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Abstract. In this paper we present a scalable approximate model for
packet loss analysis in load-balancing Birkhof-von Neumann switch with
finite buffers and variable length packets assumption. We also present a
numerical method to solve the model for large switches (up to the size
∼ 30) equipped with large buffers (up to the buffer size ∼ 1000). With
regards to previously introduced models the main contribution of our
model is its scalability in terms of the switch size as its computational
complexity is linear with the number of ports. Contrary to previous mod-
els we assumed homogeneous input processes in this paper.

1 Introduction

Internet is a huge asynchronous mesh network which is composed of several
sub-networks connected to each other through switches. As the traffic over the
network and the number of links grow exponentially the transmitting media
can be easily adopted using optical fibre. Although the links could provide high
throughput, the switches are not always capable to fulfill both the throughput
growth and increasing number of connections. Some solutions with high through-
put and centralized control exist but they are poorly scalable.

Recently in [1, 2] the authors introduced a promising and highly scalable
solution, a two-stage switching architecture called load-balancing (LB) Birkhof-
von Neumann switch.

[1, 2] shows initial investigations on the switch under some strong assump-
tions (infinite buffers, traffic admissibility, equal size packets in the system).
On the contrary [3] used realistic scenarios and carried out a simulation based
throughput analysis of the LB switch with finite buffers. [4] pointed out that
in cell-based (packets of the same size) LB switch a loss can occur because of
buffer overflow. This latter paper also presents mathematical analysis for cell
loss probability evaluation. Besides, going further in this approach, [5, 6] give
analytical results for both finite buffers and variable size packets.



Whereas in [5] the authors present the full characterization of a realistic sce-
nario, with finite buffers and variable size packets, a less complex approximating
model is given in [6]. In spite of the complexity O

(
2N

)
we still need a fast proce-

dure to solve the model. The aim of this paper is to present an analysis with fast
solution procedure. However a restrictive assumption is applied, i.e., the model
assumes identical stochastic processes on all the inputs.

We will demonstrate that, besides this assumption, the newly introduced
model captures the two most important performance measures. We analyzed
the packet loss – as the switch is equipped with finite buffers – and gave an
estimate of the mean packet waiting time. The first parameter affects the Qual-
ity of Service (QoS) characteristics of data transfers (using TCP). The second
parameter has high influence on real time traffic, e.g., speech (using UDP) over
the network [7, 8].

We also introduced a folding algorithm-based numerical method to solve the
model of switches with large buffers.

The rest of the paper is organized as follows. In Section 2 we give the mod-
eling assumptions and the basic principles of the switch. Section 3 presents the
model into detail. The numerical solution method is introduced in Section 4 and
Section 5 verifies the model. Finally Section 6 concludes the paper.

2 Basic principles and main assumptions of the switching

mechanism

2.1 Basic principles

The LB switch is considered to be a two-stage switching architecture. The first
stage uniformly distributes the arriving traffic to the central stage, which is
an input buffer of the second switch (see Figure 1). Its scalability lies in the
distributed, distinct and deterministic control between different switching stages.
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Fig. 1. The load-balancing switch considered for the analysis

To improve the buffer utilization the arriving packets are segmented into
cells of equal size. The basic operating time unit is the service time of a cell –
hereinafter referred to as time slot.



The arrival rate of the cells at the input ports are assumed to be identical to
the service rate of the inputs, i.e., there is no cell loss here. The service rate of
each output is assumed to be greater than the arrival rate of cell, i.e., the switch
is not overloaded.

In the followings N denotes the size of the switch, i.e., the number of input
and output ports. The central stage consists of N sets of N virtual output queues
(VOQs). In each set there is one buffer dedicated to every output. Hereinafter
VOQk denotes the kth set of VOQs. The cells directed to output j are put in
the jth VOQ out of the kth set – hereinafter denoted as VOQkj .

