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Abstract

In this paper we consider an ATM transmission link, to which CBR or VBR and ABR or UBR calls arrive

according to independent Poisson processes. CBR/VBR calls (characterized by their equivalent bandwidth) are

blocked and leave the system if the available link capacity is less than required at the time of arrival. ABR/UBR

calls, however, accept partial blocking, meaning that they may enter service even if the available capacity is less

than the speci�ed required peak bandwidth, but greater than the so called minimal accepted bandwidth. Partially

blocked ABR/UBR calls instead experience longer service time, since smaller given bandwidth entails propor-

tionally longer time spent in the system, as �rst suggested in [3] and analyzed in details herein. Throughout the

life time of an ABR/UBR connection, its bandwidth consumption uctuates in accordance with the current load

on the link but always at the highest possible value up to their peak bandwidth (greedy sources). Additionally,

if this minimal accepted bandwidth is unavailable at the time of arrival, ABR/UBR calls are allowed to wait in

a �nite queue. This system is modeled by a Continuous Time Markov Chain (CTMC) and the CBR/VBR and

ABR/UBR blocking probabilities and the mean ABR/UBR waiting- and service times are derived.

1 Introduction

One of the main concerns regarding the Asynchronous Transfer Mode (ATM) is the integration of services

having strict Quality of Service (QoS) guarantees (such as the Constant Bit Rate (CBR) and the Variable Bit

Rate (VBR) service categories), with services of limited or without such guarantees (such as the Available Bit

Rate (ABR) and the Unspeci�ed Bit Rate (UBR) service categories). On the call level ATM networks have

traditionally been modeled as multi-rate circuit switched networks. This is possible by adopting the concept

of equivalent bandwidth. Thus, the multi-rate Erlang Blocking Model has been successfully used to analyze

such networks [7, 15, 20, 24, 25, 26]. With the introduction of the "best e�ort" type service classes (ABR and

UBR) these models need to be extended, because (1) the traditional equivalent bandwidth based approach for

bandwidth estimation is not directly applicable, since there are less or no QoS parameters at all, (2) there is
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either very limited or no resource allocation made prior to the information transfer phase and (3) the traditional

models disregard the rate-based closed loop ow control mechanism which is an essential feature of the ABR

service category [28].

A generalization of the multi-rate circuit switched loss model (without call queueing) to include best e�ort tra�c

like ABR has been presented in [3], where it was argued that with the introduction of partial blocking into the

Multi-rate Erlang Model it is possible to model ABR/UBR services (best e�ort services) on the call level. The

key feature of such a system is that calls accepting partial blocking specify, in addition to their peak bandwidth

requirement B

r

, a so called minimal accepted service ratio, r

min

. In ABR terminology this would correspond to

the fraction of the minimum cell rate and the peak cell rate i.e.

MCR

PCR

. During the call negotiation process an

ABR/UBR (best e�ort) connection is accepted if, and only if, the available bandwidth B

a

at the time of arrival

satis�es: r

min

�B

r

� B

a

. During the life time of such a connection the instantenous service ratio r(t), de�ned as

min[1; B

a

(t)=B

r

], uctuates according to the current load and the available capacity on the link, capturing the

behaviour of an ideally working rate-based ABR control algorithm. An underlying assumption here is that the

ABR source is greedy in the sense that as long as the connection is established the source will always transmit

with the maximum possible rate, which is the smallest of its peak rate B

r

and its equal share of the bandwidth

left for the ABR/UBR service category. Another assumption here is that the given bandwidth-residency time

product is kept constant as in [17], but the "given bandwidth" uctuates, so the calculation of the residency

time becomes complicated.

Since the given bandwidth-residency time is kept constant, and since the given (available) bandwidth, B

a

, may

uctuate, this model can be seen as a generalization of the "Erlang Blocking Model with Retrials" analyzed

by Kaufman in [17]. There, a type-i call can specify "retry parameters" (B

ir

; 1=�

ir

), where B

ir

< B

i

(B

i

is

the original bandwidth requirement of a type-i call). If such retry parameters are speci�ed a blocked type-i

call will immediately re-attempt, but now requesting reduced bandwidth B

ir

with a mean residency time 1=�

ir

.

Therefore the non real-time message types (e.g. �le transfers) may, upon being blocked obtain service but with

smaller bandwidth (B

ir

) and larger residency time (1=�

ir

), as long as the bandwidth-residency time product is

the same as originally requested (B

i

� 1=�

i

), [17].

It has been observed in many papers [5, 8, 12, 18, 24, 25, 27], that in a multi-rate network, where services with

large di�erence between the bandwidth requirements are present wide-band calls su�er much higher blocking

probabilities than narrow-band calls. By applying either trunk reservation or class limitation it is possible to

level out the blocking probabilities. However, in most cases, the disadvantage in terms of blocking probability

increase incurred on the narrow-band tra�c is much bigger than the advantage in terms of blocking probability

decrease obtained for the wide-band tra�c (see e.g. Figure 2). Employing these fairness procedures therefore

does not solve the problem of how to achieve good network performance for all tra�c types and high utilisation

at the same time.

