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Abstra
t

This paper assumes a user-oriented point of view in examining the performa-

bility of a dependable 
omputing system. The investigated performability measure

is the e�e
tive time that a task, with an assigned work requirement, takes to be

exe
uted by the system. Assuming that the system 
hanges its performan
e 
har-

a
teristi
s randomly in time, the sto
hasti
 model representing the task 
ompletion

time is formulated and analyzed. Appli
ations and extensions of the basi
 model

are dis
ussed. Finally, the 
ompletion time model is reformulated in the language

of sto
hasti
 Petri nets, and possible 
omputational approa
hes are illustrated.

1 Introdu
tion

The 
ompletion time of a task measures the time that a task takes to be exe
uted by

a 
omputing system. If the system 
hanges its 
omputational power randomly in time

during the exe
ution, the task 
ompletion time is a random variable. The analyti
al

and numeri
al 
omputation of the 
umulative distribution fun
tion (Cdf) of the task


ompletion time is the subje
t of this 
hapter.

The adopted modeling framework 
onsists of des
ribing the behavior of the system


on�guration in time by means of a sto
hasti
 pro
ess, 
alled the stru
ture-state pro
ess,

and by asso
iating to ea
h state of the stru
ture-state pro
ess a non-negative real 
on-

stant representing the e�e
tive working 
apa
ity or performan
e level of the system in

that state. The real variable asso
iated to ea
h stru
ture-state is 
alled the reward rate

[36℄. The stru
ture-state pro
ess together with the reward rates forms the Sto
hasti


Reward Model (SRM) [63℄.

The properties of sto
hasti
 reward pro
esses have been studied sin
e a long time

[50, 21, 41, 42, 36℄, however, only re
ently SRM's have re
eived attention as a modeling

tool in performan
e/reliability evaluation. Indeed, the possibility of asso
iating a reward

variable to ea
h stru
ture state in
reases the des
riptive power and the 
exibility of the

model.
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Di�erent interpretations of the stru
ture-state pro
ess and of the asso
iated reward

stru
ture give rise to di�erent appli
ations [53℄. Common assignments of the reward

rates are: exe
ution rates of tasks in 
omputing systems (the 
omputational 
apa
ity)

[5, 67℄, number of a
tive pro
essors (or pro
essing power) [7, 34℄, throughput [52, 29, 35℄,

average response time [37, 43, 47℄ or response time distribution [71, 62, 72℄. The 
lassi
al

reliability theory [4℄ 
an be viewed as a parti
ular 
ase of SRM obtained by 
onstraining

the reward rates to be binary variables.

Two main di�erent points of view have been assumed in the literature when dealing

with SRM for degradable systems [45℄. In the system-oriented point of view the most

signi�
ant measure is the total amount of work done by the system in a �nite interval.

The a

umulated reward is a random variable whose Cdf is 
alled the performability [51℄.

Various numeri
al te
hniques for the evaluation of the performability have appeared in

the literature: [38, 24, 33, 66, 25, 60, 59, 26℄. In the user-oriented (or task-oriented)

point of view the system is regarded as a server, and the emphasis of the analysis is on

the ability of the system to provide a pres
ribed servi
e in due time. Consequently, the

most 
hara
terizing measure be
omes the probability of a

omplishing an assigned task

in a given time. The task-oriented point of view is a more dire
t representation of the

quality of servi
e, whi
h, in turn, is the main target of a dependable 
omputation.

Gaver [28℄ analyzed the distribution of the 
ompletion time for a two-state server

with di�erent me
hanisms of interruption and re
overy poli
ies. Extensions to the above

model were provided in [56℄, while the 
ompletion time problem for fault tolerant 
om-

puting systems was addressed in [14℄. A uni�ed formulation to the system-oriented and

the user-oriented point of view was provided by Kulkarni et al. in [45, 46, 58℄. An alter-

native interpretation of the 
ompletion time problem 
an be given in terms of the hitting

time of an appropriate 
umulative fun
tional [21℄ against an absorbing barrier equal to

the work requirement. The de�nition of a 
umulative fun
tional was �rst suggested by

Kulkarni et al. [45℄ and then expli
itly exploited in [10℄, where the 
ompletion time was

modeled as a �rst hitting time against an absorbing barrier. This interpretation leads

the above problem into the main stream of absorption problems in sto
hasti
 models

and has proved to be useful in asso
iation with sto
hasti
 Petri nets [8℄ and with the

extension to multi-reward models [9, 10℄.

In Se
tion 2, the 
ompletion time problem is formulated as a �rst passage time a
ross

an absorbing barrier. The distribution of the 
ompletion time is derived in Se
tion 3, in

the Lapla
e transform domain and under the hypothesis that all the states pertain to the

same preemption 
lass. Se
tion 4 illustrates some appli
ations and extensions. Se
tion

5 shows how to represent the formulated non-Markovian sto
hasti
 model by means of

Petri nets, and 
ompares the results obtained from two non-Markovian PN-based models

on a simple example. Se
tion 6 summarizes the 
hapter.

