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Abstract

The analysis of Markov Reward Models with preemptive resume policy usually results in

a double transform expression, whose solution is based on an inverse transformation, both

in the time and in the reward variable domains. This paper discusses the case when the

reward rates can be described only by 0 or positive c values. These on-o� Markov Reward

Models are analyzed and a symbolic solution is presented, from which numerical solution

can be obtained by a computationally e�ective method. The mean completion time and the

probability distribution of states at the completion are evaluated.

Key words: Markov Reward Models, Preemptive resume policy, Completion time,

Accumulated reward.

1 Introduction

The properties of stochastic reward processes have been studied for a long time [4]. However,

the class of Stochastic Reward Models (SRMs) only recently has drawn attention as a modelling

tool in the performability (performance and reliability) evaluation. Indeed, the possibility of

associating a reward variable to each state increases the descriptive power and the exibility

of the model. Di�erent interpretations of the underlying process and of the associated reward

structure can be used to describe di�erent applications [8]. Based on the distribution of the

accumulated reward in a given period or on the distribution of the time needed to accumulate a

prede�ned (possible random) amount of reward, a great number of measures can be introduced

and used in performability evaluations. Usual assignments of the reward rates are: execution

rates of tasks in computing systems, number of active processors, throughput, and so on.

Moreover, the most important measures of the classical reliability theory [1] can be derived as

particular cases of SRMs constraining the reward rates to be binary variables.

Kulkarni et al. [6] derived the closed form Laplace transform equations for the time to

accumulate a given amount of reward in the case when the underlying stochastic process is

a Continuous Time Markov Chain (CTMC). We refer these cases as Markov Reward Models

(MRMs).

Various numerical techniques for the evaluation of the performability have been investigated

in recent papers: [3, 5, 7]. In this paper, we propose a computationally e�ective approach to
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the analysis of the class of MRMs with on-o� reward accumulation. These models play crucial

role in the description of the maintenance aspects of some computer/communication systems.

The paper is organized as follows. Section 2 provides a formal de�nition of SRMs, and

introduces the studied subset ofMRMs. In Section 3 the proposed analysis of the on-o�MRMs

is presented. Finally, the paper is concluded.

2 Markov Reward Models

The adopted modeling framework consists of describing the behaviour of the system con�gu-

ration in time by means of a stochastic process, and by associating a non-negative real number

to each state of the underlying process. The real variable associated to each state is called the

reward rate [4] and it represents the e�ective working capacity, the performance level, the cost

or the stress of the system in the given state.

Let the underlying stochastic process Z(t) (t � 0) referred as structure-state process be a

stochastic process de�ned over a discrete and �nite state space 
 of cardinality n. Let f be a

non-negative real-valued function de�ned as:

f [Z(t)] = r

i

� 0 ; if Z(t) = i (1)

where f [Z(t)] represents the instantaneous reward rate associated to state i.

De�nition 1 The accumulated reward B(t) is a random variable which represents the ac-

cumulation of reward in time,

B(t) =

Z

t

0

f [Z(u)]du =

Z

t

0

r

Z(u)

du

B(t) is a stochastic process that depends on Z(u) for 0 � u � t. According to De�nition 1, this

paper restricts the attention to the class of models in which no state transition can entail to a

loss of the accumulated reward. A SRM of this kind is called preemptive resume (prs) model.

Let us de�ne the distribution of the accumulated reward:

B(t; w) = PrfB(t) < wg

De�nition 2 The completion time C is the random variable representing the time to accu-

mulate a reward requirement being equal to a random variable W :

C = min [t � 0 : B(t) = W ]

With other words, C is the time at which the reward accumulated by the system reaches the

value W for the �rst time.

