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Abstract. We consider equivalence relations for Fluid Stochastic Petri
Nets (FSPNs). Based on equivalence relations for Stochastic Petri Nets
(SPNs), which are derived from lumpability for Markov Chains, and
from lumpability for certain classes of differential equations, we define an
equivalence relation for FSPNs. Lumpability for the differential equations
is based on a finite discretization approach and permutations of the fluid
part of the FSPN.
As for other modeling formalisms, the availability of an appropriate
equivalence relation allows one to aggregate sets of equivalent states into
single states. This state space reduction can be exploited for a more
efficient analysis of FSPNs using a discretization approach. Lumpable
equivalence relations can be computed from an appropriately discretized
state space of the stochastic process or directly from the FSPN.
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1 Introduction

The idea of lumping states in a discrete system has a long history in Markov
chains [15, 1] but has also been used in linear systems [6] and for differential
equations [16]. Later it has been applied to specific modeling formalisms like
stochastic process algebras [11] and even stochastic Petri nets [2]. Current devel-
opments can be found for fluid models [13, 17]. The central idea of lumpability
is the definition of classes of states with an identical behavior and the substi-
tution of the state classes by single states without altering the behavior of the
system as it is observed. We present this approach for FSPNs in two versions.
First we introduce a discretized version of the system and discuss lumping on
the discretized model. Next we discuss lumping on the original FSPN. The first
approach involves identical behavior on the level ODEs while the latter one
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presents identical behavior on the level of PDEs.
New contribution of the paper: Lumpability has been applied in the above men-
tioned papers for discrete models or for specific types of continuous models as
they result from kinetic differential equations [16]. The latter approach has then
been used as a basis to define lumpability for a fluid description of stochastic
process algebra terms which result from a large number of identical and symmet-
ric components [13, 17]. Our approach combines lumpability for discrete and for
continuous systems and presents, to the best of our knowledge for the first time,
an approach that can be applied to hybrid systems. Additionally, the lumping of
the continuous part goes beyond the approach presented for stochastic process
algebras because lumping does not necessarily imply symmetry in the model.

The rest of the paper is organized as follows. FSPNs and the notation are
introduced in Section 2. The analytical description of FSPNs by means of PDEs
and a proposed discretizations approach resulting in an ODE-based analytical
description are provided in Section 3. Lumpability of the discretized system is
analyzed in Section 4, while in Section 5, lumpability is analyzed directly on
the system matrices without the discretization step. The paper is concluded in
Section 6.

2 Background and Definitions

We consider a class of FSPNs, which is similar to FSPNs, presented in [12, 10].
A FSPN is an 7-tuple (P, T, m̄0, A,B, F,R), where

– P is the set of places which is subdivided into the set of discrete places Pd
and the set of continuous places Pc,

– T is the set of (timed) transitions,

– m̄0 = (m0,x0) is the initial marking, where m0 ∈ IN|Pd| is a vector contain-

ing the number of tokens on each discrete place and x0 ∈ IR|Pc| is a vector
which contains for each continuous place the level of fluid at the place. Let
Md be the set of all reachable discrete markings,Mc be the set of reachable
continuous markings and M the set of all markings,

– A is the set of arcs which is subdivided into discrete arcs Ad :
((Pd × T ) ∪ (T × Pd)) → IN (where Ad defines the multiplicity of the arc)
and continuous arcs Ac : (Pc × T ) ∪ (T × Pc)→ {0, 1},

– B is the set of capacities of fluid places, i.e., B : Pc → IR>0,
– F the set of transition rates which is a function F : T ×M→ IR≥0,
– R the set of flow rates which is a function R : Ac ×M→ IR≥0.

We do not consider immediate transitions here which are commonly available
in FSPNs (e.g., [12, 10]), because it is easier to define equivalence relations for
FSPNs with only timed transitions. However, it is possible to extend the ap-
proach to FSPNs with immediate transitions. The marking dependent fluid rate
is a very powerful concept. It allows one to model for example inhibitor arcs or
place capacities for discrete places, both are not explicitly part of our class of
nets.
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For a transition t ∈ T , we denote the input places by •t = {p ∈ Pd|Ad(p, t) >
0}, similarly the output places by t• = {p ∈ Pd|Ad(t, p) > 0}. For continuous
places the notation ◦t = {p ∈ Pc|Ac(p, t) = 1} and t◦ = {p ∈ Pc|Ac(t, p) = 1}
are applied. The input and output transitions, •p, p•, ◦p and p◦, are defined
similarly.

A transition t ∈ T is enabled in marking m̄ = (m,x), if for all p ∈ •t,
Ad(p, t) ≤ m(p) and F (t, m̄) > 0. Let ena(m̄) be the set of transitions enabled
in marking m̄. Enabled transitions may modify the discrete and continuous state
(i.e., marking) of the net.