During the t1st time slot input i is connected to VOQk according to round-
robin (RR) interconnection policy

k = i + t1 mod N i, k ∈ [0, N − 1] (1)

by means of crossbar switches without buffers inside (contrary to [9]). The actual
cell arriving from input i and directed to output j is put into VOQkj if a free
position is available and it is dropped otherwise. In our assumption a cell can
only be lost due to buffer overflow as the VOQs are finite. The VOQs are served
according to the FIFO policy.

As the packets are segmented into cells we consider a packet to be lost, when
at least one of its cells is lost, i.e., packet loss can occur also according to the
finite VOQs.

VOQkj is served in the t2nd time slot, when VOQk is connected to output j

by means of crossbar switches operating according to RR policy

j = k + t2 mod N j, k ∈ [0, N − 1] . (2)

As both crossbars applies RR interconnection policy with the same modulus (N),
the LB switch itself has periodic behavior of period N time slots – hereinafter
referred to as time period.

Finally a packet is reassembled in the re-sequencing and reassembly unit
(RRU) at the output (see Figure 1), like in [10], and sent to the external link.

2.2 Modeling assumptions

In a time slot, first, the VOQs are connected to the outputs and then the inputs
to the VOQs. This order of interconnections inhibits a cell from passing through
the switch in a single time slot.

During our work we assumed Markovian behavior of system, more precisely
geometric distributed random variables. On the one hand we can fit one pa-
rameter of the observed distributions, but on the other hand we can use the
sophisticated and numerically efficient algorithms to solve discrete time Markov
chains (DTMCs). In order to increase the precision of the analysis, one can
expand the number of fitted parameters to an arbitrary level by using more
complex Markovian structures like discrete time Phase-Type (DPH) distribu-
tions or discrete time Markovian Arrival Processes (DMAPs). Yet such a choice



would increase the complexity of the model and, to a certain extent, shift the
focus of the paper.

According to the Markovian assumption the packet length (X) distribution
(in cells) of the arrival process is geometric distributed with probability mass
function (PMF)

Pr (X = i) = p̂ (1 − p̂)i−1
i = 1, 2, . . . (3)

The length of the idle periods between packets (Y ) are also geometric distributed
(in time slots) with PMF

Pr (Y = i) = q̂ (1 − q̂)
i

i = 0, 1, . . . (4)

The parameters are the same for all inputs according to the identical input pro-
cess assumption, which makes us possible to introduce a compact approximate
model of the LB switch. The packets arriving at an arbitrary input are spread
uniformly between the outputs, i.e., the probability of sending a packet to a
particular output is

t̂ =
1

N
. (5)

Previous works [5,6] introduced the differences between traffic paths travers-
ing the switch. This phenomenon is recalled in the next section.

2.3 On the different paths

It is shown in [5] and [6] that the cell loss probability and accordingly the packet
loss probability depend on the path through which it traverses the switch. Where
path means a triple, denoted as {i, j, k}, containing the ordinal number of the
input, the output and the VOQ respectively.

Mainly the difference of the paths comes from the time difference between
the service of a VOQ and the arrival to it. Using (1) and (2) the time difference
between the service of a VOQ and the arrival to it is expressed as

t2 − t1 = d = 2k − i − j mod N, (6)

which also gives the number of inputs that have the right to send cells to VOQkj

before input i in the same time period. d is then directly proportional to the loss
probability of a path, i.e., the higher the d value is the higher the loss probability
of that path is. Here we use the term loss probability of a path to emphasize the
difference between the cell loss probabilities depending on the triple {i, j, k} or
equivalently depending on d.

Based on (6) we recall the term type-d path introduced in [6] for a given path
with characteristic value d.



2.4 On the definition of the different loss probabilities

Cell loss probability is simply the ratio between the number of cells which were
dropped from the observed VOQ versus the total number of cells sent through
the VOQ.

The calculation of a packet loss inside the VOQ is not that trivial since cells
belonging to the same packet can be spread to different VOQs. Accordingly we
consider the packet loss in terms of a specific VOQ, i.e., the packet is considered
to be lost, if at least one of its cells is lost in the observed VOQ.

