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Abstract

This paper presents numerical methods for finding high order concen-
trated matrix-exponential (ME) distributions, whose squared coefficient of
variation (SCV) is very low. Due to the absence of symbolic construction
to obtain the most concentrated ME distributions, non-linear optimization
problems are defined to obtain high order concentrated matrix-exponential
(CME) distributions . The number of parameters to optimize increases with
the order in the “full” version of the optimization problem. For orders, where
“full” optimization is infeasible (𝑛 > 184), a “heuristic” optimization proce-
dure, optimizing only 3 parameters independent of the order, was proposed
in [6].

In this work we present an enhanced version of this heuristic optimization
procedure, optimizing only 6 parameters independent of the order, which
results in CME distributions with lower SCV than the existing 3-parameter
method. The SCV gain of the new procedure compared to the old one is
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approximately 1.66 and it is almost independent of the order. The range of
the applicability of the heuristic optimization methods extends until order
𝑛 = 5000.

To further extend the range of available CME distributions, we also pro-
pose a parameter extrapolation approach, which provides CME distributions
until order 𝑛 = 20000. The SCV of the obtained order 20000 CME distribu-
tion is ≈ 10−9.

Keywords: squared coefficient of variation, optimization, concentrated matrix
exponential distributions, extrapolation.

1. Introduction

Highly concentrated matrix-exponential functions are useful in many research ar-
eas, for example, in numerical inverse Laplace transform (NILT) methods [5], as
well in numerical inverse Z-transform (NIZT) methods [7]. Recently, Akar et al.
[1], proposed the ME-fication technique, in which a concentrated matrix exponenti-
ation distribution replaces the Erlang distribution for approximating deterministic
time horizons.

Concentrated ME distributions of order 𝑁 , with 𝑁 = 2𝑛+ 11, are abbreviated
as CME(𝑁). CME distributions successfully constructed in [6] in the range of 𝑁 =
369, . . . , 2001 based on a heuristic numerical optimization procedure optimizing
3 parameters independent of the order. This preliminary result indicated that
the minimal SCV of CME(𝑁) is less than 1/𝑁2. The reasons for applying a
heuristic approach are that there is no symbolic construction available to obtain
the most concentrated ME distribution, and the full numerical optimization-based
approaches (i.e., where the number of parameters to optimize is increasing with
𝑁) gets to be prohibitively complex for 𝑁 > 369 according to [6]. In this work,
we aim at improving the heuristic optimization procedure presented in [6], which
we refer to as 3-parameter optimization. The proposed enhanced optimization
procedure optimizes 6 parameters (independent of the order) and we will refer to
it as 6-parameter optimization method.

The rest of the paper is organized as follows. In Section 2, we provide a brief
introduction of ME distributions and discuss the definition of SCV and the opti-
mization problem to obtain its minimum. In Section 3, we review the optimization
methods proposed for SCV minimization in the literature and discuss their appli-
cability. Section 4 introduces the proposed enhanced SCV optimization procedure
with 6 parameters and Section 5 discusses its numerical properties. Section 6
presents the parameter extrapolation approach to extend the availability of CME
distributions up to order 𝑛 = 20000. Finally, Section 7 concludes the paper.

Both of these two order definitions are present in the related literature. 𝑁 , “the cardinality of
the describing matrix”, is more commonly used in phase type and matrix exponential distribution
related literature, while 𝑛, “the number of complex conjugate eigenvalue pairs” is more commonly
used in NILT related literature.

2



Conference on Information Technology and Data Science, November 6–8, 2020

2. Matrix exponential distributions

Definition 2.1. Order 𝑁 ME functions (referred to as ME(𝑁)) are given by

𝑓(𝑡) = 𝛼𝑒A𝑡(−A)1, (2.1)

where 𝛼 is a real row vector of size 𝑁 , A is a real matrix of size 𝑁 ×𝑁 and 1 is
the column vector of ones of size 𝑁 .