We start with the discrete part of the marking. The discrete part is modified
by firing an enabled transition. Firing times are exponentially distributed with
rate F (t, m̄) for t ∈ ena(m̄). The transition that fires is selected according to
a race condition. Firing transition t in marking m̄ = (m,x) results in the new
marking m̄′ = (m′,x) with m′(p) = m(p) − Ad(p, t) + Ad(t, p) for all p ∈ Pd.
The enabling conditions of transitions assure that all components of m′ are non-

negative. We use the notation m̄
t→ m̄′ if t fires in m̄ and results in marking m̄′.

If only the discrete part is relevant we use the notation m
t→m′. Observe that

the firing of transitions does not modify the continuous state.
The continuous marking, x, is continuously modified with a finite rate by

enabled transitions, as long as the place capacities are respected. In marking m̄,
the potential flow rate for place p ∈ Pc is given by

r̆p(m̄) =
∑

t∈ena(m̄)∩◦p

R((t, p), m̄)−
∑

t∈ena(m̄)∩p◦

R((p, t), m̄). (1)

The actual flow rate has to take care of the place capacities and is defined as

rp(m̄) =


r̆p(m̄) if 0 < xp < B(p),
r̆p(m̄) if xp = 0 ∧ r̆p(m̄) > 0,
r̆p(m̄) if xp = B(p) ∧ r̆p(m̄) < 0,
0 otherwise,

(2)

where xp is the fluid level at fluid place p. The rate describes the flow rate into

a continuous place, i.e., rp(m̄) =
dxp(τ)
dτ , where τ denotes the time, and negative

flow rate represents a decaying fluid level.
The model allows one to define some nasty behaviors, which means that flows

or rates change infinitely often in a finite interval, as for example shown in [5]. We
will exclude these behaviors in the following section and assume that the majority
of the transition rate and flow rate functions are either independent or a piecewise
constant function of the continuous marking x. In principle, simulation can be
applied to analyze FSPNs. We consider here numerical analysis via discretization
where lumping helps to reduce the analysis complexity. To describe our approach
we introduce several restrictions for the allowed class of nets. Some of these
restrictions may be relaxed and still allow one to compute equivalence relations
and analyze the resulting systems numerically, others are essential in the sense
that otherwise a numerical analysis is no longer possible and an equivalence
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relation to reduce the state space can no longer be computed. The approach will
be presented in the subsequent sections.

3 Discretization and Analysis

We consider only FSPNs with a finite set Md otherwise numerical analysis can
only be applied in very specific cases. Generation of the set Md is in general
non-trivial due to the presence of marking dependent transition rates which may
become zero. However, it is easy to compute a super-set of Md by neglecting
all continuous components in the net which means that enabling conditions of
transitions that depend on the filling of fluid places are simply ignored. We
assume in the sequel that Md or an appropriate finite super-set of Md can be
generated using common algorithms for state space generation.

For x ∈ Mc, Q(x) is a |Md| × |Md| matrix including the transitions rates
if the continuous marking is x. Markings from Md are numbered consecutively
from 1 through |Md|. We use the marking mi and its number i interchangeably
and have for the elements of matrix Q(x)

qij(x) =
∑
t∈ena(mi)∧mi

t→mj
F (t, (mi,x)), for i 6= j,

qii(x) = −
∑
j 6=i qij(x).

(3)

Similarly, we define for each continuous place p ∈ Pc a diagonal matrix Rp(x)
of size |Md| × |Md| with rp((mi,x)) in position (i, i).

FSPNs as we defined them allow for a very complex behavior where the flow
rate and also transition rates depend on the filling of fluid places in an arbitrary
complex way. In full generality, such a behavior can hardly be analyzed. There-
fore we assume that Mc can be decomposed in finitely many disjoint subsets
M1

c , . . . ,MK
c such that for x,y ∈ Mk

c Q(x) = Q(y) and Rp(x) = Rp(y) for
all p ∈ Pc and m ∈ Md. We assume that each subset Mk

c is built from finite
intervals (bk−1

p , bkp) with bk−1
p < bkp (1 ≤ k < K), b0p = 0, bKp = B(p) for p ∈ Pc.

We note that probability mass of various dimensions, characterized by appro-
priate boundary equations, can develop at set boundaries, if some components
of Rp(x) changes sign, but their discussion we also neglect here. Thus, we as-
sume that at bkp the functions in the matrices Q(x) and Rp(x) are left or right
continuous or appropriate boundary conditions can be defined.

The dynamic behavior of FSPNs with more than one continuous place spec-
ifies a set of partial differential equations. The derivation for these equations
will be briefly summarized and follows [3, 8, 10, 9, 12]. The transient behavior
starting from m̄0 is considered. Let M(τ), X(τ) be the processes describing the
evaluation of the discrete and continuous marking, respectively. The following
notations are used for mi ∈Md, x ∈Mc and time τ ≥ 0:

– πi(τ) = Prob (M(τ) = mi) are the discrete state probabilities,
– Hi(τ,x) is the CDF of the fluid level at fluid places when the discrete state

is mi, we have

πi(τ) =

∫ B(p1)

0

. . .

∫ B(p|Pc|)

0

Hi(τ, (dx1, . . . , dx|Pc|)),
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– f(τ,x) =
∑
pi∈Pd

hi(τ,x) the fluid density.