The cell loss probability and accordingly the packet loss probability depends
on the path as it is described in the previous section, it is referred as loss prob-

ability of a path.

Since our main interest is the packet loss probability, the precise way how it
is calculated is given in Section 3.4 and the different loss probabilities for all the
paths are considered in the numerical study in Section 5.

3 The model

In this section we give the detailed model of VOQ00 as part of path {1, 0, 0} of
the 3×3 switch. This is a type-2 path of that particular switch, but the detailed
analysis of all 3 types of paths will be given in Section 3.4.

3.1 The model of the input processes

The parameters of the identical input process are

p̂ the parameter of the geometric distributed packet length (3) in cells,
q̂ the parameter of the geometric distributed idle period length (4) in time slots

and
t̂ = 1

N
the probability of choosing a specific output for a given packet (5).

Based on the geometric assumption we can build the DTMC model, fully
characterizing any of the identical inputs, with state transition probability ma-
trix

PC =







(1 − p̂) + p̂q̂t̂ p̂q̂t̂ p̂q̂t̂ p̂ (1 − q̂)
p̂q̂t̂ (1 − p̂) + p̂q̂t̂ p̂q̂t̂ p̂ (1 − q̂)
p̂q̂t̂ p̂q̂t̂ (1 − p̂) + p̂q̂t̂ p̂ (1 − q̂)
q̂t̂ q̂t̂ q̂t̂ 1 − q̂







(7)

and graph given in Figure 2, where the state identifiers are the following

j corresponds to cell arrival from the input to output j j = 0, 1, 2
id corresponds to the idle period of the input.

According to the observed output, i.e., output 0, the states of the DTMC in
Figure 2 are divided into two subsets, a one element subset and all the others,
hereinafter denoted as on and off, respectively. Their meaning are
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Fig. 2. The graph of the DTMC fully characterizing any input of the 3 × 3 switch

on the state represents cell arrival from the observed input to output 0 and
off the states represent no cell arrival from the observed input to output 0.

In the following we introduce the approximating two state ON/OFF model
of the general input mainly as replacing the set off with a single state OFF.
Hereinafter uppercase ON and OFF denote the states of the approximating two
state description of the input process.

The ON properties State ON replaces the one element subset on with the
same sojourn probability (1 − p̂) + p̂q̂t̂. Accordingly the state transition proba-
bility from ON to OFF is 1 minus the sojourn probability p̂ − p̂q̂t̂.

The OFF properties The OFF state replaces the set of off states by ap-
proximating their sojourn time with the absorbing time of a DPH distribution
described in the followings.

For output 0 the transient states of the DPH are the off states and the
absorbing state is the on state as depicted in Figure 3.

Based on PC , given in (7), we give the initial distribution (β) and the state
transition probability matrix (B) of the DPH. The initial distribution is the state
probability right after entering off from on. It is obtained as the renormalization
of the zeroth row of PC without its zeroth element

β =
(

q̂t̂

2q̂t̂+(1−q̂)
q̂t̂

2q̂t̂+(1−q̂)
1−q̂

2q̂t̂+(1−q̂)

)

,

which is also indicated in Figure 3. The 3 × 3 sized state transition probability
matrix of the off states is obtained from PC by cutting its zeroth row and zeroth
column

B =





(1 − p̂) + p̂q̂t̂ p̂q̂t̂ p̂ (1 − q̂)
p̂q̂t̂ (1 − p̂) + p̂q̂t̂ p̂ (1 − q̂)
q̂t̂ q̂t̂ 1 − q̂



 .
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Fig. 3. The graph of the DPH substitution of the off states in terms of output 0

The mean absorbing time of this DPH is then

µ = β (I− B)−1
h, (8)

where I is the identity matrix and h is the column vector of ones of appropriate
size.

