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ABSTRACT
Numerical inverse Laplace transformation (NILT) is an im-
portant tool in the field of system modelling and perfor-
mance analysis. The recently introduced CME method has
many important advantages over the alternative numerical
inverse Laplace transformation (NILT) methods. It avoids
Gibbs oscillation (i.e., does not generate overshoot and un-
dershoot), preserves the monotonicity of functions, its ac-
curacy is gradually improving with the order, and it is nu-
merically more stable than the alternative methods. In this
paper we demonstrate these advantages and introduce our
tool which implements the CME method and other popular
NILT methods.

1. INTRODUCTION
Due to their analytical simplicity, Laplace transforms are

widely used in various scientific fields [26]. The main diffi-
culty in working with Laplace transforms is associated with
the difficulties in obtaining time domain results from the
Laplace transform descriptions. In a small subset of practi-
cally interesting cases it is possible to symbolically inverse
transform the Laplace domain description, but in the major-
ity of the cases symbolic inverse Laplace transformation is
not available and numerical inverse Laplace transformation
(NILT) remains the only feasible way of the analysis.

For several decades, NILT procedures were assumed to
be unstable, numerically sensitive and unreliable. One rea-
son for this bad reputation comes from the fact that low
order NILT methods were inaccurate and high order NILT
methods were unstable (often with weird alternation in the
results, which is often referred to as Gibbs oscillation) and
in many cases, the range of orders with reasonably accurate
results was missing between these two extreme behaviours.

In spite of the shortcomings of NILT methods, the bene-
fits of Laplace domain analysis gave continuous impetus for
improving NILT methods. Plenty of NILT methods were de-
veloped and published during the last 4 decades (for surveys,
we refer to [19, 31], and to those referenced therein).

Apart of many other scientific fields where Laplace trans-
forms are efficiently applied [26], the field where Laplace
transforms are most often applied is the stochastic perfor-
mance modelling and analysis of computer and communi-
cation systems. As some examples of the measures of in-
terest that is computed based on Laplace transform domain
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description we can note security [12], reliability [27, 9], de-
pendability [22, 15], performance [11], temporal logic kind
of measures, like “what is the probability that a random
event occurs before time T”, which can be obtained from
the transient and temporal measures of such systems [3, 4,
5].

In this work we demonstrate that the CME method is
applicable in a rather wide range of practically interesting
cases, such that it eliminates the mentioned weaknesses of
the previously applied methods. Additionally we present a
tool for NILT that implements the CME method and two
other popular NILT methods, the Euler and the Gaver–
Stehfest method. The offline version of the tool is available
in multiple popular scientific languages. The online version
can be used through an intuitive GUI and can be used for
demonstration purposes and for quick and simple calcula-
tions.

The rest of the paper is organized as follows. Section
2 gives an overview of the common features of the most
popular NILT methods and Section 3 introduces the CME
method. Section 4 provides the details of the NILT software
tools. Section 5 demonstrates the properties of the CME
method. Finally, Section 7 concludes the paper.

2. NILT METHODS
For a real or complex valued function h(t), the Laplace

transform is defined as

h∗(s) =

∫ ∞
t=0

e−sth(t)dt. (1)

The goal of NILT is to find an approximate value of h at
point T (i.e., h(T )) based on h∗(s).

Many, seemingly different NILT methods were unified in
a general framework by Abate and Whitt in [2]. In the
Abate–Whitt framework, a finite linear combination of the
transform values approximate h, via

h(T ) ≈
N∑
k=1

ηk
T
h∗
(
βk
T

)
, T > 0, (2)

where the nodes βk (1 ≤ k ≤ N) and weights ηk (1 ≤ k ≤ N)
are real or complex numbers that depend on the N , but not
on the transform function h∗ or the time argument T .

In order to have a real approximation in (2), the list of
nodes βk and weights ηk must contain only real values and
complex conjugate pairs. Denoting the set of real nodes,
complex nodes with positive imaginary part and complex
nodes with negative imaginary part by R = {k : βk ∈ R},



C+ = {k : Im(βk) > 0}, and C− = {k : Im(βk) < 0}, we
have

h(T ) ≈
∑
k∈R

ηk
T
h∗
(
βk
T

)
+
∑
k∈C+

2Re

(
ηk
T
h∗
(
βk
T

))
, (3)

which means that that h∗ needs to be evaluated only n =
|R|+ |C+| times instead of N = |R|+ |C+|+ |C−| times as it
is in (2). Therefore we call n (instead of N) the order of the
approximation. For the sake of simplicity, we will assume
that R ∪ C+ = {1, 2, . . . , n} in the following.

