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Abstract

Markov modulated discrete arrival processes have a wide literature, including
parameter estimation methods based on expectation-maximization (EM). In
this paper, we investigate the adaptation of these EM based methods to Markov
modulated fluid arrival processes (MMFAP), and conclude that only the genera-
tor matrix of the modulating Markov chain of MMFAPs can be approximated by
EM based method. For the rest of the parameters, the fluid rates and the fluid
variances, we investigate the efficiency of numerical likelihood maximization.

To reduce the computational complexity of the likelihood computation, we
accelerate the numerical inverse Laplace transformation step of the procedure
with function fitting.

Keywords: Markov modulated fluid arrival processes,
expectation-maximization method, parameter estimation.

1. Introduction

Markovian queueing systems with discrete customers are widely used in
stochastic modeling. Markovian Arrival Processes (MAPs, [1]), that are able
to characterize a wide class of point processes, play important role in these
systems. The properties of MAPs have been studied exhaustively, using queue-
ing models involving MAPs nowadays has become common, queueing networks
with MAP traffic have also been investigated. Several methods exist to create a
MAP approximating real, empirical data. Some of them aim to match statistical
quantities like marginal moments, joint moments, auto-correlation, etc. [2, 3].
An other approach to create MAPs from measurement data is based on like-
lihood maximization, which is often performed by Expectation-Maximization
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(EM) [4]. Several EM-based fitting methods have been published for MAPs,
based on randomization [5], based on special structures [6, 7], methods that
support batch arrivals [8] and those that are able to work with group data [9].

In many systems, the workload can be represented easier with continuous,
fluid-like models rather than discrete demands [10]. Basic Markovian fluid mod-
els have been introduced and analyzed in [11, 12], later on several model variants
appeared and were investigated. Despite their practical relevance, the ”ecosys-
tem” around fluid models is far less complete than their discrete counterparts. In
particular, fitting methods for Markov modulated fluid arrival processes (MM-
FAP) are available only to some very restricted cases like on-off models, moti-
vated by telecommunication applications. To the best of our knowledge, fitting
methods for the general class of MMFAPs based on likelihood maximization
has not been investigated in the past. At first glance adapting the methods
available for MAPs might seem feasible, since fluid models can be treated as a
limit of a discrete model generating infinitesimally small fluid drops. In fact,
adapting the algorithms for MAPs to MMFAPs is not straightforward at all,
fitting MMFAPs is a qualitatively different problem.

In this paper we consider the likelihood maximization based fitting of MM-
FAPs. The input data is assumed to be given as a list of pairs, where each
pair represents the duration of the measurement interval and the amount of
fluid arrived during the measurement interval. The equivalent problem among
discrete models is discussed e.g., in [9], where an EM algorithm is presented to
fit MAPs based on group data. We show that this algorithm is not appropriate
for MMFAPs, as it can not change the fluid rate and variance parameters. To
overcome the difficulties, we introduce a hybrid algorithm, where the generator
matrix of the modulating Markov chain of MMFAPs is approximated by an EM
based method, and the fluid rates and the fluid variances are determined by
numerical optimization of the likelihood function.

We also consider the numerical issues associated with introduced procedure
and propose flexible numerical approximations which can be tuned to obtain
the required accuracy – computational complexity trade-off applying a function
fitting approach whose accuracy depends on the number of computed points.

This paper is an extended version of [13], in which we already recognized
the inability of the EM method to approximate the fluid rate and variance
parameters. In the current work, we propose an optimization procedure to fit
those parameters as well.

The rest of the paper is organized as follows. Section 2 introduces the math-
ematical model and the parameter estimation problem. The next section dis-
cusses the applicability of the EM method for MMFAPs and shows that the
rate and variance parameters cannot be optimized. A direct optimization ap-
proach for the rate and variance parameters is introduced and a combined fit-
ting method is proposed in Section 4. Some implementation details associated
with the proposed fitting method are provided in Section 5. Finally, Section 6
presents numerical experiments about the properties of the proposed method,
and Section 7 concludes the paper.
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2. Problem definition

2.1. Fluid arrival process

The fluid arrival process {Z(t) = {J (t),X (t)}, t > 0} consists of an ir-
reducible background Markov chain {J (t), t > 0}, with state space S =
{1, 2, . . . , S}, which modulates the arrival process of the fluid {X (t), t > 0}.
When the Markov chain stays in state i for a ∆ long interval a normal dis-
tributed amount of fluid arrives with mean ri∆ and variance σ2

i∆, that is, when
J (τ) = i,∀τ ∈ (t, t+ ∆)

d

dx
Pr(X (t+ ∆)−X (t) < x) = N (ri∆, σ

2
i∆, x), (1)

where N (µ, σ2, x) = 1√
2πσ2

e−
(x−µ)2

2σ2 is the Gaussian density function. We note

that our proposed analysis approach allows negative fluid rates as well. Since the
normal distribution has infinite support also in case of strictly positive fluid rates
Section 5.3 discusses a numerical approach to handle negative fluid samples.