2 The barrier hitting problem

Given that F (t) is a Cdf, the Lapla
e transform (LT) F

�

(s) and the Lapla
e-Stieltjes

transform (LST) F

�

(s) are given by, respe
tively:

2



F

�

(s) =

Z

1

0

e

�st

F (t) dt ; F

�

(s) =

Z

1

0

e

�st

dF (t)

Let the stru
ture-state pro
ess (X(t); t � 0) be a right-
ontinuous semi-Markov pro
ess

[21, 44℄ de�ned over a dis
rete and �nite state spa
e S of 
ardinality n. We denote by

H the time duration until the �rst embedded time point of the semi-Markov pro
ess

starting from state i at time 0 (X(0) = i ), and by p(0) the row ve
tor of the initial

probabilities. Let K(t) = [K

ij

(t)℄ be the kernel of the semi-Markov pro
ess. The generi


element

K

ij

(t) = IP fH � t; X(H) = jjX(0) = ig

(with i; j = 1; :::; n) is the distribution of H starting in state i at time 0 supposed that

a transition to state j took pla
e. Moreover,

K

i

(t) = IP fH � tjX(0) = ig =

n

X

j=1

K

ij

(t) (i = 1; :::; n)

is the distribution of H starting in state i at time 0 independent of the state rea
hed

after the �rst embedded time point. The probability of jumping from state i to state j

at time H = t 
an be de�ned in terms of the kernel elements:

IP fX(H) = jjH = t; X(0) = ig =

dK

ij

(t)

dK

i

(t)

Let r

X(t)

be a non-negative real-valued fun
tion de�ned as:

r

X(t)

= r

i

if X(t) = i ; with r

i

� 0 and i = 1; 2; : : : ; n: (1)

r

X(t)

represents the instantaneous reward asso
iated to state i. We now de�ne a fun
-

tional Y (t) that represents the a

umulation of reward in time. Y (t) is a sto
hasti


pro
ess that depends on X(�) for � � t [21℄. During the sojourn of X(t) in state i

between t and (t + dt), Y (t) in
reases at the rate r

i

dt. However, a transition in X(t)

may indu
e a modi�
ation in the a

umulation pro
ess depending whether the transition

entails a loss of work, or no loss of work. A transition whi
h does not entail a loss of the

work already a

umulated by the system on the task in exe
ution is 
alled preemptive

resume (prs), and its e�e
t on the model is that the fun
tional Y (t) resumes the previous

value in the new state. A transition whi
h entails a loss of the work done by the system

on the task in exe
ution is 
alled preemptive repeat (prt), and its e�e
t on the model is

that the fun
tional Y (t) is reset to 0 in the new state.

A possible realization of the a

umulation pro
ess Y (t) is shown in Figure 1. The

transition from state j to state k is of prs type while the transitions from state k to

i and from i to j are prt. In order to model the 
ompletion time problem, let W

be the a
tual work requirement of a task. W represents the time that a task would
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require to be exe
uted in isolation on a perfe
t system. In a degradable environment,

the task 
ompletes as soon as the work a

umulated by the system rea
hes the a
tual

work requirement for the �rst time. Hen
e, W a
ts as an absorbing barrier for the

fun
tional Y (t). With referen
e to Figure 1, the task 
ompletion time is the time at

whi
h Y (t) hits the barrier W for the �rst time.

-
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Figure 1 - The behavior of the fun
tional Y (t) versus time.

We assume, in general, that W is a random variables with distribution G(x) with

support on [0; 1). The degenerate 
ase in whi
hW is deterministi
 and the distribution

G(x) be
omes the unit step fun
tion U(x) lo
ated at W = x, 
an be 
onsidered as well.

When W is not deterministi
 and the preemption poli
y is prt, two 
ases arise depending

whether the repeated task has an identi
al work requirement as the original preempted

task (preemptive repeat identi
al (pri) - poli
y), or a di�erent work requirement sampled

from the same distribution (preemptive repeat di�erent (prd) - poli
y). With referen
e to

Figure 1, it is assumed that the transition from state k to state i is pri and the transition

from state i to state j is prd. A

ording to the previous assumptions, the a

umulated

reward Y (t) is reset and the same value W of the barrier is retained when jumping from

state k to state i sin
e the 
orresponding transition is pri. On the other hand, sin
e

transition from i to j is prd, the work requirement W is resampled in state j assuming

a new value W

0

sampled from the same distribution and Y (t) is reset.

For a stru
ture-state pro
ess with only prs and pri transitions the barrier heightW is


onstant up to the 
ompletion. In these 
ases, 
onditioned to a �xed value of the barrier

height W = x, the 
ompletion time T (x) is de�ned as:

T (x) = min [t � 0 : Y (t) = x℄ : (2)

Let F

T

(t; x) be the 
onditional Cdf of the task 
ompletion time T (x):

F

T

(t; x) = IP fT (x) � tg (3)

The un
onditional 
ompletion time T is 
hara
terized by the following distribution:
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F

T

(t) = IP fT � tg =

Z

1

0

F

T

(t; x) dG(x) (4)

and is the measure that 
an be evaluated if all the transitions are prd.

The distribution of the 
ompletion time, F

T

(t), in
orporates the e�e
t of a random

variation of the exe
ution speed 
onsequent to a degradation and re
on�guration pro
ess,


ombined with the e�e
t of the preemption and re
overy poli
y on the exe
ution of the

task.