Section 2 presents the Markovian model where both partial blocking and queueing are allowed. Calls with

guaranteed service compete with best e�ort calls for the bandwidth on a link and the underlying Quasi-Birth-

Death structure (QBD) of the transition matrix is described. From the usual steady state analysis blocking

probabilities for the two tra�c types are derived and by an application of Little's result also the mean time a

best e�ort call spends in the system is derived. In Section 3 the simpli�ed system without queueing is analysed

and it is shown how the distribution of the time a best e�ort call spends in the system can be derived by applying

techniques from Markov driven workload processes. Finally, Section 4 discusses a number of numerical results

enlightning how the relevant performance measures vary as the function of the minimal accepted service ratio,

r

min

, and the �nite queue's length, Q, for best e�ort calls.

2 The Partially Blocking-Queueing System

2.1 Model and Assumptions

In this section we formulate the Markov model in which a single link is o�ered calls from two classes of tra�c.

The link capacity is denoted by C, which is assumed to be an integer number in some suitable bandwidth unit.

� The �rst type is CBR tra�c and it is supposed to represent a service with QoS guarantees. By adopting

the notion of equivalent bandwidth this type could as well be VBR tra�c. CBR calls are characterized by

their arrival rate �

1

their departure rate �

1

and their equivalent bandwidths B

1

and
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� The second type is ABR tra�c and it is supposed to represent best e�ort tra�c. ABR calls are characterized

by their their arrival rate �

2

their departure rate �

2

their peak rate B

2

and minimum required rate r

min

B

2

Both types of calls arrive according to Poisson processes and the holding time for CBR/VBR (guaranteed service)

calls are exponentially distributed with departure rate �

1

. Each arriving ABR/UBR (best e�ort) call brings with

itself an exponentially distributed service requirement, which in the case when the peak bandwidth is available

throughout the entire duration of the connection gives rise to a departure intensity of �

2

. In the case when

the peak bandwidth is not available, all ABR connections in progress on the link share the available bandwidth

(which is the link capacity minus the total bandwidth occupied by the CBR calls) equally.

The rate at which the ABR calls are receiving service thus uctuates in accordance with the bandwidth that

is available on the link, the response time assumed to be zero corresponding to an ideally working closed loop

ABR rate-based ow control without propagation delay. The ABR calls in progress on the link are not allowed

to receive service at a rate smaller than r

min

B

2

. In such link states the incoming call attempts are blocked or

queued. Note that arriving CBR/VBR calls are also allowed to "compress" the in-service ABR calls as long as

the r

min

constraint is not violated.

2.2 System Description

The system under investigation is characterised by (n

1

(t); n

2

(t)) where n

1

(t) is the number of CBR calls on the

link at time t and n

2

(t) is the number of ABR calls in the system (on the link and in the queue) at time t. The

vector (n

1

(t); n

2

(t)) uniquely speci�es how many ABR calls are waiting in the queue (q), and what service ratio

r the in-service ABR calls receive.

Under the assumption of Poisson arrivals and exponential holding times (n

1

(t); n

2

(t)) constitutes a two dimen-

sional Markov Chain and to obtain the performance measures we need to �nd the generator matrix G and

to solve �G = 0 and �e = 1 where e = (1; :::; 1)

T

is a column vector and � is the steady state probability

distribution to be found.

The Markov Chain is not time reversible and does not obey a product form solution. However, as will be shown

next, it does have a quasi-birth-death (QBD) structure which allows for e�cient methods for deriving the steady

state distribution �.

Let P denote the maximum number of ABR calls in the system, i.e.

P = b

C

B

2

� r

min

c+Q: (1)

Let p denote the actual number of ABR calls in the system, i.e. p takes integer values between 0 : : : P . Further-

more, let I(p) denote the maximal number of CBR calls in macro state p:

I(p) = b

C �max(0; p�Q) � r

min

�B

2

B

1

c; p = 0 : : : P (2)

When there are p ABR calls in the system and there are i CBR calls in the system, we say that the system is in

macro state p and micro state i. Thus, in a given macro state the number of ABR calls is �xed, and there are

only CBR arrivals and departures. The macro states will be characterized by the matrices A

p

.

