search
times while still providing reasonably accurate results. Several methods have been developed to address the approx-
imate kNN search problem. The three main categories of such methods are spatial-tree-based, hashing-based, and
graph-based methods.

Spatial tree-based methods partition the space into smaller regions or nodes, creating a hierarchical structure. The
goal is to efficiently organize the data so that spatial queries like nearest-neighbor searches can be performed quickly.
Examples of spatial trees include KD-tree [15], Ball-tree [16, 17] and K-Means tree [18]. The construction of a
KD-tree involves recursively partitioning a set of points in a K-dimensional space. A splitting axis is chosen, often
alternating between dimensions, and data points are separated based on their values along that axis. The median point
along the chosen axis becomes the current node, and the process continues for the left and right subtrees until all points
are organized into the tree structure.

Spatial-tree-based methods offer fast searching by traversing the tree structure. The advantages of tree-based
methods include logarithmic search complexity, good performance for low-dimensional data, and support for range
searches. However, they can struggle with high-dimensional data due to the curse of dimensionality and may suffer
from unbalanced trees or inefficiency when the data distribution is skewed [19].

Hashing-based methods [20] map high-dimensional data points into lower-dimensional binary codes, enabling
efficient indexing and searching. They offer fast query processing and are effective for large-scale data sets. These
methods allow for efficient retrieval of approximate kNN using the Hamming distance. They have many advantages,
including sublinear search complexity, scalability, and the ability to handle high-dimensional data [19]. However,
there is a trade-off between accuracy and speed, as hashing-based methods may not always guarantee that all nearby
vectors will fall into the same or nearby buckets, which can affect the accuracy of the search [21].

In approximate kNN search, graph-based methods represent data points as nodes in a graph and establish edges
based on their distances [14]. These methods utilize graph traversal techniques to find approximate kNN. The advan-
tages of graph-based methods include handling both sparse and dense data, flexibility in defining proximity relation-
ships, and good performance for high-dimensional data [22, 23]. They can also support incremental updates to the
graph. However, constructing and maintaining the graph can be computationally expensive, and the search complexity
can be higher than with tree-based methods.

This paper provides a method for the construction of the approximate kNN graph, which is customized to generate
a high-quality approximate MST. Our method is able to derive an approximate MST that is close to the exact MST
with a lower computational cost, thereby enhancing the overall performance and efficiency of clustering algorithms,
such as Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) [24], for which MST
generation is a crucial step. Two implementations of our algorithm are presented . The first implementation stands out
for its memory efficiency. The second implementation maintains a balance between memory efficiency and execution
time. It stores a reduced number of the computed distances during the optimization process, thereby ensuring a shorter
execution time than the memory-efficient version and a lower memory consumption than the brute force method.

The rest of the paper is structured as follows. In Section 2, the relevant solutions from the literature are pre-
sented. The proposed method is detailed in Section 3. Results and discussions are introduced in Section 4. Finally, a
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conclusion of the paper is given in Section 5.

2 Existing MST generation methods
In graph theory, an MST is a subgraph of a given undirected graph that connects all the data points in a data set while
minimizing the total sum of edge weights. The construction of an MST must follow the cut and cycle properties. The
cut property of MSTs states that the lightest edge crossing any cut must be part of the MST, while the cycle property
dictates that the heaviest edge in any cycle whose removal results in lighter edges cannot be in the MST.

MSTs are employed in clustering and data analysis algorithms to identify patterns and relationships within large
data sets. Constructing an MST on data points makes it possible to identify clusters and hierarchies, enabling efficient
data exploration and visualization. MSTs can indeed serve as the primary and exclusive technique for unsupervised
data clustering. For instance, MST plays a crucial role as a fundamental step within the HDBSCAN clustering frame-
work. An MST can be generated using exact or approximate methods.

