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Abstra
t

The paper addresses the analysis of a single multiplexing node in ATM net-

works. It presents analyti
al models for evaluating the performan
e parameters

of a multiplexer that has N identi
al ON-OFF type input sour
es and an output


hannel with �nite bu�er. The 
hannel speed is assumed to be an integer times of

the sour
e speed in ON state. A two dimensional Dis
rete Time Markov Chain is

introdu
ed where the two dimensions des
ribe the number of ON sour
es and the

number of 
ells in the �nite bu�er at a given time. Two time s
ales are de�ned

in order to ensure a

urate results in 
al
ulating the performan
e parameters, e.g.


ell loss and 
ell delay. Three alternative models of the 
ell arrival pro
ess are

dis
ussed and the performan
e parameters are derived.

Key words: Dis
rete-Time Markov Chain Models, ATM Multiplexer, Bu�er

Dimensioning, Performan
e Evaluation.

1 Introdu
tion

Broadband ISDN (B-ISDN) is the network planned to 
arry di�erent types of information

in
luding voi
e, video, and data. The CCITT has adopted the Asyn
hronous Transfer

Mode (ATM) as the swit
hing te
hnique for the future high speed network due to its


exible and e�e
tive utilization of network resour
es. Sin
e then ATM has be
ome an

intensive resear
h area and the main interest has been devoted to the development of

methods in order to ensure Quality of Servi
e requirements (throughput, 
ell loss, delay,

et
) for ea
h data type.

�
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The ATM is a pa
ket-like swit
hing and multiplexing te
hnique in whi
h messages

are split into short �xed-length (53 Bytes) pa
kets 
alled 
ells. Cells may be lost or

may su�er delay for di�erent reasons, while they are transmitted from the sour
e to the

destination. The bu�er over
ow in an intermediate swit
hing or multiplexing node 
an

be one of the reasons of the loss or delay. The toleran
e for 
ell loss or delay varies with

the type of 
arried traÆ
. For example, pa
ketized voi
e traÆ
 allows relatively high


ell loss probability but it has little toleran
e to the delay while data 
an tolerate some

delay but they are very sensitive to the 
ell loss.

In this paper, the problem of multiplexing is addressed. Namely, the spe
ial 
ase

of N identi
al ON-OFF sour
es with one high speed output. This problem has been

studied in many papers providing both analyti
al and simulation results, however, most

of them assume a 
ontinuous time or 
uid 
ow model of the system whi
h is only an

approximation of the real situation.

Ani
k et al [1℄ 
onsidered the general data handling problem assuming 
ontinuous

time model with exponential distributions for both the ON and the OFF intervals. The

time unit was taken as the average of the ON intervals. The information unit was taken

as the in
oming information per time unit. In their model the server 
apa
ity was a

given (not integer) value and the bu�er size was in�nite. The equilibrium bu�er 
ontent

distribution and its moments were derived for the model. Numeri
al results for the

over
ow probability of a prede�ned bu�er ba
klog were presented as well.

Kosten [7℄ studied a similar model assuming a �nite number of di�erent groups of ON-

OFF sour
es, but the time unit was not de�ned. Similar a
hievements were presented

(eigenvalues-eigenve
tors, bu�er 
ontent distribution, . . . ) and numeri
al results for two

groups of sour
es were given.

Daigle and Landford [3℄ used the same model of [1℄ to study the problem of pa
ket

voi
e 
ommuni
ation system. While Hal�n [4℄ modi�ed the previous model and allowed

�nite and in�nite number of ON-OFF sour
es and a state-dependent Poisson message

arrival with general pa
ket length distribution. The results were provided with Lapla
e-

Stieljes transforms for the equilibrium bu�er 
ontent distribution, from whi
h the mo-

ments and the delay 
hara
teristi
s were also derived. Some 
omputational experien
es

and 
omparisons in 
ase of Poisson input pro
esses were summarized as well.

Mitra [10℄ used a similar model for produ
tion ma
hines with servi
e and failed states.
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In addition to the traditional results implemented on these kinds of problems, he gave a

detailed study on stable and unstable systems. Tu
ker [13℄ also used a model similar to

[1℄, but the server 
apa
ity was de�ned as an integer number of information units and

the bu�er size was �nite. Results on bu�er 
ontent distribution, 
ell loss, and delay were

given with simulation 
omparisons.