The generator matrix and the initial probability vector of the N -state back-
ground continuous time Markov chain (CTMC) are Q and α, and the diagonal
matrix of the fluid rates and the fluid variances are given by matrix R with
Ri,j = δi,jri, and matrix Σ with Σi,j = δi,jσ

2
i , where δi,j denotes the Kro-

necker delta.
Assuming X (0) = 0, the amount of fluid arriving in the (0, t) interval is X (t),

with density matrix defined by

[N(t, x)]i,j =
∂

∂x
Pr (X (t) < x,J (t) = j|J (0) = i) (2)

The double sided Laplace transform of this quantity regarding the amount
of fluid arrived can be expressed as [14]

N∗(t, v) =

∫ ∞
x=−∞

e−xvN(t, x)dx = e(Q−vR+v2Σ/2)t. (3)

The stationary distribution of the CTMC is denoted by vector π, which is
the solution of the linear system of equations πQ = 0, π1 = 1, where 1 is the
column vector of ones. In this work, we are interested in the stationary fluid
arrival process and assume that the initial probability vector of the background
CTMC is α = π. For notational convenience, we write S instead of Σ/2 in the
sequel.

2.2. Measurement data to fit

We assume that the data to fit is given by a series of pairs D = {(tk, xk); k =
1, . . . ,K}, where tk is the time since the last measurement instant and xk is
the amount of fluid arrived since the last measurement instant (which can be

negative as well). That is, the measurement instances are Tk =
∑k
`=1 t` for

k ∈ {1, . . . ,K}.
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The likelihood of the data is defined as

LQ,R,S(D) = α

K∏
k=1

N(tk, xk)1. (4)

Our goal is to find Q, R and S which maximize the likelihood of the data set
D.

3. The EM algorithm

The EM algorithm is based on the observation that the likelihood would be
easier to maximize when certain unobserved, hidden variables were known. In
our case the hidden variables are related to the trajectory of the hidden Markov
chain, specifically

• J (k)
n is the nth state visited by the Markov chain in the kth measurement

interval,

• θ(k)
n is the sojourn time of the nth sojourn of the Markov chain (which is

in state J
(k)
n ) in the kth measurement interval,

• f (k)
n is the fluid accumulated during the nth sojourn in the kth measure-

ment interval,

• n(k) is the number of sojourns in the kth measurement interval.

Based on these hidden variables the logarithm of the likelihood is computed
in the next section.

3.1. Log-likelihood as a function of the hidden variables

With the hidden variables defined above, the likelihood L can be expressed
as

L =

K∏
k=1

e
−θ(k)1 q

J
(k)
1 N

(
θ

(k)
1 r

J
(k)
1
, θ

(k)
1 σ2

J
(k)
1

, f
(k)
1

)
q
J

(k)
1 J

(k)
2

· e
−θ(k)2 q

J
(k)
2 N

(
θ

(k)
2 r

J
(k)
2
, θ

(k)
2 σ2

J
(k)
2

, f
(k)
2

)
q
J

(k)
2 J

(k)
3
· . . .

· e
−θ(k)

n(k)
q
J
(k)

n(k)N
(
θ

(k)

n(k)rJ(k)

n(k)

, θ
(k)

n(k)σ
2

J
(k)

n(k)

, f
(k)

n(k)

)

=

K∏
k=1

n(k)−1∏
n=1

e
−θ(k)n q

J
(k)
n N

(
θ(k)
n r

J
(k)
n
, θ(k)
n σ2

J
(k)
n
, f (k)
n

)
q
J

(k)
n J

(k)
n+1

· e
−θ(k)

n(k)
q
J
(k)

n(k)N
(
θ

(k)

n(k)rJ(k)

n(k)

, θ
(k)

n(k)σ
2

J
(k)

n(k)

, f
(k)
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)
,
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where N (µ, σ2, x) is the Gaussian density function and qi =
∑
j,j 6=i qij is the

departure rate of state i of the CTMC. Using logN (µ, σ2, x) = − c
2 −

log σ2

2 −
(x−µ)2

2σ2 with c = log 2π we have

log
(
N
(
θ(k)
n r

J
(k)
n
, θ(k)
n σ2

J
(k)
n
, f (k)
n

))
= − c

2
−

log(θ
(k)
n σ2

J
(k)
n

)

2
−

(f
(k)
n − θ(k)

n r
J

(k)
n

)2

2θ
(k)
n σ2

J
(k)
n

= − c
2
−

log(θ
(k)
n ) + log(σ2

J
(k)
n

)

2
−
f

(k)
n

2
− 2f

(k)
n θ

(k)
n r

J
(k)
n

+ θ
(k)
n

2
r2

J
(k)
n

2θ
(k)
n σ2

J
(k)
n

= − c
2
− log θ

(k)
n

2
−

log(σ2

J
(k)
n

)

2
− f

(k)
n

2

2θ
(k)
n σ2

J
(k)
n

+
f

(k)
n r

J
(k)
n

σ2

J
(k)
n

−
θ

(k)
n r2

J
(k)
n

2σ2

J
(k)
n

,

and the log-likelihood is

logL =

K∑
k=1

n(k)−1∑
n=1

−θ(k)
n q

J
(k)
n

+ log
(
N
(
θ(k)
n r

J
(k)
n
, θ(k)
n σ2

J
(k)
n
, f (k)
n

))
+ log q

J
(k)
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n(k)qJ(k)

n(k)
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(k)
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n(k)
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(k)

n(k)σ
2

J
(k)

n(k)
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(k)
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=

K∑
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− log θ
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log θ
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(k)
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J
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2σ2

J
(k)

n(k)

.