Assume, in general, that W is a random variable with distribution G(w) with support on

(0; 1). Obviously, this de�nition captures the degenerate case, when W is deterministic as

well. For a given sample of W = w, the completion time C(w) is de�ned as:

C(w) = min [t � 0 : B(t) = w] : (2)

Let C(t; w) be the Cdf (Cumulative distribution function) of the completion time when the

work requirement is w:

C(t; w) = Pr fC(w) � tg (3)

The completion time C of a prs SRM is characterized by the following distribution:

CD(t) = Pr fC � tg =

Z

1

0

C(t; w) dG(w) (4)



In case of prs reward accumulation the distribution of the completion time is closely related

to the distribution of the accumulated reward by means of the following relation:

B(t; w) = Pr fB(t) � wg = Pr fC(w) � tg = 1� C(t; w) (5)

Finally, we introduce the following matrix functions P(t; w) and F(t; w):

P

ij

(t; w) = PrfZ(t) = j ; B(t) � w jZ(0) = ig (6)

F

ij

(t; w) = PrfZ(C(w)) = j ; C(w) � t jZ(0) = ig (7)

where

� P

ij

(t; w) de�nes the (possibly defective) state dependent distribution of the accumulated

reward at time t before completion supposed that the initial state of the structure state

process is i,

� F

ij

(t; w) means the (possibly defective) state dependent distribution of the completion

time supposed that the initial state of the structure state process is i.

From (6) and (7), it follows for any t:

X

j2


[P

ij

(t; w) + F

ij

(t; w) ] = 1

Given that G(w) is the cumulative distribution function of the random work requirement W ,

the distribution of the completion time can be written as:

CD(t) =

Z

1

w=0

2

4

X

i2


X

j2


P

i

(0)F

ij

(t; w)

3

5

dG(w) =

Z

1

w=0

P (0)F(t; w) h dG(w)

(8)

where P (0) is the row vector of the initial probabilities, and h is the column vector with all

elements being equal to 1.

2.1 Markov Reward Models

If the structure-state process Z(t) is a CTMC with the in�nitesimal generator A, the above

introduced matrix functions can be described in the double transform domain. The detailed

derivations of these functions are presented in [2, 6, 10], and the �nal expressions obtained are

as follows:

(s+ vr

k

)F

��

ij

(s; v) = �

ij

r

i

+

X

k2R

a

ik

F

��

kj

(s; v) (9)

(s+ vr

k

)P

��

ij

(s; v) = �

ij

s

v

+

X

k2R

a

ik

P

��

kj

(s; v) (10)

where

�

denotes the Laplace-Stieltjes transformwith respect to t! s and

�

denotes the Laplace

transform with respect to w! v. Equations (9) and (10) can be rewritten in matrix form:

F

��

(s; v) = (sI+ vR�A)

�1

R (11)

P

��

(s; v) =

s

v

(sI+ vR�A)

�1

(12)

where I is the identity matrix and R is the diagonal matrix of the reward rates fr

k

g. The

dimensions of I, R, A, F and P are (n� n).

Starting from Equations (9-12), a natural way to evaluate the reward measures of a MRM

consists of the following steps:



1. derivation of the entries of the P

��

(s; v) and F

��

(s; v) matrices symbolically in the double

transform domain by (11) and (12);

2. symbolical inverse Laplace-stieltjes transformation of P

��

(s; v) and/or F

��

(s; v) with

respect to s;

3. numerical inverse Laplace transformation with respect to v;

4. unconditioning the result according to the Cdf of the work requirement (8).

However, the analysis contains some computationally intensive steps, and the whole procedure

can be applied only to very small scale problems (5-10 states).

3 Analysis of on-o� Markov Reward Models

De�nition 3 The subclass of MRMs in which the reward rates can only be 0 or a positive

value c is called on-o� MRM.

There are several practical examples which results in an on-o� MRM and moreover, most

of the classical reliability measures based on Markovian models can be described with on-o�

MRMs.

The analysis of an on-o� MRM can always be transformed into the analysis of an on-o�

MRM with binary reward rates (i.e. all the positive reward rates equal 1), by means of the

following equation:

CD(t) = Pr fC � tg =

Z

1

0

C

b

(t; w=c) dG(w) (13)

where C

b

(t; w) is the distribution of the completion time of the same MRM with binary reward

rates, and the superscript b referes the binary reward rates case in the following.

According to the associated reward rates the states of a on-o� MRM can be devided into

two parts, namely S and 
�S, where S contains the states with positive reward rates. Suppose

that S contains m states out of n. Thus, we can renumber the states in 
 in such a way that

the states indexed 1; 2; : : : ; m belong to S and the states numbered m+ 1; m+ 2; : : : ; n belong

to 
� S. Using this ordering of states, A can be partitioned into the following matrix blocks

A =

A

1

A

2

A

3

A

4

, where A

1

, A

2

, A

3

, and A

4

describes the transitions inside S, from S to


� S, from 
� S to R, and inside 
� S, respectively.