For an x where Hi(τ,x) is continuous hi(τ,x) = ∂
∂x1

. . . ∂
∂x|Pc|

Hi(τ,x) is the

probability density of the fluid places. The densities hi(τ,x) are collected in a
vector h(τ,x) of length |Md|. The dynamic behavior of the system is described
by the following set of partial differential equation [12, Theorem 1]

∂h(τ,x)

∂τ
+
∑
p∈Pc

∂(h(τ,x)Rp(x))

∂xp
= h(τ,x)Q(x). (4)

For an x where Hi(τ,x) is not continuous probability mass develops in various
dimensions. These probability masses (e.g., when p1 ∈ Pc is at its lower bound-
ary, p2 ∈ Pc is at its upper boundary and p3 ∈ Pc is between its boundaries),
whose number is exponentially increasing with the number of fluid places, are
characterized by the boundary equations. Here we avoid the discussion of those
boundary equations by referring to [12, Theorem 1], where multi-dimensional
masses are considered at the lower boundaries of fluid places.

Results are computed in terms of discrete and continuous markings. We define
two functions gd : Md → IR≥0 and gc : Mc → IR≥0 that indicate the gain or
reward with respect to the discrete or continuous state. We assume that the
intervalsMk

c are defined such that for x,y ∈Mk
c gc(x) = gc(y). The expectation

of the overall gain at time τ , G(τ), is then given by

E (G(τ)) =
∑

mi∈Md

(
πi(τ)gd(mi) +

∫
x1

. . .

∫
x|Pc|

gc(x)Hi(τ, (dx1, . . . , dx|Pc|))

)
.

To analyze the system numerically, a discretization approach is applied. We
introduce a simple first-order scheme following the ideas presented in [3, 8, 12].
Let ∆p the discretization step for place p ∈ Pc. We assume that B(p) is a multiple
of ∆p and np = B(p)/∆p. Let ∆ =

(
∆1, . . . ,∆|Pc|

)
be a discretization scheme.

Discretization defines a finite state space S∆ with n∆ = |Md|
∏
p∈Pc

np states.
Each state is defined by a vector (u0, u1, . . . , u|Pc|) of length 1 + |Pc| where u0 ∈
Md and up ∈ {1, . . . , np} for p ∈ Pc. States in S∆ are ordered lexicographically
according to their vector representation. Depending on the context, we use the
vector representation for states or their number in the state space.

To compute transition rates in the discretized state space different methods
exist. We apply a finite volume method and start with the transition rates of
the discrete part, as follows

qkij , q
(k1,...,k|Pc|)

ij =
1∏

p∈Pc
∆p

∫ k1∆1

(k1−1)∆1

. . .

∫ k|Pc|∆|Pc|

(k|Pc|−1)∆|Pc|

qij(x)dx1, . . . dx|Pc|,

(5)
where k = (k1, . . . , k|Pc|) is ranging from (1, . . . , 1) to (n1, . . . , n|Pc|). Since the
function qij(x) is piecewise constant, the integral can be evaluated as a sum.
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Matrix

Q̄ =

 Q̄1,1 · · · Q̄1,|Md|
...

. . .
...

Q̄|Md|,1 · · · Q̄|Md|,|Md|

 (6)

is a n∆ × n∆ generator matrix of a Markov chain, where Q̄ij = diag
(
qkij
)

is a
diagonal matrix.

For the discretized flow rates define

rpi,k =
1∏

p∈Pc
∆p

∫ k1∆1

(k1−1)∆1

. . .

∫ k|Pc|∆|Pc|

(k|Pc|−1)∆|Pc|

rp((mi,x))dx1, . . . dx|Pc| (7)

for mi ∈ Md as the flow rate of place p ∈ Pc when the system is in dis-
crete state (mi,k) ∈ S∆. Again the integrals can be evaluated as finite sums
since the functions are piecewise constant. For k = (k1, . . . , k|Pc|) let k ± 1p =
(k1, . . . , kp−1, kp ± 1, kp+1, . . . , k|Pc|). Observe that k + 1p is not defined if kp =
B(p) and k − 1p is not defined for kp = 1. Now define the flow rates

wk,li =



rpi.k
∆p

if l = k + 1p ∧ rpi,k > 0,

− r
p
i.k

∆p
if l = k − 1p ∧ rpi,k < 0,

−
∑̀
6=k
wk,`i if l = k,

0 otherwise,

(8)

and the matrix

W i =


w

(1,...,1),(1,...,1)
i · · · w

(1,...,1),(B(1),...,B(|Pc|))
i

...
. . .

...

w
(B(1),...,B(|Pc|)),(1,...,1)
i · · · w(B(1),...,P (|Pc|)),(B(1),...,B(|Pc|))

i

 . (9)

Then

Q̂ = Q+W where W =

W 1

. . .

W |Md|

 (10)

is the infinitesimal generator matrix of the discretized process such that

du(τ)

dτ
= u(τ)Q̂ (11)

is the system of ordinary differential equations describing the evolution of the
discretized process. Let u(τ) be the solution of (11) at time τ starting from u(0),
which is the discretized version of m̄0.