Observe that knowing each individual hidden variable is not necessary to
express the log-likelihood. It is enough to introduce the following aggregated
measures to fully characterize interval k:

• Θ
(k)
i =

∑n(k)

n=1 θ
(k)
n I{

J
(k)
n =i

} is the total time spent in state i,

• F (k)
i =

∑n(k)

n=1 f
(k)
n I{

J
(k)
n =i

} is the total amount of fluid arriving during a

visit in state i,

• M (k)
i =

∑n(k)

n=1 I{J(k)
n =i

} the number of visits to state i,
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• M (k)
i,j =

∑n(k)−1
n=1 I{

J
(k)
n =i,J

(k)
n+1=j

} the number of state transitions from

state i to state j, additionally

• LΘ
(k)
i =

∑n(k)

n=1 log θ
(k)
n I{

J
(k)
n =i

} is the sum of logarithms of the time spent

in state i,

• FΘ
(k)
i =

∑n(k)

n=1
f(k)
n

2

θ
(k)
n

I{
J

(k)
n =i

} is the sum of square of arriving fluid over

the elapsed time in state i.

With these aggregate measures the log-likelihood simplifies to

logL =

K∑
k=1

n(k)−1∑
n=1

−θ(k)
n q

J
(k)
n
− c

2
− log θ
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n
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−
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J
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log θ
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−
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=

K∑
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− cn(k)

2
+
∑
i

(
−Θ

(k)
i

(
qi +

r2
i

2σ2
i

)
+ F

(k)
i

ri
σ2
i

− LΘ
(k)
i

2
− FΘ

(k)
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2σ2
i

−M (k)
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log σ2
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2
+
∑
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M
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i,j log qi,j

)
.

3.2. The maximization step of the EM method

The maximization step of the EM method aims to find the optimal value of
the model parameters based on the hidden variables. They are obtained from
the partial derivatives of the log-likelihood as detailed in Appendix Appendix
A.

Summarizing the results, the model parameter value which maximizes the
log-likelihood based on the hidden variables are

qi,j =

∑K
k=1M

(k)
i,j∑K

k=1 Θ
(k)
i

, ri =

∑K
k=1 F

(k)
i∑K

k=1 Θ
(k)
i

, and σ2
i =

∑K
k=1 Θ

(k)
i r2

i − 2F
(k)
i ri + FΘ

(k)
i∑K

k=1M
(k)
i

.

That is,
∑K
k=1 Θ

(k)
i , and

∑K
k=1M

(k)
i,j are needed for computing the optimal qi,j

parameters and additionally,
∑K
k=1 F

(k)
i ,

∑K
k=1Mi and

∑K
k=1 FΘ

(k)
i are needed

for the optimal ri and σ2
i parameters.
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3.3. The expectation step of the EM method

In the expectation step of the EM method the expected values of the hidden
variables has to be evaluated based on the samples. Appendix Appendix B

provides the analysis of those expectations, resulting E(F
(k)
i ) = riE(Θ

(k)
i ) and

E
(
FΘ

(k)
i

)
= E

(
M

(k)
i

)
σ2
i + E

(
Θ

(k)
i

)
r2
i , from which the zth iteration of the

EM method updates the fluid rate and variance parameters as

ri(z + 1) =

∑K
k=1 E

(
F

(k)
i

)
∑K
k=1 E

(
Θ

(k)
i

) = ri(z) (5)

and

σ2
i (z + 1) =

∑K
k=1 E

(
Θ

(k)
i r2

i (z)− 2F
(k)
i ri(z) + FΘ

(k)
i

)
∑K
k=1 E

(
M

(k)
i

)
=

∑K
k=1 E

(
Θ

(k)
i r2

i (z)
)
− 2E

(
F

(k)
i

)
ri(z) + E

(
FΘ

(k)
i

)
∑K
k=1 E

(
M

(k)
i

)
=

∑K
k=1 E

(
M

(k)
i

)
σ2
i (z)∑K

k=1 E
(
M

(k)
i

) = σ2
i (z). (6)

Consequently, the fluid rate and variance parameters remain untouched by the
EM method.

Remark 1. This result is in line with the results obtained for discrete arrival
processes in [9] considering the special features of the fluid model. That is, we
consider the MMPP arrival process, since there is no state transition at the fluid
drop arrival, and fluid drops are assumed to be infinitesimal, hence for a finite
amount of time there is an unbounded number of fluid drop arrivals. Using these
features, equations (21) and (23) of [9] take the form

E
(
Z

[k]
i

)
=

xk∑
l=0

∫ tk

0

[fk(l, τ)]i[bk(xk − l, tk − τ)]idτ

E
(
Y

[k]
ii

)
= λii

xk−1∑
l=0

∫ tk

0

[fk(l, τ)]i[bk(xk − l, tk − τ)]idτ.

Assuming xk is large, the update of λii in the zth step of the iteration is ((12)
of [9])

λii(z + 1) =

∑K
k=1 E

(
Y

[k]
ii

)
∑K
k=1 E

(
Z

[k]
i

)
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= λii(z)

∑K
k=1

∑xk−1
l=0

∫ tk
0

[fk(l, τ)]i[bk(xk − l, tk − τ)]idτ∑K
k=1

∑xk
l=0

∫ tk
0

[fk(l, τ)]i[bk(xk − l, tk − τ)]idτ
≈ λii(z).

The transition rate parameters are updated by the EM method as

qi,j =

∑K
k=1 E

(
M

(k)
i,j

)
∑K
k=1 E

(
Θ

(k)
i

) . (7)

The computation of E
(
M

(k)
i,j

)
and E

(
Θ

(k)
i

)
are detailed in Appendix Appendix

C and the results are summarized in (C.3) and (C.4).