When p runs through the macro states, i.e. p = 0 : : : P , the G generator matrix takes the form:

G =

2

6

6

6

6

6

6

6

6

4

A

0

C

0

0 0 :: 0 0 0 0

B

1

A

1

C

1

0 :: 0 0 0 0

0 B

2

A

2

C

2

:: 0 0 0 0

:: :: :: :: :: :: :: :: ::

0 0 0 0 :: B

P�2

A

P�2

C

P�2

0

0 0 0 0 :: 0 B

P�1

A

P�1

C

P�1

0 0 0 0 :: 0 0 B

P

A

P

3

7

7

7

7

7

7

7

7

5

(3)

Let q(p; i) and r(p; i) denote the actual queue length and the service ratio when the system is in macro state p

and micro state i. Then:

q(p; i) = min[max(0; p� b

C � i �B

1

r

min

�B

2

c); Q]
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r(p; i) =

�

min(1;

C�i�B

1

(p�q(p;i))�B

2

) if p 6= q(p; i) and p 6= 0

0 otherwise

for all p = 0 : : : P and i = 0 : : : I(p). The A

p

matrices represent the CBR arrivals and departures in state p,

p = 0 : : : P . All A

p

matrices are square matrices. We de�ne the following auxiliary multiplication factor, which

is zero if an arriving CBR call is blocked, because it would increase the ABR queue length, which is forbidden.

a(p; i) =

�

1 if q(p; i) = q(p; i+ 1) and i+ 1 � I(p)

0 otherwise

where i = 0 : : : I(p).

The size of the square A

p

matrix is (I(p)+1)�(I(p)+1), i.e. the index range is : 0 : : : I(p)�0 : : : I(p), p = 0 : : : P .

A

p

[i; i+ 1] = a(p; i) � �

1

; i = 0 : : : I(p)� 1; A

p

[i; i� 1] = i � �

1

; i = 1 : : : I(p)
(4)

Note that the A

p

matrices are tri-diagonal, which implies:

A

p

[i; j] = 0 for any i; j pair for which ji� jj � 2.
(5)

The size of the (in general not square) B

p

matrix: (I(p)+1)� (I(p� 1)+1), i.e. the index range is : 0 : : : I(p)�

0 : : : I(p� 1), p = 1 : : : P . Thus we have:

B

p

[i; i] =
(p� q(p; i)) � r(p; i) � �

2

; i = 0 : : : I(p)
(6)

and

B

p

[i; j] = 0 for any i; j pair for which ji� jj � 1.
(7)

The size of the (in general not square) C

p

matrix: (I(p)+1)� (I(p+1)+1), i.e. the index range is : 0 : : : I(p)�

0 : : : I(p+ 1), p = 0 : : : P � 1.

C

p

[i; i] =
�

2

; i = 0 : : : I(p+ 1)
(8)

and

C

p

[i; j] = 0 for any i; j pair for which ji� jj � 1.
(9)

These equations along with the understanding that each row in the generator matrix must sum up to zero,

uniquely determine each matrix element in G. Note that the total number of states S in the system is given by:

S =

P

X

p=0

(I(p) + 1) (10)

2.3 Obtaining Blocking Probabilities and the Mean Time in System for Best E�ort

Calls

Once the steady state distribution �(s) has been found, we can obtain the CBR class and the ABR class blocking

probabilities (P

1

and P

2

) by identifying the indexes of the CBR and ABR blocking states.

In order to identify the blocking states, we will number (assign scalar indexes to) the states in the two dimensional

state space from 0:::S�1, such that when the system is in state (i; p), it will have the index s =

P

p�1

l=0

(I(l)+1)+i.

That is, when the system is in the state with index s, there are i CBR and p ABR calls in the system:

p = f

2

(s) := inffJ ;

J

X

l=0

(I(l) + 1) > sg (11)

i = f

1

(s) := s�

f

2

(s)�1

X

l=0

(I(l) + 1) (12)

Thus f

2

(s) gives from the index s the unique number of ABR calls in state s while f

1

(s) gives the unique number

of CBR calls in state s.
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When the system is in state of index s, there are p = f

2

(s) ABR and i = f

1

(s) CBR calls in the system. A state

s is clearly a CBR blocking state if i = I(p), p = 0; :::; P . Additionally, because CBR calls may not squeeze out

in-service ABR calls, a state (i; p) is also a CBR blocking state if q(i + 1; p) � q(i; p) + 1. A state (i; p) is an

ABR blocking state if the following inequality holds for p = 0; :::; P � 1:

C � i �B

1

� r

min

� (p+ 1� q(p+ 1; i)) �B

2

(13)

If p = P we obviously always have an ABR blocking state. Then let S

1;Bl

and S

2;Bl

be the sets of CBR service

and ABR blocking states respectively. The blocking probabilities are then given by P

1

=

P

s2S

1;Bl

�(s) and

P

2

=

P

s2S

2;Bl

�(s).

The distribution of the time spent in the system for the ABR class can be obtained as shown in the next section.

However, the determination of the mean time spent in the system is due to Little's famous result much easier.

Let S

q

denote the set of states where the queue size is q. Then from the steady state distribution � we can easily

calculate the mean queue length. It is

q

MEAN

=

P

X

q=0

(q �

X

s2S

q

�(s)) (14)

From Little's equation the mean waiting time of the ABR calls is therefore q

MEAN

=(�

2

� (1� P

2

)).