NILT methods outside the Abate–Whitt framework ap-
proximate h(T ) based on different approaches, e.g., using
the derivatives or the series expansion of h∗. NILT methods
of the Abate–Whitt framework turned out to be more effi-
cient than the methods outside the Abate–Whitt framework
and have become predominant.

Indeed, (2) defines a rather simple NILT procedure com-
posed of the following steps

1. compute the nodes βk (1 ≤ k ≤ n) and the weights
ηk (1 ≤ k ≤ n) according to the applied Abate–Whitt
framework method,

2. compute h∗ in points βk/T (1 ≤ k ≤ n),

3. sum up the results according to (2).

Step 1: Before the introduction of the CME method, the
widely used Abate–Whitt framework methods computed the
nodes and the weights based on a relatively easy to compute
explicit formula. In many of these methods the weights have
extremely large absolute value.

Step 2: The complexity of this step depends on h∗. There
are practically interesting cases, where h∗ does not exhibit
a closed form, thus numerical integrals (similar to (1)) need
to be evaluated in order to obtain h∗ in the required points.

Step 3: The summation in (2) can be numerically sensitive
when the weights have extremely large absolute value.

For the most commonly used methods in the Abate–
Whitt framework, such as Euler method [1], the Gaver-
Stehfest method [13, 28], and the Talbot method [29, 30],
max1≤k≤n |ηk| increases exponentially with the order of the
method.

As an example, the nodes and weights of the Euler method
are:

βk =
(n− 1) ln(10)

6
+ πi(k − 1), 1 ≤ k ≤ n,

ηk = 10(n−1)/6(−1)kξk, 1 ≤ k ≤ n,

where

ξ1 =
1

2
,

ξk = 1, 2 ≤ k ≤ (n+ 1)/2,

ξn =
1

2(n−1)/2
,

ξn−k = ξn−k+1 + 2−(n−1)/2

(
(n− 1)/2

k

)
,

for 1 ≤ k < (n− 1)/2.

3. THE CME METHOD
The CME method [18] also belongs to the Abate–Whitt

framework. The major difference between the CME method

Version Online Offline

Languages JavaScript
Matlab, IPython

Mathematica

Precision Machine Arbitrary, Machine

Output Visual Numerical, Visual
Method
Selection

Interactive Preselected

Multi-function
Support

Yes Yes

Complex No.
Support

Yes Yes

Higher-Dimension
Support

No Yes

Supported
Order

Up to 400 Up to 1000

Targeted
Users

General Researchers

Needed
Resources

Browser Computer

Table 1: A comparison between the online and the
offline implementations

and the previously introduced Abate–Whitt framework
methods is in the computation of the nodes and the weights.
The nodes and the weights are not computed at every ap-
plication of the NILT procedure, but they are computed in
advance for all required order n and the stored nodes and
weights are used for the computation of (2).

The CME method is based on the trigonometric – expo-
nential relation

fN (t) = c e−λt
n∏
j=1

cos2
(
ωλt− φj

2

)
=

N−1∑
k=0

ηke
−βkt, (4)

whose details are provided in [16]. By construction the fN (t)
of the CME method is non-negative.

Based on this relation, the nodes and the weights are de-
fined via the solution of the optimization problem

(ω∗, φ∗1, . . . , φ
∗
n) =

arg min
ω,φ1,...,φn

SCV

(
e−t

n∏
j=0

cos2(ωt− φj)

)
(5)

where the squared coefficient of variation (SCV) is defined
as

SCV :=

∫∞
t=0

t2fN (t)dt
∫∞
t=0

fN (t)dt(∫∞
t=0

tfN (t)dt
)2 − 1 (6)

The SCV is measure of the difference between the unit im-
pulse and fN (t), and it is insensitive to parameters c and
λ, that is why they are neglected in (5). For large orders,
100 < n < 2 · 105, quasi-optimal solutions of this optimiza-
tion problem is proposed in [7].

4. SOFTWARE SUPPORT
To provide software support for NILT, we created a tool

that implements the CME method along with the Euler and
the Gaver–Stehfest methods. The tool is available in two
versions at [17] working under the UIUC distribution license



Figure 1: Custom Laplace transform function defi-
nition with the NILT parameters setup

Figure 2: NILT of
√
π/2s3/2 by the CME, Euler meth-

ods with n = 100

[25]: offline version and online version. Both are available
through the webpage of the project [17]. The tool has the
following input parameters:

1. Laplace transform function to invert

2. list of evaluation points (T )

3. maximum number of evaluations (the maximum order
n to use)

4. NILT method to use (CME by default)

5. precision of calculations (machine precision by default)

The generated output is the value(s) of the numerical-based
inverse Laplace transform at point(s) given by T , presented
either as a list or in a visual format using a plot.

