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Abstract

Petri nets represent a useful tool for performance, dependability and performa-

bility analysis of complex systems. Their modeling power can be increased even

more if non-exponentially distributed events are considered. However, the inclusion

of non-exponential distributions destroys the memoryless property and requires to

specify how the marking process is conditioned upon its past history. In this paper,

we consider, in particular, the class of stochastic Petri nets whose marking process

can be mapped into a Markov regenerative process.

An adequate mathematical framework is developed to deal with the considered

class of Markov Regenerative Stochastic Petri Nets (MRSPN). An uni�ed approach

for the solution of MRSPNs where di�erent preemption policies can be de�ned in

the same model is presented. The solution is provided both in steady-state and in

transient condition. An example concludes the paper.

Key words: Stochastic Petri Nets, Markov regenerative processes, preemptive

policies, transient and steady-state analysis.

1 Introduction

Stochastic Petri Nets (SPN) provide a well known speci�cation language for the modeling

and analysis of stochastic systems. Over the years, many extensions to the basic model
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have appeared in the literature. Some of these extensions are a matter of convenience,

mainly regarding graphical representation, and some others increase the modeling power.

While the usual de�nition of Stochastic Petri Nets (SPN) is based on the assumption

that all the �ring times are exponentially distributed, in this paper we consider the

implication of associating generally distributed �ring times (including the deterministic)

to the timed transitions.

Dealing with non-exponentially distributed events widens the �eld of applicability of

PN-based modeling tools to real situations, but destroys the memoryless property of the

underlying marking process.

There are a great number of circumstances in which deterministic or generally dis-

tributed events occur. Events such as timeouts in a protocol, service times in a man-

ufacturing system, hard deadlines in real-time systems, memory access or instruction

execution in a low-level hardware or software have durations which are constant or have

a very low coe�cient of variation. Continuous [14] or Discrete [9] Phase-type distribu-

tions can be used to approximate the occurrence time of a generally distributed event,

but this method leads to a prohibitive size for the expanded state space and the error

incurred in the �nal performance parameters can not be estimated; furthermore, one of

the possible preemption mechanisms cannot be captured.

Choi et al. have shown in [7, 8] that the marking process underlying a Stochastic Petri

Net (SPN), where at most one generally distributed transition is enabled in each marking,

belongs to the class of Markov Regenerative Processes (MRGP). For this reason, they

referred to this new class of PN as Markov Regenerative Stochastic Petri Net (MRSPN).

Various contributions have recently followed this line of research [16, 10, 17, 23, 24, 27].

The analysis technique proposed for this class of models, consists in identifying a se-

quence of time points, indicated as regeneration time points (RTP), at which the marking

process enjoys the Markov property: i.e. the future evolution depends only on the state

entered at a given RTP. Based on the sequence of the regeneration time points, an

analytical formulation of the process is available [13, 22].

All the mentioned references on MRSPNs implicitly assume an enabling memory

policy [1] for the non-exponential transitions, and the resampling of the �ring time each

time the corresponding transition is disabled or �res. This policy is also known as

the preemptive repeat di�erent (prd) policy. The authors have enlarged the previously

considered class of MRSPNs by introducing the concept of marking processes with non-

overlapping dominant transitions [5]. In this framework, new preemption policies [30,

3, 32] can be accommodated. With the preemptive resume (prs) policy an interrupted

event can be restarted by resuming the work already done before the interruption. This

policy was referred to as age memory policy in [1]. With a preemptive repeat identical

(pri) policy an interrupted event is restarted with an identical �ring time.

A natural objection to the implementation of PN models with generally distributed

events and complex combinations of preemption policies is that they are very hard to

formulate and solve. The authors reply is based on the following argumets:

i) - the world is not necessarily exponential: the use of exponential distributions is often

matter of analytical convenience rather than of motivated modeling assumptions.
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ii) - theoretical research work is preliminary to the discovery of practical results and

the successive implementation of tools.

iii) - simulation approaches require also the de�nition of a well established and clearly

speci�ed modeling environment [18].

iv) - e�ective numerical methods, presented in this paper, are already available for the

steady state analysis of MRSPNs, and are ready to be integrated into a tool.

The present paper is an e�ort to o�er a contribution in the above directions and is an

attempt to synthesize the recent research activity of the authors in the area of MRSPNs

by providing a common formalism and a common solution technique.

The paper is organized as follows. Section 2 discusses the inclusion of generally

distributed transitions into a SPN and de�nes the concept of execution policy. Section

3 de�nes the class of MRSPNs examined in this paper. The analysis of this class, based

on the theory of Markov regenerative processes, is then considered. It is shown that

the underlying process can be decomposed into independent subproblems consisting in

considering the evolution of the marking process between two consecutive regeneration

time points. The analysis of a single subordinated process is carried on in Section 4, by

a proper partitioning of the state space. Moreover, particular cases are examined, when

the subordinated process is a Continuous Time Markov Chain (CTMC) or a Semi-

Markov Process (SMP). The steady-state analysis is dealt with in Section 5, and a

computationally e�ective method is derived in the case of subordinated CTMC. An

example with mixed preemption policies is evaluated in Section 6. Section 7 discusses

the complexity of the presented methodology. Finally, Section 8 concludes the paper.

2 The individual memory model

A non-Markovian SPN is a stochastically timed PN in which the time evolution of the

marking process can be more general than a CTMC. In the spirit of many modeling

formalisms [19], in which the complexity of the solution must be hidden to the modeler,

the way in which the future evolution of the marking process depends on its past history

needs to be speci�ed at the PN level.

We adhere to the model with generally distributed �ring times and with in-

dividual memory policies proposed in [1]. We refer to this model as Generally

Distributed Transition-SPN (GDT-SPN). Formally, a GDT-SPN is a tuple PN =

(P; Tr; I;O;H;G; �;M); where:

� P (of cardinality jjP jj) is the set of places (drawn as circles);

� Tr (of cardinality jjTrjj) is the set of transitions (drawn as bars);

� I, O and H are the input, the output and the inhibitor functions, respectively.

The input function I provides the multiplicities of the input arcs from places to

transitions; the output function O provides the multiplicities of the output arcs

from transitions to places; the inhibitor function H provides the multiplicity of the

inhibitor arcs from places to transitions.
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� G (of cardinality jjTrjj) is the set of random variables 


k

associated to each tran-

sition tr

k

, being G

k

(t) the corresponding cdf.

� � (of cardinality jjTrjj) is the set of execution policies

1

u

k

associated to each tran-

sition tr

k

. �

k

= (a

k

; �

k

) is composed by two elements: the age variable a

k

and the

indicator resampling variable �

k

.

� M (of cardinality jjP jj) is the marking. The generic entry m

i

is the number of

tokens (drawn as black dots) in place p

i

, in marking M .

Input and output arcs have an arrowhead on their destination, inhibitor arcs have

a small circle. A transition is enabled in a marking if each of its ordinary input places

contains at least as many tokens as the multiplicity of the input function I and each

of its inhibitor input places contains fewer tokens than the multiplicity of the inhibitor

function H. An enabled transition �res by removing as many tokens as the multiplicity

of the input function I from each ordinary input place, and adding as many tokens as

the multiplicity of the output function O to each output place. The number of tokens in

an inhibitor input place is not a�ected. The reachability set R(M

0

) is the set of all the

markings that can be generated from an initial marking M

0

by repeated application of

the above rules in an untimed net.

For the sake of simplicity, in the present formulation, the set Tr contains only timed

transitions. However, immediate transitions could be easily accommodated in the pro-

posed framework for the analysis of MRSPNs, as it will be indicated in the sequel of the

paper.

In a stochastically timed PN, a natural choice to select the next timed transition

to �re among those enabled in a given marking is according to a race policy: if more

than one timed transition is enabled, the transition �res whose associated delay is the

minimum.

However, in addition to the race policy, also an execution policymust be speci�ed. The

execution policy consists in a set of speci�cations for univocally de�ning the stochastic

process underlying a SPN. Two elements characterize the execution policy: a criterion

to keep memory of the past history of the process (the memory policy), and an indicator

of the resampling status of the �ring time. The memory policy de�nes how the process

is conditioned upon the past. An age variable a

g

associated to the timed transition tr

g

keeps track of the time in which the transition has been enabled. A timed transition �res

as soon as the memory variable a

g

reaches the value of the �ring time 


g

. The activity

period of a transition is the period of time in which its age variable is not 0.

The random �ring time 


g

of a transition tr

g

can be sampled in a time instant

antecedent to the beginning of an activity period. To keep track of the resampling

condition of the random �ring time associated to a timed transition, we assign to each

timed transition tr

g

a binary indicator variable �

g

that is equal to 1 when the �ring time

is sampled and equal to 0 when the �ring time is not sampled. �

g

is set to 1 each time tr

g

is enabled and its reset depends on the execution policy. We refer to �

g

as the resampling

indicator variable. Hence, in general, the (continuous) memory of a transition tr

g

is

1

A formal de�nition of execution policy will be provided in the following.
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indicated by the tuple (a

g

; �

g

). At any time epoch t, transition tr

g

has memory (its

�ring process depends on the past) if either a

g

or �

g

are di�erent from zero.