Similarly, let T

w

denote the set of states where the number of ABR calls in the system is w. Then the mean

number of ABR calls in the system is

W

MEAN

=

P

X

w=0

(w �

X

s2T

w

�(s)) (15)

And from Little's equation the mean time an ABR call spends in the system is W

MEAN

=(�

2

� (1� P

2

)).

3 The Partially Blocking Loss System

When the ABR calls are not allowed to wait in a queue if su�cient bandwidth is not available at time of arrival,

the Markov model simpli�es in two ways. Firstly, the size of the state space becomes smaller since Q = 0.

Secondly and more important, the computation of the time spent in the system simpli�es because with zero

queue the ABR calls always receive service with positive rate, and therefore it is possible to apply the theory

of Markov driven workload processes. As it is shown in this section, in this case it is possible to determine the

distribution of the ABR service time.

3.1 The Time in System Conditioning on Service Requirement x

Assuming that an ABR call has just arrived and conditioning upon that its service requirement is x, the Laplace

transform of the time this ABR call will spend in the system can be found by applying the technique of Markov

driven workload processes. The computation is detailed in the Appendix and the Laplace transform of the time

an ABR call spends in the system conditioning that its service requirement is x is:

P

R

(0)s

�

(x; s)e = P

R

(0) exp[R

�1

(M � sI)x][I �M=s]

�1

e (16)

whereM is the generator of reduced irreducible Markov process given above when Q = 0, R is a diagonal matrix

where entry (k; k) gives the service ratio available for an ABR call in state k, and P

R

(0) is the probability vector

giving the probabilities by which an ABR call enters the system [9]. Finally, s

�

(x; s) is the matrix of Laplace

Transforms of the time spent where entry (i; j) denotes the entrance to the system in state i and departure from

the system in state j.

3.2 The Unconditional Time to Completion when Service Requirement is Expo-

nential

Conditioning upon that the required initial workload is x we have from (29) when summing over all �nal states

s

�

(x; s)e = exp[R

�1

(M � sI)x][I �M=s]

�1

e (17)
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Assuming that the initial service requirement is exponentially distributed with parameter � then unconditioning

on x yields

s

�

(s)e =

Z

1

0

s(x; s)e�e

��x

dx

=

Z

1

0

exp[R

�1

(M � sI)x]�e

��x

dxe

=

Z

1

0

exp[�R

�1

(sI � (M � �R))x]dx�e

The integration yields

s

�

(s)e = [sI � (M � �R)]

�1

R�e (18)

Let P

R

(0) denote the initial probabilities in which the Markov chain is started. Then the density function T

exp

for the time until the completion of an exponentially distributed workload has transform

P

T

R

(0)s

�

(s)e = P

T

R

(0)[sI � (M � �R)]

�1

R�e (19)

which is seen to correspond to a phase type distribution with initial probability vector P

R

(0), transient matrix

M � �R and vector R� of rates to the absorbing state. This result is in accordance with theorem 3 in [4].

4 Numerical Results

4.1 Numerical Solution Approach

The generator matrix describing the QBD has a band structure. This sparse property of the generator can

be exploited when using a direct solution approach for obtaining the steady state probability vector. We

have employed a sparse implementation of a direct matrix method called the GTH algorithm (named after the

authors Grassman, Taksar and Heyman) [13]. The GTH algorithm is a simple modi�cation of standard Gaussian

elimination for the calculation of the steady-state probability vector of a Markov chain. The modi�cation makes

the procedure numerically stable unlike the standard Gaussian elimination without pivoting. The complexity

of the algorithm is of the same order as standard Gaussian elimination. The key to the numerical stability

of the GTH approach is that all operations performed are cancellation free i.e. the approach ensures that all

additions are done with elements that have the same sign. In [13] and [16] numerical evidence was given that

the cancellation free scheme did in fact allow for the accurate computation of steady-state probability vectors of

large Markov chains (non sparse matrices with around 1000 states). Recently in [23] it has been shown formally

that the algorithm is stable and that the algorithm computes each component in the steady-state vector with

low relative error. In the subsection below we examine models with generators of up to around 250000 states and

�nd loss probabilities etc. for these models. We have run all our examples in a standard HP-UNIX computing

environment consisting of 5 powerful servers and a number of smaller workstations. The system has around 100

users. We ran our examples on HP 9000/800/K460 servers. The largest examples - 250000 states - used around

5 CPU minutes, and around 250 Mb of RAM. On a powerful server the memory consumption seems to be the

limiting factor with regards to the size of the problems we can solve rather than the execution time. We did not

recon�gure the system in any way to be able to run our examples - obviously we used a large part of the servers

2 Gigabytes of RAM when executing the program.

4.2 Results

This section consists of two subsections where we examine examples of systems de�ning generators with moderate

and large state spaces respectively.

