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Abstract

The paper addresses the analysis of a single multiplexing node in ATM net-
works. It presents analytical models for evaluating the performance parameters
of a multiplexer that has N identical ON-OFF type input sources and an output
channel with finite buffer. The channel speed is assumed to be an integer times of
the source speed in ON state. A two dimensional Discrete Time Markov Chain is
introduced where the two dimensions describe the number of ON sources and the
number of cells in the finite buffer at a given time. Two time scales are defined
in order to ensure accurate results in calculating the performance parameters, e.g.
cell loss and cell delay. Three alternative models of the cell arrival process are
discussed and the performance parameters are derived.

Key words: Discrete-Time Markov Chain Models, ATM Multiplexer, Buffer
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1 Introduction

Broadband ISDN (B-ISDN) is the network planned to carry different types of information
including voice, video, and data. The CCITT has adopted the Asynchronous Transfer
Mode (ATM) as the switching technique for the future high speed network due to its
flexible and effective utilization of network resources. Since then ATM has become an
intensive research area and the main interest has been devoted to the development of
methods in order to ensure Quality of Service requirements (throughput, cell loss, delay,

etc) for each data type.

*This work was performed with the support of the European Community through the contract
COPERNICUS-1463.



The ATM is a packet-like switching and multiplexing technique in which messages
are split into short fixed-length (53 Bytes) packets called cells. Cells may be lost or
may suffer delay for different reasons, while they are transmitted from the source to the
destination. The buffer overflow in an intermediate switching or multiplexing node can
be one of the reasons of the loss or delay. The tolerance for cell loss or delay varies with
the type of carried traffic. For example, packetized voice traffic allows relatively high
cell loss probability but it has little tolerance to the delay while data can tolerate some
delay but they are very sensitive to the cell loss.

In this paper, the problem of multiplexing is addressed. Namely, the special case
of N identical ON-OFF sources with one high speed output. This problem has been
studied in many papers providing both analytical and simulation results, however, most
of them assume a continuous time or fluid flow model of the system which is only an
approximation of the real situation.

Anick et al [1] considered the general data handling problem assuming continuous
time model with exponential distributions for both the ON and the OFF intervals. The
time unit was taken as the average of the ON intervals. The information unit was taken
as the incoming information per time unit. In their model the server capacity was a
given (not integer) value and the buffer size was infinite. The equilibrium buffer content
distribution and its moments were derived for the model. Numerical results for the
overflow probability of a predefined buffer backlog were presented as well.

Kosten [7] studied a similar model assuming a finite number of different groups of ON-
OFF sources, but the time unit was not defined. Similar achievements were presented
(eigenvalues-eigenvectors, buffer content distribution, ...) and numerical results for two
groups of sources were given.

Daigle and Landford [3] used the same model of [1] to study the problem of packet
voice communication system. While Halfin [4] modified the previous model and allowed
finite and infinite number of ON-OFF sources and a state-dependent Poisson message
arrival with general packet length distribution. The results were provided with Laplace-
Stieljes transforms for the equilibrium buffer content distribution, from which the mo-
ments and the delay characteristics were also derived. Some computational experiences
and comparisons in case of Poisson input processes were summarized as well.

Mitra [10] used a similar model for production machines with service and failed states.



In addition to the traditional results implemented on these kinds of problems, he gave a
detailed study on stable and unstable systems. Tucker [13] also used a model similar to
[1], but the server capacity was defined as an integer number of information units and
the buffer size was finite. Results on buffer content distribution, cell loss, and delay were
given with simulation comparisons.

Li [9] assumed a finite number of ON-OFF sources, with exponential distributions
for both the ON and the OFF intervals, a finite buffer size and a non-integer channel
(server) capacity. He defined the group of states where packets are blocked and derived
the mean holding time and the initial distribution for this group. He also gave results
concerning the mean duration of the overloaded periods. An embedded Markov chain at
the end of the overloaded periods was introduced which describes the worst case for the
arriving packet concerning the delay. The paper presented many simulation results and
approximations for integrated voice and data examples.

Baiocchi et al. [2] extended the previous idea by defining an overloaded and under-
loaded intervals and fitted the two-level model parameters (e.g., cell generation rate) to
the initial multi-level description. Results were obtained for the two-level model and
system parameters with comparison with simulations.

The common feature of the above mentioned models is that all of them have assumed
a continuous time distribution for the ON and OFF intervals. On the other hand, Li
[8] introduced a discrete time model assuming finite number of ON-OFF sources and
geometrical distributions for the ON and OFF intervals. He fixed that in one time
unit only one ON and/or OFF source can change state. The channel capacity was as-
sumed to be an integer number of sources and the buffer size could be either zero (burst
switching-clipping case) or infinite (packet switching case). Similarly, he defined over-
loaded and underloaded intervals and derived the mean cumulative time spent by a given
(underloaded or overloaded) process in a given state. For the case of burst switching, he
determined the bit clipping rate (BCR) and the mean length of the overloaded (clipping)
periods with numerical results. Meanwhile for the packet switching case, he defined an
embedded Markov chain such as that in [9] that was described before.