Li [9℄ assumed a �nite number of ON-OFF sour
es, with exponential distributions

for both the ON and the OFF intervals, a �nite bu�er size and a non-integer 
hannel

(server) 
apa
ity. He de�ned the group of states where pa
kets are blo
ked and derived

the mean holding time and the initial distribution for this group. He also gave results


on
erning the mean duration of the overloaded periods. An embedded Markov 
hain at

the end of the overloaded periods was introdu
ed whi
h des
ribes the worst 
ase for the

arriving pa
ket 
on
erning the delay. The paper presented many simulation results and

approximations for integrated voi
e and data examples.

Baio

hi et al. [2℄ extended the previous idea by de�ning an overloaded and under-

loaded intervals and �tted the two-level model parameters (e.g., 
ell generation rate) to

the initial multi-level des
ription. Results were obtained for the two-level model and

system parameters with 
omparison with simulations.

The 
ommon feature of the above mentioned models is that all of them have assumed

a 
ontinuous time distribution for the ON and OFF intervals. On the other hand, Li

[8℄ introdu
ed a dis
rete time model assuming �nite number of ON-OFF sour
es and

geometri
al distributions for the ON and OFF intervals. He �xed that in one time

unit only one ON and/or OFF sour
e 
an 
hange state. The 
hannel 
apa
ity was as-

sumed to be an integer number of sour
es and the bu�er size 
ould be either zero (burst

swit
hing-
lipping 
ase) or in�nite (pa
ket swit
hing 
ase). Similarly, he de�ned over-

loaded and underloaded intervals and derived the mean 
umulative time spent by a given

(underloaded or overloaded) pro
ess in a given state. For the 
ase of burst swit
hing, he

determined the bit 
lipping rate (BCR) and the mean length of the overloaded (
lipping)

periods with numeri
al results. Meanwhile for the pa
ket swit
hing 
ase, he de�ned an

embedded Markov 
hain su
h as that in [9℄ that was des
ribed before.

Finally, Hubner and Tran-Gia [6℄ used similar model, but in their model the server


apa
ity was given as a non-integer number of information units and the bu�er size was

�nite. They de�ned three 
ases:
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� �xed number of ON sour
es (Quasi-stationary analysis) for whi
h steady-state

probabilities and 
ell blo
king probabilities were given,

� �xed number of ON-OFF sour
es for whi
h approximations based on the quasi-

stationary results were given,

� model for 
all admission 
ontrol (CAC) where blo
king probabilities were 
al
u-

lated.

In this paper, a dis
rete time model based on a �nite number of sour
es and a

�nite size bu�er is introdu
ed from whi
h results on 
ell loss, average bu�er length,

and delay are given. In Se
tion 2, the main assumptions for this model are given, and

the mathemati
al model is derived in a step-by-step manner. Se
tion 3 de�nes three

di�erent model alternatives. Se
tion 4 gives the steady-state solution from whi
h the

most important expressions on performan
e parameters are obtained. Se
tion 5 shows

the numeri
al example and, �nally, some 
on
lusions 
omplete the paper.

2 Model Assumptions

Physi
al model

Consider a multiplexing node with the following features :

� N identi
al sour
es with two states (ON, OFF).

� Sour
es in the ON state generate 
ells with rate v

s

, where the time unit is taken

so that v

s

=1 [
ell/time unit℄ holds.

� Sour
es in the OFF state do not generate any 
ells.

� There is one output transmission link with the transmission rate v

l

= C [
ell/time

unit℄.

� If more 
ells arrive than the link 
apa
ity, the extra 
ells are stored in a bu�er of

length L.

� Cells arriving when the bu�er is full are lost.

The system is studied in order to �nd analyti
al results on the expe
ted 
ell loss, the


ell delay, and the average bu�er 
ontent.
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Sour
e pro
ess

Assume that the behavior of a sour
e 
an be des
ribed by a dis
rete-time Markov 
hain

(DTMC) with two states (ON-OFF). The distribution of the length of the ON periods

is assumed to be of geometri
al with parameter �, while the OFF periods are also

geometri
al with parameter �. The transition probabilities of the DTMC are :

Pr[OFF ! ON ℄ = �

Pr[ON ! OFF ℄ = � (1)

Let us de�ne now �

n

denoting the number of sour
es in ON state at time n. It is

obvious that this pro
ess is also a DTMC with state spa
e 
 = f0; 1; :::; Ng and the

state transition probabilities 
an be written as:

p

ij

=

min(i;j)

X

k=max(i+j�N;0)

 

i

k

!

(1� �)

k

�

i�k

 

N � i

j � k

!

�

j�k

(1� �)

N�i�j+k

(2)

This expression of the transition probabilities takes into a

ount that the transition

from state i to state j may o

ur if k out of the i ON sour
es (0 � k � i) stay in the

ON state and (j � k) other sour
es turn from the OFF to the ON state.