Definition 2.2. If 𝑓(𝑡) ≥ 0,∀𝑡 ≥ 0, and 𝛼 is such that 𝛼1 = 1 then 𝑓(𝑡) is the
probability density function of a ME distribution of order 𝑁 .

According to (2.1), vector 𝛼 and matrix A define a matrix exponential function.
We refer to the pair (𝛼,A) as matrix representation in the sequel.

An ME distribution is said to be concentrated when its squared coefficient of
variation

𝑆𝐶𝑉 (𝑓(𝑡)) =
𝜇0𝜇2

𝜇2
1

− 1, (2.2)

is low. In (2.2), 𝜇𝑖 denotes the 𝑖th moment, defined by 𝜇𝑖 =
∫︀∞
𝑡=0

𝑡𝑖𝑓(𝑡)𝑑𝑡. We
note that the SCV according to (2.2) is insensitive to multiplication and scaling,
i.e. 𝑆𝐶𝑉 (𝑓(𝑡)) = 𝑆𝐶𝑉 (𝑐𝑓(𝜆𝑡)).

The optimization problem to obtain the minimal SCV of ME(𝑁) can be for-
mulated as

min𝛼,A 𝑆𝐶𝑉 (𝑓(𝑡))

subject to 𝑓(𝑡) ≥ 0, ∀𝑡 > 0.

Although matrix-exponential functions have been used for many decades, there
are still many questions open regarding their properties. Such an important ques-
tion is how to decide efficiently if a matrix-exponential function is non-negative
for ∀𝑡 > 0. In general, 𝑓(𝑡) ≥ 0,∀𝑡 > 0 does not necessarily hold for given (𝛼,A)
representation, and it is rather difficult to check. A potential numerical solution
for checking this property is proposed in [9].

Due to the difficulty of checking the constraints of the above constrained opti-
mization problem, its solution is an open problem currently.

3. Concentrated ME distributions

A possible way to simplify the constrained optimization problem is to search for
the minimum in a special subset of ME(𝑁), which is non-negative by construction.
Horváth et al. in [6] suggest such a subset which is characterized by

𝑓(𝑡) = 𝑐𝑓+(𝜆𝑡), (3.1)
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where 𝑓+(𝑡) is an exponential cosine-square function with order 𝑛 defined as

𝑓+(𝑡) = 𝑒−𝑡
𝑛∏︁

𝑗=1

cos2
(︂
𝜔𝑡− 𝜑𝑗

2

)︂
, (3.2)

where 𝜔 ≥ 0 and 0 ≤ 𝜑𝑗 < 2𝜋 for 𝑗 ∈ {1, . . . , 𝑛}.
In [6] the authors conjectured that the density function of the most concentrated

ME distribution of order 𝑁 belongs to this special class of ME(𝑁), but the validity
of this conjecture is not proved even for the smallest non-obvious case, 𝑁 = 3.

An exponential cosine-square function is a non-negative (due to its construction)
matrix exponential function and [8, Appendix A] presents how to obtain the matrix
representation of size 𝑁 = 2𝑛+1 associated with 𝑓+(𝑡) in (3.2). Consequently, the
set of exponential cosine-square functions of order 𝑛 is a special subset of ME(𝑁)
(where 𝑁 = 2𝑛+ 1).

In this paper, we make use the fact that exponential cosine-square functions
can also be represented in the following hyper-exponential form [6]

𝑓+(𝑡) = 𝑒−𝑡
𝑛∏︁

𝑗=1

cos2
(︂
𝜔𝑡− 𝜑𝑗

2

)︂
=

2𝑛∑︁
𝑘=0

𝜂𝑘𝑒
−𝛽𝑘𝑡, 𝑡 ≥ 0, (3.3)

where the 𝜂𝑘, 𝛽𝑘 (𝑘 = 0, . . . , 2𝑛) coefficients contain complex conjugate pairs.
Generally, calculating the 𝜇0, 𝜇1, 𝜇2 moments based on (3.2), is not an easy task
due to computational complexity caused by the product of the cosine square terms.
Instead calculating the 𝜇0, 𝜇1, 𝜇2 moments based on (3.3) is much easier since