Finally, Hubner and Tran-Gia [6] used similar model, but in their model the server
capacity was given as a non-integer number of information units and the buffer size was

finite. They defined three cases:



e fixed number of ON sources (Quasi-stationary analysis) for which steady-state

probabilities and cell blocking probabilities were given,

e fixed number of ON-OFF sources for which approximations based on the quasi-

stationary results were given,

e model for call admission control (CAC) where blocking probabilities were calcu-

lated.

In this paper, a discrete time model based on a finite number of sources and a
finite size buffer is introduced from which results on cell loss, average buffer length,
and delay are given. In Section 2, the main assumptions for this model are given, and
the mathematical model is derived in a step-by-step manner. Section 3 defines three
different model alternatives. Section 4 gives the steady-state solution from which the
most important expressions on performance parameters are obtained. Section 5 shows

the numerical example and, finally, some conclusions complete the paper.
2 Model Assumptions
Physical model

Consider a multiplexing node with the following features :

e N identical sources with two states (ON, OFF).

e Sources in the ON state generate cells with rate vy, where the time unit is taken

so that vy=1 [cell /time unit] holds.
e Sources in the OFF state do not generate any cells.

e There is one output transmission link with the transmission rate v; = C' [cell/time

unit].

e If more cells arrive than the link capacity, the extra cells are stored in a buffer of

length L.

e Cells arriving when the buffer is full are lost.

The system is studied in order to find analytical results on the expected cell loss, the

cell delay, and the average buffer content.



Source process

Assume that the behavior of a source can be described by a discrete-time Markov chain
(DTMC) with two states (ON-OFF). The distribution of the length of the ON periods
is assumed to be of geometrical with parameter [, while the OFF periods are also

geometrical with parameter o. The transition probabilities of the DTMC are :

Pr[OFF — ON]| =«
Pr[ON — OFF] = f (1)

Let us define now &, denoting the number of sources in ON state at time n. It is
obvious that this process is also a DTMC with state space Q = {0,1,..., N} and the
state transition probabilities can be written as:

min(i,j) ; . N —; ‘ o
pij = Z ( 1 ) (1-pB)Fp* ( ik ) o TR (1 — )Ntk (2)
k=max(i+j—N,0)

This expression of the transition probabilities takes into account that the transition
from state i to state j may occur if k out of the i ON sources (0 < k < i) stay in the
ON state and (j — k) other sources turn from the OFF to the ON state.

Let P = {P™} (P™ = Pr{¢, = i}) denotes the state probability vector of process
&, at time n and p = {p;,i = 1,..., N} denotes the steady state probability vector of
€n-

Buffer content

The process describing the number of cells in the buffer plays an essential role in eval-
uating the performance parameters mentioned before. Let 7, denote this process with
state space ® = {0,1,..., L}, where L is the size of the buffer. The state transition
probabilities of 7, are dependent on the state of process &, therefore one should study

the two processes together.

The global model

By these assumptions, we define the compound process (&,,n,) with the states (i,7),

where 2 =0,1,..., N and 7 =0,1,..., L and the state transition probabilities as follows:

Pijup = Priu ON source, v cells in buffer at time (n + 1)|, j at time n]
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and the state probability matrix can be written as II™ = {II™ (i, j)} = Pr{¢&, =i, n, =
7} and the steady-state probability matrix is denoted by 7 (3, j).

In order to determine these probabilities, it is necessary to state that since the channel
speed (capacity) is assumed to be an integer number of cells per unit time, a micro slot
can be also defined as the time necessary to transmit one cell on the output channel.
Although, one can suppose more reasonable to choose the micro slot as the time unit,
the time unit was chosen to ensure the Markov (memoryless) property for processes &,
and (&n, 77n)-

This fact and the fact that ¢ cells are generated during a time unit when 7 sources are
in the ON state imply that the state transition probabilities of the compound process
(&n, M) vary depending on the arrival process. In the paper, we study three different
situations of the arrival process as the most informative and useful cases for determining

the performance parameters.

3 Model Alternatives

Model 1.: Arrivals occur at the beginning of the time slot

In this case we assume that one cell arrives from every On source at the beginning of
any time slot, so that the buffer content will be min(i+ j, L) cells , where ¢ is the number
of ON sources and j is the number of cells in the buffer at the end of the previous time
slot. Thus, the number of cells that will be found in the buffer at the end of the time

slot can be written as:

Nn+1 = max(min(j + ia L) o CJ 0) (3)

Using the above approach, the number of cells ¢; ; and the total delay of cells d; ; in

state (7,7) can be expressed in the following form:

¢i; =max(i+j— L,0) (4)

min(i+j,L)—1

dij= > (5)

=3

where the delay is measured in the micro slot unit.