The following relationships between the di�erent preemption poli
ies 
an be easily

established. If the work requirement W is an exponential random variable, the two

poli
ies prs and prd give rise to the same 
ompletion time (due to the memoryless

property of the exponential distribution, the residual task requirement under the prs

poli
y 
oin
ides with the resampled requirement under the prd poli
y). On the other

hand, if W is deterministi
, the two poli
ies pri and prd are 
oin
ident (resampling a

step fun
tion provides always the same 
onstant value).

Moreover, assuming that the stru
ture-states are all of prs type, so that no loss of

reward o

urs,

Y (t) =

Z

t

0

r

X(�)

d�

and the distribution of the 
ompletion time is 
losely related to the distribution of the

a

umulated reward (performability) by means of the following relation:

IP fY (t) � xg = IP fT (x) � tg (5)

Kulkarni et al. [45℄ derived the 
losed-form Lapla
e transform equations of F

T

(x; t)

when X(t) is a CTMC and all the states belong to the same preemption 
lass. The

extension to a semi-Markov pro
ess X(t) whose state spa
e is partitioned in the three

preemption 
lasses has been 
onsidered in [46℄. Bobbio and Trivedi [13℄ studied the 
ase

where X(t) is a CTMC, the work requirement W is a PH random variable [54℄ and the

task exe
ution poli
y is a probabilisti
 mixture of prs and prd poli
ies. The 
ombination

of prs and pri poli
ies has been investigated in [15℄ for the evaluation of the 
ompletion

time of a program on a gra
efully-degradable 
omputing system.

3 The distribution of the 
ompletion time

A state whose outgoing transitions are all of prs type is 
alled a prs state; similarly, a

state whose outgoing transitions are all of prd (pri) type is 
alled a prd (pri) state. The

following 
losed form expressions for the Cdf of the 
ompletion time are derived under

the hypothesis that the stru
ture-state pro
ess is semi-Markov and all the states are of

the same preemption 
lass. A more general derivation, in whi
h the states are allowed

to belong to the three di�erent de�ned preemption 
lasses is in [46℄.

In order to evaluate (3), let us introdu
e the following ve
tor valued fun
tions F(t)

and F(t; x) whose entries F

i

(t) and F

i

(t; x), (i = 1; 2; : : : ; n) are de�ned by:

F

i

(t; x) = IPfT (x) � t jX(0) = ig ; x � 0 (6)
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F

i

(t) = IPfT � t jX(0) = ig : (7)

Noti
e that, when all the states are prs or pri the quantity to be evaluated is F

i

(t; x)

while in the prd 
ase only the fun
tion F

i

(t) 
an be derived. From the above de�nitions,

it follows that:

F

�

T

(s) = p(0) F

�

(s) =

Z

1

0

p(0) F

�

(s; x) dG(x) : (8)

Theorem 1 - Given that X(t) is a semi-Markov pro
ess and all the states are of prs

type, the double transform F

��

(s; w) satis�es the following equation:

F

��

i

(s; w) =

r

i

s + w r

i

[1 � K

�

i

(s + w r

i

) ℄ +

n

X

j=1

K

�

ij

(s + w r

i

)F

��

j

(s; w) (9)

Proof - Conditioning on the time until the �rst embedded time point in the initial state

H = h , let us de�ne:

F

�

i

(s; x jH = h) = IE [exp(�s T )jW = x;X(0) = i; H = h℄ =

8

>

>

>

>

<

>

>

>

>

:

exp(�sx=r

i

) if h r

i

� x

exp(�sh)

n

X

j=1

dK

ij

(h)

dK

i

(h)

F

�

j

(s; x� hr

i

) if x > h r

i

(10)

In (10), two mutually ex
lusive events are identi�ed: if h r

i

� x, then T = x=r

i

or if

h r

i

< x then a transition o

urs to state j. Taking the LT with respe
t to x, we obtain:

F

��

i

(s; w jH = h) =

Z

hr

i

x=0

exp(�w x ) exp(� s x=r

i

) dx +

exp[�(s + wr

i

) h℄

n

X

j=1

dK

ij

(h)

dK

i

(h)

F

��

j

(s; w) (11)

Un
onditioning with respe
t to H, (11) be
omes:

F

��

i

(s; w) =

Z

1

h=0

Z

hr

i

x=0

exp[� ( s + w r

i

)x=r

i

℄dx dK

i

(h) +

Z

1

h=0

exp[�(s + w r

i

)h℄

n

X

j=1

F

��

j

(s; w) dK

ij

(h) (12)

Finally, Equation (9) is obtained from (12) by evaluating the integrals 2.
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Corollary 2 - Under the assumptions of Theorem 1, given that X(t) is a CTMC with

in�nitesimal generator Q, the double transform F

��

(s; w) satis�es the following matrix

equation [45℄:

F

��

(s; w) = [sI + wR � Q℄

�1

r (13)

where

r = [r

1

; r

2

; : : : ; r

n

℄

T

; R = diag [r

1

; r

2

; : : : ; r

n

℄ (14)

are a ve
tor and a matrix of reward rates.

Proof - Equation (13) is obtained by substituting the following Markovian kernel in (9):

K

�

ij

(s) =

8

>

>

<

>

>

:

q

ij

s + q

i

if : i 6= j

0 if : i = j

where q

i

=

P

n

j=1;j 6=i

q

ij

2.