𝜇𝑖 =

∞∫︁
𝑡=0

𝑡𝑖
2𝑛∑︁
𝑘=0

𝜂𝑘𝑒
−𝛽𝑘𝑡𝑑𝑡 =

2𝑛∑︁
𝑘=0

𝑖!𝜂𝑘

𝛽𝑖+1
𝑘

, (3.4)

3.1. Full optimization of the 𝑓+(𝑡) parameters
In the sequel, we utilize the fact that multiplication and scaling (with 𝑐 and 𝜆
in (3.1)) does not effect the SCV and optimize the SCV of 𝑓+(𝑡) instead of 𝑓(𝑡).
𝑓+(𝑡) in (3.2) is defined by 𝑛+1 parameters: the frequency 𝜔 and the zeros 𝜑𝑗 for
𝑗 = 1, . . . , 𝑛. Unfortunately, 𝑆𝐶𝑉 (𝑓+(𝑡)) is not a simple function of the parameters.
For a given 𝑛 to find 𝑓+(𝑡) with minimal SCV, i.e.

min
𝜔,𝜑1,...,𝜑𝑛

𝑆𝐶𝑉 (𝑓+(𝑡))

is still a hard non-linear optimization problem, where the number of parameters to
optimize is 𝑛+ 1.

Numerical methods for the solution of this problem are discussed in [6]. The
main findings reported there are that evolution strategy based optimization pro-
vided the best numerical results. The solution of the problem with the CMA-ES
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method [4] is fast, but does not find the best optimum compared to the BIPOP-
CMA-ES method [3], which is much slower. The applicability of the two methods
are 𝑛 ≤ 74 (𝑁 ≤ 149) in case of the BIPOP-CMA-ES method and 𝑛 ≤ 184
(𝑁 ≤ 369) in case of the CMA-ES method. For these orders the respective the
optimization procedures take several days to terminate on an average PC. The com-
putational complexity of these procedures increases super linearly with the order
𝑛, which inhibits the application of these procedure for higher orders.

3.2. Heuristic optimization of the 𝑓+(𝑡) parameters
To go beyond order 𝑛 = 184, [6] proposed a sub-optimal, 3-parameter heuristic
optimization procedure, that reduce the complexity of the optimization problem
by reducing the number of parameters to optimize to three, independent of the
order.

Figure 2 displays the location of the the 𝜑𝑗 parameters obtained by the full
optimization method for 𝑛 = 74. As it is visible in the figure, there is a gap
between the 𝜑𝑗 parameters at around 𝑝 ≈ 5.2 and the size of that gap, which is
the maximum value in Figure 1 is around 𝑤 ≈ 0.28. The heuristic optimization
procedure proposed in [6] assumes that the 𝜑𝑗 parameters are equidistant below
and above that gap. Figure 1 and 2 display how good this assumption is compared
to the fully optimized 𝜑𝑗 parameters.

Since the 𝜑𝑗 parameters are located between 0 and 2𝜋 and the number of
parameters are 𝑛, this assumption allows to determine the 𝜑𝑗 parameters based on
𝑝 and 𝑤 according to the following expression

𝜑𝑗 =

{︂
(𝑗 − 1/2)𝑑 if 𝑗 ≤ 𝑖,
(𝑗 − 1/2)𝑑+ 𝑤 if 𝑗 > 𝑖.

(3.5)

where

𝑑 =
2𝜋 − 𝑤

𝑛
, 𝑖 =

⌊︂
𝑝− 𝑤/2

𝑑
+

1

2

⌋︂
. (3.6)

With the use of (3.5), 𝑓+(𝑡) is defined by the parameters 𝜔, 𝑝 and 𝑤 and the
related optimization problem is

min𝜔,𝑝,𝑤 𝑆𝐶𝑉 (𝑓+(𝑡)),

subject to: 0 < 𝑝− 𝑤/2 < 𝑝+ 𝑤/2 < 2𝜋, 𝜔 > 0.