4. Combined fitting method

As a result of the inability of the EM method to optimize the fluid rate
and variance parameters of MMFAPs, we propose a combined fitting method,
which is composed of consecutive optimization of the background Markov chain
using the EM method and the fluid rate and variance parameters using a direct
likelihood optimization as it is summarized in Algorithm 1.

Algorithm 1 MMFAP-fit(D,Qinit,Rinit,Sinit)

Q← Qinit; R← Rinit;S← Sinit;L← −∞; ε← 10−2;
while |L− LQ,R,S(D)|/|L| > ε do
L← LQ,R,S(D)
Q← EM-fit(D,Q,R,S)
{R,S} ← Grad-fit(D,Q,R,S)

end while

4.1. Direct optimization of the rate and variance parameters

For a direct optimization of the rate and variance parameters, we investi-
gated the behaviour of the likelihood as a function of the system parameters
for a given MMFAP, based on 200 samples generated from the MMFAP with
parameters

Q =

−0.5 0.4 0.1
0.6 −0.7 0.1
0.2 0.3 −0.5

 , R =

 4 0 0
0 6 0
0 0 8

 , S =

0.1 0 0
0 0.2 0
0 0 0.4

 . (8)

Figure 1 and 2 plot the dependence of the likelihood when a single model pa-
rameter is adjusted, and all other model parameters were kept at the original
MMFAP parameter values from which the samples are generated. The figures
indicate that some parameters strongly effect the likelihood while others have
less dominant effect. Typically the effect of the lowest fluid rate (r1) has the
most prominent effect.
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It is also interesting to notice that the maximum of the likelihood according
to s1 is significantly different from the original s1 value, and the likelihood at
the optimal s1 value is significantly better than the likelihood computed with
the original model parameters.

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
R11-220

-200

-180

-160

-140

Likelihood

5.0 5.5 6.0 6.5 7.0
R22-140

-139

-138

-137

-136

-135

-134
Likelihood

7 8 9 10 11
R33-140

-139

-138

-137

-136

-135

-134
Likelihood

Figure 1: Likelihood as a function of the fluid rate parameters

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
S11-134

-132

-130

-128
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-124

-122
Likelihood

0.1 0.2 0.3 0.4 0.5 0.6
S22-138

-137

-136

-135

-134

-133

-132
Likelihood

0.4 0.6 0.8 1.0 1.2
S33

-135

-130

-125

Likelihood

Figure 2: Likelihood as a function of the fluid variance parameters

Motivated by this experiment, we apply a gradient ascent method for finding
the parameters which optimize likelihood.

5. Implementation details

The implementation of the EM based parameter estimation method contains
some intricate elements which influence the computational complexity and the
accuracy of the computations. This section summarizes our proposals for those
elements.

5.1. Structural restrictions of MMFAP models

In the case of many discrete Markov modulated arrival processes (e.g. MAP,
BMAP), the representation is not unique, and starting from a given representa-
tion of an arrival process infinitely many different, but stochastically equivalent
representations of the same process can be generated with similarity transfor-
mation. From the related literature, it is known that optimizing non-unique
representations should be avoided, because the optimization procedure might
go back and forth between almost equivalent models having significantly dif-
ferent parameters. The usual solution to address this issue is to apply some
structural restrictions (e.g., the Jordan representation of some of the matrices),
which can make the representation unique [3].
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In this work, we also apply a structural restriction to make the optimization
of MMFAPs more efficient (by making the path to the optimum more straight):
We restrict matrix R to be diagonal such that the diagonal elements of R are
non-decreasing, which makes the representation of an MMFAP unique except
for the ordering of states with identical fluid arrival rates.

5.2. Initial guesses for the fluid rates

If the variance parameters of the MMFAP were zero, then the amounts of
the fluid arrival in a unit of time would be between the r1 and rS (the minimal
and the maximal) fluid rates. When the variance parameters are positive, the
samples might be smaller than r1 and larger than rS , but we assume that the
smallest and the largest samples, denoted as xmin and xmax, carry information
on the fluid rates, which we utilize to obtain an initial guess for the fluid rates
as

ri = xmin +
i− 1

S − 1
(xmax − xmin). (9)

For the initial guesses of the rest of the parameters we have much less support
from the measured data set. The main problem is that the random effects of the
background Markov chain and the variance of the fluid rates can not be easily
distinguished.

In our experiments, we assume “small” variances; intuitively it means that
the randomness of the samples are dominated by the state transitions of the
background Markov chain. Under this assumption, one can gain information on
the “speed” of the background Markov chain as it is exemplified in Figure 3 in
Section 6.1. Still, more precise information on the transition rates is hard to
obtain.

5.3. Computation of the double sided inverse Laplace transform

A crucial step of the algorithm, both in terms of execution speed and nu-
merical accuracy, is to compute the numerical inverse Laplace transformation
(NILT) of the expression in (3). There are many efficient numerical inverse
transformation methods for single sided functions [15]. However, in our case,
the function is defined in double sided Laplace transformation domain (as Gauss
distributions can be negative, too), and numerical inverse transformation of dou-
ble sided Laplace transforms are rather limited.

