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Abstract. Markov modulated discrete arrival processes have a wide lit-
erature, including parameter estimation methods based on expectation-
maximization (EM). In this paper, we investigate the adaptation of these
EM based methods to Markov modulated fluid arrival processes (MM-
FAP), and conclude that only some parameters of MMFAPs can be ap-
proximated this way.
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1 Introduction

Markovian queueing systems with discrete customers are widely used in stochas-
tic modeling. Markovian Arrival Process (MAP, [11]), that are able to charac-
terize a wide class of point processes, play an important role in these systems.
The properties of MAPs have been studied exhaustively, using queueing models
involving MAPs nowadays has become common, queueing networks with MAP
traffic have also been investigated. Several methods exist to create a MAP ap-
proximating real, empirical data. Some of them aim to match statistical quanti-
ties like marginal moments, joint moments, auto-correlation, etc. [9, 15] An other
approach to create MAPs from measurement data is based on likelihood max-
imization, which is often performed by Expectation-Maximization (EM) [12].
Several EM-based fitting methods have been published for MAPs, based on ran-
domization [5], based on special structures [14, 7], methods that support batch
arrivals [4] and those that are able to work with group data [13].

In many systems the workload can be represented easier with continuous,
fluid-like models rather than discrete demands [1]. Basic Markovian fluid mod-
els have been introduced and analyzed in [10, 2], later on several model variants
appeared and were investigated. Despite of their practical relevance, the ”ecosys-
tem” around fluid models is far less complete than in the discrete case. In par-
ticular, fitting methods for Markov modulated fluid arrival processes (MMFAP)
are available only to some very restricted cases like on-off models, motivated
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by telecommunication applications. To the best of our knowledge, fitting meth-
ods for the general class of MMFAPs based on likelihood maximization has not
been investigated in the past. At first glance adapting the methods available
for MAPs might seem feasible, since fluid models can be treated as a limit of a
discrete model generating infinitesimally small fluid drops. In fact, adapting the
algorithms for MAPs to MMFAPs is not straight forward at all, fitting MMFAPs
is a qualitatively different problem.

The rest of the paper is organized as follows. Section 2 introduces the mathe-
matical model and the parameter estimation problem. The next section discusses
the applicability of the EM method for MMFAPs. Some implementation details
associated with the EM method for MMFAPs are provided in Section 4. Finally,
Section 5 provides numerical experiments about the properties of the proposed
method and Section 6 concludes the paper.

2 Problem definition

2.1 Fluid arrival process

The fluid arrival process {Z(t) = {J (t),X (t)}, t > 0} consists of a background
continuous time Markov chain {J (t), t > 0} which modulates the arrival process
of the fluid {X (t), t > 0}. When the Markov chain stays in state i for a ∆ long
interval a normal distributed amount of fluid arrives with mean ri∆ and variance
σ2
i∆, that is, when J (τ) = i, ∀τ ∈ (t, t+∆)

d

dx
Pr(X (t+∆)−X (t) < x) = N (ri∆,σ

2
i∆,x), (1)

where N (µ, σ2, x) = 1√
2πσ2

e−
(x−µ)2

2σ2 is the Gaussian density function. We note

that our proposed analysis approach allows negative fluid rates as well. Since the
normal distribution has infinite support also in case of strictly positive fluid rates
Section 4.2 discusses a numerical approach to handle negative fluid samples.

The generator matrix and the initial probability vector of the N -state back-
ground continuous time Markov chain (CTMC) are Q and α, and the diagonal
matrix of the fluid rates and the fluid variances are given by matrix R with
Ri,j = δi,jri, and matrix Σ with Σi,j = δi,jσ

2
i , where δi,j denotes the Kronecker

delta.
Assuming X (0) = 0, the amount of fluid arriving in the (0, t) interval is X (t),

with density matrix defined by

[N(t, x)]i,j =
∂

∂x
Pr (X (t) < x,J (t) = j|J (0) = i) (2)

The double sided Laplace transform of this quantity regarding the amount
of fluid arrived can be expressed as [6]

N∗(t, v) =

∫ ∞
x=−∞

e−xvN(t, x)dx = e(Q−vR−v
2Σ/2)t. (3)
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The stationary distribution of the CTMC is denoted by vector π, which is the
solution of πQ = 0, π1 = 1. In this work, we are interested in the stationary fluid
arrival process and assume that the initial probability vector of the background
CTMC is α = π.