The solution of this optimization problem is computed by the CMA-ES method
up to 𝑛 = 1000 in [6]. Moreover, in this work we expand this solution up to
𝑛 = 5000.
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4. Enhanced heuristic optimization of 𝑆𝐶𝑉 (𝑓+(𝑡))
with 6 parameters

Figure 1 and 2 suggests that the equidistant location of the 𝜑𝑗 parameters according
to (3.5) is not flexible enough to obtain similar low SCV as obtained with the
full optimization method. Starting from this assumption, we try to locate the 𝜑𝑗

parameters in a more flexible way. To this end we introduce two different power
functions below and above the gap of the 𝜑𝑗 parameters as follows

𝜑𝑗(𝑎1, 𝑏1, 𝑎2, 𝑏2, 𝑖, 𝛾, 𝛿) =

{︂
𝑎1 + 𝑏1𝑗

𝛾 for 1 ≤ 𝑗 ≤ 𝑖,
𝑎2 + 𝑏2𝑗

𝛿 for 𝑖+ 1 ≤ 𝑗 ≤ 𝑛.
(4.1)

The auxiliary parameters, 𝑎1, 𝑏1, 𝑎2, 𝑏2, can be transformed to a set of more
expressive parameters based on the following relations

𝜑1 = 0, 𝜑𝑖 = 𝑝− 𝑤/2, 𝜑𝑖+1 = 𝑝+ 𝑤/2, 𝜑𝑛+1 = 2𝜋. (4.2)

Substituting these relations into (4.1) results in the following function for the 𝜑𝑗

parameters

𝜑𝑗(𝑝, 𝑤, 𝑖, 𝛾, 𝛿) =

⎧⎨⎩
(𝑝−𝑤/2)𝑗𝛾

(𝑖𝛾−1) − 𝑝−𝑤/2
(𝑖𝛾−1) for 1 ≤ 𝑗 ≤ 𝑖,

2𝜋 − (𝑗𝛿−(𝑛+1)𝛿)(2𝜋−𝑝−𝑤/2)

((𝑖+1)𝛿−(𝑛+1)𝛿)
for 𝑖+ 1 ≤ 𝑗 ≤ 𝑛.

(4.3)

In (4.3) the parameters are constrained by

0 < 𝑝− 𝑤/2 < 𝑝+ 𝑤/2 < 2𝜋, 𝛾 > 0, 𝛿 > 0.

The intuitive meaning of the parameters in (4.3) are as follows: the meaning of
𝑝, 𝑤, 𝜔, and 𝑖 are the same as in the 3-parameter optimization method, i.e.

∙ 𝑖: is the number of 𝜑𝑗 parameters left to the gap,

∙ 𝑝, 𝑤: are the midpoint of the gap and its width,

while 𝛾 and 𝛿 are shape parameters defining the power series of the 𝜑𝑗 parameters
below and above the gap.

Based on (4.3), which defines the 𝜑𝑗 parameters based on 5 parameters, the
optimization of 𝑆𝐶𝑉 (𝑓+(𝑡)) for a given order 𝑛 is the following 6-parameter opti-
mization problem

min𝜔,𝑝,𝑤,𝑖,𝛾,𝛿 𝑆𝐶𝑉 (𝑓+(𝑡))

subject to: 0 < 𝑝− 𝑤/2 < 𝑝+ 𝑤/2 < 2𝜋, 𝛾 > 0, 𝛿 > 0, 𝜔 > 0,

where 𝑝, 𝑤, 𝑖, 𝛾, 𝛿 define the 𝜑𝑗 parameters according to (4.3) and the 𝜑𝑗 parameters
and 𝜔 define 𝑓+(𝑡) according to (3.2).

To solve this optimization problem we propose to compute the SCV according
to Algorithm 1 and obtain the optimum by the CMA-ES method using Algorithm
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1 as the objective function. The procedure to obtain 𝜂𝑖, 𝛽𝑖 and the required high
precision arithmetic are detailed in [6]. Here we only recall that all computations
can be performed with standard double precision arithmetic except the ones indi-
cated to be “high precision”. In those cases, to obtain results in 16 digits precision,
the required numerical precision is 0.647𝑛+ 17.478 digits for ME(2𝑛+ 1).