At the entrance in a new marking, the remaining �ring time (rft

g

= 


g

� a

g

) is

computed for each enabled transition given its currently sampled �ring time 


g

and the

age variable a

g

. According to the race policy, the next �ring is determined by the minimal

of the rft's.

Adopting the previous formalism, the following individual execution policies can be

introduced. A timed transition tr

g

can be:

� Preemptive repeat di�erent (prd):

If both the age variable a

g

and the resampling indicator �

g

are reset each time tr

g

is disabled or �res.

� Preemptive resume (prs):

If both the age variable a

g

and the resampling indicator �

g

are reset only when tr

g

�res.

� Preemptive repeat identical (pri):

If the age variable a

g

is reset each time tr

g

is disabled or �res but the resampling

indicator �

g

is reset only when tr

g

�res.

Figure 1 gives a pictorial description of the introduced preemption policies with re-

spect to a single transition tr

g

. In the �gure, the time instants marked with E, D and

F indicate the enabling, disabling and �ring time points of tr

g

, respectively. Each pre-

emption policy is illustrated via the evolution of the age variable a

g

associated with

the considered transition tr

g

and of its remaining �ring time (rft

g

= 


g

� a

g

). The

horizontal lines below the diagrams indicate the period of time while �

g

= 1.

Transition tr

g

is prd - Each time a prd transition is disabled or �res, its memory variable

a

g

is reset and its indicator resampling variable �

g

is set to 0 (the �ring time must be

resampled from the same distribution as tr

g

becomes enabled again). With reference

to Figure 1a, tr

g

is enabled for the �rst time at t = 0, its memory variable a

g

starts

increasing linearly, �

g

is set to 1 and the �ring time is sampled from its distribution to a

value, say, 


1

. At time D, tr

g

is disabled and the memory is reset (a

g

= 0; �

g

= 0). At

the next enabling time instant E, a

g

restarts from zero, �

g

is set to 1 and the �ring time

is resampled from the same distribution assuming a di�erent value, say, 


2

. When tr

g

�res (point F ) both a

g

and �

g

are reset. At the successive enabling point E, a

g

restarts

and the �ring time is resampled (


3

). From the above, it follows that a prd transition

looses its memory at any D and F points. The memory of the transition is con�ned to

the period of time in which tr

g

is continuously enabled.

Transition tr

g

is prs - With reference to Figure 1b, when tr

g

is disabled (in point D), its

associated age variable a

g

is not reset but maintains its constant value until tr

g

is enabled

again and �

g

= 1. In the successive enabling point E, a

g

restarts from the previously

retained value. When tr

g

�res, both a

g

and �

g

are reset so that the �ring time must be
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Figure 1: Pictorial representation of di�erent �ring time sampling policies

resampled at the successive enabling point (


2

). The memory of tr

g

is reset only when

the transition �res.

Transition tr

g

is pri - Under this policy (Figure 1c), each time tr

g

is disabled, its age

variable is reset, but �

g

remains equal to 1, and the �ring time value 


1

remains active,

so that in the next enabling period an identical �ring time should be accomplished. In

Figure 1c, the same value (


1

) is maintained over di�erent enabling periods up to the

�ring of tr

g

. Only when tr

g

�res both a

g

and �

g

are reset and the �ring time is resampled

(


2

). Hence, also in this case, the memory is lost only upon �ring of tr

g

.

It is clear from Figure 1 that the instant of �ring of a transition, under any execution

policy, can be obtained as the �rst instant of time at which the age variable equals

the sampled value of the �ring time. Moreover, with any distribution, the three di�erent

preemption policies behave di�erently only if the corresponding transition can be disabled

before �ring. In this situation, the following particular cases can be mentioned. If the

�ring time is exponentially distributed both the prd and prs policy behave in the same

way and can be omitted. However, the pri policy does not enjoy the memoryless property

[3]. Thus, the marking process of a PN with only exponentially distributed �ring times

is not a CTMC if at least a single transition exists (that can be disabled before �ring)

with assigned pri policy. If the �ring time is deterministic, both the prd and pri policy
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behave in the same way (indeed, resampling a deterministic variable provides always an

identical value).

According to the previous discussion, transitions can be classi�ed as EXP (or mem-

oryless) if they have associated an exponentially distributed �ring time with either prd

or prs policy, or MEM (non-memoryless) if they have associated an exponentially dis-

tributed �ring time with pri policy or any non-exponential distribution. Only MEM

transitions need to be assigned an execution policy. An usual graphical representation

to distinguish between an EXP and a MEM transition is to draw the former as an empty

rectangle an the latter as a �lled rectangle.

The memory of the global marking process is considered as the superposition of the

individual memories of the transitions.

3 Markov Regenerative Stochastic Petri Nets

De�nition 1 The stochastic process underlying a GDT SPN is called the marking pro-

cess M(t) (t � 0). M(t) is the marking of the GDT SPN at time t.

A single realization of the marking process M(t) can be written as:

R = f(�

0

; M

0

); (�

1

; M

1

); : : : ; (�

i

; M

i

); : : :g

where M

i+1

is a marking directly reachable from M

i

, and �

i+1

� �

i

is the sojourn time in

marking M

i

. With the above notation, M(t) = M

i

for �

i

� t < �

i+1

. In the following

�

i

will be referred to as a Regenerative Time Point (RTP).

In the following, we restrict our analysis to SPNs in which the random �ring times

have continuous cdfs. With this assumption, the marking process M(t) is a right-

continuous, piecewise constant, continuous-time discrete-state stochastic process whose

state space is isomorphic to the reachability graph of the untimed PN. Intrigued se-

mantic interpretations related to the possibility of contemporary �rings are avoided

[25, 20, 9, 12].

A formal de�nition of a class of Markov Regenerative Stochastic Petri Nets (MRSPN)

has been presented in [7]:

De�nition 2 A SPN is called a Markov Regenerative Stochastic Petri Net (MRSPN) if

its marking process M(t) is a Markov Regenerative Process (MRGP)

2

.

MRGPs [22] (or Semi Regenerative Processes [13]) are discrete-state continuous-time

stochastic processes with an embedded sequence of Regenerative Time Points (RTP) [33],

at which the process enjoys the Markov property. The relevance of De�nition 2 comes

from the fact that MRSPNs can be studied by resorting to the techniques available for

MRGPs [13, 22]. Only MEM transitions a�ect the search for the RTPs, since EXP

transitions do not have memory. Based on the concept of memory introduced in the

previous section, RTPs can be de�ned as follows:

2

MRSPNs are referred to as Semi Regenerative SPNs in [11].
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De�nition 3 A regenerative time point (RTP) in the marking processM(t) underlying

a SPN is an instant of time where all the transitions do not have memory; i.e. all the

memory variables a

k

and the resampling indicator variables �

k

(k = 1; 2; : : : ; jjTrjj) are

equal to zero.

The time interval between two consecutive RTPs is indicated as a regeneration in-

terval. The framework in which a SPN, with mixed preemption policies [32], generates

a MRGP marking process is based on the notion of non-overlapping dominant MEM

transition [5].

De�nition 4 A MEM transition is a unique dominant transition over a regeneration

interval if it becomes enabled in the marking entered at the initial RTP and its memory

is reset at the successive RTP.

De�nition 5 A SPN is said to be non-overlapping if a unique dominant transition can

be associated to each regeneration period. A non-overlapping SPN is a MRSPN.

If in a marking entered at a RTP all the enabled transitions are EXP, any �ring results in

the successive RTP, so that no state transition is possible in between. The evolution of

the marking processM(t) during a regeneration period between two consecutive RTPs is

called the process subordinated to the MEM dominant transition. The subordinated pro-

cess can include any number of EXP transitions, but also MEM transitions provided that

their memory cycle is completely contained into the regeneration period of the unique

dominant transition (De�nition 4). However, a complete analytical characterization of

a MRSPN is possible if all the subordinated processes are restricted to be a SMP or a

CTMC.

3.1 Analysis by Markov Regenerative Theory

Given a PN, let R

TP

(M

0

) 2 R(M

0

) be the subsets of markings which determine RTPs,

according to De�nition 3. Let us further de�ne N = jjR(M

0

)jj and N

0

= jjR

TP

(M

0

)jj.

Hence, N

0

� N . By the memoryless property of the MRGP at the RTPs, the analysis

of a MRSPN can be split into N

0

independent subproblems each one represented by the

restriction of the marking process M(t) starting at any state i 2 R

TP

(M

0

), and before

the occurrence of the successive RTP.

Let us denote by M

i

(t) the subordinated process starting from state i 2 R

TP

(M

0

):

M

i

(t) = fM(t) : M(�

0

) = i; t < �

�

1

g (1)

where �

0

= 0 and �

�

1

are successive RTPs.

The probabilistic functions that must be evaluated for the transient analysis of a

MRSPN are commonly referred to as global and local kernels [13, 22]. The global kernel

is a (N

0

�N

0

) matrix K(t) = [K

ij

(t)] that describes the occurrence of the next RTP:

K

ij

(t) = Pr fM

(1)

= j 2 R

TP

(M

0

) ; �

�

1

� t jM(0) = i 2 R

TP

(M

0

)g
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where M

(1)

is the right continuous state hit by the marking process at the next RTP.