In general, the kernel K(t) of a semi-Markov pro
ess 
an have non-zero positive

entries on the main diagonal. Therefore, from a given state i either a "virtual" transition

into state i itself 
an take pla
e or a real transition to a di�erent state j 6= i. In the

previously 
onsidered prs 
ase, the a

umulation pro
ess resumes the value rea
hed by

the total reward in the previous state and there is no need to distinguish between a jump

into the same state or into a di�erent one.

The situation is di�erent in the prt 
ase (either prd or pri). Indeed, a jump into a

new state reset the a

umulated reward while a jump into the same state should retain

the same reward level. However, it has been shown in [70℄ that a semi-Markov kernel


an be transformed into a 
anoni
al form in whi
h the entries on the main diagonal are

zero while preserving the same transition probabilities for all the transitions from i to j

with i 6= j. The 
anoni
al representation of the semi-Markov kernel K

u

(t) is given by

[70℄:

K

u�

ij

(s) =

8

>

>

>

<

>

>

>

:

K

�

ij

(s)

1�K

�

ii

(s)

if : i 6= j

0 if : i = j

(15)

With a kernel in a 
anoni
al form, the problem of distinguishing between transitions

into the same state or into a di�erent state is avoided. Therefore, in the following we

impli
itly assume that the kernel is, or has been transformed, in a 
anoni
al form with

zero entries on the main diagonal.

Theorem 3 - Given that X(t) is a semi-Markov pro
ess and all the states are of prd

type, the LST F

�

i

(s) satis�es the following equation:

F

�

i

(s) =

Z

1

0

exp(�s x=r

i

) [1 � K

i

(x=r

i

)℄ dG(x) +

n

X

j=1

F

�

j

(s)

Z

1

0

exp(�sh) [1 � G(hr

i

)℄ dK

ij

(h) (16)

7



Proof - Conditioning on the time until the �rst embedded time point in the initial state

H = h , let us de�ne:

F

�

i

(s jW = x;H = h) = IE [exp(�s T )jW = x;X(0) = i; H = h℄ =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

exp(�sx=r

i

) if hr

i

� x

exp(�sh)

n

X

j=1

dK

ij

(h)

dK

i

(h)

F

�

j

(s) if x > h r

i

(17)

In (17), two mutually ex
lusive events are identi�ed: if h r

i

� x, then T = x=r

i

or if

h r

i

< x then a transition o

urs to state j (j 6= i) and a di�erent task independent and

with the same distribution is restarted. By un
onditioning Equation (17) with respe
t

to W and then with respe
t to H, we obtain:

F

�

i

(s) =

Z

1

h=0

Z

h=r

i

x=0

exp(�s x=r

i

) dG(x) dK

i

(h)

+

Z

1

h=0

Z

1

x=h=r

i

n

X

j=1

F

j

(s) exp(�sh) dG(x) dK

ij

(h) (18)

Solving the integrals in (18), the theorem is proved 2.

Corollary 4 - Under the assumptions of Theorem 3, given that X(t) is a CTMC with

in�nitesimal generator Q, the LST F

�

i

(s) satis�es the following Equation [45℄:

F

�

i

(s) = G

�

�

s + q

i

r

i

�

+

n

X

j=1;j 6=i

q

ij

(s + q

i

)

�

1 � G

�

�

s + q

i

r

i

� �

F

�

j

(s) (19)

Theorem 5 - Given that X(t) is a semi-Markov pro
ess and all the states are of pri

type, the LST F

�

i

(s; x) satis�es the following equation:

F

�

i

(s; x) = exp(�s x=r

i

) [1 � K

i

(x=r

i

)℄ +

n

X

j=1

F

�

j

(s; x)

Z

x=r

i

0

exp(�sh) dK

ij

(h) (20)

Proof - Conditioning on the sojourn time in the initial state H = h , let us de�ne:

F

�

i

(s; x jH = h) = IE [exp(�s T ) jX = x;X(0) = i; H = h℄ =

8

>

>

>

>

<

>

>

>

>

:

exp(�sx=r

i

) if h r

i

� x

exp(�sh)

n

X

j=1

dK

ij

(h)

dK

i

(h)

F

�

j

(s; x) if x > h r

i

(21)
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Un
onditioning with respe
t to H yields Equation (20) 2.

Corollary 6 - Under the assumptions of Theorem 5, given that X(t) is a CTMC with

in�nitesimal generator Q, the LST F

�

i

(s; x) satis�es the following Equation [45℄:

F

�

i

(s; x) = exp[�(s + q

i

) x=r

i

℄ +

n

X

j=1;j 6=i

q

ij

s + q

i

( 1� exp[�(s + q

i

) x=r

i

℄) F

�

j

(s; x) (22)

4 Appli
ations and Extensions of the Basi
 Model

In this se
tion we present some appli
ations and extensions of the basi
 model, 
onsidered

so far in the literature.