Algorithm 1 The objective function of the heuristic method
1: procedure ComputeSCV(𝜔, 𝑝, 𝑤, 𝑖, 𝛾, 𝛿)
2: Obtain 𝜑𝑗 for 𝑗 ∈ {1, . . . , 𝑛} by (4.3)
3: Compute 𝜂𝑖, 𝛽𝑖 (high precision) by (3.3)
4: Compute 𝜇𝑖 (high precision) by (3.4)
5: Compute 𝑆𝐶𝑉 by (2.2)
6: return 𝑆𝐶𝑉
7: end procedure

5. Numerical properties

The behaviour of the 𝜑𝑗 parameters obtained by the proposed 6-parameter heuris-
tic method is also depicted in Figure 1 and 2. The figures suggest, that the 𝜑𝑗

parameters obtained by the 6-parameter optimization method better approximate
the behaviour of the 𝜑𝑗 parameters obtained by full optimization than the ones of
the 3-parameter method.

Moreover, Figure 2 displays how the distribution of 𝜑𝑗 locations are influenced
by the shaping parameters 𝛾, 𝛿, and getting closer (compared to the 3-parameter
case) to the fully optimized ones. This improvement in the positioning of the
𝜑𝑗 parameters leads to a significant SCV reduction compared to the 3-parameter
method as illustrated in Figure 3. In the depicted range the gain (the ratio of
the SCV obtained by the two methods) is approximately 1.66 and it is almost
independent of the order. The proposed heuristic optimization resulted in almost
the same SCV values as the ones obtained by the full optimization method in the
range where full optimization is feasible and beyond that order (𝑛 > 184) the
6-parameter optimization results seem to follow the same decay trend.

We believe with some confidence in the possibility of expanding the heuristic
optimization for orders larger than 𝑛 = 5000, using a more powerful computing
device.
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Figure 1: Difference of consecutive 𝜑𝑗 values obtained by full opti-
mization, 3-parameter optimization and the proposed 6-parameter

optimization for order 𝑛 = 74
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Figure 2: The location of the 𝜑𝑗 parameters obtained by full opti-
mization, 3-parameter optimization and the proposed 6-parameter

optimization for order 𝑛 = 74
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Figure 4: Running time of the heuristic parameter optimization
procedures for different orders in log-log scale

Figure 4 depicts the running time of the heuristic optimization procedure on
an average PC clocked at 2.9 GHz as a function of the order 𝑛.
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6. Extrapolation of the parameters of heuristic op-
timization

The high computational costs of the heuristic optimization methods, plotted in
Figure 4, inhibits their application for orders higher than 𝑛 = 5000. In this sec-
tion, we intend to obtain CME distributions for orders 𝑛 > 5000 by extrapolating
parameters of the heuristic optimization procedures.

Let v(𝑛) denote the parameter values obtained from the heuristic optimization
method for order 𝑛, that is, for the 3-parameter method v(𝑛) = {𝜔(𝑛), 𝑝(𝑛), 𝑤(𝑛)}
and for the 6-parameter method v(𝑛) = {𝜔(𝑛), 𝑝(𝑛), 𝑤(𝑛), 𝑖(𝑛), 𝛾(𝑛), 𝛿(𝑛)}. Fur-
ther more, let 𝒩 = {𝑛1, 𝑛2, . . . , 𝑛𝐾} be the set of 𝐾 orders for which the parameter
is available (the heuristic optimization is performed) 𝑛𝐾 = 5000 in our case and
the other evaluated orders are visible in Figure 4.

6.1. Extrapolation methods
To extrapolate the v(𝑛) vector for 𝑛 > 5000 we considered the following extrapo-
lation approaches.

∙ Element-wise extrapolation of v(𝑛)
In this set of methods the elements of v(𝑛) are extrapolated independent of
each others.