If f(t) is the density of a positive random variable, then
∫∞
−∞ e−stf(t)dt =∫∞

0
e−stf(t)dt and the single and double sided Laplace transforms of f(t) are

identical. If f(t) is the density of a random variable which is positive with a
high probability, then

∫∞
−∞ e−stf(t)dt ≈

∫∞
0
e−stf(t)dt. Based on this approx-

imation, one can apply single sided numerical inverse Laplace transformation
for density functions of dominantly positive random variables.

For a general MMFAP the non-negativity of the fluid increase samples in
T = {(tk, xk); k = 1, . . . ,K} can not be assumed. To make the single sided
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numerical inverse Laplace transformation appropriately accurate also in this
case, we apply the following model transformation

LQ,R,S({(tk, xk); k = 1, . . . ,K}) = LQ,R+cI,S({(tk, xk + ctk); k = 1, . . . ,K}),
(10)

where LQ,R,S({(t1, x1); (t2, x2); . . . ; (tK , xK)}) = α
∏K
k=1 N(tk, xk)1 is the like-

lihood of the samples when N(tk, xk) is computed with Q,R,S according to (3)
and c is an appropriate constant. If c is too large, the relative difference of the
fluid increase samples reduces, and the likelihood function gets less sensitive to
the changes of the model parameters. If c is small, fluid increase samples might
become negative, and the single sided numerical inverse Laplace transformation
might cause numerical issues.

According to (2),

[H(t, y)]i,j =

∫ y

x=−∞
[N(t, x)]i,jdx = Pr (X (t) < y,J (t) = j|J (0) = i) (11)

is a probability, which is lower bounded by 0 and upper bounded by 1. Its
double sided Laplace transform is

H∗(t, v) =

∫ ∞
y=−∞

e−yvH(t, y)dy =

∫ ∞
y=−∞

e−yv
∫ y

x=−∞
N(t, x)dxdy =

1

v
N∗(t, v).

We set parameter c to the smallest value for which the (single-sided) NILT of
N∗(t, v)/v at point rmaxtmax is between 0 and 1 element wise, where rmax =
max(r1, . . . , rS) and tmax = max(t1, . . . , tK).

5.4. Reducing computational cost for equidistant measurement intervals

For computing the likelihood function, the NILT of matrix N∗(t, v) needs to
be performed once for each data point, i.e., K times, which might be computa-
tionally expensive.

In the special case when the samples are from identical time intervals, that
is t1 = . . . = tK = t̄, we apply the following approximate approach to re-
duce the computational complexity to M (M << K) numerical inverse Laplace
transformation of matrix N∗(t, v).

• Let xmin = min(x1, . . . , xK), xmax = max(x1, . . . , xK) and ∆ = (xmax −
xmin)/(M − 1).

• Compute N(t̄, xmin + (m− 1)∆) for m = 1, . . . ,M by NILT of N∗(t, v).

• For the i, j element of the matrix, approximate the set of points (xmin +
(m− 1)∆, log ([N(t̄, xmin + (m− 1)∆)]) for m = 1, . . . ,M with a polyno-
mial of order ≈ M/2 such that the square error of the approximation in
points xmin + (m− 1)∆ (with m = 1, . . . ,M) is minimal.

• Use the exponent of the obtained polynomial function to approximate the
NILT.

11



The higher the parameter M , the higher the accuracy and also the computa-
tional complexity of the procedure. In practice we used M = 20. An example
of N(t, x) approximation is provided in Section 6.3.

5.5. Computation of E(Θ
(k)
i ) and E(M

(k)
i,j )

Let us introduce the forward and backward likelihood vectors for the begin-
ning and the end of the kth observation period

f̂k = α

(
k−1∏
`=1

N(t`, x`)

)
= α

k−1∏
`=1

ILTv→x`N
∗(t`, v), (12)

b̂k =

(
K∏

`=k+1

N(t`, x`)

)
1 =

K∏
`=k+1

ILTv→x`N
∗(t`, v)1. (13)

and the forward and backward likelihood vectors for an internal point in the
kth observation period as

fk(t, x) = α

(
k−1∏
`=1

N(t`, x`)

)
N(t, x), (14)

bk(t, x) = N(t, x)

(
K∏

`=k+1

N(t`, x`)

)
1. (15)

We note that, using f̂k and b̂k, the likelihood can be expressed as

L = α · b1(t1, x1) = fk−1(tk−1, xk−1) · bk(tk, xk) = fK(tK , xK)1

= α · b̂0 = f̂ ` · b̂`−1 = f̂K+11,

for any k = 2, . . . ,K − 1 and ` = 1, . . . ,K.

To compute the expected value of Θ
(k)
i , the integrals of the forward and

backward likelihood vectors have to be evaluated. The special form of the
integrals allows for simplifications as

E(Θ
(k)
i ) =

∫ xk

x=0

∫ tk

t=0

[fk(t, x)]i · [bk(tk − t, xk − x)]i dt dx

= f̂k

(∫ xk

x=0

∫ tk

t=0

N(t, x)ei · eiTN(tk − t, xk − x) dt dx

)
b̂k

= f̂k ILTv→xk

(∫ tk

t=0

N∗(t, v)ei · eiTN∗(tk − t, v) dt

)
b̂k

= f̂k ILTv→xk

(∫ tk

t=0

e(Q−vR+v2Σ/2)tei · eiT e(Q−vR+v2Σ/2)(tk−t) dt

)
b̂k

= f̂k ILTv→xk

[0 I
]
e

Q− vR + v2Σ/2 ei · eiT
0 Q− vR + v2Σ/2

tk [I
0

] b̂k.