2.1 Exact methods
Constructing an MST from a data set of n points in a d-dimensional space consists of two steps. First, a weighted
undirected full graph is constructed from the data set, where each node represents a data point, and edges between
nodes convey the similarity between the points. Second, the MST is constructed from this full graph. The process
of constructing an MST can be achieved using various algorithms, such as Prim’s algorithm [25], Boruvka’s algo-
rithm [26], or Kruskal’s algorithm. Here is a general outline of the procedure for building an MST from a full graph
using Kruskal’s algorithms [25, 27]:

• Create a set for each node, initially containing only that node.

• Create a list of all edges in the graph.

• Sort the list of edges in non-decreasing order of their weights.

• Starting from the smallest edge.

• Select the next edge from the sorted list. On the condition of not forming a cycle, add this edge to the current
MST and merge the sets of the two endpoints of the edge.

• Repeat the last step until the MST contains (n - 1) edges, where n is the number of nodes in the full graph
(identical to the size of the data set).

The process of building the MST from the full graph has a time complexity of O(n2). This quadratic complex-
ity poses challenges when applying exact MST algorithms to large data sets. Consequently, handling such data sets
becomes difficult due to the significant time and memory requirements. Therefore, more efficient algorithms or spe-
cialized techniques are pursued to address this limitation and enable cluster analysis on very large data sets at the price
of computing an approximate MST with a higher weight than the MST, which we refer to exact MST in the sequel for
distinction.

2.2 Approximate methods
Many algorithms initiate the construction of the approximate MST by generating a graph with a reduced number
of edges such as kNN graphs. When the O(n2) time complexity of exact kNN graph generation is infeasible due
to the large size of the data set, efficiently generated approximate kNN graphs can be used. Many of the efficient
approximate kNN graph generation procedures are based on spatial trees, since the cost of their construction is low.
For example, the time complexity of constructing a KD-tree from a d dimensional data set is O(d · n logn) and to
generate an approximate kNN graph from a balanced KD-tree is O(n · k logn).

The price of this reduced computational cost is the reduced accuracy. The sum of the weights of the generated
approximate kNN graphs is higher than that of the exact kNN graph, but the structure of the approximate kNN graphs
is usually quite similar to the exact kNN graph, thus the classification based on approximate kNN graphs is similar to
the one based on an exact kNN graph.
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One of the most efficient approximate MST generation methods using KD-tree is the Well-Separated Pair Decom-
position (WSPD) [28, 29, 30] based method proposed in [27]. In computational geometry, a WSPD of a data set X in
d-dimensional space is a sequence of pairs of sets (Ai,Bi). Each pair maintains a significant distance between subsets,
and for any two distinct points p,q∈ X , there is exactly one pair that separates them, placing p in Ai and q in Bi. WSPD
helps organize points for efficient geometric algorithms by ensuring separation and clear pairwise relationships. A and
B are considered ε-well-separated if

ε ·distance(Ai,Bi)≥max(diameter(Ai),diameter(Bi))

where the distance of set Ai and Bi is defined as the minimum distance between the bounding boxes of set Ai and Bi,
the diameter of set Ai is the length of the diagonal of the bounding box of the Ai set, and ε is a hyperparameter.

In [27], Wang et al. propose a fast approximate MST construction approach utilizing the WSPD technique. Their
proposed method, is composed of three steps:

1) building a spatial tree (they use KD-tree),

2) building a WSPD based on the spatial tree,

3) connecting pairs of WSPD using Bichromatic Closest Pair (BCCP) [28], which involves finding the pair of
points (xi, x j) that have the smallest distance between set A and set B where xi ∈ A and x j ∈ B.

In [27], they present a parallel version of this approach as a step in the parallel HDBSCAN clustering process.
The graph obtained through WSPD has only O(n log n) edges and is computed in O(dn log n + εddd/2n) time

[31]. However, steps 1)-3) are considerably slower than the method proposed in this paper because WSPD relies on
spatial trees, which scale poorly with the dimensionality of the data [31]. Additionally, adapting this algorithm for an
incremental extension of the data set is non-trivial.