Binary reward variables - When the reward rates are 
onstrained to be binary

variables, a binary partition of the state spa
e is indu
ed. Classi
al reliability-availability

models fall in this 
lass. The 
on
eptual framework, formulated in the previous se
tions,

o�ers an uni�ed view to subtle reliability problems in whi
h the system 
atastrophi


failure depends on the duration of the downtime. The problem has a long history in the

reliability literature [27, 64, 61, 65℄ and 
an be formulated in terms of the 
ompletion

time of a "virtual task" whose work requirement is equal to the assigned downtime

threshold [57℄. If the down state is either of pri or prd type, a fatal failure o

urs as

soon as a single downtime greater than the threshold is en
ountered, while if the down

state is of prs type, the fatal failure o

urs when the threshold level is ex
eeded by the

total a

umulated down time. Ni
ola et al. [57℄ have 
al
ulated the 
ompletion time

under fairly more general 
onditions, and have derived several related measures from the

knowledge of the 
ompletion time distribution.

State spa
e partition in preemption 
lasses - The expressions in Se
tion 3 are

derived under the simplifying hypothesis that all the stru
ture states of X(t) belong to

the same preemption 
lass. A natural and useful extension is to 
onsider a partition

of the state spa
e into di�erent preemption 
lasses. The a

umulation of the reward

is thus resumed or reset a

ording to the 
hara
teristi
s of the state just abandoned

at the transition. In [46℄, 
losed-form Lapla
e transform solutions are provided when

all the three types of preemption poli
ies are eventually present in the system, with

a semi-Markov stru
ture-state pro
ess. More general task exe
ution pro
esses 
an be

modeled and estimated, and di�erent kinds of failures 
an be taken into a

ount. The

same authors [58℄ have further extended their analysis, by 
onsidering a stream of jobs

arriving at the server a

ording to a Poisson pro
ess.

The 
ompletion time of programs - A spe
ialized appli
ation of the above theory

has been devoted to study the exe
ution time of programs on 
omputing systems. In their

pioneering work Castillo and Siewiorek [14℄ have 
onsidered the time required to 
orre
tly

exe
ute a program, taking into a

ount hardware reliability, software (operating system)

9



reliability, the workload of the system while the program is exe
uting, and the type

and amount of resour
es required to exe
ute the program. The hardware and software

reliabilities and the workload and resour
e 
hara
teristi
s, 
ontribute to the de�nition of

the random environment in whi
h the task is performed, and are represented by X(t).

The evaluation of the 
ompletion time of programs exe
uted on degradable systems

with di�erent types of 
he
kpointing me
hanisms is the subje
t of [15℄. By a 
ombination

of prs and pri kinds of interruptions, and the 
onsideration of blo
k stru
tured programs,

the authors are able to 
ompare di�erent re
overy me
hanisms at di�erent levels of

nesting in the program stru
ture.

Multiple reward models - The simultaneous exe
ution of parallel tasks with di�erent

work requirements on a 
omputing system has been 
onsidered in [9, 10℄. Ea
h task �

(� = 1; : : : ; �) is served in ea
h state i of X(t) (i = 1; : : : ; n) at a di�erent reward rate

r

i�

. The reward rates are therefore grouped into a reward matrix, whose generi
 row

r

i

is the �-dimensional ve
tor representing how the total 
omputational 
apa
ity of the

system in state i is shared among the � parallel tasks running in state i. On the other

hand, the generi
 
olumn r

�


ontains the servi
e rates at whi
h task � is exe
uted in the

di�erent stru
ture-states in whi
h the system operates. The minimal 
ompletion time

has been derived in [10℄ under various 
ombinations of preemption poli
ies and being

X(t) semi-Markovian.

5 Completion Time and Petri Nets

The fun
tional Y (t), whi
h allowed us to de�ne the 
ompletion time as the hitting

time against an absorbing barrier (Equation 2), is a 
omplex sto
hasti
 pro
ess even if

the stru
ture-state pro
ess X(t) is a CTMC (Corollaries 2, 4 and 6). Sto
hasti
 Petri

nets (SPN) are usually restri
ted to be Markovian and therefore 
annot be invoked to

model and analyze the sto
hasti
 problem formulated in the previous se
tions. Re
ently,

some attempts have been presented in the literature aimed at generalizing the 
on
ept

of sto
hasti
 Petri nets by allowing the �ring times to be generally distributed [1, 40,

18, 11℄. The in
lusion of non-exponential �ring times poses intriguing problems about

the interpretation of the evolution of the net versus time. A detailed dis
ussion of

the semanti
s of a SPN with generally distributed transition times 
an be found in

[1℄. We refer to this model as GDT SPN (Generally Distributed Transitions SPN). The

marking pro
ess underlying a GDT SPN does not have, in general, a tra
table analyti
al

formulation. Therefore, various restri
tions have been proposed in the literature. A

parti
ular 
ase of non-Markovian SPN, is the 
lass of DSPN (Deterministi
 and SPN).

DSPN's were introdu
ed in [3℄ as generalized sto
hasti
 Petri nets (GSPN) [2℄ where in

ea
h marking a single transition is allowed to have asso
iated a deterministi
 �ring time,

being all the other timed transitions exponential. DSPN be
omes of potential 
on
ern

in the 
ompletion time analysis, when the stru
ture state pro
ess is a CTMC and the

work requirement is a 
onstant.

Several extensions of the original DSPN model have been re
ently appeared in the

10



literature [18, 11℄, aimed at in
luding into the model non-deterministi
 distributions,

and at a

ommodating more 
omplex preemption poli
ies for the general distributed

transitions.