Let P

(n)

= fP

(n)

i

g (P

(n)

i

= Prf�

n

= ig) denotes the state probability ve
tor of pro
ess

�

n

at time n and p = fp

i

; i = 1; : : : ; Ng denotes the steady state probability ve
tor of

�

n

.

Bu�er 
ontent

The pro
ess des
ribing the number of 
ells in the bu�er plays an essential role in eval-

uating the performan
e parameters mentioned before. Let �

n

denote this pro
ess with

state spa
e � = f0; 1; : : : ; Lg, where L is the size of the bu�er. The state transition

probabilities of �

n

are dependent on the state of pro
ess �

n

, therefore one should study

the two pro
esses together.

The global model

By these assumptions, we de�ne the 
ompound pro
ess (�

n

; �

n

) with the states (i; j),

where i = 0; 1; : : : ; N and j = 0; 1; : : : ; L and the state transition probabilities as follows:

p

i;j;u;v

= Pr[u ON sour
e; v 
ells in bu�er at time (n+ 1)ji; j at time n℄
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and the state probability matrix 
an be written as �

(n)

= f�

(n)

(i; j)g = Prf�

n

= i; �

n

=

jg and the steady-state probability matrix is denoted by �(i; j).

In order to determine these probabilities, it is ne
essary to state that sin
e the 
hannel

speed (
apa
ity) is assumed to be an integer number of 
ells per unit time, a mi
ro slot


an be also de�ned as the time ne
essary to transmit one 
ell on the output 
hannel.

Although, one 
an suppose more reasonable to 
hoose the mi
ro slot as the time unit,

the time unit was 
hosen to ensure the Markov (memoryless) property for pro
esses �

n

and (�

n

; �

n

).

This fa
t and the fa
t that i 
ells are generated during a time unit when i sour
es are

in the ON state imply that the state transition probabilities of the 
ompound pro
ess

(�

n

; �

n

) vary depending on the arrival pro
ess. In the paper, we study three di�erent

situations of the arrival pro
ess as the most informative and useful 
ases for determining

the performan
e parameters.

3 Model Alternatives

Model 1.: Arrivals o

ur at the beginning of the time slot

In this 
ase we assume that one 
ell arrives from every On sour
e at the beginning of

any time slot, so that the bu�er 
ontent will be min(i+ j; L) 
ells , where i is the number

of ON sour
es and j is the number of 
ells in the bu�er at the end of the previous time

slot. Thus, the number of 
ells that will be found in the bu�er at the end of the time

slot 
an be written as:

�

n+1

= max(min(j + i; L)� C; 0) (3)

Using the above approa
h, the number of 
ells 


i;j

and the total delay of 
ells d

i;j

in

state (i; j) 
an be expressed in the following form:




i;j

= max(i+ j � L; 0) (4)

d

i;j

=

min(i+j;L)�1

X

l=j

l; (5)

where the delay is measured in the mi
ro slot unit.
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Model 2.: Late arrivals with delayed a

ess [11℄

The arrival pro
ess is 
onsidered to be 
ontinuous in time, but 
ells arriving during

the time slot must wait until the beginning of the next slot. In this 
ase, the number of


ells that will be found in the bu�er at the beginning of the next time slot is written as:

�

n+1

= min(i+max(j � C; 0); L); (6)

while the 
ell loss and the 
ell delay are obtained from the following expressions:




i;j

= max(i+max(j � C; 0)� L; 0) (7)

d

i;j

=

min(i;L�max(j�C;0))�1

X

l=0

C

2

+ max(j � C; 0) + l (8)

Model 1 and 2 provide identi
al 
ell loss, while Model 2 shows longer 
ell delay. It

seems to be 
lear that there are other 
ases resulting in lower values for both the 
ell

loss and the 
ell delay. In the sequel, Model 3 is dis
ussed, whi
h 
an be 
onsidered as

an optimisti
 
ase. Although Model 2 seems to be the worst 
ase, neither the pessimum

nuture of Model 2 nor the optimum nature of Model 3 have not been proved so far.

Model 3.: Cells arrive one-by-one in the mi
ro slot starting when the

bu�er be
omes empty, and the remaining 
ells (if any) arrive at the end of

time slot

For state (i; j)

�

n+1

= min(max(j + i� C; 0); L); (9)




i;j

= max(i+ j � C � L; 0); (10)

and

d

i;j

=

min(i�max(C�j;0);L�max(j�C;0))�1

X

l=0

max(j � C; 0) + l (11)

hold, where max(C � j; 0) is the number of empty mi
ro slots after all the 
ells being

served when C > j and max(j � C; 0) gives the number of 
ell remaining at the end of
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the slot. It is obvious, that only one of the above quantities 
an take positive value at

the same time.