In this work, the WSPD-based method proposed in [27] is considered to be the most efficient among the existing
approximate MST generation methods [32], and we compare our proposed method with it in the numerical section.

In [33], an enhanced and efficient implementation of HDBSCAN is introduced. The authors employ a technique
referred to as Hierarchical Navigable Small World (HNSW) to achieve this improvement. While HNSW is efficient in
approximate kNN search, the construction of HNSW is less efficient [14]. The approach also demands considerable
memory resources [34]. Furthermore, the method may approximate the MST by a spanning forest initially, and the
creation of a single approximate MST from this forest is improperly documented in [33].

In [35], Wang et al. present a fast approximate MST-based clustering algorithm that employs a divide-and-conquer
strategy. This method efficiently identifies long edges in the initial stages to decrease the required distance computa-
tions by utilizing the cut and cycle properties of MSTs. However, the worst-case complexity of the algorithm in [35]
remains O(n2), suggesting that it could face performance challenges when dealing with large data sets.

A K-means-based fast approximate MST computation was proposed in [36]. The solution consists of the following
stages:

• ⌊
√

n⌋ partition

– dividing the data set into ⌊
√

n⌋ clusters (using the K-means method)

– computing the exact MST for each cluster

– connecting these MSTs into an approximate MST of the entire data set

• ⌊
√

n⌋−1 partition

– repeating the same step with ⌊
√

n⌋−1 clusters

• the two approximate MSTs are combined into a single approximate MST.

The expected time complexity of the procedure is O(n1.5). However, it is crucial to acknowledge that the actual
execution time might vary highly. This variation is due to the strong dependence on the distribution of partitions
generated from the K-means algorithm. The computational complexity of the step of computing the exact MST for
each cluster depends on the size of the largest cluster. A strongly unbalanced cluster structure might result in significant
running time.
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Jothi et al. propose a recursive approach for clustering data in [18]. The data set is recursively divided into tree of
clusters by repeatedly splitting the data set into two sets until the partition size meets a cluster size limit. This process
creates a tree where the leaf nodes represent the final partitions of the data set. A full subgraph is then generated
for each partition. The following steps involve identifying neighbor partitions and boundary points. Finally, the
subgraphs are connected, and an approximate MST is constructed from them, achieving an expected time complexity
of O(n1.5 log n) [37]. However, the accuracy of the final approximate MST heavily depends on the quality of the inter-
set edges calculations used to identify neighboring partitions. This dependency may lead to less accurate approximate
MSTs, especially when dealing with complex, high-dimensional data sets [38].

3 The Proposed Method
Our goal in this paper is to construct an approximate MST efficiently, which is similar to the exact MST, from a data
set denoted as X , where X = {x1,x2, . . . ,xn}, comprises n data points in a d-dimensional space.

Our proposed method is composed of the following steps:

• Random k-neighbor graph generation.

• Optimization of the random k-neighbor graph to obtain an approximate kNN graph

• Generation of an approximate MST from the approximate kNN graph

• Optimization of the approximate MST.

3.1 Random k-neighbor graph generation
The initial step in constructing an approximate kNN graph is creating a random directed graph with (n ·k) edges, such
that each node has k neighbors. The weight associated with the edges between node xi and x j is the distance between
them. This way the weight of edge (xi,x j) and edge (x j,xi) are identical. Algorithm 1 generates a random directed
graph by assigning k random data points to each node as neighbors. Each node is represented by a unique key in the
graph dictionary, and the corresponding value is a list of k indices representing its neighbors. We construct a random
graph of this nature with a time complexity of O(n · k).