The offline version is directed more toward researchers;
that is why it is made available in multiple popular sci-
entific langiages: Matlab, Mathematica, and IPython. This
mode offers more control options for the user, like which cal-
culation precision (machine, arbitrary) needs to be applied,
integration with other ongoing research work, extracting the
results in visual and numerical formats. Additionally, it of-
fers the option of abscissa shifting, which can be used for
more precise approximation of the tail behaviour using the
recommendations in [18]. This version supports the CME
method for orders up to n = 1000. Up to this value stan-
dard double precision (i.e., machine precision in most envi-
ronments) calculation is generally sufficient.

Aside from the file containing the implementation of
the NILT methods, the offline version requires that the
”iltcme.json” file be placed into the same directory. This file
stores the pre-computed parameters that are used to calcu-
late the βk nodes and the ηk weights for selected orders of
the CME distributions in double precision.

Recently, more than 15 research papers in various fields
like hydrologic processes [24], water resources [20], control
theory [8], and especially in stochastic theory and modeling
[10, 14], have accredited CME NILT results based on our
tool. We also applied it successfully in the analysis of fluid
queues [4, 6], QBDs [5], and vehicular ad-hoc networks [21].

The online version allows the user to directly demon-
strate the CME NILT within the browser via a JavaScript
GUI. This version offers to perform NILT for six pre-defined
Laplace transform functions (exponential, sine, heavy-side,
exponential heavy-side, periodic square wave, staircase) or

a custom Laplace transform function written in an appro-
priate syntax (matrices and complex numbers are also sup-
ported in the expression). The GUI comes with options to
customize the axis boundaries and the number of steps for
the x-axis. Moreover, the effect of changing the number of
function evaluations (order n) on the NILT accuracy is illus-
trated interactively. During the demonstration, and simply
with a few clicks on the legend bar, the user can also visually
compare the CME method with the exact inverse Laplace
transform (if known) as well as with the Gaver–Stehfest and
the Euler method.

Table 1 concludes the features provided by the two ver-
sions.

5. APPLICATION EXAMPLES
In this section, we will demonstrate the advantages of the

CME method over the classical methods under Abate–Whitt
framework and display the features offered by the GUI inter-
face. Numerical and visual examples for the offline version
were discussed in detail in [18].

In the first example, shown in Figure 1, we use the custom
function option to inverse transform h∗(s) =

√
π/2s3/2, with

T = [0, 5] with 500 steps (i.e., 0.01 step size). The y-axis
boundaries are set to be automatic. The tool provides the
h(t) =

√
t inverse transform pair of h∗(s), since it can be

obtained analytically. We set the NILT order (maximum
number of function evaluation) to n = 100.

Figure 2 shows that the CME method generates smooth,
stable, and accurate NILT results based on the comparison
with the exact inverse, while the Euler method suffers from
numerical instability, which manifests in significant noise.
The Gaver method gives completely false results due to its
even greater instability, therefore it was excluded from the
figure by clicking on its legend.

To demonstrate the difference in Gibbs oscillation, in the
second example we use the built-in exponential Heaviside
function h(t) = It≥1(t)e1−t (in which It≥1(t) is the indica-

tor function of t ≥ 1) and its Laplace transform h∗(s) = e−s

1+s
.

Figure 3 shows the NILT results for the different methods.
The CME method gives the most accurate result in practi-
cally all points, which is a common observation for functions
with discontinuity. The Gaver–Stehfest method follows the
jump quite slowly, while the Euler method follow it faster,
but both result in significant under- or overshoot due to
the Gibbs oscillation. This oscillation is inherent to the
Gaver–Stehfest and Euler methods and has nothing to do



Figure 3: NILT of the Heaviside exponential func-
tion with n = 20

Figure 4: NILT of the Heaviside exponential func-
tion with n = 52

Figure 5: NILT of the Heaviside exponential func-
tion with n = 72

with the numerical precision used. It would seem natural
that increasing the order of the methods should improve the
accuracy, since it increases the number of terms used to ap-
proximate h(t) according to (2). Figure 4 shows that this is
not the case, however. By increasing the order to n = 52,
only the CME method becomes more accurate. The Euler
method follows the jump in the exact solution faster, but
at the cost of significant Gibbs oscillation, while the Gaver–
Stehfest method becomes unusable due to its poor numerical
stability. Increasing the order to n = 72, as shown in Fig-
ure 5 improves the CME method further, while for the Euler
method it only increases the Gibbs oscillation. This example
shows that the CME method is not only Gibbs oscillation
free and numerically stable, but also reliable in the sense
that increasing its order also increases its accuracy.