2.2 Measurement data to fit

We assume that the data to fit is given by a series of pairs D = {(tk, xk); k =
1, . . . ,K}, where tk is the time since the last measurement instant and xk is
the amount of fluid arrived since the last measurement instant (which can be

negative as well). That is, the measurement instances are Tk =
∑k
`=1 t` for

k ∈ {1, . . . ,K}.
The likelihood of the data is defined as

L = α

K∏
k=1

N(tk, xk)1. (4)

Our goal is to find Q, R and S which maximize the likelihood.

3 The EM algorithm

The EM algorithm is based on the observation that the likelihood would be
easier to maximize when certain unobserved, hidden variables were known. In
our case the hidden variables are related to the trajectory of the hidden Markov
chain, specifically

– J
(k)
n is the nth state visited by the Markov chain in the kth measurement

interval,

– θ
(k)
n is the sojourn time of the nth sojourn of the Markov chain (which is in

state J
(k)
n ) in the kth measurement interval,

– f
(k)
n is the fluid accumulated during the nth sojourn in the kth measurement

interval,
– n(k) is the number of sojourns in the kth measurement interval.

Based on these hidden variables the logarithm of the likelihood is computed
in the next section.

3.1 Log-likelihood as a function of the hidden variables

With the hidden variables defined above, the likelihood L can be expressed as

L =

K∏
k=1

e
−θ(k)1 q

J
(k)
1 N

(
θ
(k)
1 r

J
(k)
1
, θ

(k)
1 σ2

J
(k)
1

, f
(k)
1

)
q
J

(k)
1 J

(k)
2

· e
−θ(k)2 q

J
(k)
2 N

(
θ
(k)
2 r

J
(k)
2
, θ

(k)
2 σ2

J
(k)
2

, f
(k)
2

)
q
J

(k)
2 J

(k)
3
· . . .
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· e
−θ(k)

n(k)
q
J
(k)

n(k)N
(
θ
(k)

n(k)rJ(k)

n(k)

, θ
(k)

n(k)σ
2

J
(k)

n(k)

, f
(k)

n(k)

)

=

K∏
k=1

n(k)−1∏
n=1

e
−θ(k)n q

J
(k)
n N

(
θ(k)n r

J
(k)
n
, θ(k)n σ2

J
(k)
n
, f (k)n

)
q
J

(k)
n J

(k)
n+1

· e
−θ(k)

n(k)
q
J
(k)

n(k)N
(
θ
(k)

n(k)rJ(k)

n(k)

, θ
(k)

n(k)σ
2

J
(k)

n(k)

, f
(k)

n(k)

)
,

where N (µ, σ2, x) is the Gaussian density function and qi =
∑
j,j 6=i qij is the

departure rate of state i of the CTMC. Using logN (µ, σ2, x) = − c
2 −

log σ2

2 −
(x−µ)2
2σ2 with c = log 2π we have

log
(
N
(
θ(k)n r

J
(k)
n
, θ(k)n σ2

J
(k)
n
, f (k)n

))
= − c

2
−

log(θ
(k)
n σ2

J
(k)
n

)

2
−

(f
(k)
n − θ(k)n r

J
(k)
n

)2

2θ
(k)
n σ2

J
(k)
n

= − c
2
−

log(θ
(k)
n ) + log(σ2

J
(k)
n

)

2
−
f
(k)
n

2
− 2f

(k)
n θ

(k)
n r

J
(k)
n

+ θ
(k)
n

2
r2
J

(k)
n

2θ
(k)
n σ2

J
(k)
n

= − c
2
− log θ

(k)
n

2
−

log(σ2

J
(k)
n

)

2
− f

(k)
n

2

2θ
(k)
n σ2

J
(k)
n

+
f
(k)
n r

J
(k)
n

σ2

J
(k)
n

−
θ
(k)
n r2

J
(k)
n

2σ2

J
(k)
n

,

and the log-likelihood is

logL =

K∑
k=1

n(k)−1∑
n=1

−θ(k)n q
J

(k)
n

+ log
(
N
(
θ(k)n r

J
(k)
n
, θ(k)n σ2

J
(k)
n
, f (k)n

))
+ log q

J
(k)
n J

(k)
n+1

− θ(k)
n(k)qJ(k)

n(k)

+ log

(
N
(
θ
(k)

n(k)rJ(k)

n(k)

, θ
(k)

n(k)σ
2

J
(k)

n(k)

, f
(k)

n(k)

))

=

K∑
k=1

n(k)−1∑
n=1

−θ(k)n q
J

(k)
n
− c

2
− log θ

(k)
n

2
−

log(σ2

J
(k)
n

)