Algorithm 1: Random k-neighbor Graph
Data: Nodes, k
Result: Neighbors: random k-neighbor list
Neighbors←{}
for xi in Nodes do

Neighbors(xi)← list of k random nodes from Nodes
end

3.2 Optimizing the random k-neighbor graph
The optimization of the random graph generated by Algorithm 1 aims to eliminate long edges based on the procedure
proposed in [39]. The elementary step of the procedure is as follows. If x j is a neighbor of xi and xz is a neighbor of x j
and distance(xi,x j) is greater than distance(xi,xz), then x j is replaced by xz in the neighbors list of xi. This elementary
step is performed for all nodes and all neighbors of neighbors according to the pseudo-code in Algorithm 2. Since the
replaced list of neighbors changes the structure of the graph, further iterations of the same steps might further refine
the list of neighbors.

The random k-neighbor graph optimization process, according to Algorithm 2, can be continued until either conver-
gence is achieved (where no further neighbors of neighbors are found to be closer to a given node) or a predetermined
number of iterations is reached. We introduce two versions of the random k-neighbor graph optimization process with
different iteration policies based on hyperparameters ∆ and δ (∆ >> δ ) as follows:
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Algorithm 2: Optimizing the random graph
Data: Random k neighbor list, Data set X
Result: Optimized k neighbor list, Edges, Converged
Edges← []
Converged← True
for xi ∈ Nodes do

for x j ∈ Neighbors(xi) do
D← distance(xi, x j)
D̂← D
for x̂z ∈ Neighbors(x j) do

if x̂z ̸= xi then
Dtemp← distance(xi, x̂z)
if Dtemp < D̂ and x̂z /∈ Neighbors(xi) then

D̂← Dtemp
xz← x̂z

end
end

end
if D̂ < D then

Neighbors(xi)← Neighbors(xi)\ x j ▷ Remove far neighbor
Neighbors(xi)← Neighbors(xi)∪ xz ▷ Add closer one
Edges← Edges∪ (xi,xz, D̂)
Converged← False

else
Edges∪ (xi,x j,D)

end
▷ We denote D as the Euclidean distance between a given node and its corresponding neighbor.

Similarly, D̂ represents the optimal Euclidean distance between the node and a neighbor of a
neighbor. Here, xz refers to the neighbor of a neighbor, while Dtemp refers to the current Euclidean
distance between the node and a neighbor of a neighbor.

end
end

• Long k-neighbor graph optimization (Algorithm 3): In this procedure, the random k-neighbor graph is optimized
according to Algorithm 2 until either converge or reaching ∆ iterations. At this point, an undirected graph is
generated from the directed k-neighbor graph such that one of the edges is dropped in case of a node pair
connected with two opposite directed edges. This way, the number of undirected edges is between n · k/2 and
n · k and the weights of the edges are the distances between the corresponding nodes. The approximate MST is
obtained as the exact MST of this undirected graph. (The obtained MST is suboptimal because only a limited
number of edges of the full graph is used to compute it.)

• Short k-neighbor graph optimization (Algorithm 4): In this procedure, the random k-neighbor graph is optimized
by Algorithm 2 only δ times (if it does not converge before), and after that an undirected graph and its MST of
n−1 edges is generated as in the previous case. In contrast to the long k-neighbor graph optimization method,
the obtained approximate MST is further optimized in this procedure. First, the undirected approximate MST is
transformed to a directed graph of 2n− 2 edges such that the undirected edges substituted with directed edges
in both directions and Algorithm 2 is applied again until convergence or reaching ∆ iterations. The final step of
the procedure is to transform the obtained directed graph to undirected again and compute its MST.

The memory consumption of both methods can be adjusted by the number of edge distances that are stored during
the computations. If the computed edge distances are stored in the memory, the time of the consecutive iterations
reduces because fewer distances have to be computed in one iteration. On the other hand, the memory consumption
continuously increases during the procedure. In the long k-neighbor graph optimization method at most ∆ · n · k2
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distances need to be stored and in the short k-neighbor graph optimization method it depends on the structure of
the data set. In our experiments it was always less than the memory consumption of the long k-neighbor graph
optimization method. We note that the second phase of the short k-neighbor graph optimization method, where the
number of edges is 2n−2, converges rather fast in practice, thus its memory consumption and running time are much
lower than the ones of the long k-neighbor graph optimization method.