The local kernel is a (N

0

�N) matrix E(t) = [E

ij

(t)] that describes the state transition

probabilities inside a regeneration period, before the next RTP occurs:

E

ij

(t) = Pr fM(t) = j 2 R(M

0

) ; �

�

1

> t jM(0) = i 2 R

TP

(M

0

)g

By these de�nitions

P

j2R

TP

(M

0

)

K

ij

(t) +

P

j2R(M

0

)

E

ij

(t) = 1, 8i 2 R

TP

(M

0

), 8t � 0.

In the particular case in which the marking process is a semi-Markov process all the

reachable states must be RTPs hence N

0

= N , and the local kernel E(t) results to

be a square (N � N) diagonal matrix, because no state transition is possible between

consecutive RTPs. The conditions under which a SPN generates a semi-Markov marking

process have been studied in [15].

The entries of the ith row (i 2 R

TP

(M

0

)) of the kernel matrices E(t) and K(t) de-

pends only on the subordinated processM

i

(t) starting from state i, and on the execution

policy of the single MEM transition dominating the considered regeneration period. For

a prd dominant MEM transition the analysis is given in [8], for a prs dominant MEM

transition in [5, 30] and for a pri dominant MEM transition in [3].

Let V(t) = [V

ij

(t)] denote the (N

0

�N) transition probability matrix over (0; t), i.e.:

V

ij

(t) = Pr fM(t) = j 2 R(M

0

) jM(0) = i 2 R

TP

(M

0

)g (2)

Note that the initial state i in any entry of (2) must be a regeneration state, since the

analysis based on the kernel matrices is valid only for that case. With PN, the initial

marking at t = 0 is memoryless and hence is always a RTP (De�nition 3).

Based on the global and the local kernels the transient analysis can be carried out in

the time domain by solving the following generalized Markov renewal equation [13, 22]:

V

ij

(t) = E

ij

(t) +

X

k2R

TP

(M

0

)

Z

t

0

dK

ik

(y) V

kj

(t� y) (3)

or in the transform domain:

V

�

(s) = [I � K

�

(s)]

�1

E

�

(s) (4)

where the superscript

�

indicates the Laplace-Stieltjes transform (LST) and s the com-

plex transform variable of t (i.e.: F

�

(s) =

R

1

0

e

�st

dF (t)).

A time domain solution for the transition probability matrix V(t) can be obtained

by numerically integrating Equation (3). Alternatively, starting from the LST Equation

(4) a combination of symbolic and numeric computation is needed to obtain measures in

the time domain [6].

For the purpose of the steady-state analysis of a MRSPN, the following measures of

the subordinated processes should be evaluated:

�

ij

= IE

�

Z

1

0

I

M

i

(t)=j

dt

�

(5)

�

ij

= Pr fM

(1)

= j j M(0) = ig
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where I

(�)

is a binary indicator function, �

ij

is the expected time the subordinated process

M

i

(t) spends in state j, and �

ij

is the probability that the subordinated process M

i

(t)

is followed by a regeneration period starting from state j. Indeed, the matrix � = [�

ij

]

is the transition probability matrix of the DTMC embedded at the RTPs. The measures

in Equation (5) can be obtained from the global and local kernels either in the time or

in the transform domain:

�

ij

=

Z

1

t=0

E

ij

(t) dt = lim

s!0

1

s

E

�

ij

(s) (6)

�

ij

= lim

t!1

K

ij

(t) = lim

s!0

K

�

ij

(s) (7)

It is clear from the above equations that � = [�

ij

] is a (N

0

�N) matrix and � = [�

ij

] is

a (N

0

�N

0

) matrix.

The evaluation of the measures in (5) is also dependent on the nature of the execution

policy associated to the transition dominating the subordinated process. For a prd

dominant MEM transition the analysis is given in [2], for a prs dominant MEM transition

in [31] and for a pri dominant MEM transition in [4].

The steady-state analysis of an MRSPN requires three steps:

Step 1: Evaluate the � = [�

ij

] and � = [�

ij

] matrices based on the results of

Section 5 [2, 31, 4] and compute:

�

i

=

X

j2R(M

0

)

�

ij

where �

i

is the expected duration of M

i

(t) before the next RTP.

Step 2: Evaluate the N

0

-dimensional vector D = [D

i

], whose elements are the

stationary state probabilities of the DTMC embedded at the RTPs. D is the

unique solution of:

D = D� ;

X

i2R

TP

(M

0

)

D

i

= 1 (8)

Step 3: The steady-state probabilities of the MRGP are given by:

v

j

= lim

t!1

Pr fM(t) = j 2 R(M

0

)g =

X

k2R

TP

(M

0

)

D

k

�

kj

X

k2R

TP

(M

0

)

D

k

�

k

(9)

The following section shows how the previous equations can be derived by means of

an independent analysis of each subordinated process.
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4 Analysis of a single subordinated process

Let us concentrate on the analysis of a single subordinated process M

i

(t) starting from

a generic RTP identi�ed as state i. This analysis provides all the entries of the ith row of

the kernel matrices E(t) and K(t). In order to completely evaluate the kernel matrices,

the analysis presented in this section must be iterated for any state i 2 R

TP

(M

0

).

When only exponential transitions are enabled in state i 2 R

TP

(M

0

) and when a

MEM transition is exclusively enabled so that the next �ring results in a new RTP with

probability 1, the elements of the ith row of the kernel matrices can be directly obtained

from their de�nition [30, 15]. In the following, we focus our attention on the subordinated

processes with possible intermediate state transitions.

By De�nition 4,M

i

(t) is dominated by a single transition tr

g

with �ring time distri-

bution G

g

(w) and associated either a prd, or a prs or a pri policy.

Theorem 1 Given a MRSPN with non-overlapping dominant transitions, the state

space R

i

of a generic subordinated process M

i

(t) starting from state i 2 R

TP

(M

0

),

can be generated from the original untimed PN by removing the dominant transition tr

g

,

and assuming marking i as the initial marking.

Proof - The second condition (assuming marking i as the initial marking) is implicit

in the de�nition of subordinated process given in Equation (1). The �rst condition

(removing the dominant transition) is equivalent to generating the subset of the original

reachability graph consisting in all the possible �ring sequences but the one involving

the �ring of the dominant transition. Hence, the generated subset is equal to the one

stopped by the �ring of the dominant transition. 2

It follows from Theorem 1 that R

i

is strictly contained in R(M

0

). The set R

i

can be

divided into two disjoint exhaustive subsets R

i

= E

i

[ D

i

(Figure 2), where:

� E

i

groups the states of R

i

in which tr

g

is enabled (a

g

strictly increases in E

i

);

� D

i

groups the states of R

i

in which tr

g

is not enabled (a

g

does not increase in D

i

).

Note that in the case of a prd dominant transition, any transition to states in D

i

concludes

the subordinated process.

Let N

i

= jjR

i

jj, N

i

E

= jjE

i

jj, and N

i

D

= jjD

i

jj, so that N

i

= N

i

E

+ N

i

D

.

The following analysis is developed in the case in which the �ring time associated to

the dominant MEM transition is deterministic. If, however, the distribution of the �ring

time is not deterministic, the analysis proceeds in two steps [30]:

1. Fix a value for the random �ring time w = 


g

and perform the analysis as in the

deterministic case. Let A(� jw) be the calculated probability measure.

2. Uncondition the obtained results with respect to the �ring time distribution G

g

(w)

of 


g

; i.e. A(�) =

R

1

w=0

A(� jw) dG

g

(w).

11



PRS and PRI

E D

Firing

E D

Firing

end of subord. pr. end of subord. pr.

end of subord. pr.

PRD

Figure 2: Partitioned state space of the subordinated process

In order to avoid unnecessarily large matrices during the analysis ofM

i

(t), the states

in R

i

are renumbered. The states numbered as 1; 2; : : : ; N

i

E

belong to the subset E

i

and

the ones numbered N

i

E

+ 1; N

i

E

+ 2; : : : ; N

i

E

+N

i

D

belong to D

i

.

In order to keep reference to the original numbering of the same states in the state

space R(M

0

) of the complete PN, we introduce a (N

i

� N) shu�el matrix S

i

= [S

kj

].

The generic row k of S

i

is a N -dimensional vector with all the entries equal to 0 but entry

j equal to 1, to indicate that state k in R

i

corresponds to state j in R(M

0

). Without loss

of generality, we can always suppose that state i in R(M

0

) (originating the subordinated

process under exam) corresponds to state 1 in R

i

. With this assumption, the initial

probability vector of M

i

(t) is always in the form U

i

= [U

i

E

; U

i

D

] = (1; 0; 0; : : : ; 0).

At any time t the subordinated process M

i

(t) can be in one of the following three

exhaustive and disjoint conditions:

� M

i

(t) is not concluded yet;

� M

i

(t) is concluded by the �ring of tr

g

;

� M

i

(t) is concluded by the disabling of tr

g

(this case holds only for prd dominant

MEM transition).

Let us �x a value of the �ring requirement w = 


g

, and de�ne the following matrix

functions P

i

(t; w), F

i

(t; w) and C

i

(t; w) with dimensions (N

i

E

� N

i

), (N

i

E

� N

i

E

), and

(N

i

E

�N

i

D

), respectively, which provide a formal description of the above conditions.