To approximate E(G(τ)), we first define the discretized gain vector for con-
tinuous places.

gkc =

∫ k1∆1

(k1−1)∆1

. . .

∫ k|Pc|∆|Pc|

(k|Pc|−1)∆|Pc|

gc(x)dx1, . . . dx|Pc|. (12)
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Then

E(G(τ)) ≈
∑

mi∈Md

∑
k

u(i,k)(τ)
(
gd(mi) + gkc

)
, (13)

where ≈ indicates the inaccuracy by discretization. For later use we define col-
umn vectors gc, gd of length n∆ such that E(G(τ)) ≈ Ĝ(τ) , u(τ) (gc + gd).

We denote a discretization ∆ as consistent for p ∈ Pc, if (bkp− bk−1
p )/∆p ∈ IN

for all intervals. In this case the integrals in (5),(7),(12) can be substituted
by sums. A discretization ∆ is consistent if it is consistent for all p ∈ Pc. A
refinement of a discretization for place p ∈ Pc means to substitute ∆p by ∆p/i
for i ∈ IN. The number of intervals is increased by a factor i. ∆/2 means that
every ∆p is substituted by ∆p/2. The number of states is of the discrete process
is in this case increased by factor 2|Pc|. If ∆ is consistent, then every refinement
is also consistent.

4 Lumping of the Discrete Process

In this section we consider the lumpability of the discretized system developed
above. Let ∼ be an equivalence relation on S∆, S̃∆ the set of equivalence classes
and [m,k] the equivalence class to which (m,k) ∈ S̃∆ belongs. ∼ is lumpable

relation, iff ∀s̃, s̃′ ∈ S̃∆,∀(mi,k), (mj , l) ∈ [s̃]:

gkc = glc, gd(mi) = gd(mj),∑
(mz,y)∈[s̃′]

Q̂((mi,k), (mz,y)) =
∑

(mz,y)∈[s̃′]

Q̂((mj , l), (mz,y)) (14)

The union of lumpable relations is again a lumpable relation. The lumpable re-
lation with the least number of equivalence classes exists and can be defined as
the transitive closure of the union of lumpable partitions. In the sequel we de-
note this relation by ∼. It can be computed using partition refinement. Efficient
algorithms have been proposed in the past [7, 18] and can also be used in our
setting.

Let n∆ be the number of states and ñ∆ the number of equivalence classes of
∼. The equivalence relation can be represented by a so-called collector matrix
[1] which is a n∆ × ñ∆ matrix V with V (j, i) = 1 if j ∈ [i] and 0 if j /∈ [i].
Matrix V contains one element equal to 1 in each row and at least one element
equal to 1 in each column. A distributor matrix is defined as an ñ∆×n∆ matrix

W = (V )
T

where the overline means that the rows of the transposed matrix V

are normalized to 1. Then Q̃ = WQ̂V is the ñ∆ × ñ∆ matrix of the lumped
system. It is easy to show [1, 15] that the relation Q̂V = V Q̃ holds in this
case. Furthermore, define g̃Tc = gTc V and g̃Td = gTd V which implies, due to the
lumpability conditions, gc = V g̃c and gd = V g̃d. Then

∂ũ(τ)

∂τ
= ũ(τ)Q̃ (15)
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are the ordinary differential equations for the lumped system. The initial con-
dition is ũ(0) = u(0)V . E(G(τ)) ≈ G̃(τ) = ũ(τ) (g̃c + g̃d) is the result of the
lumped system.

Theorem 1. If the lumped system has been generated according to some lumpable
equivalence relation ∼, then G̃(τ) = Ĝ(τ).

Proof. We show here that the forward Euler method with time step δ applied
to (11) and (15) yields the same results. Since the Euler method converges for
δ → 0 towards the exact solution, both sets of ordinary differential equations
converge towards the same solution. Let uk = u(k · δ) and ũk = ũ(k · δ), then
ũ0 = u0V . We show by induction that the relation holds for all k = 0, 1, . . ..

Assume that ũk = ukV , then the (k+1)th vector is computed by the forward
Euler scheme as

ũk+1 = ũk + δũkQ̃ = ukV + δukV Q̃ =
(
uk + δukQ̂

)
V = uk+1V

and

G̃(k · δ) = ũk (g̃c + g̃d) = ukV (g̃c + g̃d) = uk (gc + gd) = Ĝ(k · δ),

which completes the proof. �

We now consider refinements of consistent partitions. Let ∆ be a partition
which is consistent for p ∈ Pc and let ∆′ be a partition that results from ∆ by
substituting ∆p by ∆p/2, then each state (m,k) ∈ S∆ is represented by two
states (m,k−), (m,k+) ∈ S∆′ where k− = (k1, . . . , kp−1, 2kp−1, kp+1. . . . , k|Pc|)
and k+ = (k1, . . . , kp−1, 2kp, kp+1. . . . , k|Pc|). The non-diagonal elements of ma-

trix Q̂∆′ can be derived from the elements of Q̂∆ as follows:

Q̂∆′((m,k+), (m′,k+)) = Q̂∆′((m,k−), (m′,k−)) = Q̂∆((m,k), (m′,k))

Q̂∆′((m,k+), (m, l+)) = Q̂∆′((m,k−), (m, l−)) = Q̂∆((m,k), (m, l))

Q̂∆′((m,k+), (m,k−)) = −min(rpm.k,0)

2∆p

Q̂∆′((m,k−), (m,k+)) =
max(rpm.k,0)

2∆p

Q̂∆′((m,k+), (m, (k+ + 1p)) =
max(rpm.k,0)

2∆p

Q̂∆′((m,k−), (m, (k− − 1p)) = −min(rpm.k,0)

2∆p

(16)
form 6= m′ and l 6= k and l 6= k±1P . All remaining non-diagonal matrix entries
are 0. The diagonal elements Q̂∆′((m,k+), (m,k+)), Q̂∆′((m,k−), (m,k−))
are chosen to yield row sum 0 in each row. For the lumped system let [m, l] be
the equivalence class to which state (m, l) belongs. Each equivalence class [m,k]
is split into two classes [m,k−], [m,k+]. Matrix Q̃∆′ is defined by (16) where
Q̂∆′((m,k), (m′,k′) is substituted by Q̃∆′((m,k), (m′,k′)).

Theorem 2. Let ∆′ be a refinement of ∆. If Q̃∆ results from Q̂∆ by a lumpable

equivalence relation ∼, then Q̃∆′ results from Q̂∆′ by a lumpable equivalence re-
lation ∼′ where (m,k) ∼ (m′, l)⇒ ((m,k−) ∼′ (m′, l−))∧((m,k+) ∼′ (m′, l+)).
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Proof. Consider a pair of states (m,k+) ∼′ (m′, l+). Then it holds that (m,k) ∼
(m′, l). We have to show that the sum of rates into the state from each equiv-
alence class [m′′,y±] is identical for both states. All rates out of (m,k+)
((m′, l+), resp.) that do not result from a flow into or out of place p are identical
to the corresponding rates out of state (m,k) ((m′, l), resp.). Thus, the rates
in the first two cases of (16) are identical, which means that we only have to
consider the remaining cases.

Since the discretization is consistent, rpm,k = rp
m′,l

has to hold which implies

that
rpm,k

2∆′ =
rp
m′,l
2∆′ and lumpability is transferred from ∼ to ∼′.

The proof for the other case, (m,k−) ∼′ (m′, l−) uses similar arguments. �

If rpm,k = 0 for all p ∈ Pc, then ∼′ can be extended by joining the equivalence

classes [m,k−] and [m′,k+]. This can be seen by noticing that the flow between
(m,k+) and (m,k−) is 0 in this case.

The results presented in this section suggest the following lumping approach:

1. Find the coarsest consistent discretization ∆.
2. Build matrix Q̂∆.
3. Compute the largest lumpable equivalence relation using partition refine-

ment.
4. Refine the discretization and generate the lumped matrices using (16) such

that the discretization error remains small enough. The discretization error
for the finite volume method, that is applied, can be estimated using standard
methods for the numerical solution of partial differential equations [14].

5. Compute the results by solving the set of ordinary differential equations (11)
resulting from the lumped system.

The refinement described here refines ∆p for all fluid places in the same way.
It is, of course, possible to restrict the refinement to some fluid places only.

The whole approach works well, if the transition and flow rates are defined in
such a way that a coarse consistent discretization exists. Otherwise the lumpable
partition has to be computed for the fine discretization that is used for analysis.
Such an approach is only useful for large time horizons τ , for which the solution
should be computed.

Example 1: We consider the simple net shown in Fig. 1(a). It describes a source
and a sink which have Nd operational modes. In mode i ∈ {0, . . . , Nd}, indicated
by i tokens on place p2 or p3, fluid is produced respectively consumed. Production
of fluid is described by the transitions t2, t3, consumption by the transitions
t4, t5. In mode 0 the consumer or producer are switched off, which means that
the transitions are not enabled. The net contains two fluid buffers modeled by
the fluid places p5 and p6. Both buffers have the same capacity B but buffer p6 is
always filled and emptied first. This implies that the behavior is non-symmetric,
the fluid densities differ for both fluid places.

The system becomes lumpable if the input transition t2 and t3 as well
as the output transitions t3 and t4 of the buffers have identical parameters
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t1

t3

Nd

p6

p5

Nd

p1 p2

t2

t5

t4

p3 t6 p4
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(b) Example 2

Fig. 1. Example FSPNs.