In the following three subse
tions, we enumerate the features and the properties of

the mentioned SPN-based models that are relevant in the 
ontext of the problems dis-


ussed in the present 
hapter. Subse
tion 5.4 provides a general framework for modeling


ompletion time problems in terms of GDT SPN, and a numeri
al example is presented

in Subse
tion 5.5.

5.1 Generally Distributed Transitions SPN

De�nition 1: A

ording to [1℄, a GDT SPN is de�ned as a marked PN in whi
h:

1. The set of transitions is partitioned into a subset of immediate transitions (thin

bars) and a subset of timed transitions (thi
k bars). Immediate transitions �re in

zero time and have higher priority over timed transitions [2℄.

2. To ea
h timed transition t

k

is assigned a generally distributed random �ring time




k

, with Cdf G

k

(t), modeling the time o

urring to 
omplete the a
tivity asso
iated

to t

k

.

3. An exe
ution poli
y is de�ned, whi
h spe
i�es the way in whi
h a transition is

sele
ted to �re (among those enabled in a given marking), and the way in whi
h

the GDT SPN keeps tra
k of the past history.

The exe
ution poli
y is needed to univo
ally determine a sto
hasti
 pro
ess asso
iated

to the PN. The exe
ution poli
y 
omprises two spe
i�
ations: a 
riterion to 
hoose the

next transition to �re (the sele
tion poli
y), and a 
riterion to keep memory of the past

history of the pro
ess (the memory poli
y). A natural 
hoi
e to sele
t the next transition

to �re is a

ording to a ra
e poli
y: if more than one transition (of the same highest

priority level) is enabled in a given marking, the transition �res whose asso
iated random

delay is statisti
ally the minimum. The memory poli
y spe
i�es how to re
al
ulate the

�ring time distribution of a transition whi
h has been disabled without �ring when it is

enabled again. In the exponential 
ase, the same problem is hidden by the memoryless

property. Two alternative memory poli
ies are 
onsidered:

- age memory: an age variable a

k

, asso
iated with transition t

k

, 
ounts the time sin
e

the last �ring epo
h of t

k

; when t

k

is enabled, its �ring distribution is 
al
ulated

as the residual Cdf of the asso
iated random variable 


k

, 
onditioned to a

k

.

- enabling memory: the age variable a

k


ounts the time sin
e the last epo
h in whi
h

t

k

has been enabled. When t

k

is disabled (even without �ring), a

k

is reset.

Under the age memory poli
y the time spent in a PN transition a

umulates whenever

the transition is enabled and 
an be utilized to realize a prs preemption poli
y. Under the

enabling memory poli
y the time spent in the transition is reset as soon as the transition

is disabled and therefore 
an realize a prd preemption poli
y.

A numeri
ally tra
table realization of the GDT SPN de�ned in De�nition 1, is ob-

tained by restri
ting the �ring time random variables 


k

to be PH-distributed [11℄. The

11



non-Markovian pro
ess generated by the GDT SPN is 
onverted into a CTMC de�ned

over an expanded state spa
e. The 
ardinality of the expanded state spa
e is of the order

of the 
ross produ
t of the timed rea
hability set of the basi
 PN times the state spa
es

of the PH distributions of the 


k

random variables.

The program pa
kage ESP [23℄ realizes the GDT SPN model with PH distributions.

A

ording to De�nition 1, the program allows the user to assign a spe
i�
 memory

poli
y to ea
h PN transition so that the di�erent exe
ution poli
ies 
an be put to work.

The important point about the ESP pa
kage is that the expanded CTMC is generated

automati
ally from the model spe
i�
ations. The generation of the expanded state spa
e

is driven by the di�erent exe
ution poli
ies assigned by the user at the spe
i�
ation level.

The appli
ability of the GDT SPN model with PH distributions to the 
ompletion

time problem is legitimated by the following theorem proved in [13℄ and rederived by

Neuts in [55℄:

The 
lass of PH distributions is 
losed with respe
t to the 
ompletion time problem

in Markov Reward Models under any probabilisti
 mixing of prs and prd transitions.

Hen
e, when the work requirement W is a PH random variable, or is approximated

by a PH random variable, we are inside the area 
overed by the modeling power of the

ESP pa
kage.

5.2 Deterministi
 SPN

De�nition 2: A

ording to [3℄, a DSPN is de�ned as a marked PN in whi
h:

1. The set of transitions is partitioned into a subset of immediate transitions, a subset

of exponential transitions and a subset of deterministi
 transitions.

2. At most, a single deterministi
 transition is allowed to be enabled in ea
h marking

and the �ring time of a deterministi
 transition is marking independent.

3. The time elapsed in a deterministi
 transition 
annot be remembered when the

transition be
omes disabled; the only allowed exe
ution poli
y is the ra
e poli
y

with enabling memory.

In [3℄, the steady-state probability distribution is the only addressed solution. An im-

proved algorithm for the evaluation of the steady state probabilities has been su

essively

proposed in [48, 49℄, and some stru
tural extensions, with respe
t to the spe
i�
ations of

De�nition 2, have been presented in [19℄. However, the 
omputation of the distribution

of the 
ompletion time requires the transient analysis.