4.2.1 Results for systems with moderate state space

In this section we consider a single link of capacity C=60 Mbit/s, which is o�ered calls according to a Poisson

process and with exponential holding time belonging to two di�erent service classes. To obtain interesting

numerical results and emphasizing the role of call queueing and partial blocking we assume that CBR calls

are narrow-band, while ABR calls are wide-band. Note that the usefulness of the model does not depend on
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CBR and ABR being respectively narrow-band and wide-band calls. The model is also valid for systems where

CBR is broadband and ABR is narrow-band. Speci�cally for our example, any CBR calls have a bandwidth

demand of B

1

= 1 Mbit/s and mean holding time 1=�

N

= 1 s. CBR class calls do not accept partial blocking,

i.e. they are either given the required bandwidth B

1

or blocked and lost. Wide band calls are of the ABR

type characterized by the (maximal) bandwidth demand B

2

= 10 Mbit/s and mean holding time 1=�

W

= 1

s, and, as discussed above, by the minimal accepted service ratio r

min

< 1. Best e�ort calls do accept partial

blocking, i.e. they are admitted into the system if, at the time of arrival the available bandwidth is at least

r

min

�B

2

. In the examples below we assume that all in-service ABR calls receive the same instantaneous service

ratio r(t) = max[

C�n

N(t)

�B

1

n

W (t)

�B

2

; 1] > r

min

, where n

N

(t) and n

W

(t) denote the number of (narrow-band) CBR and

(wide-band) ABR calls in the system at time t.

Figure 1 shows the performance measures of this partially blocking (PB) system (where we let �

1

= 10��

2

= 30

1/s). As r

min

decreases form 1.0 to 0.4, ABR (wide-band, WB) class blocking also decreases from 40% to 13%

! Additionally, CBR/VBR (narrow-band, NB) class blocking decreases, too, even though this decrease is not so

signi�cant. This performance increase in blocking probabilities is, of course, at the expense of the ABR class

calls increased time spent in the system. This time increase is less than 20% at r

min

= 0:6, but reaches almost

60% at r

min

= 0:4. To assess the performance of the system we de�ne the overall performance measure in the

spirit of [19], as follows:

Perf =

1� P

N

� P

W

1 +�T

(20)

where �T stands for the mean additional time spent in the system as compared to the mean time spent in the

system if no partial blocking or queueing were allowed (i.e. the "original" mean holding time of the ABR calls,

1=�

2

). This performance measure takes into account the tradeo� between blocking probabilities and ABR call

time spent in the system. It is maximal around r

min

= 0:7, indicating that choosing a smaller value for r

min

results in a relatively great increase of the service time for the the ABR calls, and it "doesn't pay o�" in terms

of blocking probability decrease. Another popular extension of the Erlang Loss Model has been the so called

mixed delay and loss (MDL) systems [2, 8, 14, 22]. Even though it is fundamentally di�erent from the PB model,

its performance measures are comparable to those of ours. This is because mixed delay and loss systems also

attempt to decrease blocking probability at the expense of increased time spent in the system, i.e. in the queue

and in service.

This motivates the comparison of the performance measures of a PB and an MDL system. Figure 2 shows the

performance measures of a system with the same system parameters as of Figure 1. Here, instead of partially

blocking ABR calls, they are placed in a �nite queue (the size of which varies form 0 to 6) in the case when

insu�cient bandwidth at the time of arrival. As the queue length increases, the wide-band class blocking

decreases, as expected, from 40% to 9% - roughly the same decrease in the blocking probability as in the PB

system. Note, however, that the blocking of the narrow-band class here increases to 18% ! This explains why

the combined performance measure (Perf) of the PB system is strictly superior to that of the MDL system.

To combine the advantages of MDL and PB systems, we now consider a system where both queueing and partial

blocking are allowed for the wide-band ABR calls. Here we consider a link of capacity C = 30 Mbit/s. Narrow

band calls require B

1

= 1 Mbit/s bandwidth, wide-band calls require B

2

= 12 Mbit/s (case I) or 6 Mbit/s peak

bandwidth (case II). In case I the total o�ered load B

1

� �

N

� (1=�

N

) +B

2

� �

W

� (1=�

W

) is 16 Mbit/s*Erlang,

in case II it is 30 Mbit/s*Erlang. Figures 3 and 4 show the di�erent performance measures when r

min

decreases

from 1.0 to 0.5. The behavior of the system is investigated in six sub-cases as the maximal queue length (bu�er

size), Q for wide-band calls changes from 0 up to 5.

Figures 3.a and 4.a show the wide-band class blocking probabilities in these two cases (I and II). The wide-band

class blocking probability drastically decreases as r

min

decreases when there is call queueing, or when the queue

size is small, Q = 1 or Q = 2. Providing for a single queue place and accepting 50% partial blocking in case

II., for instance, decreases blocking from 42% under 10%. Further increase of the queue capacity, or, when the

bu�er space is kept at 2 or more, further decrease of r

min

doesn't have signi�cant impact on wide-band blocking.