12



That is, the convolution integral is replaced by the evaluation of a matrix ex-

ponential of double size [16]. In a similar manner, the expected value of M
(k)
i,j

is

E(M
(k)
i,j ) =

∫ xk

x=0

∫ tk

t=0

[fk(t, x)]i · qij · [bk(tk − t, xk − x)]j dt dx

= qij f̂k ILTv→xk

[0 I
]
e

Q− vR + v2Σ/2 ei · ejT
0 Q− vR + v2Σ/2

tk [I
0

] b̂k.

We note that these expressions give an interpretation for the zth iteration of
the EM method for qi,j

qi,j(z + 1) =

∑K
k=1 E

(
M

(k)
i,j

)
∑K
k=1 E

(
Θ

(k)
i

) =

qi,j(z)

f̂k ILTv→xk

[0 I
]
e

Q− vR + v2Σ/2 ei · ejT
0 Q− vR + v2Σ/2

tk [I
0

] b̂k

f̂k ILTv→xk

[0 I
]
e

Q− vR + v2Σ/2 ei · eiT
0 Q− vR + v2Σ/2

tk [I
0

] b̂k

,

that is, qi,j(z+ 1) is the product of qi,j(z) and an actual guess dependent value.

5.6. Computation of f̂k and b̂k

The computation of f̂k and b̂k follows a similar pattern and contains the
same difficulties, except that f̂k is computed from k = 0 onward and b̂k is
computed from k = K downward. The main implementation issue with the
computation of f̂k and b̂k, is to avoid under-/overflow during the computation.
We adopted the under-/overflow avoiding method proposed in [17].

6. Numerical examples

6.1. MMFAP simulator

For the numerical evaluation of the proposed method, we developed a sim-
ulator which generates the required number (K) of traffic samples based on
matrices Q, R and S. In each simulation step, the program samples the next
state transition of the Markov chain and checks if it occurs before or after the
next measurement instance. In the first case, it samples the accumulated fluid
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until the next state transition and performs the state transition. In the second
case, it samples the accumulated fluid until the next measurement instance and
maintains the state of the Markov chain.

Our simulator assumes equidistant time intervals, such that t1 = . . . = tK =
1, which allows to utilize the computationally efficient approximate approach
introduced in Section 5.4.

For the MMFAP with

Qslow =

−0.8 0.5 0.3
0.6 −0.7 0.1
0.2 0.3 −0.5

,R =

 2 0 0
0 4 0
0 0 8

,S =

0.01 0 0
0 0.02 0
0 0 0.04

,
(16)

the histogram of the samples is presented in Figure 3a. The histogram indicates
that the Markov chain is “slow” in this case, i.e., it stays in a single state (e.g.,
state i) during the measurement interval of length 1 with high probability and
accumulates N (ri, σ

2
i ) distributed amount of fluid during this interval. That is

the explanation of the peaks at around r1 = 2, r2 = 4 and r3 = 8. It is also
visible that the transitions between state 1 and 2 are faster than the transitions
to and from state 3, and consequently, the histogram indicates fluid samples in
the x ∈ (2, 4) interval. These samples might come from measurement intervals
starting from state 1 with r1 = 2 and moving to the state with r2 = 4, or vice
versa.

To indicate the effect of the “speed” of the Markov chain on the histogram
of the generated samples, Figure 3b depicts the histogram when the Markov
chain is “fast”, namely 10 times faster, Qfast = 10Qslow. The “fast” Markov
chain experiences state transitions during the measurement interval with very
high probability, and the amount of fluid accumulated during the interval gets
to be less dependent on the state of the Markov chain at the beginning of the
measurement interval.

When the variance is low, as it is in this example, one can easily predict
the values of the R matrix with the “slow” Markov chain, while for the “fast”
Markov chain, the values of the R matrix is not possible to guess based on the
histogram. Still, the minimal and the maximal sample values allow estimating
the minimal and the maximal fluid rates of matrix R.

2 3 4 5 6 7 8
x0

100

200

300

400

Number of samples

2 3 4 5 6 7 8
x0

20

40

60

80

100

Number of samples

Figure 3: Histogram of 5000 generated samples with Qslow, R and S and Qfast, R and S
defined in (16).
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6.2. Approximating Q with the EM method

Based on 300 samples of the MMFAP with

Q̄ =

[
−2 2
4 −4

]
, R̄ =

[
4 0
0 8

]
, S̄ =

[
0.01 0

0 0.02

]
, (17)

we approximate the MMFAP starting from Q̄0 =

[
−1 1
2.5 −2.5

]
, R̄0 = R̄, S̄0 =

S̄ with the EM method. The log-likelihood value and the transition rates of
the Markov chain are depicted in Figure 4a and 4b, respectively, where the
dotted horizontal lines refer to the MMFAP according to (18), which was used
to generate the samples. The figure indicates that the obtained transition rates
provide a bit higher log-likelihood than the ones in (18). Additionally, the
figures report convergence after ∼ 25 iterations of the EM method.
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LikelihoodEM

20 40 60 80 100
Iteration

-180

-175

-170

Likelihood

20 40 60 80 100
Iteration

1

2

3

4

Qij

Q12EM

Q12Original

Q21EM

Q21Original

Figure 4: Behaviour of the EM method based on 300 samples generated from Q̄, R̄ and S̄
in (18) with initial guess Q̄0, R̄0 and S̄0. According to (5) and (6), R̄0 and S̄0 remained
unchanged during the EM iterations.