– Polynomial extrapolation (𝑘 + 1 parameters):

𝑣𝑖(𝑛) = 𝑎𝑖 + 𝑏𝑖𝑛+ 𝑐𝑖𝑛
2 + . . .+ 𝑧𝑖𝑛

𝑘, (6.1)

where 𝑣𝑖(𝑛) is the 𝑖th element of v(𝑛) and 𝑖 ∈ {1, 2, 3} in case of the
3-parameter method and 𝑖 ∈ {1, 2, . . . , 6} in case of the 6-parameter
method.

– Power function extrapolation (3 parameters):

𝑣𝑖(𝑛) = 𝑎𝑖𝑛
𝑏𝑖 + 𝑐𝑖. (6.2)

– Exponential extrapolation (3 parameters):

𝑣𝑖(𝑛) = 𝑎𝑖𝑒
𝑏𝑖𝑛 + 𝑐𝑖. (6.3)

In the element-wise extrapolation, we apply the following distance measure
for 𝑣𝑖(𝑛)

𝒟𝑖 =
1

𝐾

∑︁
𝑛∈𝒩

|𝑣𝑖(𝑛)− 𝑣𝑖(𝑛)|. (6.4)

That is, in power function and exponential extrapolation, the optimal ex-
trapolation parameters are obtained as

{𝑎*𝑖 , 𝑏*𝑖 , 𝑐*𝑖 } = argmin{𝑎𝑖,𝑏𝑖,𝑐𝑖}𝒟𝑖, (6.5)
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and in polynomial extrapolation, the {𝑎𝑖, 𝑏𝑖, . . . , 𝑧𝑖} parameters are obtained
similarly.

∙ Vector-wise extrapolation of v(𝑛)

– Vector polynomial extrapolation ((𝑚+ 𝑘)𝑚 parameters):

v̂(𝑛) =
(︀
a+ b𝑛+ c𝑛2 + . . .+ z𝑛𝑘

)︀
G, (6.6)

where each row sum of G is one (and this way G contains (𝑚−1)𝑚 free
parameters), 𝑚 is the number of elements of v. 𝑚 = 3 or 6 depending
on the applied heuristic optimization.

– Matrix power function extrapolation ((𝑚+ 2)𝑚 parameters):

v̂(𝑛) = aDiag⟨𝑛𝑏1 , . . . , 𝑛𝑏𝑚⟩G+ c. (6.7)

– Matrix exponential extrapolation ((𝑚+ 2)𝑚 parameters):

v̂(𝑛) = aDiag⟨𝑒𝑏1𝑛, . . . , 𝑒𝑏𝑚𝑛⟩G+ c. (6.8)

In case of vector-wise extrapolation we apply the 𝐿2 vector norm as the
distance measure

𝒟 =
1

𝐾

∑︁
𝑛∈𝒩

||v(𝑛)− v̂(𝑛)||2 =
1

𝐾

∑︁
𝑛∈𝒩

⎯⎸⎸⎷ 𝑚∑︁
𝑖=1

(v𝑖(𝑛)− v̂𝑖(𝑛))
2
. (6.9)

That is, in Matrix power and Matrix exponential extrapolation, the optimal
parameters are obtained as

{a*,b*, c*,G*} = argmin{a,b,c,G}𝒟 (6.10)

and the Matrix polynomial case is optimized similarly according to its pa-
rameters.

We note that the results obtained by any of these methods are sensitive for 𝒩 ,
the set of orders which are considered in the parameter estimations. That is, dif-
ferent extrapolation parameters are obtained by the same extrapolation procedure
for different 𝒩 sets. Generally, we used the optimization results between orders
400 and 5000, that is, 400 ≤ 𝑛 ≤ 5000 for ∀𝑛 ∈ 𝒩 .