If the edge distances are not stored during the computation, then the memory consumption is negligible (O(n · k))
since we only store the indexes of k neighbors of each node, however, the computation time increases with the repeated
computation of the edge distances.

Essentially, the approach of the long k-neighbor graph optimization method resembles the approach used in [39],
while the approach of the short k-neighbor graph optimization method was not considered before.

Algorithm 3: Long k-neighbor graph optimization
Data: X , k, ∆

Result: MST
Random k neighbor← Algorithm 1(Nodes, k)
Optimized k neighbor← Random k neighbor
E poch← 1
Converged← False
while Not Converged and Epoch < ∆ do

Optimized k neighbor,Edges,Converged← Algorithm 2(Optimized k neighbor,X)
E poch← E poch+1

end
MST ← Exact mst(n,Edges)

Algorithm 4: Short k-neighbor graph optimization
Data: X , k, ∆, δ

Result: MST
Random k neighbor← Algorithm 1(Nodes, k)
Optimized k neighbor← Random k neighbor
Epoch← 1
Converged← False
while Not Converged and Epoch < δ do

Optimized k neighbor,Edges,Converged← Algorithm 2(Optimized k neighbor,X)
E poch← E poch+1

end
MST ← Exact mst(n,Edges)
while Not Converged and Epoch < ∆ do

MST,Edges,Converged← Algorithm 2(MST,X)
MST ← Exact mst(n,Edges)
E poch← E poch+1

end

4 Application examples

4.1 Applied data sets
To demonstrate the effectiveness of the proposed method, we conducted a series of experiments on various data sets.
Specifically, we utilized 13 different data sets as shown in Table 1. Speech, MNIST, and Shuttle are from Multi-
dimensional point data sets of the Outlier Detection Data Sets1. CelebA was introduced in Ref. [40] and can be

1https://odds.cs.stonybrook.edu/#table1
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Table 1: Data sets of different sizes and dimensions

Data Set type dimensions (d) Size (n)
Speech

real

400 3,686
Miss America 16 6,480

MNIST 100 7,603
Shape 544 28,775
House 3 34,112
Shuttle 9 49,097
Audio 192 54,387
Europe 2 169,308
Celeba 39 202,599
Corel 14 662,317

Unbalanced

synthetic

2 6,500
Birch1 2 105

Make moons 2 40
Make blobs 2 - 1000 103-106

accessed online2. Miss America, House, Europe, Unbalanced, and Birch can be found on the web3. The first three of
this group are real-world data, and the last two are synthetic data sets. Corel, Shape, and Audio were used by [39, 41]
and are available online4. We used the make moons library from Sklearn data sets5 to generate the Make moons
data set. Finally, we used the make blobs library from Sklearn data sets6 to generate data sets of different sizes and
dimensions.

4.2 Comparison of short and long k-neighbor graph optimization methods
We compared the run time and the accuracy of the short and long k-neighbor graph optimization methods using the
data sets in Table 1. with hyperparameters k = 20, δ = 8, ∆ = ∞ in each cases, starting from independently sampled
initial random k-neighbor graphs. In order to demonstrate the number of iteration cycles required until convergence
we set ∆ = ∞, which results that Algorithms 3 and phase 2 of 4 run until the graph can not be improved any more with
the iteration cycle of Algorithm 2.

The obtained results, in Table 2, demonstrate that the short k-neighbor graph optimization method provides more
accurate approximate MST and better execution time. Its lower execution time is due to the fact that it converges in
fewer iterations because Algorithm 4 perform at most δ iterations of optimizing the random k-neighbor graph and then
generate a directed graph with fewer edges whose optimization converges quickly. The intuitive explanation for the
improvement in the total weight of obtained approximate MST is that after we optimized the random k-neighbor graph,
during the optimization of the approximate MST, we add the reverse edge of every existing edge in the approximate
MST to get an undirected graph, which helps avoiding the convergence to a local optima and enhances the accuracy
of the final approximate MST.