Nd Nc original lumped Nd Nc original lumped

1 6 140 40 2 6 318 93
1 11 480 80 2 11 1083 183
1 21 1760 160 2 21 3963 363
1 51 10400 400 2 51 23403 903
1 101 40800 800 2 101 91803 1803

Table 1. State space sizes for the first example net.

which depend only on the sum of fluid in fluid places and not on the indi-
vidual fluid levels x5 and x6. For the firing rates this means that t2 is en-
abled if m2 > 0, x5 < B and x6 = B. The firing rate is then given by
F (t2, (m, x5, x6)) = λ(m, x5 + x6). Transition t3 is enabled if m2 > 0 and
x6 < B. The firing rate equals F (t3, (m, x5, x6)) = λ(m, x5 + x6). Similarly, t4
is enabled with firing rate F (t4, (m, x5, x6)) = µ(m, x5 + x6) if m3 > 0, x5 > 0
and x6 = 0 and t5 is enabled with rate F (t5, (m, x5 + x6)) = µ(m, x5 + x6)
if m3 > 0 and x6 > 0. λ(.) and µ(.) are positive functions. The flow rates
underlie similar restrictions. We have R((t2, p5), (m, x5, x6)) = ν(m, x5 + x6),
R((t3, p6), (m, x5, x6)) = ν(m, x5 + x6), R((t4, p5), (m, x5, x6)) = ξ(m, x5 + x6)
and R((t5, p6), (m, x5, x6)) = ξ(m, x5+x6). ν(.) and ξ(.) are in our setting piece-
wise constant positive functions. Lumping additionally requires that all results
are only based on the discrete marking and the sum of the content of the fluid
places, x5 + x6.

If the system is lumpable, in some situations only the sum of fluid of the
fluid places and not the individual fluid levels have to be considered in the state
space. This results in a significant state space reduction. Table 1 shows some
state space sizes for the detailed and lumped system of equations. Parameter
Nd describes the number of tokens in the places p1 and p4 in the initial marking
and Nc is the number of discretization intervals for the fluid places.
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5 Lumping of the FSPN Matrices

Lumping, as presented in the previous section, is done at the state space of
the discrete process. Alternatively several approaches have been proposed to
perform lumping compositionally [2, 11] or based on symmetries at the net level
[4]. In principle similar approaches can be developed for FSPNs after defining
compositional or colored nets. However, here we consider an intermediate step by
defining and computing lumpable partitions at the levels of the matrices Q(x)
and Rp(x) (p ∈ Pc), defined at the beginning of Sect. 3.

In Theorem 3, we define an equivalence relation ∼ that relates states m̄ =
(m,x) and m̄′ = (m′,x′). We can restrict the equivalence relation to the discrete
and continuous parts of the state description. Thus, if (m,x) ∼ (m′,x′), then
m ∼d m′ and x ∼c x′. However, in general, the discrete and continuous parts
of the relation are not independent. I.e., (m,x) ∼ (m′,x′)⇒m ∼d m′ ∧ x ∼c
x′ but the other direction ⇐ usually will not hold. We furthermore assume
that ∼c defines equivalence classes on the set of continuous places. Therefore
we define permutations perm that permute places and transitions such that
continuous places are mapped on continuous place, discrete places are mapped
on discrete places and transitions are mapped on transitions. With a slight misuse
of notation we may consider the use of perm on subsets, e.g. perm(x) considers
only the effect of perm on continuous places. If x ∼c x′, then there exists
some permutation perm of continuous places, such that x′ = perm(x). Thus, ∼
induces an equivalence relation on Pc and x ∼c x′ implies that x′ results from x
by reordering equivalent places. We denote by P∼ the set of permutations that
permute equivalent places. Since ∼p is an equivalence relation if perm ∈ Pc,
then perm−1 ∈ Pc and if perm, perm′ ∈ Pc, then perm ◦ perm′ ∈ Pc where
perm ◦ perm′ is the concatenation of permutations perm and perm′.

Theorem 3. The relation ∼ defines a lumpable partition, if for all equivalence
classes [m,x], [m′,x′] and all (mi,xi), (mj ,xj) ∈ [m,x] the following relations
hold: ∑
(mk,xi)∈[m′,x′]

qik(xi) =
∑

(mk,xj)∈[m′,x′]

qjk(xj), gd(mi) = gd(mj), gc(xi) = gc(xj),

∃perm ∈ P∼,∀p ∈ Pc : rp(mi,xi) = rperm(p)(mj , perm(xj)), B(p) = B(perm(p)).
(17)

Proof. We have to prove that (14) holds for arbitrary discretizations ∆ where
∆p = ∆p′ if p = perm(p′) for some perm ∈ P∼.

Now let ∆ be some discretization of the above form and Q̂ the corresponding
rate matrix. ∼ induces an equivalence relation ∼̇ on the discrete state space such
that (m,k)∼̇(m,k′) iff m ∼m′ and k = perm(k′) for some perm ∈ P∼.