The goodness of an extrapolation approach can be judged by computing the
SCV obtained from the extrapolated parameters and checking if the trend of decay
for the given order 𝑛 > 5000 follows the trend obtained by the heuristic method for
order 𝑛 ≤ 5000 and plotted in Figure 3. Based on this goodness measure, we found
all extrapolation approaches inappropriate except the element-wise power func-
tion extrapolation for all parameters, whose results are presented in the following
subsection.
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6.2. Element-wise power function extrapolation
Below, we present the results of the element-wise power function extrapolation
method which we obtained by the CF tool of Matlab Curve Fitting Toolbox [2].

6.2.1. Extrapolation for the 3-parameter heuristic method

As discussed in [6] and in subsection 3.2, the 3-parameter heuristic optimization
procedure minimizes the SCV as a function of 𝜔, 𝑝, 𝑤. The procedure can be
applied with reasonable computation time (c.f. Figure 4) up to order 𝑛 = 5000.
Beyond this limit we apply the element-wise power function extrapolation according
to (6.2), (6.4), and (6.5).

Table 1 summarizes the results for all the three parameters and Figure 5 demon-
strate the quality of the obtained result for the 𝜔 parameter.

𝑎*𝑖 𝑏*𝑖 𝑐*𝑖 𝒟𝑖

�̂�(𝑛) 25.03 -1.017 0 2.045E-06
𝑝(𝑛) -2.691 -0.2467 6.029 3.876E-03
�̂�(𝑛) 0.8919 -0.2399 0.1737 1.377E-05

Table 1: The optimal extrapolation parameters for 𝜔, 𝑝 and 𝑤

Based on the extrapolation parameters in Table 1 and the associated extrap-
olation model in (6.2) we can extrapolate the 𝜔(𝑛), 𝑝(𝑛), 𝑤(𝑛) for orders larger
than 5000. Using those extrapolated �̂�(𝑛), 𝑝(𝑛), �̂�(𝑛) values, Figure 6 and Ta-
ble 2 present the associated SCV as a function of the order up to 𝑛 = 20000.
Figure 6 and Table 2 indicate that the SCV values obtained by the extrapolation
method follow the same decay trend of the heuristic optimization. For orders less
than 5000, Table 2 also compares the 𝜔(𝑛), 𝑝(𝑛), 𝑤(𝑛) values obtained from the
3-parameter heuristic method, and the �̂�(𝑛), 𝑝(𝑛), �̂�(𝑛) values provided by the
power function extrapolation method. For those orders the SCV value computed
by the 𝜔(𝑛), 𝑝(𝑛), 𝑤(𝑛) and the �̂�(𝑛), 𝑝(𝑛), �̂�(𝑛) parameters are identical in their
first 3 digits.

Based on Figure 6 and Table 2 we conclude that the extrapolation of the
�̂�(𝑛), 𝑝(𝑛), �̂�(𝑛) parameters with the element-wise power function extrapolation
provide fairly concentrated matrix exponential distributions up to order 20000,
whose SCV follows the same decay trend for as the one of the 3-parameter heuris-
tic method up to order 5000.
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Figure 5: Curve fitting for 𝜔(𝑛) using a power function according
to (6.2)

Heuristic Optimization Extrapolation
𝑛 𝑤(𝑛) 𝑝(𝑛) 𝜔(𝑛) SCV �̂�(𝑛) 𝑝(𝑛) �̂�(𝑛) SCV

400 0.0563612 5.4162 0.385725 3.5945E-06 0.0565153 5.41526 0.3855761 3.5947992E-06
800 0.0278559 5.51193 0.353088 8.53737E-07 0.0279266 5.51173 0.3531175 8.538201E-07
1200 .0184659 5.56361 0.336537 3.69091E-07 0.0184899 5.56096 0.3364873 3.691452E-07
1500 0.014703 5.58534 0.328039 2.32831E-07 0.014735 5.58603 0.328002 2.32849E-07
2000 0.0109708 5.61548 0.317745 1.28656E-07 0.010997 5.61638 0.317712 1.28668E-07
2500 0.00874565 5.63895 0.310221 8.12596E-08 0.008765 5.63848 0.310205 8.12665E-08
3000 0.0072661 5.65621 0.304338 5.58463E-08 0.007281 5.65565 0.304363 5.58511E-08
3500 0.00621258 5.66986 0.299541 4.06814E-08 0.006225 5.66958 0.299619 4.06848E-08
4000 0.00542217 5.68131 0.295500 3.09232E-08 0.005434 5.68123 0.295650 3.09269E-08
4500 0.0048099 5.69091 0.292034 2.42819E-08 0.004821 5.69119 0.292252 2.42852E-08
5000 0.00432189 5.69975 0.289008 1.95615E-08 0.004331 5.69986 0.289293 1.9564E-08
10000 - - - - 0.002140 5.75159 0.271585 4.73132E-09
15000 - - - - 0.001417 5.77800 0.262512 2.06641E-09
20000 - - - - 0.001057 5.79519 0.256589 1.14904E-09