2
− f

(k)
n

2

2θ
(k)
n σ2

J
(k)
n

+
f
(k)
n r

J
(k)
n

σ2

J
(k)
n

−
θ
(k)
n r2

J
(k)
n

2σ2

J
(k)
n

+ log q
J

(k)
n J

(k)
n+1
− θ(k)

n(k)qJ(k)

n(k)

− c

2
−

log θ
(k)

n(k)

2
−

log(σ2

J
(k)

n(k)

)

2

−
f
(k)

n(k)

2

2θ
(k)

n(k)σ
2

J
(k)

n(k)

+
f
(k)

n(k)rJ(k)

n(k)

σ2

J
(k)

n(k)

−
θ
(k)

n(k)r
2

J
(k)

n(k)

2σ2

J
(k)

n(k)

.

Observe that knowing each individual hidden variable is not necessary to
express the log-likelihood. It is enough to introduce the following aggregated
measures to fully characterize interval k:
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– Θ
(k)
i =

∑n(k)

n=1 θ
(k)
n I{

J
(k)
n =i

} is the total time spent in state i,

– F
(k)
i =

∑n(k)

n=1 f
(k)
n I{

J
(k)
n =i

} is the total amount of fluid arriving during a

visit in state i,

– M
(k)
i =

∑n(k)

n=1 I{J(k)
n =i

} the number of visits to state i,

– M
(k)
i,j =

∑n(k)−1
n=1 I{

J
(k)
n =i,J

(k)
n+1=j

} the number of state transitions from state

i to state j, additionally

– LΘ
(k)
i =

∑n(k)

n=1 log θ
(k)
n I{

J
(k)
n =i

} is the total time spent in state i,

– FΘ
(k)
i =

∑n(k)

n=1
f(k)
n

2

θ
(k)
n

I{
J

(k)
n =i

} is the total amount of fluid arriving during a

visit in state i.

With these aggregate measures the log-likelihood simplifies to

logL =

K∑
k=1

n(k)−1∑
n=1

−θ(k)n q
J

(k)
n
− c

2
− log θ

(k)
n

2
−

log(σ2

J
(k)
n

)

2
− f

(k)
n

2

2θ
(k)
n σ2

J
(k)
n

+
f
(k)
n r

J
(k)
n

σ2

J
(k)
n

−
θ
(k)
n r2

J
(k)
n

2σ2

J
(k)
n

+ log q
J

(k)
n J

(k)
n+1
− θ(k)

n(k)qJ(k)

n(k)

− c

2
−

log θ
(k)

n(k)

2
−

log(σ2

J
(k)

n(k)

)

2

−
f
(k)

n(k)

2

2θ
(k)

n(k)σ
2

J
(k)

n(k)

+
f
(k)

n(k)rJ(k)

n(k)

σ2

J
(k)

n(k)

−
θ
(k)

n(k)r
2

J
(k)

n(k)

2σ2

J
(k)

n(k)

=

K∑
k=1

− cn(k)

2
+
∑
i

(
−Θ(k)

i

(
qi +

r2i
2σ2

i

)
+ F

(k)
i

ri
σ2
i

− LΘ
(k)
i

2
− FΘ

(k)
i

2σ2
i

−M (k)
i

log σ2
i

2
+
∑
j,j 6=i

M
(k)
i,j log qi,j

)
.

3.2 The maximization step of the EM method

The maximization step of the EM method aims to find the optimal value of the
model parameters based on the hidden variables. They are obtained from the
partial derivatives of the log-likelihood as detailed in Appendix A.

Summarizing the results, the model parameter value which maximizes the
log-likelihood based on the hidden variables are

qi,j =

∑K
k=1M

(k)
i,j∑K

k=1Θ
(k)
i

, ri =

∑K
k=1 F

(k)
i∑K

k=1Θ
(k)
i

, and σ2
i =

∑K
k=1Θ

(k)
i r2i − 2F

(k)
i ri + FΘ

(k)
i∑K

k=1M
(k)
i

.