Here we note that according to the structure of (7) µ is the same for any
output and any input – indeed the input processes are identical.

Consequently the sojourn probability of state OFF is 1− 1
µ
. The state tran-

sition probability from OFF to ON is 1
µ

which sets the mean sojourn time in
state OFF equal to µ.

The state transition probability matrix of the two state DTMC describing
the ON/OFF input process for the general path is

P =

(
(1 − p̂) + p̂q̂t̂ p̂ − p̂q̂t̂

1
µ

1 − 1
µ

)

=

(
1 − p p

q 1 − q

)

, (9)

where we also introduced a simplified notation with p and q. The graph of the
ON/OFF DTMC using the simplified notation is given in Figure 4 which is the
same for all the inputs according to the identical input process assumption.

(1 − p) (1 − q)

q
p

OFFON

Fig. 4. The ON/OFF model of the input process with the simplified notation

3.2 Aggregate input model

We describe the combined behavior of the N inputs by a DTMC of N +1 states
representing the number of inputs in ON. Using the considerations in Section 3.1



and especially (9) the ijth element of the state transition probability matrix of
such a DTMC describing N inputs after 1 time slots is

(
PN,1(p, q)

)

ij
=

min(i,N−j)
∑

k=max(0,j−i)

(
i

k

)

pk (1 − p)i−k

(
N − i

j − i + k

)

qj−i+k (1 − q)N−j−k

(10)
where we also indicated that these probabilities depend on the parameters of
(9) – p, q. The first binomial factor of (10) represents that out of i ON sources k

moves to OFF and the second factor represents that out of N − i OFF sources
j − i + k moves to ON, i, j ∈ [0, N − 1] . (10) also introduces the notation
PN,M (p, q) hereinafter denoting the state of N inputs during M time slots with
each input modeled by an ON/OFF DTMC with parameters p and q given in
(9). For example the state of N inputs after M time slots is

PN,M (p, q) = P
M
N,1(p, q). (11)

Using the above method there can be given behavior of any number of inputs
in any number of time slots.

Based on PN,M (p, q) we give the arrival based decomposition of the arrival
process as

B =












p0

0
...
0
0
0












︸ ︷︷ ︸

0 arrivals

L =












0
p1

0
...
0
0












︸ ︷︷ ︸

1 arrival

F1 =












0
0
p2

0
...
0












︸ ︷︷ ︸

2 arrivals

. . . FN−1 =












0
0
0
...
0

pN












︸ ︷︷ ︸

N arrivals

, (12)

where pi denotes the ith row vector of PN,M (p, q).
The arrival based decomposition of the N × N switch in M time slots, is

formalized in Algorithm 1.

Algorithm 1 Arrival based decomposition of the input process

INPUT: N, M,P from (9)
OUTPUT: B,L,F1, . . . , FN−1 the arrival based decomposition
1: determine PN,M (p, q) similar to (11) using P

2: decompose PN,M (p, q) as in (12)
3: return B,L,F1, . . . ,FN−1

3.3 The cell level model of the 3 × 3 switch

We show how the packet loss is calculated in path {1, 0, 0} for which we give the
cell level model of the corresponding VOQ – VOQ00. It is a quasi birth-death



like (QBD-like) structure whose level represents the queue length and phase
represents the state of the input process.

As the phase process of the QBD-like model is the combined state of the
inputs their arrival based decomposition gives the level transition matrices used
to build the QBD-like structure. B,L,F1,F2 are determined by Algorithm 1
with input parameters N = 3, according to the number of inputs, M = 3 the
number of time slots in a time period and P (from (9)). Here M = 3 since the
time period of the DTMC is 3 time slots long – as it is given in Section 2.1.

A level transition backward is according to B since there is one cell served
during a time period and B represents 0 arrivals. Local state transition is ac-
cording to L and there are 1(2) forward level transition(s) according to F1(F2) .

The state transition probability matrix of the QBD-like model is

P =











B L F1 F2 0 . . .