Similarly, we evaluated the EM based approximation of the MMFAP defined

in (16) based on 1000 samples starting from Q0 =

−0.8 0.5 0.3
0.6 −0.7 0.1
0.2 0.3 −0.5

, R0 =

R, S0 = S.
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Figure 5: Behaviour of the EM method based on 1000 samples generated from Q, R and S
in (16) with initial guess Q0, R0 and S0.

The evolution of the log-likelihood value and the transition rates of the
Markov chain along the EM iterations are depicted in Figure 5a and 5b, respec-
tively. Figure 5a indicates, that similar to the 2 × 2 example in Figure 4a, the
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likelihood value increased above the one obtained from the original MMFAP. At
the same time, the transition rate values in Figure 5b differ more significantly
from ones of the original MMFAP than in Figure 4b, which might be a conse-
quence of a looser relation between the transition rates and the likelihood value
in higher dimensions.

6.3. Functional approximation of N(t, x)

To accelerate NILT based computation of N(t, x), a functional approxima-
tion procedure is introduced in Section 5.4. Figure 6 and 7 report the accuracy
of the proposed approach via a numerical example to approximate [N(t, x)]1,1
with parameters Qslow, R, S defined in (16). The NILT of [N∗(t, v)]1,1 is com-
puted in M = 20 points, and based on those points an order 10 polynomial
approximates [N(t, x)]1,1.

samples

approx. func.

2 4 6 8 10
x

-15

-10

-5

log(N11(1,x))

Figure 6: Quality of fitting log[N(t, x)]1,1.

samples

approx. func.

2 4 6 8 10
x

0.1

0.2

0.3

0.4

0.5

0.6

N11(1,x)

Figure 7: Quality of fitting [N(t, x)]1,1.

6.4. Approximating R and S with direct optimization

6.4.1. Direct optimization example 1

Using the MMFAP simulator we generated 500 samples from the MMFAP
with Qslow,

R =

 4 0 0
0 6 0
0 0 8

 , S =

0.1 0 0
0 0.5 0
0 0 0.8

 (18)

and we performed the gradient based rate and variance optimization starting
from Qslow,

Rinit =

 2.5 0 0
0 7 0
0 0 11.5

 , Sinit =

0.125 0 0
0 0.35 0
0 0 0.575

 (19)

The evolution of the likelihood value during the optimization is depicted in
Figure 8 and the final likelihood is obtained by

Rfinal =

 2.49159 0 0
0 6.96413 0
0 0 11.456

 , Sfinal =

0.1777 0 0
0 0.391667 0
0 0 0.619367


(20)
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Figure 8: Likelihood value during the opti-
mization of Example 1

In this example the obtained optimum is rather close to the initial guess,
which might suggest that there are many local optima in the surface. The next
example reports a longer journey in the parameter space.

6.4.2. Direct optimization example 2

We generated 300 samples from the MMFAP provided in (8) and we
performed the gradient-based rate optimization starting from Q, S, and
{r1, r2, r3} = {1, 3, 6}. This initial guess differs from the one proposed in (9),
still it allows us to check the properties of the optimization process starting
from a more remote initial point.

The likelihood and the fluid rate values during the optimization are depicted
in Figure 9. In this particular example, the optimization procedure finds almost
the same fluid rates as we used for generating the samples. The final fluid rates
differ only a bit, but this slight difference from the original parameters provides
a higher likelihood value than the one obtained from the original parameters in
(8).
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Figure 9: Likelihood and fluid rate values during the optimization of Example 2

6.5. Summary of numerical examples

Based on a much broader numerical experiments, than the ones reported
above, we conclude that the proposed combined MMFAP fitting method resem-
bles many properties of the EM method for discrete arrival process fitting:
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• The procedure is somewhat sensitive to the initial guess. In many unre-
ported cases, the obtained maximum likelihood remained below the one
computed from the original parameters.

• Its stability (ability to obtain a reasonable high optimum) decreases with
the number of model parameters. For example, when we optimized 6
parameters in Example 1, the procedure stopped at a local maximum close
to the initial point. Instead, when we optimized only 3 model parameters
in Example 2, the procedure significantly modified their values during the
optimization process.

We guess, that these similarities of the EM based discrete arrival process
fitting and the combined MMFAP fitting methods have common roots in the
properties of their respective likelihood functions, and the applied optimization
procedure slightly affects the optimization quality.

Anyhow, starting from a proper initial guess, the proposed combined opti-
mization procedure can obtain a higher likelihood than the one computed from
the original parameters, which means that the original model parameters are
not necessarily the optimal ones for a given data set, and the quality of the
fitting method cannot be judged based on the identity of the model parameters,
but it has to be judged based on the likelihood values.

6.6. Running time

The set of evaluated experiments, is limited by the computational complex-
ity of our Mathematica implementation. There are many elements of the imple-
mentation which affects the computational complexity. Mathematica is not the
most efficient programming environment for such numerical computations, but
we used it because the applied NILT method, the CME method, is conveniently
available in Mathematica. During the computations, we used the CME method
with order 30. The parameter tuning the trade off between accuracy and the
number of points where the NILT is computed for functional approximation was
set to M = 20 (c.f. Section 5.4 and 6.3). All in all, the computation time of
the combined fitting in Algorithm 1 with 3-state background Markov chain, 300
samples and ≈ 100 iterations was 4-8 hours on our regular desktop computers.