That is,
∑K
k=1Θ

(k)
i , and

∑K
k=1M

(k)
i,j are needed for computing the optimal qi,j

parameters and additionally,
∑K
k=1 F

(k)
i ,

∑K
k=1Mi and

∑K
k=1 FΘ

(k)
i are needed

for the optimal ri and σ2
i parameters.
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3.3 The expectation step of the EM method

In the expectation step of the EM method the expected values of the hidden
variables has to be evaluated based on the samples. Appendix B provides the

analysis of those expectations, resulting E(F
(k)
i ) = riE(Θ

(k)
i ) and E

(
FΘ

(k)
i

)
=

E
(
M

(k)
i

)
σ2
i + E

(
Θ

(k)
i

)
r2i , from which the zth iteration of the EM method

updates the fluid rate and variance parameters as

ri(z + 1) =

∑K
k=1 E

(
F

(k)
i

)
∑K
k=1 E

(
Θ

(k)
i

) = ri(z) (5)

and

σ2
i (z + 1) =

∑K
k=1 E

(
Θ

(k)
i r2i (z)− 2F

(k)
i ri(z) + FΘ

(k)
i

)
∑K
k=1 E

(
M

(k)
i

)
=

∑K
k=1 E

(
Θ

(k)
i r2i (z)

)
− 2E

(
F

(k)
i

)
ri(z) + E

(
FΘ

(k)
i

)
∑K
k=1 E

(
M

(k)
i

)
=

∑K
k=1 E

(
M

(k)
i

)
σ2
i (z)∑K

k=1 E
(
M

(k)
i

) = σ2
i (z). (6)

Consequently, the fluid rate and variance parameters remain untouched by the
EM method.

Remark 1. This result is in line with the results obtained for discrete arrival
processes in [13] considering the special features of the fluid model. That is, we
consider the MMPP arrival process, since there is no state transition at the fluid
drop arrival, and fluid drops are assumed to be infinitesimal, hence for a finite
amount of time there is an unbounded number of fluid drop arrivals. Using these
features, equations (21) and (23) of [13] take the form

E
(
Z

[k]
i

)
=

xk∑
l=0

∫ tk

0

[fk(l, τ)]i[bk(xk − l, tk − τ)]idτ

E
(
Y

[k]
ii

)
= λii

xk−1∑
l=0

∫ tk

0

[fk(l, τ)]i[bk(xk − l, tk − τ)]idτ.

Assuming xk is large, the update of λii in the zth step of the iteration is ((12)
of [13])

λii(z + 1) =

∑K
k=1 E

(
Y

[k]
ii

)
∑K
k=1 E

(
Z

[k]
i

)
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= λii(z)

∑K
k=1

∑xk−1
l=0

∫ tk
0

[fk(l, τ)]i[bk(xk − l, tk − τ)]idτ∑K
k=1

∑xk
l=0

∫ tk
0

[fk(l, τ)]i[bk(xk − l, tk − τ)]idτ
≈ λii(z).

The transition rate parameters are updated by the EM method as

qi,j =

∑K
k=1 E

(
M

(k)
i,j

)
∑K
k=1 E

(
Θ

(k)
i

) . (7)

The computation of E
(
M

(k)
i,j

)
and E

(
Θ

(k)
i

)
are detailed in Appendix C and the

results are summarized in (22) and (23).

4 Implementation details

The implementation of the EM based parameter estimation method contains
some intricate elements which influence the computational complexity and the
accuracy of the computations. This section summarizes our proposal for those
elements.

4.1 Structural restrictions of MMFAP models

In case of many discrete Markov modulated arrival processes (e.g. MAP, BMAP)
the representation is not unique, and starting form a given representation of an
arrival process infinitely many different, but stochastically equivalent represen-
tations of the same process can be generated with similarity transformation.
Based on past experience it is known that optimizing non-unique representa-
tions should be avoided, since most computational effort of the optimizers is
wasted on going back and forth between almost equivalent representations hav-
ing significantly different parameters. The usual solution to address this issue is
to apply some structural restrictions (e.g. the Jordan representation of some of
the matrices), which can make the representation unique [15].

In this work, we also apply a structural restriction to make the optimization
of MMFAPs more efficient (by making the path to the optimum more straight):
We restrict matrix R to be diagonal such that the diagonal elements of R are
non-decreasing, which makes the representation of an MMFAP unique except
for the ordering of states with identical fluid arrival rates.

4.2 Computation of the double sided inverse Laplace transform

A crucial step of the algorithm both in terms of execution speed and numeri-
cal accuracy is that to compute the numerical inverse Laplace transformation
(NILT) of the expression in (3). There are many efficient numerical inverse trans-
formation methods for single sided functions [8]. However, in our case the func-
tion we have is double sided (as Gauss distributions can be negative, too), and
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numerical inverse transformation of double sided Laplace transforms are rather
limited.

If f(t) is the density of a positive random variable then
∫∞
−∞ e−stf(t)dt =∫∞

0
e−stf(t)dt and the single and double sided Laplace transforms of f(t) are

identical. If f(t) is the density of a random variable which is positive with a high
probability then

∫∞
−∞ e−stf(t)dt ≈

∫∞
0
e−stf(t)dt. Based on this approximation

one can apply single sided numerical inverse Laplace transformation for density
functions of dominantly positive random variables.