Figures 3.b and 4.b depict the narrow-band class blocking probabilities. Naturally, wide-band call queueing

causes an increase in narrow-band blocking, but this increase can be compensated somewhat by permitting

narrow-band calls to "squeeze" the in-service wide-band calls. In case II., for instance, providing a single queue

place for the wide-band calls, increases narrow-band blocking from 6 to 14 %, but as r

min

decreases to 0.5,

blocking decreases to 11%.

It is interesting how the time a wide-band call spends in the system depends on r

min

and Q, as seen in Figures

7



3.c and 4.c. Clearly, the longer the queue, the longer the mean queueing time (and smaller their blocking

probability) becomes. Choosing r

min

is a clear trade o� between (1) how long a call has to wait in the queue

(the smaller r

min

becomes, the faster wide-band calls get into service, because they accept smaller bandwidth,

and (2) how "fast" service they get (the greater r

min

is, the smaller the in-service time becomes).

4.2.2 Results for large systems

In this section we consider two large systems. Both have a link capacity of 350 Mbit/s. For the CBR calls

the mean holding times are 1=�

N

= 1 s and the bandwidth requirements are B

1

= 2 Mbit/s (in both cases).

For the ABR calls the mean holding times are 1=�

B

= 1 s and the (maximal) bandwidth demands are B

2

=

2.5 Mbit/s (in both cases). The �rst system has CBR arrival rate �

N

= 87:5calls=s and ABR arrival rate

�

B

= 70calls=s. This reects a system that is o�ered tra�c equal to its capacity. The second system has

CBR arrival rate �

N

= 150calls=s and ABR arrival rate �

B

= 120calls=s. This reects a system that is

o�ered tra�c equal to 171 % of its capacity, i.e. an heavily overloaded system. We examine both systems for

r

min

= 0:05; 0:10; 0:20; 0:30; 0:50; 0:75; 1 and for Q = 0; 1; 2; 5; 10; 20. In both cases the maximum number of

simultaneous CBR calls is readily seen to be 175. When r

min

= 0:05 the maximum number of simultaneous

ABR calls is 2800 in both cases. When r

min

= 0:05 the number of states in the QBD is app. 250000. It is easy

to see that doubling r

min

approximately reduces the number of states with a factor 2. Notice that in both cases

the o�ered tra�c is evenly divided between CBR and ABR tra�c.

In Figure 5.a we have the ABR blocking probabilities of the �rst system. Not surprisingly increasing the number

of queueing places and/or decreasing r

min

lowers the blocking probabilities. It is interesting to note that very

low blocking probabilities can be obtained when using appropriate combinations of number of queueing places

and r

min

. Given 5, 10 or 15 queueing places there is a huge bene�t in going r

min

= 1 to r

min

= 0:75. Figure

5.b shows the CBR blocking probabilities. Here, not surprisingly, increasing the number of queueing places also

increases the CBR blocking probabilities. Implicitly increasing the number of queueing places protects ABR

tra�c against losses and hence inicts losses on the CBR tra�c. It is interesting to note that lowering r

min

also lowers the blocking probability of the CBR tra�c. Clearly both the ABR and CBR blocking probabilities

decrease towards 0 as r

m

in decreases. In Figure 5.c we have the ratio of the additional mean time an ABR call

spends in the system to the mean service time if the requested bandwidth had been available (2.5 Mbit/s). It is

apparent that the number of queueing places do not play a signi�cant role here. For r

min

lower than 0.3 more

than twice the mean service time is spent in the system on average. Our model permits the quanti�cation of

the obvious QOS trade o� between low blocking probability and low additional time spent in the system.

In Figure 6.a we have the ABR blocking probabilities for the second system. Again very low blocking probabilities

can be obtained when selecting small values of r

min

and having a modest number of queueing places. Given

that the system is loaded with 171 % of its capacity the implicit services protection of ABR calls is of practical

interest. Figure 6.b illustrates the CBR blocking in the second system. Unlike with the previous system the

CBR blocking probability increases when r

min

is lowered. Looking at the numerical results it is evident that

when r

min

� 0:75 the carried tra�c is close to the capacity of the system (�rst 5 digits agree) which is a major

bene�t of allowing even a modest squeezing of ABR calls i.e. no bandwidth is wasted. This also explains why

the CBR blocking grows - lowering r

min

moves blocking from ABR to CBR in an overloaded system. In Figure

6.c we have the ratio of the additional time an ABR call spends in the system to its mean service time when no

squeezing and queueing is available. It is evident that on average the ABR calls are squeezed close to the limit

i.e. as much as r

m

in allows for. Again, the additional time spent in the system is not noticeably inuenced by

the number of queueing places.

For the purposes of the two systems examined here the previously used performance measure appears to be less

informative - it seems to have limited value when describing the value of protecting ABR tra�c in critically

loaded systems.