The DSPNmodel has been revisited by Choi et al. [16℄. In [16℄, the sto
hasti
 pro
ess

asso
iated with the DSPN model is proved to be a Markov regenerative pro
ess and an

analyti
al method for the derivation of both the transient and the steady-state solution

is provided. The analyti
al solution is derived in the Lapla
e transform domain, whose

inversion ne
essitates a numeri
al te
hnique. The paper proposes to use the Jagerman's

method [39℄, as adapted by Chimento and Trivedi [15℄.

An alternative numeri
al solution te
hnique, based on the use of supplementary vari-

ables [22℄, was originally proposed in [32℄ for the steady state analysis and then extended

in [30℄ to the transient analysis of parti
ularly stru
tured DSPN's.
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Figure 2 - A 
ompletion time problem represented as a �rst marking

time in pla
e p

A

.

5.3 Markov Regenerative SPN

A further extension, 
alled Markov Regenerative SPN

�

(MRSPN

�

) model, has been de-

veloped in [17℄, where the stru
tural restri
tions implied in De�nition 2 are retained,

while repla
ing the deterministi
 transitions with generally distributed transitions. In

parti
ular, only the enabling memory poli
y 
an be assigned to the generally distributed

transitions. This extension makes it possible to evaluate 
ompletion time problems in

whi
h the stru
ture-state pro
ess is a CTMC, the work requirement is any random vari-

able and the preemption poli
y is prd.

The supplementary variable approa
h to the same model has been dis
ussed in [30℄

and a tool has been built based on this te
hnique [31℄.

In order to relax the restri
tion on the enabling memory poli
y Bobbio and Telek [12℄

have de�ned a new 
lass of MRSPN based on the 
on
ept of non-overlapping dominant

transitions. In this model, any two su

essive regeneration time points of the marking

pro
ess 
orrespond to the �rst enabling and to the �ring (or disabling) of a single gen-

erally distributed transition 
alled the dominant transition. The enabling 
y
les of the

dominant transitions 
annot overlap. This de�nition in
ludes the possibility that the

stru
ture-state pro
ess is semi-Markov, and allows the a

ommodation of di�erent pre-

emption poli
ies. The prs 
ase has been introdu
ed in [12, 68℄, and a spe
i�
 algorithm

for the steady-state analysis has been elaborated in [69℄. Finally, the in
lusion of the pri

poli
y has been dis
ussed in [6℄.

5.4 Modeling Completion Time by Petri Nets

The 
ompletion time problem 
an be pi
torially represented, at the SPN level, as a

�rst marking problem. To this end, let us suppose that the reward rate is equal to one

(r = 1) in all the states produ
ing useful work. By this we physi
ally mean that the task


ompletes as soon as the total a

umulated time spent in the markings produ
ing useful

work rea
hes the work requirement W . We introdu
e in the basi
 PN two additional

pla
es: an indi
ator pla
e p

I

and an absorbing pla
e p

A

(Figure 2).
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Figure 3 - PN modeling the attainment of a 
atastrophi
 failure when

the down time ex
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riti
al threshold.

The indi
ator pla
e p

I

is 
onne
ted to the original SPN in su
h a way that it remains

marked as long as the system is produ
ing useful work; on the other hand, the absorbing

pla
e p

A

is inserted to stop the exe
ution of the net as soon as it be
omes marked for

the �rst time. The two pla
es p

I

and p

A

are 
onne
ted with ea
h other by a single timed

transition t

A

. The random variable asso
iated to the timed transition t

A

is 
oin
ident

with the work requirement W .

Interpreting the model as a GDT SPN, the transition �ring o

urs a

ording to the

semanti
s of the ra
e poli
y: t

A

�res when its asso
iated �ring time W is the minimum

among the a
tivities enabled in p

I

. Hen
e, the epo
h at whi
h p

A

be
omes marked for

the �rst time is the epo
h at whi
h the time elapsed in p

I

ex
eeds W for the �rst time,

thus, by 
onstru
tion, is the 
ompletion time. In standard PN models, stopping the net

usually requires additional elements, like immediate transitions or inhibitor ar
s. Using

higher level nets, like nets with enabling fun
tions [20℄, the indi
ator, absorption and

stopping property 
an be obtained by means of simpler and natural spe
i�
ations.

The semanti
s of the memory poli
ies of a GDT SPN [1℄ is suited to model di�erent

preemptive dis
iplines in the task 
ompletion time problem. This feature di�erentiates

the GDT SPN model from the DSPN where the enabling memory poli
y is the only

available one. If transition t

A

(Figure 2) follows a ra
e poli
y with age memory, it �res

as the total marking time a

umulated in p

I

ex
eeds W (independently of the number

of times pla
e p

I

has be
ome marked); from the point of view of the 
ompletion time

problem, a prs poli
y is realized. If t

A

follows a ra
e poli
y with enabling memory, it �res

the �rst time a 
ontinuous marked interval in pla
e p

I

(without interruptions) ex
eeds

W . The GDT SPN models a 
ompletion time problem with prd poli
y.

In the DSPN model, t

A

is a deterministi
 transition. The semanti
s of the DSPN

model of Subse
tion 5.2 enfor
es a preemptive repeat poli
y: ea
h time pla
e p

I

is enabled

again, a new task is started. Sin
e in this 
ase, the task requirement is deterministi
,

the pri and prd poli
ies are 
oin
ident.
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Figure 4 - Cdf of the lifetime of a 2-states system subje
t to a bounded


atastrophi
 breakdown.