6. APPLICATION OF NILT IN PERFOR-
MANCE ANALYSIS

To demonstrate the application of NILT in performance
analysis and the use of the offline tool in Mathematica en-
vironment we provide the response time analysis of a retrial
system with unreliable servers from [23].

The considered queueing system behaves as follows. In-
coming customers queue up in an infinite buffer when the
server is busy. A single server serves the customers in FIFO
order, which is subject to breakdown. In case of a server
breakdown, the server gets back to operational after an in-
dependent, identically distributed (i.i.d.) setup time. If
the server was busy at breakdown, it continues the service

of the interrupted customer when it gets back to opera-
tional according to one of the following three preemption
policies: preemptive resume (PRS), preemptive repeat dif-
ferent (PRD), and preemptive repeat identical (PRI). With
the PRS policy, the server continues the service of the in-
terrupted customer from the point it was interrupted. With
the PRD policy, after an interruption the server restarts the
service of the interrupted customer with i.i.d. service time.
With the PRI policy the server restarts the service of the
interrupted customer, and the service time of the customer
in the current operational period of the server is identical to
the one of the previous operational period.

The performance measure of interest is the generalized
service time, G, which is the time from the instant the server
starts the service of a customer until it completes the service
of that costumer considering the potential breakdown and
setup cycles of the server and the applied preemption policy.

The CDF, PDF, and the LT of the (breakdown free)
service time, S, are denoted by F (x) = Pr(S < x),
f(x) = dF (x)/dx, and f∗(s) = E(e−sS), respectively. Simi-
larly, the CDF, PDF, and the LT of the setup time, R, and
the generalized service time G are denoted by R(x), r(x),
r∗(s) and G(x), g(x), g∗(s), respectively. Additionally, we
are interested in the equilibrium distribution of the general-

ized service time, whose PDF is ge(x) = 1−G(x)
E(G)

and LT is

g∗e (s) = 1−g∗(s)
sE(G)

. The server breaks down with constant rate
ν.

With the different preemption policies the LT of the gen-
eralized service time is

g∗prd(s) =
(s+ ν)f∗(s+ ν)

(s+ ν)− ν(1− f∗(s+ ν))r∗(s)
, (7)

g∗prs(s) =f∗(s+ ν − νr∗(s)), (8)

g∗pri(s) =
(s+ ν)

(s+ ν)− νr∗(s) · (9)

∞∑
j=0

(
−νr∗(s)

(s+ ν)− νr∗(s)

)j
f∗((j + 1)(s+ ν)).

Figure 6 plots the density function of the generalized ser-
vice with different Weibull distributed service time distri-
butions and exponentially distributed setup time (that is
r∗(s) = %

s+%
). The PDF of the Weibull distribution is

f(t) = αλ(λt)α−1e−(λt)α , where the α shape parameter de-
termines the decay rate as t tends to infinity. We consider
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Figure 6: Density function of the generalized ser-
vice time distribution and the remaining generalized
service time distribution with PRD, PRS and PRI
policies, when the service time is light (λ = 1, α = 2)
and heavy (λ = 1, α = 1/2) tailed Weibull distributed,
the setup time is exponentially distributed with pa-
rameter % = 4 and the failure rate of the server is
ν = 2.

two cases: In the heavy tailed case with α = 1/2

f∗(s) =

√
πλ

2
√
s
e
λ
4sErfc

(√
λ/s

2

)
,

and in the light tailed case with α = 2

f∗(s) = 1− s
√
π

2λ
e
s2

4λ2 Erfc
( s

2λ

)
,

where Erfc is the complementary error function defined as

Erfc(z) = 2√
π

∫∞
t=z

e−t
2

dt. Figure 6 plots the density func-

tions of the different cases obtained from the NILT of (7)-
(9). The plot of the heavy tailed case contains only 5 curves
because the mean generalized service time is infinite with
the PRI preemption policy in this case. Figure 7 presents
an implementation example associated with the queueing
model.

Figure 7: Mathematica code of the implementation.

7. CONCLUSION
In this paper we presented the CME method and demon-

strated its advantages compared to other NILT methods.
We showed that, unlike its most popular competitors, it
provides results free of Gibbs oscillation, improves with in-
creasing order, and is very stable numerically. These assets
make it an ideal choice as a general method for NILT. We
illustrated the above benefits using our online tool, which
has a simple, intuitive interface and is optimal for testing
and demonstrative purposes, while its offline version, imple-
mented in multiple popular scientific languages, offers more
options for fine-tuning and is recommended for general re-
search purposes.
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[17] I. Horváth, G. Horváth, S. A.-D. Almousa, and
M. Telek. inverselaplace.org.
https://inverselaplace.org/. [Online; accessed
24-Sept-2021].
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