P

i

k`

(t; w) = PrfM

i

(t) = ` 2 R

i

; �

�

1

> t jM

i

(0) = k 2 E

i

; 


g

= wg (10)

F

i

k`

(t; w) = PrfM

i

(�

��

1

) = ` 2 E

i

; �

�

1

� t; tr

g

�res jM

i

(0) = k 2 E

i

; 


g

= wg (11)

If the dominant MEM transition is prd, we de�ne also:

C

i

k`

(t; w) = PrfM

i

(�

�

1

) = ` 2 D

i

; �

�

1

� t; tr

g

did not �re jM

i

(0) = k 2 E

i

; 


g

= wg

(12)

otherwise C

i

k`

(t; w) = 0.

By the above de�nitions
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� P

i

k`

(t; w) is the probability that M

i

(t) is in state ` 2 R

i

at time t before the age

variable of the dominant transition reaches the value w, starting in state k 2 E

i

at

t = 0.

� F

i

k`

(t; w) is the probability that tr

g

�res from state ` 2 E

i

(the age variable of the

dominant transition reaches the value w in `) before t, starting in state k 2 E

i

at

t = 0.

� C

i

k`

(t; w) with prd dominant MEM transition is the probability that a transition to

` 2 D

i

occurs (resetting a

g

) before the �ring of tr

g

and before time t, starting in

state k 2 E

i

at t = 0.

The conditions covered by Equations (10), (11) and (12), represent all the possible

outcomes of M

i

(t) at a given time t. Hence, for any t � 0 and k 2 E

i

:

X

`2R

i

P

i

k`

(t; w) +

X

`2E

i

F

i

k`

(t; w) +

X

`2D

i

C

i

k`

(t; w) = 1 (13)

Let us further introduce the (N

i

E

�N) branching probability matrix�

i

= [�

i

kj

]. The

generic entry �

i

kj

represents the probability that the �ring of the dominant transition

tr

g

in state k 2 E

i

leads to a marking j 2 R(M

0

).

�

i

kj

= Pr fnext marking is j 2 R(M

0

) j current marking is k 2 E

i

; tr

g

�res g

If immediate transitions are excluded from the original PN de�nition (as in the present

setting), each row of �

i

contains one and only one entry equal to 1 being all the other

entries equal to 0. However, if immediate transitions are allowed, their e�ect could be

accounted for by properly modifying the entries of �

i

[8]. In this case, the probability

of jumping from a tangible state k to any possible tangible state j through vanishing

markings, must be located in the proper �

i

kj

entry of �

i

(being the sum of each row

equal to 1).

Remembering the initial probability vector U

i

of the subordinated processM

i

(t), the

elements of the ith row of matrices K(t) and E(t) can be expressed as a function of the

elements of the �rst row of the matrices P

i

(t; w), F

i

(t; w) and C

i

(t; w) in the following

way:

K

i

(t) =

Z

1

w=0

U

i

E

[F

i

(t; w)�

i

+ C

i

(t; w)S

i

D

] dG

g

(w) (14)

E

i

(t) =

Z

1

w=0

U

i

E

P

i

(t; w)S

i

dG

g

(w) (15)

where the notation A

i

(�) refers to the ith row of matrix A(�), and S

i

D

is the proper

(N

i

D

�N) partition of matrix S

i

.

Equations (14) and (15) show how the local and global kernels can be evaluated

from the knowledge of matrices P

i

(t; w), F

i

(t; w) and C

i

(t; w). In the following section,

the above matrices are derived from the analysis of the subordinated process over the

partitioned state space R

i

= E

i

[ D

i

.
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4.1 Partitioned state space

In order to simply the notation, in the following derivation we eliminate the superscript

i in all the symbols.

It is however tacitly intended, that all the quantities refer to the single speci�c process

M

i

(t) subordinated to the regeneration period starting from state i.

With reference to Figure 2, and with the adopted renumbering of the states, M

i

(t)

starts in state 1 2 E, then moves through states in D reentering E in any state k 2 E.

However, the dominant transition of M

i

(t) can only �re from states in E. Let us denote

by T

1

the random time point until M

i

(t) visits E and by T

2

the random time point

until M

i

(t) visits D. By enumerating all the possible exhaustive and mutually exclusive

conditions in which the subordinated process M

i

(t) can be in states belonging to E or

D, the following partitioned measures can be evaluated. For states in E we de�ne:

PE

k`

(t; w) = PrfM

i

(t) = ` 2 E ; �

�

1

> t ; T

1

> t jM

i

(0) = k 2 E ; 


g

= wg (16)

FE

k`

(t; w) = PrfM

i

(�

�

1

�

) = ` 2 E ; �

�

1

� t ; T

1

> �

�

1

jM

i

(0) = k 2 E ; 


g

= wg (17)

PED

k`

(t; w) = PrfM

i

(T

1

) = ` 2 D ; �

�

1

> T

1

; T

1

< t jM

i

(0) = k 2 E ; 


g

= wg (18)

Since tr

g

can not �re from D we also de�ne:

PD

k`

(t) = PrfM

i

(t) = ` 2 D ; T

2

> t jM

i

(0) = k 2 Dg (19)

PDE

k`

(t) = PrfM

i

(T

2

) = ` 2 E ; T

2

< t jM

i

(0) = k 2 Dg (20)

By the above de�nitions it follows that:

� PE(t; w) is a (N

E

� N

E

) dimensional matrix whose generic element PE

k`

(t; w) is

the probability of being at time t in state ` 2 E starting in state k 2 E at t = 0,

without intermediate passage to D and before the �ring of the dominant transition.

� FE(t; w) is a (N

E

� N

E

) dimensional matrix whose generic element FE

k`

(t; w) is

the probability that tr

g

�res from state ` 2 E before t, starting in state k 2 E at

t = 0, and without intermediate passage to D.

� PED(t; w) is a (N

E

�N

D

) dimensional matrix whose generic element PED

k`

(t; w)

is the probability that the subordinated process left E before time t and before the

�ring of the dominant transition, hitting state ` 2 D, starting from state k 2 E at

t = 0.

14



� PD(t; w) is a (N

D

�N

D

) dimensional matrix whose generic element PD

k`

(t) is the

probability of being at time t in state ` 2 D starting in state k 2 D at t = 0, and

without intermediate passage to E.

� PDE(t; w) is a (N

D

�N

E

) dimensional matrix whose generic element PDE

k`

(t) is

the probability that the subordinated process left D before time t hitting state

` 2 E, starting in state k 2 D at t = 0.

Given that the process started in a state k 2 E at t = 0, the following equality holds:

X

`2E

PE

k`

(t; w) +

X

`2D

PED

k`

(t; w) +

X

`2E

FE

k`

(t; w) = 1

The process starting from D is very similar to the one starting from E. The only

di�erence between the two is that the �ring of tr

g

is not possible in D. Hence, these

measures are independent of the �ring time requirement (w) and:

X

`2D

PD

k`

(t) +

X

`2E

PDE

k`

(t) = 1

The functions (16) to (20), are de�ned without any speci�c reference to the particular

execution policy of the dominant transition. However, this knowledge is now necessary

to evaluate the matrix functions P(t; w), F(t; w) and C(t; w) from Equation (16) - (20),

and then the kernel matrices of the MRSPN.

4.1.1 prd dominant MEM transition

Any transition out of subset E (either by �ring or by disabling the dominant transition

tr

g

) terminates the subordinated process M

i

(t).

Theorem 2 The time-domain and the LST transform expressions of the probability ma-

trices P(t; w), F(t; w) and C(t; w) satisfy:

P(t; w) = [PE(t; w); 0 ] P

�

(s;w) = [PE

�

(s;w); 0 ]

F(t; w) = FE(t; w) F

�

(s;w) = FE

�

(s;w)

C(t; w) = PED(t; w) C

�

(s;w) = PED

�

(s;w)

(21)

The proof follows directly from the de�nition of the functions [5]. The equality in

the LST domain has been explicitly reported, because this form is derived directly in the

next section.

In the �rst line of (21), P(t; w) = [�

EE

; �

ED

] is expressed in partitioned form, being

the second partition the (N

E

�N

D

) 0 matrix, since under the prd policy no transition is

possible from E to D before the successive RTP.
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4.1.2 pri type dominant MEM transition

The regeneration period can be concluded only by the �ring of the dominant pri transition

from a state in E. However, the �ring can occur after (0; 1; 2; : : :) visits in D. Any time

the subordinated process enters or re-enters E, an identical �ring time requirement w

has to be completed.

Theorem 3 The LST transform of the probability matrices P(t; w), F(t; w) and C(t; w)

satisfy:

F

�

(s;w) = [I � PED

�

(s;w) PDE

�

(s)]

�1

FE

�

(s;w) (22)

P

�

(s;w) = [I � PED

�

(s;w) PDE

�

(s)]

�1

[PE

�

(s;w); PED

�

(s;w) PD

�

(s)](23)

C

�

(s;w) = 0 (24)

where the second member of the r.h.s. of Equation (23) is expressed in the same parti-

tioned form as in (21).

The proof is given in Appendix A.