For a general MMFAP the non-negativity of the fluid increase samples in
T = {(tk, xk); k = 1, . . . ,K} can not be assumed. To make the single sided
numerical inverse Laplace transformation appropriately accurate also in this
case we apply the following model transformation

LQ,R,S({(tk, xk); k = 1, . . . ,K}) = LQ,R+cI,S({(tk, xk + ctk); k = 1, . . . ,K}),

where LQ,R,S({(t1, x1); (t2, x2); . . . ; (tK , xK)}) = α
∏K
k=1 N(tk, xk)1 is the like-

lihood of the samples when N(tk, xk) is computed with Q,R,S according to
(3) and c is an appropriate constant. If c is large enough, the relative differ-
ence of the fluid increase samples reduces and the likelihood function gets less
sensitive to the changes of the model parameters. If c is small, fluid increase sam-
ples might become close to zero and the single sided numerical inverse Laplace
transformation might cause numerical issues.

4.3 Reducing computational cost for equidistant measurement
intervals

For computing the likelihood function, the numerical inverse Laplace transfor-
mation of matrix N∗(t, v) needs to be performed once for each data point, i.e.
K times, which might be computationally expensive.

In the special case when the samples are from identical time intervals, that
is t1 = . . . = tK = t̄, we apply the following approximate approach to reduce the
computational complexity to M (M << K) numerical inverse Laplace transfor-
mation of matrix N∗(t, v).

– Let xmin = min(x1, . . . , xK), xmax = max(x1, . . . , xK) and ∆ = (xmax −
xmin)/M .

– Compute N(t̄, xmin + (m− 0.5)∆) for m = 1, . . . ,M by NILT of N∗(t, v).

– For x ∈ (xmin + (m− 1)∆,xmin +m∆), apply N(t̄, x) ≈ N(t̄, xmin + (m−
0.5)∆).

This way the [xmin, xmax] range is divided to M equidistant intervals and the
ILT is performed once for each. The higher the parameter M , the higher the
accuracy, but the slower the procedure.
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4.4 Computation of E(Θ
(k)
i ) and E(M

(k)
i,j )

Let us introduce the forward and backward likelihood vectors for the beginning
and the end of the kth observation period

f̂k = α

(
k−1∏
`=1

N(t`, x`)

)
= α

k−1∏
`=1

ILTv→x`N
∗(t`, v), (8)

b̂k =

(
K∏

`=k+1

N(t`, x`)

)
1 =

K∏
`=k+1

ILTv→x`N
∗(t`, v)1. (9)

and the forward and backward likelihood vectors for an internal point in the kth
observation period as

fk(t, x) = α

(
k−1∏
`=1

N(t`, x`)

)
N(t, x), (10)

bk(t, x) = N(t, x)

(
K∏

`=k+1

N(t`, x`)

)
1. (11)

We note that, using f̂k and b̂k, the likelihood can be expressed as

L = α · b1(t1, x1) = fk−1(tk−1, xk−1) · bk(tk, xk) = fK(tK , xK)1

= α · b̂0 = f̂ ` · b̂`−1 = f̂K+11,

for any k = 2, . . . ,K − 1 and ` = 1, . . . ,K.

To compute the expected value of Θ
(k)
i , the integrals of the forward and back-

ward likelihood vectors have to be evaluated. The special form of the integrals
allows for simplifications as

E(Θ
(k)
i ) =

∫ xk

x=0

∫ tk

t=0

[fk(t, x)]i · [bk(tk − t, xk − x)]i dt dx

= f̂k

(∫ xk

x=0

∫ tk

t=0

N(t, x)ei · eiTN(tk − t, xk − x) dt dx

)
b̂k

= f̂k ILTv→xk

(∫ tk

t=0

N∗(t, v)ei · eiTN∗(tk − t, v) dt

)
b̂k

= f̂k ILTv→xk

(∫ tk

t=0

e(Q−vR−v
2Σ/2)tei · eiT e(Q−vR−v

2Σ/2)(tk−t) dt

)
b̂k

= f̂k ILTv→xk

[0 I
]
e

Q− vR− v2Σ/2 ei · eiT
0 Q− vR− v2Σ/2

tk [I
0

] b̂k.