5.5 Numeri
al Examples

We 
ompare the results obtained from the GDT SPN with PH distributions and the

DSPN models, on two simple examples. The 
omparison is parti
ularly signi�
ant to

explore the 
exibility and the a

ura
y of the PH approximation in a limiting 
ase, sin
e

a deterministi
 variable is known to be typi
ally non-PH.

Case 1 - Bounded 
atastrophi
 breakdown - A system alternates between an up

state (pla
e p

1

) and a down state (pla
e p

2

). Transition t

1

represents system failure

(with failure rate �) and transition t

2

system repair (with repair rate �). A 
atastrophi


(unsafe) 
ondition is rea
hed if and only if the time elapsed in the failed state ex
eeds

a toleran
e threshold W . This problem is represented in Figure 3, where pla
e p

2

a
ts

as indi
ator pla
e and pla
e p

A

is the absorbing pla
e representing the 
atastrophi



ondition.

Transition t

A

is assigned the toleran
e thresholdW so that the 
atastrophi
 
ondition

(token in p

A

) is rea
hed when the total down time ex
eeds W a

ording to the assigned

memory poli
y. If t

A

is assigned an age memory poli
y, a prs strategy is realized sin
e

the time in p

A

a

umulates independently of the number of passages. On the other hand,

if t

A

is assigned an enabling memory poli
y, a prd strategy is realized. The distribution

of the system lifetime 
an be interpreted as the distribution of the 
ompletion time of

a "virtual task" of duration W , exe
uted in pla
e p

2

. Sin
e in the following we use the

results obtained from [16℄ in the framework of DSPN models, only the prd poli
y 
an be


onsidered.

Figure 4 shows the lifetime Cdf with � = 0:001 h

�1

, � = 0:1 h

�1

and with prd poli
y.

The solid line represents the deterministi
 
ase with W = 10 h and is 
omputed by

numeri
ally inverting the Lapla
e transform obtained from [16℄. Dashed lines represent

the 
ases in whi
hW is Erlang with expe
ted value IE(W ) = 10 h and in
reasing number

of stages (2, 10 and 100, respe
tively). Sin
e the resulting Cdf is rather smooth also

in the limiting deterministi
 
ase, the PH approximation be
omes already 
lose to the
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Figure 5 - PN modeling the 
ompletion time of a task on a 2-states

server subje
t to a bounded 
atastrophi
 breakdown.

deterministi
 
ase with only a small number of stages.

Case 2 - Completion time with bounded 
atastrophi
 breakdown - A system,

that 
an rea
h a 
atastrophi
 
ondition, as in the previous 
ase, exe
utes a task of length

Z. The PN modeling the system is shown in Figure 5 [57℄, where t

B

is assigned a �ring

time equal to the work requirement Z, and a token in p

B

stops the net as soon as the

task exe
ution is 
ompleted. The PN models a 
ompeting multiple 
ompletion time

example, and the analysis is aimed at evaluating the defe
tive Cdf of 
ompleting the

task before rea
hing the 
atastrophi
 state (a token arrives in p

B

before one arrives in

p

A

). Computations are performed supposing that the up state is prd and the down state

is prs. The deterministi
 
ase is solved by numeri
ally inverting the 
losed-form Lapla
e

transform given in [57℄.

Figure 6 
ompares the 
ase in whi
h both barrier levels W and Z are deterministi


with the 
ase in whi
h both are Erlang of the same in
reasing order (2, 10 and 100

stages, respe
tively). Failure and repair rates are as in Case 1; the expe
ted value of W

is IE(W ) = 10 h, and the expe
ted value of Z is IE(Z) = 1000 h. As it 
an be observed,

abrupt 
hanges in the Cdf shape require PH variables of very high order.

6 Con
lusion

The distribution of the task 
ompletion time is a performability measure that 
hara
ter-

izes the quality of the servi
e in a dependable 
omputing system.

Interpreting the task 
ompletion time as the hitting time of a suitable 
umulative

fun
tional against an absorbing barrier, provides a 
exible and useful representation of

the problem in many appli
ations. In fa
t, various kinds of poli
ies 
an be a

ommo-

dated for modeling the interruption and the subsequent re
overy of the exe
ution of a

task. Three di�erent preemption poli
ies have been extensively dis
ussed and 
losed-

form expression for the Cdf of the 
ompletion time have been derived in the Lapla
e

16



500 1000 1500 2000 2500
t0

0.1

0.2

0.3

0.4

0.5

0.6

compl.

PH-2
PH-10
PH-100
Num. Inv.

Figure 6 - Cdf of the 
ompletion time of a 2-states server with prd up

state and prs down state.

transform domain.

Non-exponential sto
hasti
 Petri net 
an provide a graphi
al des
riptive tool for the


ompletion time analysis. In parti
ular, re
ently proposed SPN model are reviewed.

These models allow to some extent the in
lusion of generally distributed �ring times. A

numeri
al example 
ompares the results obtained from two spe
i�
 models. In the �rst

one, the �ring time distributions are allowed to be of PH type, while in the se
ond one a

single transition in ea
h marking is allowed to have a deterministi
 �ring time, with all

the other �ring times being exponential.
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