The only data set for which optimization of the random k-neighbor graph converges within less than δ iterations
is the Speech data set. In that case the independent sampling of the initial random k-neighbor graph results in the
differences in the number of required iterations for Algorithm 3 and 4.

4.3 Demonstration of the behavior of Algorithm 4
Figure 1 presents an overview of the approximate MST generation process facilitated by Algorithms 4 for a data set
generated by the make moons algorithm from Scikit-learn, comprising only 40 data points, to enhance visual clarity.
In the initial step, Algorithms 4 generates a random k-neighbor graph with n = 40 vertices and n · k = 160 edges,

2https://paperswithcode.com/dataset/celeba
3https://cs.joensuu.fi/sipu/datasets/
4https://code.google.com/archive/p/nndes/downloads
5https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
6https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
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Table 2: Comparison of Algorithms 3 and 4 using different data sets with k = 20, δ = 8, ∆ = ∞ (optimization until
convergence).

Data Set (d n) Algorithm # Iterations Time Weight Relative error %
phase 1 phase 2

Shuttle Alg. 3 42 - 490 424288 30.328
Alg. 4 8 15 93 325554 reference

Mnist Alg. 3 14 - 27.8 2769425 0.034
Alg. 4 8 3 14.8 2768488 reference

Speech Alg. 3 7 - 11.8 70772 0.082
Alg. 4 6 1 11.8 70714 reference

Celeba Alg. 3 13 - 801 191995 3.596
Alg. 4 8 4 459 185331 reference

Shape Alg. 3 25 - 236 4237.55 5.949
Alg. 4 8 7 80 3999 reference

Audio Alg. 3 17 - 232 36797 1.519
Alg. 4 8 6 109 36246 reference

Unbalance Alg. 3 27 - 36.3 3108182 1.62
Alg. 4 8 3 10.7 3058632 reference

Make blobs
(2 100000)

Alg. 3 88 - 2022 2455 4.437
Alg. 4 8 11 180 2350 reference

Make blobs
(1000 50000)

Alg. 3 12 - 333 2076043 0.001
Alg. 4 8 2 237 2076041 reference

assuming k = 4, which is depicted in Figure 1a. (A higher value for k would result in a denser graph and potentially
better approximate MST, but with poorer graphical visibility). In this example, we set δ = 2 to executed only two
iteration of random k-neighbor graph optimization due to the relatively small number of edges. The result of the first
iteration is depicted in Figure 1b. One can observe that the first iteration already significantly decreased the number
of long edges in the graph, which results in the visually less dense impression of the graph in Figure 1b.

The primary approximate MST, as a result of the first phase of Algorithm 4, is obtained from the second iteration
of the k-neighbor graph optimization and it is depicted in Figure 1c. Figure 1d depict the result of the first optimization
cycles of the second phase of Algorithm 4. This phase converges in 2 cycles, and no further optimization is possible
for this example. The MST generated from the optimized graph is provided in 1e. For comparison purposes, Figure 1f
presents the exact MST obtained using the brute force method. Most of the approximate and the exact MST are
identical in Figure 1e and 1f except some minor differences indicated by circles.

As another example, Figure 2 presents the results of Algorithm 4 using a 2D synthetic unbalanced data set gener-
ated by the Make blobs procedure containing 6500 data points, which are distributed among eight distinct clusters. It is
worth noting that the size of this data set is relatively modest, and our primary objective is to demonstrate the efficacy
of our algorithm in handling unbalanced data sets. Similar to the previous example, Figure 2 suggests that most of the
approximate and the exact MST are identical with some minor exceptions, and the weights of the approximate and the
exact MST are close.