7. Conclusions

The EM method is commonly applied for parameter estimation of Markov
modulated models. In this paper, we considered the fitting of MMFAP and
showed that the EM method is not applicable for optimizing the fluid rate and
variance parameters. As a result, we propose a combined fitting approach where
the modulating Markov chain is optimized via the EM method, and the fluid
rate and variance parameters are optimized via direct likelihood optimization.

Numerical examples investigate the properties of the proposed combined
MMFAP fitting method. The results of the numerical experiments suggest that
the properties of the combined method for MMFAP fitting are similar to the
ones of the EM based fitting of discrete arrival processes.
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Appendix

Appendix A. Maximizing the model parameters

Assuming qi =
∑
j,j 6=i qi,j , the derivatives of logL are as follows:

∂

∂qi,j
logL =

∂

∂qi,j

K∑
k=1

(
−Θ

(k)
i qi,j +M

(k)
i,j log qi,j

)
=

K∑
k=1

(
−Θ

(k)
i +M

(k)
i,j

1

qi,j

)
,

∂

∂ri
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The optimal parameter values are obtained where the derivative is zero:

0 =

K∑
k=1

Θ
(k)
i −M

(k)
i,j /qi,j −→ qi,j =

∑K
k=1M

(k)
i,j∑K

k=1 Θ
(k)
i

. (A.1)
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Appendix B. Expected values of the hidden parameters

For E(F
(k)
i ) we have

E
(
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(k)
i

)
= E

Θ
(k)
i
E
F

(k)
i |Θ

(k)
i

(F
(k)
i ) = E

Θ
(k)
i
riΘ

(k)
i = riE(Θ

(k)
i ). (B.1)
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E{f(k)
n |θ(k)n }

f (k)
n

2

θ
(k)
n

I{
J

(k)
n =i

}
 . (B.2)

Let X (µ, σ2) denote a normal distributed random variable with mean µ and

variance σ2. Its second moment is E
(
X 2(µ, σ2)

)
= σ2 +µ2. When θ

(k)
n = x then

f
(k)
n is X (xri, xσ

2
i ) distributed and E

(
f

(k)
n

2)
= E

(
X 2(xri, xσ

2
i )
)

= xσ2
i +x2r2

i ,

that is

E{f(k)
n |θ(k)n }

f (k)
n

2

θ
(k)
n

I{
J

(k)
n =i

}
 =

E{f(k)
n |θ(k)n }

(
f

(k)
n

2)
θ

(k)
n

I{
J

(k)
n =i

}

=
θ

(k)
n σ2

i + θ
(k)
n

2
r2
i

θ
(k)
n

I{
J

(k)
n =i

} =
(
σ2
i + θ(k)

n r2
i

)
I{

J
(k)
n =i

}. (B.3)

Substituting (B.3) into (B.2) results

E
(
FΘ

(k)
i

)
= E

n(k)∑
n=1

f
(k)
n

2

θ
(k)
n

I{
J

(k)
n =i

}


= E{n(k),θ
(k)
1 ,...,θ

(k)

n(k)
}

n(k)∑
n=1

E{f(k)
n |θ(k)n }

f (k)
n

2

θ
(k)
n

I{
J

(k)
n =i

}
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= E{n(k),θ
(k)
1 ,...,θ

(k)

n(k)
}

n(k)∑
n=1

(
σ2
i + θ(k)

n r2
i

)
I{

J
(k)
n =i

}


= E
(
M

(k)
i

)
σ2
i + E

(
Θ

(k)
i

)
r2
i .

Appendix C. Numerical computation of the expected value of the
hidden parameters

In the E-step we compute the expected value of the hidden parameters for
given α, Q, R, S and observed data (tk, xk) for k = 1, . . . ,K. For the expected

values of Θ
(k)
i we have

E
(

Θ
(k)
i |tk, xk

)
= E

n(k)∑
n=1

θ(k)
n I{

J
(k)
n =i

}|tk, xk
 = E

(∫ tk

t=0

I{J (t)=i|xk}dt

)
(C.1)

=

∫ tk

t=0

E
(
I{J (t)=i|xk}

)
dt =

∫ tk

t=0

Pr (J (t) = i|xk) dt

=
∑
k

∑
`

∫ tk

t=0

Pr (J (0) = k,J (t) = i,J (tk) = `|xk) dt

=
∑
k

∑
`

∫ tk

t=0

Pr (J (0) = k)∫ xk

x=0

lim
∆→0

1

∆
Pr (x ≤ X (t) < x+ ∆,J (t) = i|J (0) = k,X (0) = 0)

lim
∆→0

1

∆
Pr (xk ≤ X (tk) < xk + ∆,J (t) = `|J (t) = i,X (t) = x) dxdt

= αk

∫ tk

t=0

∫ xk

x=0

N(t, x)eiei
TN(tk − t, xk − x)1dxdt (C.2)

where the jth element of vector αk is Pr (J (0) = j) and ei is the ith unit column
vector.

According to (C.2), (14) and (15) , the expected value of Θ
(k)
i is

E(Θ
(k)
i ) =

∫ xk

x=0

∫ tk

t=0

[fk(t, x)]i · [bk(tk − t, xk − x)]i dt dx. (C.3)

In a similar manner, the expected value of M
(k)
i,j is

E(M
(k)
i,j ) =

∫ xk

x=0

∫ tk

t=0

[fk(t, x)]i · qi,j · [bk(tk − t, xk − x)]j dt dx. (C.4)
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