B L F1 F2 0 . . .

. . . . . . . . . . . . .

. . . 0 B L F1 F2

. . . 0 0 B L F′
1

. . . 0 0 0 B L′











, (13)

where F′
1 = F1 + F2 and L′ = L + F1 + F2.

The steady state solution of this QBD-like model is the solution of the linear
system of equations

πP = π, πh = 1. (14)

3.4 Packet level model

With the geometric assumption for the packet length, given in Section 2.2, the
life cycle of a packet in the observed path can be modeled by a transient DTMC
in which there are two absorbing states corresponding to the two possible end-
ing of a packet. The first absorbing state corresponds to the first cell loss, or
equivalently the packet loss (PL) and the other one corresponds to the success-
ful packet transmission (ST). The transient DTMC with two absorbing states is
given in Figure 5. In this section we present this transient DTMC with its state
transition probability matrix and initial distribution based representation.

The transient part of the DTMC Basically during the life cycle of a packet
VOQ00 is modeled by a quasi birth like (QB-like) structure. Its level represents
the queue length and its phase process is the combined state of the 3 inputs.
In this case there is one important difference compared to the model given in
the previous section. Input 1 is in ON for sure, since this is the model of the
life cycle of a packet arrives from input 1, which also implies that there is no
backward level transition.

The other two inputs behave in the “normal” manner, i.e., their correspond-
ing level transition matrices are determined by Algorithm 1 with input parame-
ters N = 2, M = 3 and P in (9). M = 3 since the time unit of the 3 × 3 switch
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Fig. 5. The transient DTMC modelling the VOQ during the life cycle of a packet

is 3 time slots. The result of the algorithm is

B,L and F, (15)

of size 3 × 3 as they describe 2 inputs (the possible states of this phase process
are 0, 1 and 2 – the number of inputs that are in ON).

According to these considerations the state transition probability matrix of
the QB-like structure is built using the blocks

LR = (1 − p)
3
B, FR

1 = (1 − p)
3
L and FR

2 = (1 − p)
3
F. (16)

Superscript R denotes quantities describing this transient DTMC of Figure 5.
(16) describes the joint behavior of input 1 (given by (1 − p)

3
, the probability

that input 1 remains in ON) and the other two inputs (given by matrices B,L,F).
Finally using (16) the state transition probability matrix of the transient

part and the state transition probability vector to state PL are

P
R =









LR FR
1 FR

2 0 . . .

. . . . . . . . . . . . . .

. . . 0 LR FR
1 FR

2

. . . 0 0 LR FR
1

. . . 0 0 0 LR









, ℓ =










0
...
0

FR
2 h

(
FR

1 + FR
2

)
h










, (17)

where ℓ tells that if input 1 is in ON (which is the fundamental assumption here)
then there is packet loss if at the beginning of the time period there is either

– one free position in the VOQ and there are three arrivals
(
FR

2 h
)

or
– no free positions in the buffer and there are either

• two arrivals
(
FR

1 h
)

or
• three arrivals

(
FR

2 h
)
.

Using P
Rh + ℓ + s = h the state transition probability vector to state ST is

s = h−
(
P
Rh + ℓ

)
. (18)



The initial distribution of the transient DTMC The initial distribution
of P

R in (17) is determined as the state of the system right after the arrival of
an incoming packet. In this section we determine the probability distribution of
the system at this time instance, right after a new packet arrival.

Here we give the joint probability of arriving a new packet at input 1 and
the “normal” behavior of the other two inputs. Using the notations introduced
in (9) the first probability is 1 − (1 − q)

3
and latter one is determined as the

output of Algorithm 1 with input parameters N = 2, M = 3,P, the same as in
(15). If q̃ = 1 − q then their joint behavior is described by the matrices

B̂N =
(
1 − q̃3

)
B, L̂N =

(
1 − q̃3

)
L and F̂N =

(
1 − q̃3

)
F. (19)

The block sizes of π in (14) are 4 since they describe all the 3 inputs. Accord-
ing to this there is a row of zeros appended to every level transition matrices in
(19) as

BN =

(

B̂N

0

)

LN =

(

L̂N

0

)

FN =

(

F̂N

0

)

. (20)

The last row expresses that in case of a new packet arrival there cannot be all the
N = 3 inputs in ON. Here we recall that in our model there is no corresponding
cell arrival to state change from OFF to ON, i.e., in case of new packet arrival
there is no cell arrival from the observed input.