4.1.3 prs type dominant MEM transition

The analysis of the process subordinated to a dominant prs transition is very similar to

the pri case, examined in the previous subsection. Also in the prs case, the regeneration

period can be concluded only by the �ring of the dominant transition from a state in

E. The �ring can occur after (0; 1; 2; : : :) visits in D, but any time the subordinated

process enters or re-enters E, only the residual �ring time needs to be accomplished.

Theorem 4 The double transform of the probability matrices P(t; w), F(t; w) and

C(t; w) satisfy:

F

��

(s; v) = [I� vPED

��

(s; v)PDE

�

(s)]

�1

FE

��

(s; v) (25)

P

��

(s; v) = [I� vPED

��

(s; v) PDE

�

(s)]

�1

[PE

��

(s; v) ; PED

��

(s; v) PD

�

(s)](26)

C

��

(s; v) = 0 (27)

where superscript

�

means Laplace transformation, and v is the complex transform vari-

able of w (i.e.: F

�

(v) =

R

1

0

F (w)e

�vw

dw).

The proof of Theorem 4 is given in Appendix B by resorting to a renewal argument.
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4.2 Subordinated process of speci�c structure

If the stochastic structure of the subordinated process M

i

(t) is known, the measures

derived in the previous sections can be expressed in closed form and solved. In the

following two paragraphs, we consider the particular cases in which the subordinated

process is a SMP or a CTMC.

4.2.1 Subordinated SMP

Let M

i

(t) be a SMP whose probability transition matrix is a (N

i

�N

i

) matrix denoted

by Q(t) = [Q

k`

(t)]. Let the sojourn time distribution of state k be Q

k

(t) =

P

`2R

i
Q

k`

(t).

Theorem 5 When the subordinated process is a SMP, the measures de�ned on the par-

titioned state space given in Equations (16) - (20), take the form:

PE

��

k`

(s; v) = �

k`

s [1 � Q

�

k

(s + v) ]

v(s + v)

+

X

u2E

Q

�

ku

(s + v)PE

��

u`

(s; v); k; ` 2 E (28)

FE

��

k`

(s; v) = �

k`

1 � Q

�

k

(s + v)

s + v

+

X

u2E

Q

�

ku

(s + v)FE

��

u`

(s; v); k; ` 2 E (29)

PED

��

k`

(s; v) =

1

v

Q

�

k`

(s + v) +

X

u2E

Q

�

ku

(s + v)PED

��

u`

(s; v); k 2 E; ` 2 D (30)

PD

�

k`

(s) = �

k`

[1 �Q

�

k

(s)] +

X

u2D

Q

�

ku

(s) PD

�

u`

(s); k; ` 2 D

(31)

PDE

�

k`

(s) = Q

�

k`

(s) +

X

u2D

Q

�

ku

(s)PDE

�

u`

(s); k 2 D; ` 2 E (32)

The proof of Theorem 5 can be found in Appendix C.

The Equations (28) - (32) must be substituted in the expressions for the matrices

P(t; w), F(t; w) and C(t; w) given in Theorems 2 - 4. Then Equation (14) and (15) can

be applied. Further symbolical manipulation requires the knowledge of the particular

functions in Q(t).

4.2.2 Subordinated CTMC

Let M

i

(t) be a CTMC whose in�nitesimal generator is a (N

i

�N

i

) matrix denoted by

A = [a

k`

]. The in�nitesimal generator can be expressed in the following partitioned

form:
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A =

N

E

N

D

N

E

A

E

A

ED

N

D

A

DE

A

D

(33)

With respect to the SMP case, considered in the previous section, the following corre-

spondence can be established:

Q

�

k`

(s) =

8

>

>

<

>

>

:

a

k`

s � a

kk

if : k 6= `

0 if : k = `

(34)

where a

kk

= �

P

`2R

i

; ` 6=k

a

k`

. Applying a direct substitution of (34) into (28) - (32), the

partitioned measures can be expressed in matrix form based on the block description

(33) of the in�nitesimal generator of the subordinated CTMC [5, 3]. The matrix form is

given in the LST domain, being, as usual, s the transform variable of the time t and v

the transform variable of the sampled �ring time w.

PE

��

(s; v) =

s

v

((s+ v)I � A

E

)

�1

(35)

FE

��

(s; v) = ((s+ v)I � A

E

)

�1

(36)

PED

��

(s; v) =

1

v

((s+ v)I � A

E

)

�1

A

ED

(37)

PD

�

(s) = s (sI � A

D

)

�1

(38)

PDE

�

(s) = (sI � A

D

)

�1

A

DE

(39)

After a symbolical inverse Laplace transformation according to the variable v, Equa-

tions (35), (36) and (37) become, respectively:

PE

�

(s;w) = s

Z

w

0

e

(�sI+A

E

)z

dz (40)

FE

�

(s;w) = e

(�sI+A

E

)w

(41)

PED

�

(s;w) =

Z

w

0

e

(�sI+A

E

)z

dz A

ED

(42)
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5 Steady state analysis

The steady-state analysis is based on Equations (6) and (7) of Section 3.1. In general, the

transient analysis of the kernel elements is needed, so that the computational complexity

of the steady-state solution is the same as the one of the transient solution.

However, if the subordinated process is a CTMC, Equations (6) and (7) can be solved

explicitly, and the elements of the matrices � and � can be expressed directly from the

in�nitesimal generator A. Hence, in this case, the steady-state solution can be obtained

by a computationally e�ective method. The proper expressions when the dominant

transition is either prd or prs or pri are presented in the following subsections.

Let us now concentrate on the steady-state analysis of a single subordinated process

M

i

(t) starting from state i 2 R

TP

(M

0

) under the hypothesis that M

i

(t) is a CTMC

with in�nitesimal generator of the form (33). Combining Equations (6) and (7) with

Equations (15) and (14), the ith row of matrices � and � can be written as:

�

i

= lim

s!0

1

s

E

�

i

(s) = lim

s!0

Z

1

w=0

U

i

E

1

s

P

i�

(s;w)S

i

dG

g

(w) (43)

�

i

= lim

s!0

K

�

i

(s) = lim

s!0

Z

1

w=0

U

i

E

[F

i�

(s;w)�

i

+ C

i�

(s;w)S

i

D

] dG

g

(w) (44)

If the dominant transition is deterministic, Equations (43) and (44) simplify, since

the integration

R

1

w=0

[�] dG

g

(w) is avoided. Equations (43) and (44) are now particular-

ized according to the preemption policy of the dominant transition. In the sequel, the

superscript i in the symbols is omitted.

5.1 The dominant MEM transition is prd

Theorem 6 Given the dominant transition is prd, and the subordinated process is a

CTMC with generator of the form (33), the �

i

and �

i

row vectors are given by:

�

i

=

Z

1

w=0

U

E

[L(w); 0 ] S dG

g

(w) (45)

�

i

=

Z

1

w=0

U

E

[ e

wA

E

� + L(w) A

ED

S

D

] dG

g

(w) (46)

where L(w) =

Z

w

z=0

e

zA

E

dz.

Proof - From (21) and (40) we obtain:

lim

s!0

1

s

P

�

(s;w) = lim

s!0

1

s

[PE

�

(s;w); 0 ] = [L(w); 0 ] (47)

substituting (47) into (43), Equation (45) is obtained. Furthermore, from (21), (41) and

(42), we get:

lim

s!0

[F

�

(s;w)� + C

�

(s;w)S

D

] = lim

s!0

[FE

�

(s;w)� + PED

�

(s;w) S

D

] =

FE

�

(0; w)� + PED

�

(0; w) S

D

= e

wA

E

� + L(w) A

ED

S

D

(48)
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Equation (48), combined with (44), provides (46) 2.

Theorem 6 shows that the row elements of matrices � and � can be directly evaluated

from the in�nitesimal generator of the underlying CTMC at the same cost of evaluating

the transient solution (term e

wA

E

in Equation 46), or the integral solution (term L(w)

in Equations 45 and 46), up to time w.

5.2 The dominant MEM transition is pri

Theorem 7 Given the dominant transition is pri, and the subordinated process is a

CTMC with generator of the form (33), the �

i

and �

i

row vectors are given by:

�

i

=

Z

1

w=0

U

E

[ I + L(w)A

ED

A

�1

D

A

DE

]

�1

[L(w); �L(w)A

ED

A

�1

D

] S dG

g

(w)(49)

�

i

=

Z

1

w=0

U

E

[ I + L(w)A

ED

A

�1

D

A

DE

]

�1

e

wA

E

� dG

g

(w) (50)

where L(w) =

Z

w

z=0

e

zA

E

dz.

Proof - From (23), we obtain:

lim

s!0

1

s

P

�

(s;w) =

lim

s!0

1

s

[I � PED

�

(s;w) PDE

�

(s)]

�1

[PE

�

(s;w); PED

�

(s;w) PD

�

(s)]

(51)

remembering the explicit expressions from (35) to (42), expression (49) is easily obtained.

Similarly, from (22), we have:

lim

s!0

F

�

(s;w) = [I � PED

�

(s;w) PDE

�

(s)]

�1

FE

�

(s;w) (52)

from which Equation (50) can be obtained by substituting the explicit expressions (35)

- (42) in the corresponding terms in (52). 2

The steady-state solution in the pri case, involves the inversion of matrix A

D

and of

the matrix term I + L(w)A

ED

A

�1

D

A

DE

. The cardinality of these square matrices is

equal to the number of states in D and E, respectively. However, all the terms can be

computed by the knowledge of the in�nitesimal generator of the subordinated CTMC,

only.