5 Conclusions

We have investigated a mixed queueing and loss system where calls with guaranteed service parameters (CBR/VBR)

and best e�ort (ABR/UBR) calls require service. Assuming that wide-band calls subscribe for the ABR service,

we model these calls as ones which tolerate partial blocking of their required peak bandwidth. Further, these calls

also accept non-zero connection setup time modeled as the waiting time in a �nite capacity queue. Narrow band

8



calls have been assumed to be of CBR sources. These calls themselves do not accept partial blocking, but they

are allowed to decrease the given bandwidth for best e�ort service users. With a Markov analysis we have found

that in terms of the most important performance measures this system performs better than systems without call

queueing or partial blocking. We have demonstrated that it is possible to analyze large systems - we have looked

at system de�ning generators with approximately 250000 states. It is interesting to note that a high degree of

service protection can be given to the ABR tra�c even for overloaded systems by making appropriate choices of

number of queueing places and the degree of squeezing allowed. Also the utilization in critically loaded systems

is very close maximum when even a modest amount of squeezing is allowed - hence better network performance

than without squeezing. The implicit service protection achieved for ABR calls clearly has practical implications

for system design. It has been shown that in our model the time spent in the system by the ABR calls is a phase

type distributed random variable. Future works include the investigation of optimal call admission procedures

(bandwidth sharing strategies) in the mixed best e�ort - QoS guaranteed environment [11] on the link level and

the investigation of optimal routing strategies on the network level [10].

Appendix: Time Spent in System: Approach Based on Markov Driven Workload

Processes

Let M denote the in�nitesimal generator of the Continuous Time Markov Chain (CTMC) X

t

and let the steady

state distribution, � ful�ll: �e = 1 and �M = 0, where e denotes the vector with all unit elements: e = f1::1g.

Furthermore let R be a diagonal matrix in which diagonal element r

k

denotes the rate at which uid is emitted

(in our application the rate at which service is accomplished) when the process is in state k.

If W

t

denotes the total amount of accomplished service at time t, then T

x

= infftjW

t

> xg will be the time

it takes for the Markov process to accomplish a total service requirement of x. Then the events fW

t

� xg and

fT

x

� tg are mutually exclusive and their union gives the event of certainty which implies:

PrfW

t

� xg+ PrfT

x

� tg = 1

and

PrfW

t

� x;X

t

= jg+ PrfT

x

� t;X

t

= jg = �

j

that is

P

ij

(x; t) + S

ij

(x; t) = �

ij

(t) (21)

where we let

P

ij

(x; t) = PrfW

t

� x;X

t

= jjX

0

= ig

S

ij

(x; t) = PrfT

x

� t;X

t

= jjX

0

= ig

(22)

and

�

ij

(t) = PrfX

t

= jjX

0

= ig

Now, using the well known connection between M and �(t) = [�

ij

(t)]:(see e.g. [6]) �(t) = exp[Mt], and using

the matrix notation P (x; t) = [P

ij

(t)] and S(x; t) = [S

ij

(t)] we obtain:

P (x; t) + S(x; t) = exp[M(t)] (23)

Next considering (22), and making use of the exponential state sojourn times in a CTMC, and applying arguments

from [1], we'll get a di�erential equation, which describes the system dynamics.

Derivation of Transform of Distributions

From an argument analogue to the argument pp. 1875 in [1] we get

@P

@t

(x; t) +

@P

@x

(x; t)R = P (x; t)M (24)

where R = diag(r

1

; :::; r

n

)

Multiplication with exp(�zx) exp(�st) and integration over t and x on the positive line gives after a few algebraic

manipulations

P

��

(z; s) =

1

z

[sI + zR�M ]

�1

(25)
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where F

��

(z; s) =

R

1

0

R

1

0

exp(�zx) exp(�st)F (x; t)dtdx is the double Laplace transform.

Inversion in the s-parameter immediately yields P

�

(z; t) =

1

z

exp[(M � zR)t] and the Laplace Transform of the

density function for the workload at time t is

p

�

(z; t) = exp[(M � zR)t] (26)

From this equation we can easily get the mean acquired service (W

t

) generated at time t. It is

m(t) = ��

@p

�

(z; t)

@z

�

�

�

�

z=o

e

where, just as before, e = f1::1g is the n-dimensional vector of 1's.

Since exp[(M � zR)t] =

P

1

n=0

t

n

n!

(M � zR)

n

we get

@ exp[(M � zR)t]

@z

=

1

X

n=1

t

n

n!

n�1

X

j=0

(M � zR)

j

R(M � zR)

n�1�j

Evaluation of the derivative in z = 0 and the fact that �M = 0 leads to

m(t) = t�Re = t

n

X

i=0

�

i

r

i

(27)

just as we would expect! Combining (21) and (25) gives

S

��

(z; s) = [zI +R

�1

(sI �M)]

�1

[sI �M ]

�1

(28)

An inversion in z gives S

�

(x; s) = exp[R

�1

(M�sI)x][sI�M ]

�1

yielding the following Transform for the density

function of T

x

s

�

(x; s) = exp[R

�1

(M � sI)x][I �M=s]

�1

(29)

Since [I �M=s]

�1

e = e because e = (I �M=s)e we get s

�

(x; 0) =

P

1

n=0

x

n

n!