Then starting from the steady state of the cell level model (14) and using
the level transitions according to new packet arrival (20) the blocks of the initial
distribution of the transient DTMC given in Figure 5 are

π̂
N
0 = π0B

N + π1B
N

π̂
N
1 = π0L

N + π1L
N + π2B

N

π̂
N
2 = π0F

N + π1F
N + π2L

N + π3B
N

π̂
N
i = πi−1F

N + πiL
N + πi+1B

N 3 ≤ i ≤ b − 1

π̂
N
b = πb−1F

N + πb

(
LN + FN

)
.

π̂
N is normalized as

πN =
π̂

N

π̂
N

h
(21)

resulting in the initial distribution of the packet level model in Figure 5.

The packet loss of the system Using (17), (18) and (21) the packet loss
probability of the system and the probability of successful packet transmission
on the given path are calculated as absorbing in state PL and ST, respectively,
i.e.,

pℓ = πN
(
I − P

R
)−1

ℓ, ps = πN
(
I− P

R
)−1

s = 1 − pℓ. (22)



Estimation for the packet waiting time We estimate the mean packet
waiting time with the mean cell waiting time. The mean cell waiting time equals
to the mean system time of the cells entering the queue minus the cell service
time. Since the service of the VOQ is deterministic the system time of a cell in
the VOQ is N = 3 time slots times the queue length right after the cell arrival
given that the cell is not dropped (denoted as π̃′).

π̃′ can be determined by the equation system

π̃′
1 = π1

(
1

3
F2 +

1

2
F1 + L

)

+ π0

(
2

3
F2 + F1 + L

)

π̃′
i = πi−2

1

3
F2 + πi−1

(
1

3
F2 +

1

2
F1

)

+ πi

(
1

3
F2 +

1

2
F1 + L

)

i ∈ [2, b − 2]

π̃′
b−1 = πb−3

1

3
F2 + πb−2

(
1

3
F2 +

1

2
F1

)

+ πb−1

(
1

2
F2 +

1

2
F1 + L

)

π̃′
b = πb−2

1

3
F2 + πb−1

(
1

2
F2 +

1

2
F1

)

+ πb (F2 + F1 + L) .

π̃′ is normalized as π̃ = π̃
′

π̃
′h

resulting in the queue length distribution right after
a cell arrival given that the cell enters the queue.

4 On the solution of large QBD-like DTMCs

Building the cell level DTMC as in (13) and solving it as in (14) results in the
solution of a linear equation system of size (b + 1) (N + 1) which can be easily
led to inaccurate numerical results.

As a fast and numerically efficient solution of this we apply the folding algo-
rithm, e.g., in [11], based solution of (14). The algorithm is prepared to block
tri-diagonal matrices, hence we repartition (13) as

P =













B L F1 F2 0
B L F1 F2

0 B L F1 F2 0
0

0 0 B L F1 F2

. . . . . . . . . . . . . . . . .

0
0 B L F′

1

0 0 B L′













=







L
′
F
′ 0

B L F 0
. . . . . . .

0 B L
′′







, (23)

where we have enlarged the block size to (N − 1)(N + 1). The inverse of the
enlarged block is calculated in the folding algorithm, by which we have increased
the complexity as well. We can increase the buffer size b to high values as the
computational complexity of the folding algorithm is O (log2 b) .