5.3 The dominant MEM transition is prs

Theorem 8 Given the dominant transition is prs, and the subordinated process is a

CTMC with generator of the form (33), the �

i

and �

i

row vectors are given by:

�

i

=

Z

1

w=0

U

E

h

L

�

(w) ; �L

�

(w) A

ED

A

�1

D

i

dG

g

(w) (53)

�

i

=

Z

1

w=0

U

E

[ e

w�

]� dG

g

(w) (54)
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where

� = A

E

� A

ED

A

�1

D

A

ED

and L

�

(w) =

Z

w

z=0

e

z�

dz

Proof - We adopt the notation LT

�1

v!w

A

�

(v) = A(w) to indicate the inverse Laplace

transformation with respect to the variable v. From (26) and (35) - (42), by successive

manipulations, we can write:

LT

�1

v!w

lim

s!0

1

s

P

��

(s; v)

= LT

�1

v!w

lim

s!0

1

s

[I � vPED

��

(s; v) PDE

�

(s)]

�1

[PE

��

(s; v) ; PED

��

(s; v) PD

�

(s)]

= LT

�1

v!w

[ I+ (vI�A

E

)

�1

A

ED

A

�1

D

A

DE

]

�1

[

1

v

(vI�A

E

)

�1

; �

1

v

(vI�A

E

)

�1

A

ED

A

�1

D

]

= LT

�1

v!w

[

1

v

(vI� �)

�1

; �(vI�

1

v

�)

�1

A

ED

A

�1

D

]

(55)

from which Equation (53) is obtained. Furthermore, from (25), we can write:

LT

�1

v!w

[ lim

s!0

F

��

(s; v) ]

= LT

�1

v!w

[ I+ (vI�A

E

)

�1

A

ED

A

�1

D

A

DE

]

�1

(vI�A

E

)

�1

= LT

�1

v!w

[ (vI� �)

�1

]

(56)

Equation (54) comes from (56). 2

Matrix � is the in�nitesimal generator of a CTMC de�ned over the states in E.

Hence, the computational complexity associated to the solution of Equations (53) and

(54) is determined by the computation of � (that involves the inverse of A

D

), and the

evaluation of the transient solution of the CTMC with generator � up to time w (terms

[e

w�

]) and its integral (term [L

�

(w)]). A fully developed example has been reported in

[31].

6 Combined preemption policies: an example

A two processor system runs two types of jobs according to the following scheduling

policy. Jobs of class 1 require both processors and have preemptive priority over jobs of

class 2. Jobs of class 2 have lower priority and are scheduled to run on a single processor

that is chosen according to a prede�ned switching probability.

A PN modeling the system operation according to the described scheduling policy

is represented in Figure 3a. Place p

1

is the customer of class 2 thinking. The thinking

time is exponentially distributed with a global rate �. However, with a rate c � � jobs

are directed to processor 1 (transition t

1

), and with a rate (1� c) �� jobs are directed to
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Figure 3: The Petri net and the reachability graph of the two processor system

processor 2 (transition t

3

). Place p

2

(p

3

) is processor 1 (processor 2) serving customer

2 with service time distribution modeled by transition t

2

(t

4

). Place p

4

is customer 1

thinking, while place p

5

represents jobs of class 1 running on both processors while pre-

empting customer 2 under service. (Inhibitor arcs from p

5

to both t

2

and t

4

). Transitions

t

5

and t

6

represent the arrival and the service of jobs of class 1 and have an exponentially

distributed �ring time with parameter �

5

and �

6

, respectively.

We assume that the service time of customer 2 is generally distributed. Therefore,

t

2

and t

4

are MEM transitions (�lled rectangles) with distribution G

2

(t) and G

4

(t),

respectively. We further assume that processor 1 has 'state saving' capabilities so that

the execution of jobs is prs. Processor 2, instead, does not have 'state saving' capabilities

so that a recovery of an interrupted job occurs according to a pri policy. To this end, we

associate to transition t

2

a prs policy, and to transition t

4

a pri policy.

Inspection of the reachability graph, depicted in Figure 3b, leads to the following

assertions:

- The instants of entrance into state s

0

and s

2

are always RTPs, and the associ-

ated subordinated processes are concluded by the next state transition due to the

enabled EXP transitions;

- The instants of entrance into states s

1

and s

3

from s

0

are RTPs as well. According

to the described system characteristics the subordinated process starting from state

s

1

(s

3

) is dominated by t

2

(t

4

) with prs (pri) policy and is concluded by the �ring

of t

2

(t

4

), only.

- The instants of entrance into states s

4

and s

5

from s

2

are RTPs. But when states

s

4

and s

5

are entered from s

1

and s

3

they do not generate RTPs since the memory
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variable associated to transitions t

2

and t

4

, respectively, is never zero. The outgoing

transitions from s

4

and s

5

are EXP transitions.

From the above assertions follows that all the states can become a regeneration state,

i.e. R

TP

(M

0

) = R(M

0

) and N

0

= N = 6. The analysis proceeds by examining in

isolation all the subordinated processes starting from each possible regeneration state.

Subordinated process starting from s

0

- From s

0

, all the enabled transitions are EXP

and the next regeneration marking can be either s

1

, s

2

or s

3

. The subordinated

process is a single step CTMC.

Subordinated process starting from s

2

- From s

2

, all the enabled transitions are EXP

and the next regeneration marking can be s

0

, s

4

or s

5

. The subordinated process

is a single step CTMC.

Subordinated process starting from s

4

- The EXP transition t

6

is the only enabled one,

and the next regeneration marking is s

1

. The subordinated process is a single step

CTMC.

Subordinated process starting from s

5

- The EXP transition t

6

is the only enabled one,

and the next regeneration marking is s

3

. The subordinated process is a single step

CTMC.

Subordinated process starting from s

1

- The subordinated process starting from s

1

is

dominated by the MEM transition t

2

with associated prs policy and is a CTMC

with state space R

s

1

= fs

1

; s

4

g. The next regeneration marking can be s

0

, only.

Subordinated process starting from s

3

- The subordinated process starting from s

3

is

dominated by the MEM transition t

4

with associated pri policy and is a CTMC

with state space R

s

3

= fs

3

; s

5

g. The next regeneration marking can be s

0

, only.

Based on the above considerations, the subordinated processes starting from states

s

0

, s

2

, s

4

and s

5

can be evaluated by simple Markovian analysis, and the corresponding

rows of the kernel matrices in the transient and the steady-state case can be �lled in

based on the knowledge of the transition rates of the enabled exponential transitions.

The analysis of the subordinated processes starting from states s

1

and s

3

deserves a more

detailed description.

6.1 The analysis of the subordinated process starting from s

1

The markings reachable during the subordinated process starting from state s

1

are gen-

erated (Theorem 1) by removing the dominant MEM transition t

2

from the original PN,

and by assuming s

1

as initial marking. Figure 4 shows the reduced PN and its reacha-

bility graph corresponding to the state space R

s

1

of the subordinated process dominated

by the removed transition t

2

. According to the de�nitions of Section 4, the state space

is R

s

1

= fs

1

; s

4

g, where E

s

1

= fs

1

g and D

s

1

= fs

4

g (N

s

1

E

= 1 and N

s

1

D

= 1).
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Figure 4: The subordinated process starting from s

1

Since only EXP transitions are enabled in this reduced PN, the subordinated process

is a CTMC with generator

A

s

1

=

"

��

5

�

5

�

6

��

6

#

the non-overlapping condition with subordinated SMP as it is discussed, for example, in

[5, 30]. In this example we assume t

6

to be EXP in order to apply the results available

for the steady state analysis (Equation (45) - (56)).

During the generation of the reachable markings in the subordinated process the

shu�el matrix can be generated based on the correspondence of the states:

S

s

1

=

"

0 1 0 0 0 0

0 0 0 0 1 0

#

;

and the e�ect of the �ring of t

2

is stored as:

�

s

1

=

h

1 0 0 0 0 0

i

:

Applying Equations (35) - (39) for this example, we obtain the following (1 � 1)

matrices:

PE

s

1

��

(s; v) =

s

v(s+ v + �

5

)

FE

s

1

��

(s; v) =

1

s+ v + �

5

PED

s

1

��

(s; v) =

�

5

v(s+ v + �

5

)

24



PD

s

1

�

(s) =

s

s+ �

6

PDE

s

1

�

(s) =

�

6

s+ �

6

Applying Equation (25) and (26), we obtain:

P

s

1

��

(s; v) =

"

s(s+ �

6

)

v[s

2

+ (�

5

+ �

6

)s+ (�

6

+ s)v]

;

s�

5

v[s

2

+ (�

5

+ �

6

)s+ (�

6

+ s)v]

#

F

s

1

��

(s; v) =

s+ �

6

s

2

+ (�

5

+ �

6

)s+ (�

6

+ s)v

An inverse Laplace transformation provides:

P

s

1

�

(s;w) =

�

s+ �

6

�

5

+ �

6

+ s

�

1 � e

�c

1

w

�

;

�

5

�

5

+ �

6

+ s

�

1� e

�c

1

w

�

�

F

s

1

�

(s;w) = e

�c

1

w

where c

1

=

s(�

5

+ �

6

+ s)

�

6

+ s

. Note that condition (13), which is also valid in LST domain,

holds. The next step, which is the application of (14) and (15), results in the 2nd row

of the kernel matrices. To go further in the analytical derivation, let assume that the

service time of customer 2 on processor 1 is uniformly distributed on the interval (x

1

; x

2

).