That is, the convolution integral is replaced by the evaluation of a matrix ex-

ponential of double size [16]. In a similar manner, the expected value of M
(k)
i,j
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is

E(M
(k)
i,j ) =

∫ xk

x=0

∫ tk

t=0

[fk(t, x)]i · qij · [bk(tk − t, xk − x)]j dt dx

= qij f̂k ILTv→xk

[0 I
]
e

Q− vR− v2Σ/2 ei · ejT
0 Q− vR− v2Σ/2

tk [I
0

] b̂k.

We note that these expressions give an interpretation for the zth iteration of the
EM method for qi,j

qi,j(z + 1) =

∑K
k=1 E

(
M

(k)
i,j

)
∑K
k=1 E

(
Θ

(k)
i

) =

qi,j(z)

f̂k ILTv→xk

[0 I
]
e

Q− vR− v2Σ/2 ei · ejT
0 Q− vR− v2Σ/2

tk [I
0

] b̂k

f̂k ILTv→xk

[0 I
]
e

Q− vR− v2Σ/2 ei · eiT
0 Q− vR− v2Σ/2

tk [I
0

] b̂k

,

that is, qi,j(z+ 1) is the product of qi,j(z) and an actual guess dependent value.

4.5 Computation of f̂k and b̂k

The computation of f̂k and b̂k follows a similar pattern and contains the same
difficulties, except that f̂k is computed from k = 0 onward and b̂k is computed
from k = K downward. The main implementation issue with the computation
of f̂k and b̂k, is to avoid under-/overflow during the computation. We adopted
the under-/overflow avoiding method proposed in [3].

5 Numerical examples

5.1 MMFAP simulator

For the numerical evaluation of the proposed method we developed a simulator
which generates the required number (K) of traffic samples based on matrices
Q, R and S. In each step of the simulation, the program samples the next
state transition of the Markov chain and checks if it occurs before or after the
next measurement instance. In the first case it samples the accumulated fluid
until the next state transition and performs the state transition, in the second
case it samples the accumulated fluid until the next measurement instance and
maintains the state of the Markov chain.
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To reduce the computational time of the fitting procedure by applying the
approximate approach introduced in Section 4.3, the simulator generates the
data samples such that t1 = . . . = tK = 1.

For the MMFAP with

Qslow =

−0.8 0.5 0.3
0.6 −0.7 0.1
0.2 0.3 −0.5

 , R =

 2 0 0
0 4 0
0 0 8

 , S =

0.01 0 0
0 0.02 0
0 0 0.04

 (12)

the histogram of the samples is presented in Figure 1a. The histogram indicates
that the Markov chain is “slow” in this case, i.e., it stays in a single state (e.g.
state i) during the measurement interval of length 1 with high probability and
accumulates N (ri, σ

2
i ) distributed amount of fluid during this interval. That is

the explanation of the peaks at around r1 = 2, r2 = 4 and r3 = 8. It is also
visible that the transitions between state 1 and 2 are faster than the transitions
to and from state 3 and consequently, the histogram indicates fluid samples in
the x ∈ (2, 4) interval. These samples might come from measurement intervals
starting from state 1 with r1 = 2 and moving to state to with r2 = 4, or vice
versa.

To indicate the effect of the “speed” of the Markov chain on the histogram
of the generated samples, Figure 1b depicts the histogram when the Markov
chain is “fast”, namely 10 times faster, Qfast = 10Qslow. The “fast” Markov
chain experiences state transitions during the measurement interval with very
high probability and the amount of fluid accumulated during the interval gets
to be less dependent on the state of the Markov chain at the beginning of the
measurement interval.

When the variance is low, as it is in this example, one can easily predict
the values of the R matrix with the “slow” Markov chain, while for the “fast”
Markov chain the values of the R matrix is not possible to guess based on the
histogram. Still, the minimal and the maximal sample values allows to estimate
the minimal and the maximal fluid rates of matrix R.

2 3 4 5 6 7 8
x0

100

200

300

400

Number of samples

2 3 4 5 6 7 8
x0

20

40

60

80

100

Number of samples

Fig. 1: Histogram of 5000 generated samples with Qslow, R and S and Qfast, R and
S defined in (12).
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5.2 Approximating Q with the EM method

Based on 300 samples of the MMFAP with

Q̄ =

[
−2 2
4 −4

]
, R̄ =

[
4 0
0 8

]
, S̄ =

[
0.01 0

0 0.02

]
, (13)

we approximate the MMFAP starting from Q̄0 =

[
−1 1
2.5 −2.5

]
, R̄0 = R̄, S̄0 = S̄

with the EM method. The evolution of the log-likelihood value and the transition
rates of the Markov chain are depicted in Figure 2a and 2b respectively, where
the dotted horizontal lines refer to the MMFAP according to (13), which was
used to generate the samples. The figure indicates that the obtained transition
rates provide a bit higher log-likelihood than the ones in (13). Additionally, the
figures report convergence after ∼ 25 iterations of the EM method.