In the followings we give the reduction of the matrix inversion of I − P
R, in

(22), to the inversion of its diagonal block – denoted as V = I−LR. Considering
the matrix equation

x
(
I − P

R
)

= πN (24)



where the coefficient matrix
(
I− P

R
)

has an upper triangular structure, on the
block level, we can apply the following iterative solution of the matrix equation

x0V = πN
0 → x0 = πN

0 V−1

x0F1 + x1V = πN
1 → x1 =

(
πN

1 − x0F1

)
V−1

and all the other blocks for i = 2, . . . , b are

xi−2F2 + xi−1F1 + xiV = πN
i → xi =

(
πN

i − xi−1F1 − xi−2F2

)
V−1

Rearranging (24) results in x = πN
(
I− P

R
)−1

which implies that from
(22) the packet loss probability (pℓ) and the probability of successful packet
transmission (ps) of the observed VOQ can be calculated as

pℓ = xℓ and ps = xs. (25)

5 A numerical study

In contrast to [5, 6] where we described extended methodology of packet loss
analysis in the LB switch, this paper presents optimized solution with linear
complexity. The computational study has two parts. The first part shows the
behavior of the packet loss and waiting time of the LB switch as a function of
buffer length and switch size. The second part examines some extreme cases
when central stage buffers are large to show the power of the folding algorithm
based solution method presented in Section 4. For the results of this section
we used the parameters given in Table 1. In order the comparative analysis, we
made the specified measurements also with our LB switch simulation tool.

Figure 6(a) 6(b) 6(c) 6(d) 7(a) 7(b)

name
pℓ vs. b pℓ vs. N T vs. b T vs. N pℓ vs. b T vs. b

without folding algorithm with folding

N 4 4, . . . , 32 4 3, . . . , 33 3

b 8, . . . , 40 36 8, . . . , 40 127 9, . . . , 999

p̂ 1
20

1
40

1
20

1
50

q̂ 1
3

1
2

1
3

t̂ 1
N

Table 1. Parameters used for the numerical studies

Part 1 In [5, 6] we examined the dependence of packet loss at the central stage
buffers on the buffer size and switch size. It was found that the packet loss
probability strongly depends on the chosen path ({i, j, k}). Figure 6(a) and 6(b)
present similar results using the approximate model introduced in this paper.
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Fig. 6. Numerical results for the packet loss analysis of LB switches

Figures 6(c) and 6(d) indicate another performance characteristic, the packet
waiting time estimator compared to simulation results. The packet waiting time
is evaluated considering only the successfully transmitted packets. The packet
waiting time is generally increases together with the buffer size (larger interval
between cell arrivals and services), like in Figure 6(c) and switch size (cells are
spread to more queues), like in Figure 6(d).

Part 2 Figure 7(a) and 7(b) shows the applicability of the analytical model
for large buffer sizes. According to presented results, we admit that the ratio
between the switch size and buffer length of the VOQs is a crucial issue for the
expected packet loss and system performance. Unfortunately, the optimal set of
parameters (e.g. switch size and buffer length) is not constant and should be
chosen to the specific needs.

6 Conclusions

In this paper we present a scalable model for the packet loss and packet waiting
time analysis in the load-balancing Birkhof-von Neumann switch.

This model also reflex the previously shown property of different loss proba-
bilities on the chosen path traversing the switch [5, 6].

The computational complexity of the approximate model introduced in this
paper is reduced to be linear with N, the number of ports of the switch. The



0

0.2

0.4

0.6

1000400200100402010

p
ℓ

b

{1, 0, 0}
{2, 0, 0}

(a) Packet loss versus the buffer size

10

200

390

580

1000400200100402010

T

b

simulation
analysis

(b) Packet waiting time versus the buffer
size

Fig. 7. Behavior of switches with large buffers

other contribution of the paper is the folding algorithm based, numerically stable
and fast algorithm to solve the DTMCs for large buffer sizes (b). This allow us
to solve switches of size up to ∼ 30 equipped with buffer of size up to ∼ 1000.
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