The cumulative distribution function F (x), its derivative f(x) and the Laplace transform

F

�

(s) are:

F (x) =

8

>

<

>

:

0 0 � x < x

1

x�x

1

x

2

�x

1

x

1

� x � x

2

1 x > x

2

; f(x) =

1

x

2

� x

1

; F

�

(s) =

e

�x

1

s

� e

�x

2

s

s(x

2

� x

1

)

The following expressions hold:

E

�

s

1

s

1

(s) =

s+ �

6

�

5

+ �

6

+ s

"

1�

e

�c

1

x

1

� e

�c

1

x

2

c

1

(x

2

� x

1

)

#

E

�

s

1

s

4

(s) =

�

5

�

5

+ �

6

+ s

"

1�

e

�c

1

x

1

� e

�c

1

x

2

c

1

(x

2

� x

1

)

#

K

�

s

1

s

0

(s) =

e

�c

1

x

1

� e

�c

1

x

2

c

1

(x

2

� x

1

)

To evaluate �

s

1

s

1

and �

s

1

s

4

, Equation (55) is used:

�

s

1

s

1

=

Z

1

0

w dG

2

(w) =

x

1

+ x

2

2

�

s

1

s

4

=

Z

1

0

�

5

�

6

w dG

2

(w) =

�

5

(x

1

+ x

2

)

2�

6

While the 2nd row of the � matrix is know from the fact that next regeneration

period starts always from s

1

.
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6.2 The analysis of the subordinated process starting from s

3

Following the same approach, one can observe that the subordinated processes starting

from marking s

1

and s

3

are the same two-state CTMC with rates �

5

and �

6

, i.e. A

s

1

=

A

s

3

. Hence, also the partitioned state space related measures (35) - (39) are the same.

The di�erence between the relevant rows of the kernel matrices comes from the di�erent

preemption policies of t

4

(pri) with respect to t

2

(prs).

In order to analyze the subordinated process of a pri dominant transition we also

need (from Equation (40) - (42)):

PE

s

3

�

(s;w) = s

Z

w

0

e

�(s+�

5

)z

dz =

s

s+ �

5

h

1 � e

�(s+�

5

)w

i

FE

s

3

�

(s;w) = e

�(s+�

5

)w

PED

s

3

�

(s;w) = �

5

Z

w

0

e

�(s+�

5

)z

dz =

�

5

s+ �

5

h

1� e

�(s+�

5

)w

i

from which Theorem 3 gives:

P

s

3

�

(s;w) =

"

s(s+ �

6

)(1� c

2

)

(s+ �

5

)(s+ �

6

)� �

5

�

6

(1� c

2

)

;

s�

5

(1 � c

2

)

(s+ �

5

)(s+ �

6

)� �

5

�

6

(1 � c

2

)

#

F

s

3

�

(s;w) =

(s+ �

5

)(s+ �

6

)c

2

(s+ �

5

)(s+ �

6

)� �

5

�

6

(1 � c

2

)

where c

2

= e

�(s+�

5

)w

. Once again, condition (13) holds.

From the above expressions, the 4th row of the kernel matrices E

�

s

3

s

3

(s), E

�

s

3

s

5

(s),

K

�

s

3

s

0

(s) can be obtained by unconditioning with respect to the �ring time distribution

of t

4

.

Considering again the special case when the service time of customer 2 on processor

2 is uniformly distributed on the interval (x

3

; x

4

), we obtain:

E

�

s

3

s

3

(s) =

s+ �

6

s+ �

5

+ �

6

"

(s+ �

6

)c

3

(x

4

� x

3

)�

5

�

6

+ 1

#

E

�

s

3

s

5

(s) =

�

5

s+ �

5

+ �

6

"

(s+ �

6

)c

3

(x

4

� x

3

)�

5

�

6

+ 1

#

K

�

s

3

s

0

(s) = �

(s+ �

6

)c

3

(x

4

� x

3

)�

5

�

6

where c

3

= ln[s(s+ �

5

+ �

6

) + �

5

�

6

e

�(s+�

5

)x

4

]� ln[s(s+ �

5

+ �

6

) + �

5

�

6

e

�(s+�

5

)x

3

].

To compute �

s

3

s

3

and �

s

3

s

5

(49) is used, while �

s

3

s

0

= 1.

�

s

3

s

3

=

Z

1

0

1

�

5

(e

�

5

w

� 1) dG

4

(w) =

1

�

5

"

e

�

5

x

4

� e

�

5

x
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(x

4

� x
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3
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6.3 Numerical results

The transient analysis can be performed by applying Equation (4), where the complete

kernel matrices are given by:

K

�

(s) =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

0

c �

s+ �+ �

5

�

5

s + �+ �

5

(1� c) �

s+ �+ �

5

0 0

K

�

s

1

s

0

(s) 0 0 0 0 0

�

6

s + �+ �

6

0 0 0

c �

s + �+ �

6

(1� c) �

s+ �+ �

6

K

�

s

3

s

0

(s) 0 0 0 0 0

0

�

6

s+ �

6

0 0 0 0

0 0 0

�

6

s+ �

6

0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

5

E

�

(s) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

s

s + � + �

5

0 0 0 0 0

0 E

�

s

1

s

1

(s) 0 0 E

�

s

1

s

4

(s) 0

0 0

s

s + � + �

6

0 0 0

0 0 0 E

�

s

3

s

3

(s) 0 E

�

s

3

s

5

(s)

0 0 0 0

s

s + �

6

0
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s
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6
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7

7

7

7
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7

7

7

7

7

7

7
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The steady state analysis requires the computation of the following matrices:

� =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

0

c �

�+ �

5

�

5

�+ �

5

(1� c) �

� + �
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1 0 0 0 0 0

�
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� + �
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0 0 0
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� + �

6
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1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0
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7

7

7

7

7

7

7

7

7

7

7

7

5

� =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6
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1

� + �
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0 0 0 0 0

0 �

s

1

s

1

0 0 �

s

1

s

4

0
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s
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s

3

0 �

s

3

s
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1

�

6

0

0 0 0 0 0

1

�

6

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Suppose that the two processors are of di�erent classes, and the average computation

time on processor 1 is less than on processor 2 (i.e.: x

2

� x

1

> x

4

� x

3

). The considered

design problem consists in optimizing the switching probability c in order to optimize

the performance characteristics of the system.

The steady state probabilities (v

j

) can be evaluated based on � and � by Equation

(8) and (9). With a given tra�c pattern the dependence of the system performance on
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Figure 5: Probability of state s

0

(idle state) versus c and �

5
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Figure 6: Surface plot of Figure 5

c can be measured by the steady state probability of the idle state (s

0

). The better the

system performance is, the higher is the steady state probability of s

0

.

In Figure 5, the steady state probability of s

0

is depicted as a function of the switching

probability (c) and the submission rate of customer 1 (�

5

). Figure 5 contains the 3D-view

of the function. In order to emphasize the dependence on c Figure 6 shows the surface

plot of it. The parameters of the model are set as follows:

� the submission rate of customer 1 (�

5

) is varying from 0:1 to 3,

� the service rate of customer 1 (�

6

) is 1,

� the submission rate of customer 2 (�) is 0:2,

� the service time of customer 2 is assumed to be uniformly distributed. On the slower

processor (processor 1) the service time (�ring time of t

2

) is uniformly distributed

on (0; 2) (i.e.: x

1

= 0; x

2

= 2), while on the faster processor (processor 2) the service

time (�ring time of t

4

) is uniformly distributed on (0; 1) (i.e.: x

3

= 0; x

4

= 1),

28



� the switching probability (c) is varying between 0 and 1.

As can be observed from the �gures, the optimal value of c depends on �

5

as well. For

the case when �

5

> 1:78 (frequent preemption of the low priority job), c = 1 (prs policy)

results in the best performance, and if �

5

< 1:78 (rare preemption of the low priority

job), c = 0 (pri policy) results in the best performance. No probabilistic mixture of the

two preemption policies (0 < c < 1) results in a better performance than the one of the

two extreme cases.

1 2 3 4
t0

0.2

0.4

0.6

0.8

1

st. prob.

Figure 7: Transient probability of s

0

The transient behavior of the system idle probability (Pr(M(t) = s

0

)) is depicted

on Figure 7, when the submission rate of customer 1 is �

5

= 1:5. and c = 0:5. The

horizontal line indicates the steady state probability of s

0

(0:281063) obtained by the

steady state analysis method.

7 Computational complexity

Let us brie
y summarize the elementary computational steps for the evaluation of the

transient and steady-state solution in the proposed approach.