3.1 Mean completion time of on-o� Markow Reward Models

Using (13), the mean completion time of an on-o� MRM can be evaluated based on E(C

b

(w)).

Theorem 1 The expected time while an on-o� MRM with binary reward rates completes w

amount of work is:

E(C

b

(w)) = P (0)

"

L(w) �L(w)A

2

A

4

�1

�A

4

�1

A

3

L(w) A

4

�1

+A

4

�1

A

3

L(w)A

2

A

4

�1

#

h (14)

where

� = A

1

� A

2

A

4

�1

A

3

; L(w) =

Z

w

0

e

�w

dw:



Proof:

E(C

b

(w)) =

Z

1

t=0

1� C

b

(t; w) dt =

Z

1

t=0

B

b

(t; w) dt = lim

s!0

1

s

B

b�

(s; w) =

lim

s!0

P (0)

T

P

b�

(s; w)h = P (0) LT

�1

�

1

v

(vR�A)

�1

�

h

Let us consider the term LT

�1

�

1

v

(vR�A)

�1

�

separately. Based on the numbering of the

states R has the form R =

I

1

0

0 0

, where I

1

is the identity matrix of dimension (m� m).

Using this and the inverse of a partitioned matrix [9], the inverse Laplace transform is as

follows:

LT

�1

�

1

v

(vR�A)

�1

�

= LT

�1

8

<

:

1

v

"

vI

1

� A

1

�A

2

�A

3

�A

4

#

�1

9

=

;

=

LT

�1

(

1

v

"

(vI

1

� �)

�1

�(vI

1

� �)

�1

A

2

A

4

�1

�A

4

�1

A

3

(vI

1

� �)

�1

A

4

�1

+ A

4

�1

A

3

(vI

1

� �)

�1

A

2

A

4

�1

#)

=

"

L(w) �L(w)A

2

A

4

�1

�A

4

�1

A

3

L(w) A

4

�1

+ A

4

�1

A

3

L(w)A

2

A

4

�1

#

(15)

From 15 the theorem follows. 2

3.2 State probability distribution at completion

A further important analysis problem of SRMs is the probability distribution of the structure

state process when it completes. The required maintenance after a mission of the system can

be estimated based on this performance measure. De�ne

P

c

ij

= PrfZ(C) = jjZ(0) = ig

Theorem 2 The probability of being in state j at completion given that the process started

from state i is:

P

c

ij

=

Z

1

w=0

"

e

�w

0

�A

4

�1

A

3

e

�w

0

#

ij

dG(cw)

(16)

Proof:

P

c

ij

= lim

t!1

Z

1

w=0

F

b

ij

(t; w) dG(cw) = lim

s!0

Z

1

w=0

F

b �

ij

(s; w) dG(cw) =

Z

1

w=0

LT

�1

h

(vR�A)

�1

R

i

ij

dG(cw)

(17)

Let us consider the term LT

�1

h

(vR�A)

�1

R

i

separately. By the partitioned form of R and

A the inverse Laplace transform satis�es the following equation:



LT

�1

�

(vR�A)

�1

R

�

= LT

�1

8

<

:

"

vI

1

�A

1

�A

2

�A

3

�A

4

#

�1

R

9

=

;

=

LT

�1

"

(vI

1

� �)

�1

0

�A

4

�1

A

3

(vI

1

� �)

�1

0

#

=

"

e

�w

0

�A

4

�1

A

3

e

�w

0

#

(18)

From which the Theorem comes. 2

We can see that P

c

ij

equals to 0 if j 2 
 � S, since the accumulated reward does not increase

in those states.

4 Conclusions

Markov Reward Models are widely used to model performability of computer/communication

systems. The on-o� MRMs represent a sub-class of MRMs of practical interest in many real

situations. Focusing on an on-o� assignment of reward variables the analitical description of

MRMs is discussed. Performance indices such as the mean completion time and the proba-

bility distribution of states at the completion instant are derived and a numerically e�ective

computational method is described

The complexity of the algorithm is related to the evaluation of e

�t

, where � is a (m x m)

matrix, and to the evaluation of the inverse of matrix A

4

with cardinality ((n�m) x (n�m)).
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