We first consider equivalence of the rewards. For the continuous and discrete
reward we have by definition of ∼ that gd(mi) = gd(mj) and gc(xi) = gc(xj)
holds for mi ∼mj and xi ∼ xj . For continuous places this implies that also the

integrals in (12) are identical for k and k′ which implies gkc = gk
′

c .
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Now consider the lumpability condition on the sums of rates, namely∑
(n′,l′)∈[(n,l)] Q̂((m,k), (n′, l′)) =

∑
(n′,l′)∈[(n,l)] Q̂((m′,k′), (n′, l′))

for some equivalence class [(n, l)] of ∼ and (m,k) ∼ (m′,k′). The rates can
result from a change of the discrete marking by firing a transition (collected in
Q) or from the discretized continuous flow (collected in W ). In the former case
the rate for (m,k) /∈ [n, l]. is given by∑

(n′,l′)∈[(n,k)] Q̂((m,k), (n′, l′)) =∑
(n′,l′)∈[(n,l)]

∫ k1∆1

(k1−1)∆1
. . .
∫ k|Pc|∆|Pc|

(k|Pc|−1)∆|Pc|
qm,n′(x)dx1, . . . dx|Pc| =∫ k1∆1

(k1−1)∆1
. . .
∫ k|Pc|∆|Pc|

(k|Pc|−1)∆|Pc|

∑
(n′,l′)∈[(n,l)] qm,n′(x)dx1, . . . dx|Pc| =∑

(n′,l′)∈[(n,l)]

∫ k1∆1

(k1−1)∆1
. . .
∫ k|Pc|∆|Pc|

(k|Pc|−1)∆|Pc|
qm′,n′(perm(x))dx1, . . . dx|Pc| =∑

(n′,l′)∈[(n,l)] Q̂((m′,k′), (n′, l′))

Observe that the continuous part is not modified by firing the discrete transition
but discretized vectors may differ due to a permutation of equivalent continuous
places. Sum and integrals can be interchanged due to Fubini’s theorem. If the
identity holds for all equivalence classes [n, l] 6= [m,k] then it also holds for
[m,k] because Q has zero row sums.

If the state changes due to the discretized continuous flow, the discrete re-
mains and we have for the flow according to place p ∈ Pc.∑
(n′,k)∈[(n,k)]

Q̂((m,k), (n′,k ± 1p)) =∣∣∣∣∣ 1
∆p

∏
p′∈Pc

∆p′

∑
(n′,l′)∈[(n,k±1p)]

k1∆1∫
(k1−1)∆1

. . .
k|Pc|∆|Pc|∫

(k|Pc|−1)∆|Pc|

rp((m,x))dx1, . . . dx|Pc|

∣∣∣∣∣ =∣∣∣∣∣ 1
∆p

∏
p′∈Pc

∆p′

k1∆1∫
(k1−1)∆1

. . .
k|Pc|∆|Pc|∫

(k|Pc|−1)∆|Pc|

∑
(n′,l′)∈[(n,k±1p)]

rp((m,x))dx1, . . . dx|Pc|

∣∣∣∣∣ =∣∣∣∣∣ 1
∆p

∏
p′∈Pc

∆p′

∑
(n′,l′)∈[(n,k±1p)]

k1∆1∫
(k1−1)∆1

. . .
k|Pc|∆|Pc|∫

(k|Pc|−1)∆|Pc|

rperm(p)((m
′, perm(x)))dx1, . . . dx|Pc|

∣∣∣∣∣ =∑
(n′,k)∈[(n,k)]

Q̂((m′,k′), (n′,k′ ± 1perm(p)))

± equals + if the resulting value is positive, otherwise it equals −.
Thus, the lumpability conditions hold for any discretization ∆ which com-

pletes the proof. �

Partition ∼ can be computed by partition refinement. The corresponding algo-
rithm will be briefly outlined in the following steps.
1. Generate the discrete state space Md (by assumption this can be done by

neglecting continuous places) and set k = 0.
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2. Define an initial equivalence relation ∼0
d on Md by m ∼0

d m
′ for m,m′ ∈

Md, iff gd(m) = gd(m
′).

3. Define an initial equivalence relation ∼0
c by p ∼0

c p
′ for p, p′ ∈ Pc and all

x ∈ Mc, iff B(p) = B(p′) and gc(x) = gc(xp↔p′) where xp↔p′ results from
x by exchanging the positions for p and p′. Let Perm0 be the set of all
permutations that permute the indices of equivalent places from Pc.

4. Partition refinement of ∼kd: for all equivalence classes [m]
split [m] into new equivalence classes [m1], . . . , [mL] until∑
mk∈[m′]

qi,k(x) =
∑

mk∈[m′]

qj,k(perm(x)) holds for all mi,mj ∈ [ml]

(l = 1, . . . , L), all [m′] ∈∼kd, all x ∈Mc and some perm ∈ Permk,
add equivalence classes [m1], . . . , [mL] to ∼k+1

d .

5. Partition refinement of ∼kc : for all equivalence classes [q] of ∼kc
split [q] into equivalence classes [q1], . . . , [qK ] until
for all p, p′ ∈ [qk] (k = 1, . . . ,K), all equivalence classes [m] of ∼k+1

d , exist
mi,mj ∈ [m] rp(mi,x) = rp′(mj , perm(x)) for all x where perm is the
permutation that assures in step 4 that mi and mj are equivalent
add equivalence classes [q1], . . . , [qK ] to ∼k+1

c ,

6. If ∼kd≡∼
k−1
d and ∼kc≡∼k−1

c , then stop (a lumpable partition has been found),
else set k = k + 1 and continue with step 4.