7.1 Transient analysis

Let us �rst suppose that all the MEM transitions are deterministic. The computational

method can be divided in the following steps:

1. generation of all the subordinated process according to the operational procedure

given in Theorem 1;

2. for each subordinated process, symbolic derivation of the non-zero entries of the

corresponding row in the kernels K

�

(s) and E

�

(s) (in the LST domain);

3. symbolic matrix inversion and matrix multiplication in order to obtain the V

�

(s)

matrix (Equation 4) in the LST domain;
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4. time domain solution obtained by a numerical inversion of the entries of the V

�

(s).

If the dominant MEM transition is not deterministic, Step 2) in the above list should

be replaced by:

2

0

symbolic derivation of the entries of the K

�

(s) and E

�

(s) matrices in LST domain

as in the deterministic case;

2

00

unconditioning of the entries of the K

�

(s) and E

�

(s) matrices, according to the

Cdf of the �ring time of the MEM transitions (Equations (14) and (15)).

Any standard algorithm generating reachability graph from standard PN description

can be used for Step 1); during the generation of the state space of a given subordinated

process, matrices � and S must be �lled in. In our case Step 2) is done manually, only

because of the intrinsic limitations of the mathematical packages we used in manipulating

symbolic algebraic expressions. The complexity of this step depends on the non-zero

entries of the involved matrices, and on the complexity of the process subordinated to

the dominant MEM transitions.

The computational complexity of Step 3) depends on the dimension of the matri-

ces (i.e. the number of tangible markings) and the complexity of the elements of the

kernels (the di�culty of Step 3 is related to the di�culty of Step 2). We performed

these symbolic computations using MATHEMATICA. The complexity of the numerical

inversion at Step 4) also depends on two factors; the complexity of the function to in-

vert, and the prescribed accuracy. We used the Jagerman's method [21] implemented in

MATHEMATICA language.

7.2 Steady-state analysis

In the general case the steady-state analysis follows the same procedure described for

the transient one. However, a very e�cient technique has been extensively discussed in

Section 5 in the particular case where all the subordinated processes are CTMCs. The

main di�erence is that the introduced method is composed by numerical analysis steps

only, hence it does not require any symbolic and transform domain manipulation as it is

in the case of transient analysis.

If the transition dominating the considered regeneration period is deterministic, the

steady-state analysis requires for each subordinated process the transient solution for

the instantaneous and integral probabilities of a CTMC up to the �ring time w of the

dominant transition. Any standard algorithm can be used at this purpose, and it is known

that the computation of the instantaneous probabilities and of the integral probabilities

can be performed at the same time with a very little overhead [28, 29]. When the

transition dominating the considered regeneration period is not deterministic, numerical

integration according to the distribution of the �ring time has to be performed [26].
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8 Conclusion

The paper has provided a detailed discussion and an analytical procedure to deal with the

class ofMRSPN with non-overlapping dominant transitions. The analytical description is

based on the Markov renewal theory and allows to include di�erent preemption policies

associated to di�erent dominant transitions into a single MRSPN model. Complete

analytical descriptions have been provided for the transient and steady state cases, when

all the subordinated processes are restricted to be CTMC or SMP.

The complexity of the proposed approach has been discussed and, for the steady-

state analysis with subordinated CTMCs, a procedure ready to be implemented into an

automatic solution tool has been provided.

The transient analysis still requires some symbolic manipulation. However, we believe

that all the necessary elements for its automatic computation have been fully identi�ed.

Our approach extends previously available results and o�er the possibility to adopt

di�erent preemption policies inside the same model, thus widening the �eld of applica-

bility of stochastic Petri nets.

Future extensions are related with the introduction of interlaced, or state dependent,

memory policies, where the memory of a transition can be modi�ed by the occurrence

of some condition on the net.
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Appendix A Proof of Theorem 3

The event that the process is resident in R

i

= E

i

[ D

i

at time t before the �ring of the

dominant transition tr

g

can be decomposed into the mutually exclusive events according

to the number of cycles between D and E. Hence:

P

�

(s;w) = [PE

�

(s;w); PED

�

(s;w) PD

�

(s) ]

+ PED

�

(s;w) PDE

�

(s) [PE

�

(s;w); PED

�

(s;w) PD

�

(s)]

+ [PED

�

(s;w) PDE

�

(s)]

2

[PE

�

(s;w); PED

�

(s;w) PD

�

(s)]

+ : : : (57)

=

1

X

u=0

[PED

�

(s;w) PDE

�

(s)]

u

[PE

�

(s;w); PED

�

(s;w) PD

�

(s)]

Expression (23) is obtained from (57) by applying the relation

P

1

u=0

M

u

= [I�M]

�1

.

Similarly, for matrix F

�

(s;w):

F

�

(s;w) = FE

�

(s;w) + PED

�

(s;w) PDE

�

(s)FE

�

(s;w) +

[PED

�

(s;w) PDE

�

(s)]

2

FE

�

(s;w) + : : :

(58)

=

1

X

u=0

[PED

�

(s;w) PDE

�

(s)]

u

FE

�

(s;w)

which proves the theorem.

An alternative proof of this theorem can be given using the regenerative property at

the �rst return to E.

Appendix B Proof of Theorem 4

To evaluate F

ij

(t; w) we should consider two di�erent cases for the �ring of the dominant

MEM transition. The �rst one is when the transition �res before leaving E and the second

one is when the subordinated process leaves E for state k 2 D at time t

0

accumulating

w

0

�ring time units, and it stays in D up to t" when it enters ` 2 E. For the quantitative

analysis of these cases we introduce:

PED

ij

(t) = PrfZ(T

1

) = j 2 D ; T

1

< t jZ(0) = i 2 Eg (59)

and

d

PED

ij

(t; w) = PrfZ(T

1

) = j 2 D ; �

�

1

> T

1

jZ(0) = i 2 E ; T

1

= t ; 


g

= wg (60)

F

ij

(t; w) can then be expressed as:

F

ij

(t; w) = FE

ij

(t; w)+

X

k2D

X

`2E

Z

t

t

0

=0

Z

t

t"=t

0

Z

w

w

0

=0

F

`j

(t� t"; w � w

0

) d

d

PED

ik

(t

0

; w

0

) dPED

ik

(t

0

) dPDE

k`

(t")

(61)
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The LST with respect to w results in:

F

�

ij

(t; v) = FE

�

ij

(t; v)+

P

k2D

P

`2E

R

t

t

0

=0

R

t

t"=t

0

F

�

`j

(t� t"; v)

d

PED

�

ik

(t

0

; v) dPED

ik

(t

0

) dPDE

k`

(t")

(62)

By the de�nition of

d

PED

ij

(t; w) and PED

ij

(t) we can write:

F

�

ij

(t; v) = FE

�

ij

(t; v) +

X

k2D

X

`2E

Z

t

t

0

=0

Z

t

t"=t

0

F

�

`j

(t� t"; v) dPED

�

ik

(t

0

; v) dPDE

k`

(t") (63)

Which is a triple convolution according to the time variable t, whose LST is:

F

��

ij

(s; v) = FE

��

ij

(s; v) +

X

k2D

X

`2E

F

��

`j

(s; v) PED

��

ik

(s; v) PDE

k`

(s) (64)

Expression (25) is obtained from (64), by remembering the relation between the LST

and the LT of a given function:

A

�

(v) = v A

�

(v) :

The derivation of P

��

(s; v) follows the same pattern.

Appendix C Proof of Theorem 5

Conditioning on the sojourn time H = h in state k 2 E, we have:

FE

k`

(t; w jH = h) =

8

>

>

>

>

<

>

>

>

>

:

�

k`

U (t � w) if : h � w

X

u2E

dQ

ku

(h)

dQ

k

(h)

� FE

u`

(t� h;w � h) if : h < w

(65)

where U(t) is the unit step function. In (65), two mutually exclusive events are

identi�ed. If h � w, a sojourn time equals to w is accumulated before leaving state k,

so that the �ring of the dominant MEM transition occures at t = w. If h < w then a

transition occurs to state u with probability dQ

ku

(h)=dQ

k

(h) and the residual �ring time

(w � h) should be accumulated starting from state u at time h. Taking the LST with

respect to t (denoting the transform variable by s), the LT with respect to w (denoting

the transform variable by v) of (65) and then unconditioning with respect to H proves

the Theorem.

Similarly conditioning on H = h the probability of sojourn in E is:

PE

k`

(t; w jH = h) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

�

k`

[U(t) � U(t�w)]

if : h � w

�

k`

[U(t)� U(t� h)] +

X

u2E

dQ

ku

(h)

dQ

k

(h)

PE

u`

(t� h;w � h)

if : h < w

(66)
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The derivation of the matrix function PE(t; w) based on (66) follows the same pattern

as for the function FE(t; w).

Finally conditioning on H = h , PED

k`

(t; w) can be de�ned as:

PED

k`

(t; w jH = h) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0 if : h � w

dQ

k`

(h)

dQ

k

(h)

U(t� h) +

X

u2R

dQ

ku

(h)

dQ

k

(h)

PED

u`

(t� h;w � h)

if : h < w

(67)

The derivation of the matrix function PED(t; w) based on (67) follows the same

pattern as for the function FE(t; w).

The matrix functions PD(t) and PDE (t) can be obtained from PE(t; w) and

PED(t; w) by interchanging E and D and by letting w!1.
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