4.4 Comparison of Algorithm 4 and the WSPD based method
To the best of the authors’ knowledge, there is currently no available implementation for obtaining an MST using
sequential WSPD. While an implementation for sequential WSPD exists7, its output consists of a set of ε-separated
pairs, as detailed in [31]. These pairs must be connected by an edge between the closest points for each pair using
BCCP to obtain a connected graph from which an MST can be generated. We will utilize the implementation of [31]
to illustrate that WSPD has a strong dependence on the dimension of the data set, because WSPD suffer in higher-
dimensional spaces as the number of pairwise comparisons that need to be stored increases exponentially, leading to

7https://github.com/dmatijev/wspd_pip
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(a) Random k-neighbor graph, 40 data points and k = 4
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(b) k-neighbor graph after the first iteration of the optimization
processMST give Euclidian distance

(c) Approximate MST generated from the k-neighbor graph af-
ter the second iteration of the optimization process

MST give Euclidian distance

(d) The graph after the first iteration of the approximate MSTMST give Euclidian distance

(e) The approximate MST (f) MST obtained by brute force method

Figure 1: Process of generating approximate MST based on Algoritm 4 and the associated MST. The circles indicate
the differences of the obtained approximate MST compared to the MST.
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MST weight =  73.1467933624036

(a) Approximate MST obtained by Algorithm 4 with k = 20

MST weight = 71.75513157808092

(b) MST obtained by brute force

Figure 2: Unbalanced 2d synthetic data set [42] with n = 6500 data points and 8 Gaussian clusters. Some differences
between the approximate and the exact MSTs are marked with circles.

Table 3: Execution time and memory consumption of obtaining ε-separated pairs using WSPD for different data sets
from Table 1. Memory error occurs after consuming all available memory (64GB)

Data set n d
ε = 2 ε = 8

Time(s) Memory(GB) Time(s) Memory(GB)
Shuttle 49097 9 13 6 96 35
Mnist 7603 100 21 7.5 28 9

Speech 3686 400 9 2 9 2
Celeba 202599 39 memory error
Shape 28775 544 192 50 memory error
Audio 54387 192 memory error
Corel 662317 14 memory error

Corel (subset) 30000 14 memory error
Birch1 100000 2 3 1.7 15.3 5
Europe 169308 2 9 13 30 18

higher memory requirements [31]. Therefore, the dimension of the data can significantly impact memory usage. Table
3 illustrates the execution time and memory usage of obtaining ε-separated pairs using the implementation of WSPD
presented in [31]. We can see that WSPD is memory hungry when the dimension of the data set and ε are high. We
note that the execution time in Table 3 is the required time to obtain ε-separated pairs, and the time to connect the
ε-separated pairs and to generate the approximate MST is not considered.

We implemented a sequential version of the WSPD-based MST method in Python. Our WSPD implementation is
not as fast as the one presented in8, however, it gives very accurate results in terms of relative error, where

relative error =
approximate MST weight−MST weight

MST weight

and the weight of an undirected graph is the sum of the weights of its edges. Table 4 presents the results of an exper-
iment performed on a 2d synthetic data set (make blobs) comprising between 10,000 and 100,000 data points. The
table displays the running time, the weight of the approximate MST obtained by Algorithm 4, and our sequential im-
plementation of the WSPD-based MST method. The experiment demonstrates that Algorithm 4 achieves remarkable
computational time efficiency compared to the sequential WSPD implementation. It provides a speed up between 3.4

8https://github.com/dmatijev/wspd_pip
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and 17, with only a low relative error between 3.5% and 6%. The memory error of the brute force method occurs when
the size n2 weight matrix exceeds the available memory (64GB).

The results in Table 4 verifies the time efficiency of Algorithm 4, mainly when dealing with large data sets, as
it outperforms the WSPD implementation significantly in terms of run time while maintaining reasonably accurate
approximate MST construction.

Table 4: Comparison with the sequential WSPD and the brute force approach using 2d synthetic data sets of different
sizes.