(R

�1

M)

n

implying s

�

(x; 0)e = e

showing that ps

�

(x; 0)e = 1 for any probability vector p since Me = 0.

Furthermore, and more interestingly

�

@s

�

@s

(x; s) = exp[R

�1

(M � sI)x][I �M=s]

�2

M=s

2

+

1

X

n=1

x

n

n!

n�1

X

j=0

[R

�1

(M � sI)]

j

R

�1

[R

�1

(M � sI)]

n�1�j

[I �M=s]

�1

Again, since Me = 0 we get

�

@s

�

@s

(x; s)e =

1

X

n=1

x

n

n!

[R

�1

M ]

n�1

R

�1

e (30)

At an arbitrary point in time the distribution of the underlying Markov process is � and an arrival (in�nitesimal

amount of uid arrival) will see a probability a

i

for being in state i where a

i

=

�

i

r

i

P

n

1

�

j

r

j

. Written in vector

notation we get a =

�R

�Re

.

From these considerations we �nally get that the mean time until work-level x is reached seen from an arbitrary

arrival is

EfT

x

g = a(�

@s

�

@s

(x; 0))e =

�R

�Re

1

X

n=1

x

n

n!

[R

�1

M ]

n�1

R

�1

e

= x

�e

�Re

=

x

�Re

(31)

just as could be expected !
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For the variance the computation is a bit more complicated and the �nal formula unfortunately also.

Put F

x

(s) = exp[R

�1

(M � sI)x] and G(s) = [I �M=s]

�1

. Then s

�

(x; s) = F

x

(s)G(s) and

@

2

s

�

@s

2

(x; s) = F

00

x

(s)G(s) + 2F

0

x

(s)G

0

(s) + F

x

(s)G

00

(s)

Therefore

@

2

s

�

@s

2

(x; 0)e = F

00

x

(s)G(s)e = F

00

x

(s)e since G(0)e = e and since G

0

(0)e = G

00

(0)e = 0 because Me = 0.

The second derivative of the exp[R

�1

(M � sI)x] gives

F

00

x

(s) =

1

X

n=2

x

n

n!

n�1

X

j=1

j�1

X

i=0

[R

�1

(M � sI)]

i

(R

�1

)

[R

�1

(M � sI)]

j�1�i

(R

�1

)[R

�1

(M � sI)]

n�1�j

+

1

X

n=2

x

n

n!

n�1

X

j=0

n�2�j

X

i=0

[R

�1

(M � sI)]

j

(R

�1

)

[R

�1

(M � sI)]

i

(R

�1

)[R

�1

(M � sI)]

n�2�j�i

From this we get after some algebraic manipulations

F

00

x

(s)e = 2

1

X

n=2

x

n

n!

n�2

X

i=0

[R

�1

(M � sI)]

i

(R

�1

)

[R

�1

(M � sI)]

n�2�i

R

�1

e

Recalling that a =

�R

�Re

we get

EfT

2

x

g = aF

00

x

(0)e

=

2

�Re

1

X

n=2

x

n

n!

�[R

�1

M ]

n�2

R

�1

e

Applying that R

�1

M [R

�1

M � ea]

2

= [R

�1

M ]

3

and the non-singularity of [R

�1

M � ea] see e.g. p. 238 in [21]

gives

EfT

2

x

g =

2�

�Re

(

x

2

2

I +

1

X

n=3

x

n

n!

[R

�1

M ]

n

[R

�1

M � ea]

�2

)R

�1

e

=

2�

�Re

(

x

2

2

I + exp[R

�1

Mx][R

�1

M � ea]

�2

�[R

�1

M � ea]

�2

� xR

�1

M [R

�1

M � ea]

�2

�

x

2

2

[R

�1

M ]

2

[R

�1

M � ea]

�2

)R

�1

e

Noting that ea[R

�1

M � ea] = �ea it is not di�cult to show that R

�1

M [R

�1

M � ea]

�1

= I � ea. This gives

the following simpli�cations

EfT

2

x

g =

2�

�Re

(

x

2

2

I + exp[R

�1

Mx][R

�1

M � ea]

�2

�[R

�1

M � ea]

�2

� x(I � ea)[R

�1

M � ea]

�1

�

x

2

2

(I � ea))R

�1

e
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=

2�

�Re

(exp[R

�1

Mx]� I)[R

�1

M � ea]

�2

R

�1

e

+(

x

�Re

)

2

� x

2�

�Re

[R

�1

M � ea]

�1

R

�1

e

�x

2

(�Re)

2

From this it is clear that

V arfT

x

g =

2�

�Re

(exp[R

�1

Mx]� I)[R

�1

M � ea]

�2

R

�1

e

�x

2

�Re

� (32)

(�[R

�1

M � ea]

�1

R

�1

e+

1

�Re

)
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