Table 2: Original and extrapolated parameters and the associated
SCV for the 3-parameter heuristic optimization

6.2.2. Extrapolation for the 6-parameter heuristic method

We applied the same extrapolation approach for the parameters of the 6-parameter
heuristic method using the element-wise power function approximation according
to (6.2), (6.4), and (6.5). The obtained optimal extrapolation parameter values are
summarized in Table 3. Using the associated �̂�(𝑛), 𝑝(𝑛), �̂�(𝑛), �̂�(𝑛), 𝛾(𝑛), 𝛿(𝑛)
functions, we also computed the SCV up to order 15000. The results are plot-
ted in Figure 6. Unfortunately, the SCV values obtained by this 6-parameter
extrapolation methods do not follow the same decay as the one of the 6-parameter
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Figure 6: The approximated and the heuristics SCV as a function
of order 𝑛 in log-log scale

heuristic method up to 𝑛 = 5000. At around, 𝑛 = 15000 the SCV obtained from
the 6-parameter extrapolation gets to be as high as the one obtained from the
3-parameter extrapolation. Most probable, the reason for this behaviour is the
instability caused by the higher number of extrapolated parameters.

𝑎*𝑖 𝑏*𝑖 𝑐*𝑖 𝒟𝑖

�̂�(𝑛) 21.59 -1.017 0 1.958E-03
𝑝(𝑛) -26.35 -0.9762 5.653 1.963E-02
�̂�(𝑛) 0.8952 -0.2458 0.1318 4.484E-03
�̂�(𝑛) 0.9001 1 -0.7137 1.569
𝛾(𝑛) 3.631 -0.76579 0.9988 3.98E-03
𝛿(𝑛) 10.48 -0.4475 0.8504 1.393E-01

Table 3: Optimal extrapolation parameters based on the 6-
parameter heuristic optimization method according to Equation 6.2

Figure 7 plots the time to compute the SCV as a function of the order on a
regular PC. The computation time is practically identical for both methods because
the most expensive step of the computation is to transform the cosine-square form
into the hyper-exponential form according to (3.3), which is need in both cases.
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Figure 7: Running time of the parameter approximation proce-
dures for different orders in log-log scale

Our full C++ implementation for the 3 and 6-parameter heuristic optimiza-
tion methods is reachable at webspn.hit.bme.hu/~almousa/tools/CME_heur_
approx.zip. The procedure uses extended floating point arithmetic when needed
and it also contain the CMA-ES method, which is the optimization engine applied
in the 3 and 6-parameter heuristic optimization methods

7. Conclusion

We propose an efficient 6-parameter heuristic SCV optimization procedure for con-
centrated matrix exponential distributions. The SCV values resulted by this 6-
parameter optimization procedure are rather close to the ones obtained by the full
optimization methods when both methods are feasible to compute, and seem to fol-
low the same SCV decay trend for larger orders. Due to the exponential increase of
the computation time as a function of the order, the applicability of the proposed
heuristic optimization method extends until order 𝑛 = 5000.

For larger orders, we also propose a parameter extrapolation approach, which
allowed us to obtain CME distributions up to order 20000, such that the decay of
the SCV follows the same trend as the one of the optimization procedures up to
order 5000.
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