Some remarks should be given for the outlined algorithm. The algorithm
eventually terminates because in each iteration at least one new equivalence class
is generated for the states in Md or the places in Pc and the finest equivalence
relation is the identity relation where each equivalence class contains a single
discrete state or continuous place, respectively. Since the number of places and
the number of discrete markings are finite by assumption, the algorithm will
stop. Knowledge of ∼d and ∼c is not sufficient to define the lumpable relation,
additionally we need the relation between equivalent discrete states and the
corresponding permutation of equivalent continuous places (see step 4 of the
algorithm). The partition refinement in step 4 requires that the rates are identical
for all x = (x1, . . . , x|Pc|) where xp ∈ [0, B(p)]. To check this algorithmically an
appropriate specification of the rates qik(x) is necessary which is also required
for the specification of rates depending on the filling of fluid places.

It should be noted that the lumpability conditions for the discrete and con-
tinuous part are not symmetric. For the discrete part we define lumping at the
state level of the stochastic process, whereas for the continuous part lumping is
defined for symmetric places which is more restrictive. Consequently, a coarser
lumpable partition may exist which cannot be found by the outlined algorithm
above but can be computed by partition refinement of an adequately discretized
process (see e.g. Example 1).

Example 2: The second example is a symmetric FSPN which is shown in Fig. 1(b)
in a version with two components. Places with names pki belong to component k.
Each component models a switched source that produces fluid for a continuous
place pk3. A single consumer exists which is idle if a token resides on place p0.
If transition tk4 fires, the consumer changes its state to a state where fluid from
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place pk3 is consumed. If transition tk3 fires, the consumer goes back to the idle
state. The model can be defined for > 2 components in exactly the same way.

To allow state space reduction by lumpability, the components and the con-
sumer have to show a symmetric behavior. We define the corresponding condi-
tions for the case of K components. Let PK be the set of all permutations of
the numbers 1 through K. We use the notation perm(m) and perm(x) to indi-
cate the application of permutation perm on the vector which means that the
vector components belonging to the corresponding places are exchanged. I.e., if
perm(k) = l, then pki becomes pli and tki becomes tli. Observe that discrete
places are mapped on discrete places and continuous places on continuous places.
The following equalities have to hold for all k, l ∈ {1, . . . ,K}, all perm ∈ PK
where perm(k) = l, all transitions tki and all places pki to assure lumpability.

F (tki, (m,x)) = F (tli, (perm(m,x)), rpki(m,x) = rpli(perm(m,x)),

gxc = g
perm(x)
c and gd(m) = gd(perm(m)).

Additionally, the bounds for the continuous places have to be identical and the
same discretization has to be applied for all continuous places. Observe that due
to an appropriate definition of marking dependent transition rates, the firing of
transitions may depend on the filling of continuous place. For example tk4 may
only have a non-zero rate if pk3 includes enough fluid and the rate of tk3 may
grow if pk3 becomes empty. Let nc be the number of discrete intervals resulting
from the discretization of the continuous state of each continuous place. Then
S∆ contains (2K + 1)(2nc)

K states.

A lumpable equivalence relation ∼ can be generated by defining two states as
equivalent if one can be transformed into the other by a permutation perm ∈ PK .
Thus, (m,x) ∼ (m′,x′) if perm(m,x) = (m′,x′) for some perm ∈ PK . For the
reduced state space, we do not have to distinguish the identity of a component,
we only have to consider the number of equivalent components which are in a
specific state. This is well known from symmetry exploitation in SPNs [4]. For
our example this means that if a token resides at place p0, then all components
are identical and the number of states is reduced from (2nc)

K to
(

2nc+K−1
K

)
. If

a token resides at some place pk4, then the identity of the place is not relevant
and the remaining components are identical such that the number of states is
reduced from K(2nc)

K to 2nc ∗
(

2nc+K−2
K−1

)
. Overall the lumped state space S̃∆

includes
(

2nc+K−1
K

)
+2nc∗

(
2nc+K−2
K−1

)
states. For larger values of K the reduction

becomes significant but the state space still remains large if nc is large.

6 Conclusions

Lumping proved to be an efficient tool in the analysis of discrete state systems
such as CTMCs and SPNs. In this work we extended the concept of lumping
to FSPNs which are hybrid (discrete and continuous state) systems. The funda-
mental approach behind this extension is to map the hybrid system to a discrete
state one and apply the available lumping relations for the discrete system.
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To pursue this approach we presented a discretization of FSPNs and elab-
orated on the refinement of the discretization step. We showed that the refine-
ment maintains the lumping relation, which is important for utilizing the fact
that asymptotic behavior of the discrete system tends to the hybrid one as the
discretization step tends to zero. Additionally we present an approach where
the lumping of the continuous part is based on the symmetry among continuous
places which is less general but may be proved by generating only the discrete
state space without building the discretized continuous part.
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