4 Performan
e Parameters

Taking into a

ount the model alternatives used to des
ribe the arrival pro
edure for

pro
ess (�

n

; �

n

), it 
an be seen that, for any time instant n, (�

n+1

; �

n+1

) depends only

on (�

n

; �

n

), whi
h means it is a DTMC with transition probabilities p

i;j;u;v

de�ned as

follows:

p

i;j;u;v

=

(

p

i;u

if �

n

= j and �

n+1

= v

0 otherwise

(12)

where p

i;u

is the transition probability of pro
ess �

n

and v is 
al
ulated based on the

above model alternatives.

With these transition probabilities, the steady-state probabilities � = f�(i; j)g of the


ompound pro
ess (�

n

; �

n

) 
an be obtained from the well-known DTMC equations [5℄.

Then, the main performan
e parameters for the system 
an be given as follows:

� The average 
ell loss

Cl =

N

X

i=0

L

X

j=0

�(i; j) � 


i;j

N

X

i=0

i � p

i

(13)

where p

i

denotes the steady state probability of state i of pro
ess �

n

, and the

denominator gives the average number of the arrived 
ells.

� The average 
ell delay

D =

N

X

i=0

L

X

j=0

�(i; j) � d

i;j

N

X

i=0

L

X

j=0

(i� 


i;j

) � �(i; j)

(14)

where the denominator gives the average number of transmitted 
ells.

� The average bu�er 
ontent

B =

L

X

j=0

j �

 

N

X

i=0

�(i; j)

!

(15)
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In the next se
tion, we give a numeri
al example on the model presented in the paper

for all models and provide diagrams on the performan
e parameters.

5 Numeri
al Example

The models are demonstrated on an ATM multiplexer with ON-OFF type voi
e in-

put 
hannels with mean talkspurt duration �

�1

=352ms and mean silen
e duration

�

�1

=650ms [12℄. The output 
hannel is assumed to be T1 line with a rate of 1.536Mbps.

Taking into a

ount that ea
h ON sour
e generates data with rate 64kbps and ea
h

47 Byte should be en
apsulated into 53 Byte 
ell by AAL1, the sour
e speed will be

72,17kbps and thus C=21. With these values the time unit is 5.875ms and the mi
ro

time slot is 279.76�s.

Figures 1-4 show the 
al
ulated results for the expe
ted 
ell loss and average 
ell delay

versus bu�er size with N=30 (Figures 1), 2) and with N=40 (Figures 3,4) respe
tively,

while Figures 5-6 show the same parameters versus the number of sour
es.

It 
an be observed that Model 1 and Model 2 provide identi
al results for the average


ell loss while Model 3 gives lower values. For the average delay, the �gures show the

highest values while Model 3 gives the lowest possible among the investigated models. It


an also be seen (Figures 5,6) that the di�eren
e between Model 1 and Model 3 be
omes

less as the number of sour
es in
reases. This is due to the fa
t that Model 3 will behave

like Model 1 in the heavy load situations.

Figures 1 and 3 show that the in
rement of N a�e
ts strongly the 
ell loss and an

a

eptable 
ell loss value 
an be rea
hed only with high bu�er size, while Figures 2

and 4 show the in
rement of bu�er size in
reases the average 
ell delay very slightly

sin
e the 
ell loss will be less as well.

For the 
ase N = 40, the di�eren
e between the values obtained for Models 1,2

and 3 are relatively small whi
h allows some design de
isions to be 
onsidered about

the size of bu�er based on other aspe
ts. On the other hand, Figure 2 shows that this

di�eren
e is rather large in the 
ase of N = 30, whi
h means that more realisti
 
ell

arrival distributions should be 
onsidered.
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6 Con
lusions

The paper presents performan
e models of an ATM multiplexing node for whi
h expli
it

expressions are given for the most important performan
e parameters; 
ell loss, 
ell delay

and bu�er 
ontent.

The models are based on the two-dimensional DTMC with the number of ON sour
es

and the number of 
ells in the bu�er.

The models are implemented on an IBM RISC-6000 Model-570 ma
hine and they

provide relatively short exe
ution time even for higher N and L values (e.g., for N = 40

and L = 500 the exe
ution time was 258 se
onds).

In addition, the numeri
al example showed some interesting results on the three

di�erent model alternatives introdu
ed in the paper giving some indi
ations on the upper

and lower limits for all the performan
e parameters mentioned before.
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