LikelihoodOriginal

LikelihoodEM

20 40 60 80 100
Iteration

-180

-175

-170

Likelihood

20 40 60 80 100
Iteration

1

2

3

4

Qij

Q12EM

Q12Original

Q21EM

Q21Original

Fig. 2: Behaviour of the EM method based on 300 samples generated from Q̄, R̄ and
S̄ in (13) with initial guess Q̄0, R̄0 and S̄0. According to (5) and (6), R̄0 and S̄0

remained unchanged during the EM iterations.

Similarly, we evaluated the EM based approximation of the MMFAP defined

in (12) based on 1000 samples starting from Q0 =

−0.8 0.5 0.3
0.6 −0.7 0.1
0.2 0.3 −0.5

, R0 = R,

S0 = S.

LikelihoodOriginal

LikelihoodEM

20 40 60 80 100
Iteration

-560

-540

-520

Likelihood

20 40 60 80 100
Iteration

0.1

0.2

0.3

0.4

0.5

0.6

qij

q12_EM

q12_Org

q13_EM

q13_Org

q21_EM

q21_Org

q23_EM

q23_Org

q31_EM

q31_Org

q32_EM

q32_Org

Fig. 3: Behaviour of the EM method based on 1000 samples generated from Q, R and
S in (12) with initial guess Q0, R0 and S0.
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The evolution of the log-likelihood value and the transition rates of the
Markov chain along the EM iterations are depicted in Figure 3a and 3b re-
spectively. Figure 3a indicates that similar to the 2×2 example in Figure 2a the
likelihood value increased above the one obtained from original MMFAP. At the
same time, the transition rate values in Figure 3b differ more significantly from
ones of the original MMFAP than in Figure 2b, which might be a consequence of
a looser relation between the transition rates and the likelihood value in higher
dimensions.

6 Conclusions

The EM method is commonly applied for parameter estimation of Markov mod-
ulated models. In this paper we consider the fitting of MMFAP and recognize
that the EM method is not applicable for optimizing the fluid rate and variance
parameters. As a result, we investigated the properties of the EM based MMFAP
method for fitting the parameters of the governing Markov chain via numerical
experiments.
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Appendix

A Maximizing the model parameters

Assuming qi =
∑
j,j 6=i qi,j , the derivatives of logL are as follows:

∂

∂qi,j
logL =

∂

∂qi,j

K∑
k=1

(
−Θ(k)

i qi,j +M
(k)
i,j log qi,j

)
=

K∑
k=1

(
−Θ(k)

i +M
(k)
i,j

1

qi,j

)
,

∂

∂ri
logL =

∂

∂ri

K∑
k=1

(
−Θ(k)

i

r2i
2σ2

i

+ F
(k)
i

ri
σ2
i

)

=

K∑
k=1

(
−Θ(k)

i

ri
σ2
i

+ F
(k)
i

1

σ2
i

)
,

∂

∂σ2
i

logL =
∂

∂σ2
i

K∑
k=1

(
−Θ(k)

i

r2i
2σ2

i

+ F
(k)
i

ri
σ2
i

− 1

2σ2
i

FΘ
(k)
i −M

(k)
i

log σ2
i

2

)

=
∂

∂σ2
i

K∑
k=1

((
−Θ(k)

i r2i + 2F
(k)
i ri − FΘ(k)

i

) 1

2σ2
i

−M (k)
i

log σ2
i

2

)

=

K∑
k=1

((
−Θ(k)

i r2i + 2F
(k)
i ri − FΘ(k)

i

) −1

2(σ2
i )2
−M (k)

i

1

2σ2
i

)
.
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The optimal parameter values are obtained where the derivative is zero:

0 =

K∑
k=1

Θ
(k)
i −M

(k)
i,j /qi,j −→ qi,j =

∑K
k=1M

(k)
i,j∑K

k=1Θ
(k)
i

. (14)

0 =

K∑
k=1

Θ
(k)
i ri − F (k)

i

σ2
i

−→ ri =

∑K
k=1 F

(k)
i∑K

k=1Θ
(k)
i

. (15)

0 =

K∑
k=1

(
Θ

(k)
i r2i − 2F

(k)
i ri + FΘ

(k)
i

) 1

σ2
i

−M (k)
i

−→ σ2
i =

∑K
k=1Θ

(k)
i r2i − 2F

(k)
i ri + FΘ

(k)
i∑K

k=1M
(k)
i

. (16)