Data Set (n) Algorithm time(s) MST weight Relative error %

10,000
Brute force 79 632.16 reference

WSPD 126 632.16 0
Alg. 4 33 655.54 3.56

20,000
Brute force 371 890.05 reference

WSPD 492 890.05 0
Alg. 4 75 946.19 5.93

40,000
Brute force memory error

WSPD 1993 1265.61 reference
Alg. 4 146 1345 5.90

80,000
Brute force memory error

WSPD 8174 1796.03 reference
Alg. 4 445 1865.72 3.73

100,000
Brute force memory error

WSPD 10915 2010.46 reference
Alg. 4 640 2088.77 3.74

4.5 Empirical time complexity
To investigate the impact of the size of the data set on the running time of Algorithm 4, we evaluated both real-world
and synthetic data sets of varying sizes. Figure 3 shows the results of our experiments. A least squares fitting of the
obtained data points suggests that the empirical computational time of Algorithm 4 is around O(n1.07).

The performance of the proposed method on real-world data sets of different sizes and dimensions (all the real-
world data sets in Table 1) follows the same trend as for the synthetic data sets. Additionally, we used subsets of the
Corel data set to ensure the same structure but different sizes.

4.6 The impact of data dimension
In our approach the dimension of the data set play role only in the computation of the edge weights of the graph, i.e.,
the distance between data points. As a result, our approach is only slightly affected by the dimension of the data set
compared to the algorithms that rely on spatial trees or partitioning the space into subsets.

To validate this assumption, we performed multiple experiments using data sets of varying dimensions to inves-
tigate the effect of dimension on the performance of our approach. The experiments were carried out in two distinct
settings: one where we stored the calculated distances in the memory throughout the optimization process and another
where we did not.

Figure 4 plots the result of the experiments with and without storing of the calculated distances using the synthetic
and real-world data sets from Table 1. As expected the execution time is higher when the calculated distances are not
stored in the memory, but are recalculated each time they are needed. The trend of the execution time as a function
of the data set dimension suggests that the function which computes the distance has a significant overhead in our
python implementation, which dominates the running time for dimensions less than 103. That is why the running time
is seemingly independent of the dimension for dimensions less than 103 and starts increasing only after that limit.
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Figure 4: Impact of data dimension on the computational time with synthetic and real-world data sets (k = 20).
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Table 5: The effect of dimensions on the performance with k = 25.

Data Set (d;n) Algorithm time(s) MST weight Relative error %

2;20,000 Brute force 351 777.16 reference
Alg. 4 96 798.8 2.70

3;20,000 Brute force 348 3072.22 reference
Alg. 4 98 3172.54 3.16

4;20,000 Brute force 365 2573.16 reference
Alg. 4 92 2645.35 2.72

10;20,000 Brute force 342 30853.21 reference
Alg. 4 95 31835.75 3.08

20;20,000 Brute force 338 65014.7 reference
Alg. 4 90 66473.51 2.19

50;20,000 Brute force 360 136885 reference
Alg. 4 88 138682.77 1.29

100;20,000 Brute force 379 219377.16 reference
Alg. 4 88 221160.83 0.80

1000;20,000 Brute force 407 830245.81 reference
Alg. 4 97 831499.29 0.5

5 Conclusion
Large data sets are often represented as a graph with as many nodes as the number of data points, and efficient graph
procedures are needed to process such large graphs. One of the essential graph processing steps is the computation of
the MST, which plays a role, e.g., in clustering, anomaly detection, etc.

Since exact methods are infeasible for large data sets, the paper presents an algorithm for approximate MST con-
structing accurately and computationally efficiently. The algorithm starts by creating a random k-neighbor graph and
then optimizes it by crawling toward the optimal neighbors of each node to obtain an approximate kNN graph. Using
this graph, the algorithm calculates an initial MST and optimizes it using the same crawling technique. Numerical
experiments indicate the properties and the effectiveness of the proposed method.

Although the current paper primarily focuses on the static, sequential implementation of the proposed algorithm,
it can be enhanced with dynamic parallel implementation, which makes our algorithm compelling for a wide range of
MST-based clustering tasks.
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