Model 2.: Late arrivals with delayed access [11]
The arrival process is considered to be continuous in time, but cells arriving during
the time slot must wait until the beginning of the next slot. In this case, the number of

cells that will be found in the buffer at the beginning of the next time slot is written as:

Nny1 = min(i + max(j — C,0), L), (6)

while the cell loss and the cell delay are obtained from the following expressions:

¢;; = max(i + max(j — C,0) — L,0) (7)

min(i,L—max(j—C,0))—1 C
di,j = 5 + max(j — C, 0) +1 (8)
=0

Model 1 and 2 provide identical cell loss, while Model 2 shows longer cell delay. It
seems to be clear that there are other cases resulting in lower values for both the cell
loss and the cell delay. In the sequel, Model 3 is discussed, which can be considered as
an optimistic case. Although Model 2 seems to be the worst case, neither the pessimum

nuture of Model 2 nor the optimum nature of Model 3 have not been proved so far.

Model 3.: Cells arrive one-by-one in the micro slot starting when the
buffer becomes empty, and the remaining cells (if any) arrive at the end of
time slot

For state (i, j)

N1 = min(max(j + 7 — C,0), L), 9)

Cij = max(i —|—] —C - L, 0), (10)
and

min(i—max(C'—j3,0),L—max(j—C,0))—1
di,j = Z max(j - C, 0) +1 (].].)
=0

hold, where max(C' — j,0) is the number of empty micro slots after all the cells being

served when C' > j and max(j — C,0) gives the number of cell remaining at the end of



the slot. It is obvious, that only one of the above quantities can take positive value at

the same time.

4 Performance Parameters

Taking into account the model alternatives used to describe the arrival procedure for
process (&,,7n), it can be seen that, for any time instant n, (§,41,7,41) depends only
on (&,,n,), which means it is a DTMC with transition probabilities p; ;. , defined as

follows:

.. _ pi,u ifnn:jandnn+1:v
Pigan = { 0  otherwise (12)

where p;, is the transition probability of process ¢, and v is calculated based on the
above model alternatives.

With these transition probabilities, the steady-state probabilities 7 = {7 (i, j) } of the
compound process (&,,7,) can be obtained from the well-known DTMC equations [5].

Then, the main performance parameters for the system can be given as follows:

e The average cell loss

N I
2D (i) - e

Cl ==

(13)

=0
N
Y i pi
i=0
where p; denotes the steady state probability of state ¢ of process &,, and the

denominator gives the average number of the arrived cells.

e The average cell delay

N L
PP
=0 j=0

ZZ — ¢ij) (i, §)

=0 j=0

D=

(14)

where the denominator gives the average number of transmitted cells.
e The average buffer content

5= zj - (iﬂm)) (15)

1=0



In the next section, we give a numerical example on the model presented in the paper

for all models and provide diagrams on the performance parameters.

5 Numerical Example

The models are demonstrated on an ATM multiplexer with ON-OFF type voice in-
put channels with mean talkspurt duration S !=352ms and mean silence duration
a~1=650ms [12]. The output channel is assumed to be T1 line with a rate of 1.536Mbps.
Taking into account that each ON source generates data with rate 64kbps and each
47 Byte should be encapsulated into 53 Byte cell by AAL1, the source speed will be
72,17kbps and thus C=21. With these values the time unit is 5.875ms and the micro
time slot is 279.76 us.

Figures 1-4 show the calculated results for the expected cell loss and average cell delay
versus buffer size with N=30 (Figures 1), 2) and with N=40 (Figures 3,4) respectively,
while Figures 5-6 show the same parameters versus the number of sources.

It can be observed that Model 1 and Model 2 provide identical results for the average
cell loss while Model 3 gives lower values. For the average delay, the figures show the
highest values while Model 3 gives the lowest possible among the investigated models. It
can also be seen (Figures 5,6) that the difference between Model 1 and Model 3 becomes
less as the number of sources increases. This is due to the fact that Model 3 will behave
like Model 1 in the heavy load situations.

Figures 1 and 3 show that the increment of N affects strongly the cell loss and an
acceptable cell loss value can be reached only with high buffer size, while Figures 2

and 4 show the increment of buffer size increases the average cell delay very slightly
since the cell loss will be less as well.

For the case N = 40, the difference between the values obtained for Models 1,2
and 3 are relatively small which allows some design decisions to be considered about
the size of buffer based on other aspects. On the other hand, Figure 2 shows that this
difference is rather large in the case of N = 30, which means that more realistic cell

arrival distributions should be considered.
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6 Conclusions

The paper presents performance models of an ATM multiplexing node for which explicit
expressions are given for the most important performance parameters; cell loss, cell delay
and buffer content.

The models are based on the two-dimensional DTMC with the number of ON sources
and the number of cells in the buffer.

The models are implemented on an IBM RISC-6000 Model-570 machine and they
provide relatively short execution time even for higher N and L values (e.g., for N =40
and L = 500 the execution time was 258 seconds).

In addition, the numerical example showed some interesting results on the three
different model alternatives introduced in the paper giving some indications on the upper

and lower limits for all the performance parameters mentioned before.
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