B Expected values of the hidden parameters

For E(F
(k)
i ) we have

E
(
F

(k)
i

)
= E

Θ
(k)
i
E
F

(k)
i |Θ

(k)
i

(F
(k)
i ) = E

Θ
(k)
i
riΘ

(k)
i = riE(Θ

(k)
i ). (17)

For FΘ
(k)
i =

∑n(k)

n=1
f(k)
n

2

θ
(k)
n

I{
J

(k)
n =i

}, we have

E
(
FΘ

(k)
i

)
= E

n(k)∑
n=1

f
(k)
n

2

θ
(k)
n

I{
J

(k)
n =i

}


= E{n(k),θ
(k)
1 ,...,θ

(k)

n(k)
}

n(k)∑
n=1

E{f(k)
n |θ(k)n }

f (k)n

2

θ
(k)
n

I{
J

(k)
n =i

}
 . (18)

Let X (µ, σ2) denote a normal distributed random variable with mean µ and

variance σ2. Its second moment is E
(
X 2(µ, σ2)

)
= σ2 +µ2. When θ

(k)
n = x then

f
(k)
n is X (xri, xσ

2
i ) distributed and E

(
f
(k)
n

2)
= E

(
X 2(xri, xσ

2
i )
)

= xσ2
i + x2r2i ,

that is

E{f(k)
n |θ(k)n }

f (k)n

2

θ
(k)
n

I{
J

(k)
n =i

}
 =

E{f(k)
n |θ(k)n }

(
f
(k)
n

2)
θ
(k)
n

I{
J

(k)
n =i

}

=
θ
(k)
n σ2

i + θ
(k)
n

2
r2i

θ
(k)
n

I{
J

(k)
n =i

} =
(
σ2
i + θ(k)n r2i

)
I{

J
(k)
n =i

}. (19)

Substituting (19) into (18) results

E
(
FΘ

(k)
i

)
= E

n(k)∑
n=1

f
(k)
n

2

θ
(k)
n

I{
J

(k)
n =i

}

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= E{n(k),θ
(k)
1 ,...,θ

(k)

n(k)
}

n(k)∑
n=1

E{f(k)
n |θ(k)n }

f (k)n

2

θ
(k)
n

I{
J

(k)
n =i

}


= E{n(k),θ
(k)
1 ,...,θ

(k)

n(k)
}

n(k)∑
n=1

(
σ2
i + θ(k)n r2i

)
I{

J
(k)
n =i

}


= E
(
M

(k)
i

)
σ2
i + E

(
Θ

(k)
i

)
r2i .

C Numerical computation of the expected value of the
hidden parameters

In the E-step we compute the expected value of the hidden parameters for given
α, Q, R, S and observed data (tk, xk) for k = 1, . . . ,K. For the expected values

of Θ
(k)
i we have

E
(
Θ

(k)
i |tk, xk

)
= E

n(k)∑
n=1

θ(k)n I{
J

(k)
n =i

}|tk, xk
 = E

(∫ tk

t=0

I{J (t)=i|xk}dt

)
(20)

=

∫ tk

t=0

E
(
I{J (t)=i|xk}

)
dt =

∫ tk

t=0

Pr (J (t) = i|xk) dt

=
∑
k

∑
`

∫ tk

t=0

Pr (J (0) = k,J (t) = i,J (tk) = `|xk) dt

=
∑
k

∑
`

∫ tk

t=0

Pr (J (0) = k)∫ xk

x=0

lim
∆→0

1

∆
Pr (x ≤ X (t) < x+∆,J (t) = i|J (0) = k,X (0) = 0)

lim
∆→0

1

∆
Pr (xk ≤ X (tk) < xk +∆,J (t) = `|J (t) = i,X (t) = x) dxdt

= αk

∫ tk

t=0

∫ xk

x=0

N(t, x)eiei
TN(tk − t, xk − x)1dxdt (21)

where the jth element of vector αk is Pr (J (0) = j) and ei is the ith unit column
vector.

According to (21), (10) and (11) , the expected value of Θ
(k)
i is

E(Θ
(k)
i ) =

∫ xk

x=0

∫ tk

t=0

[fk(t, x)]i · [bk(tk − t, xk − x)]i dt dx. (22)

In a similar manner, the expected value of M
(k)
i,j is

E(M
(k)
i,j ) =

∫ xk

x=0

∫ tk

t=0

[fk(t, x)]i · qi,j · [bk(tk − t, xk − x)]j dt dx. (23)


