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Abstract

This paper assumes a user-oriented point of view in examining the performa-
bility of a dependable computing system. The investigated performability measure
is the effective time that a task, with an assigned work requirement, takes to be
executed by the system. Assuming that the system changes its performance char-
acteristics randomly in time, the stochastic model representing the task completion
time is formulated and analyzed. Applications and extensions of the basic model
are discussed. Finally, the completion time model is reformulated in the language
of stochastic Petri nets, and possible computational approaches are illustrated.

1 Introduction

The completion time of a task measures the time that a task takes to be executed by
a computing system. If the system changes its computational power randomly in time
during the execution, the task completion time is a random variable. The analytical
and numerical computation of the cumulative distribution function (Cdf) of the task
completion time is the subject of this chapter.

The adopted modeling framework consists of describing the behavior of the system
configuration in time by means of a stochastic process, called the structure-state process,
and by associating to each state of the structure-state process a non-negative real con-
stant representing the effective working capacity or performance level of the system in
that state. The real variable associated to each structure-state is called the reward rate
[36]. The structure-state process together with the reward rates forms the Stochastic
Reward Model (SRM) [63].

The properties of stochastic reward processes have been studied since a long time
[50, 21, 41, 42, 36], however, only recently SRM’s have received attention as a modeling
tool in performance/reliability evaluation. Indeed, the possibility of associating a reward
variable to each structure state increases the descriptive power and the flexibility of the
model.



Different interpretations of the structure-state process and of the associated reward
structure give rise to different applications [53]. Common assignments of the reward
rates are: execution rates of tasks in computing systems (the computational capacity)
[5, 67], number of active processors (or processing power) [7, 34], throughput [52, 29, 35],
average response time [37, 43, 47] or response time distribution [71, 62, 72]. The classical
reliability theory [4] can be viewed as a particular case of SRM obtained by constraining
the reward rates to be binary variables.

Two main different points of view have been assumed in the literature when dealing
with SRM for degradable systems [45]. In the system-oriented point of view the most
significant measure is the total amount of work done by the system in a finite interval.
The accumulated reward is a random variable whose Cdfis called the performability [51].
Various numerical techniques for the evaluation of the performability have appeared in
the literature: [38, 24, 33, 66, 25, 60, 59, 26]. In the user-oriented (or task-oriented)
point of view the system is regarded as a server, and the emphasis of the analysis is on
the ability of the system to provide a prescribed service in due time. Consequently, the
most characterizing measure becomes the probability of accomplishing an assigned task
in a given time. The task-oriented point of view is a more direct representation of the
quality of service, which, in turn, is the main target of a dependable computation.

Gaver [28] analyzed the distribution of the completion time for a two-state server
with different mechanisms of interruption and recovery policies. Extensions to the above
model were provided in [56], while the completion time problem for fault tolerant com-
puting systems was addressed in [14]. A unified formulation to the system-oriented and
the user-oriented point of view was provided by Kulkarni et al. in [45, 46, 58]. An alter-
native interpretation of the completion time problem can be given in terms of the hitting
time of an appropriate cumulative functional [21] against an absorbing barrier equal to
the work requirement. The definition of a cumulative functional was first suggested by
Kulkarni et al. [45] and then explicitly exploited in [10], where the completion time was
modeled as a first hitting time against an absorbing barrier. This interpretation leads
the above problem into the main stream of absorption problems in stochastic models
and has proved to be useful in association with stochastic Petri nets [8] and with the
extension to multi-reward models [9, 10].

In Section 2, the completion time problem is formulated as a first passage time across
an absorbing barrier. The distribution of the completion time is derived in Section 3, in
the Laplace transform domain and under the hypothesis that all the states pertain to the
same preemption class. Section 4 illustrates some applications and extensions. Section
5 shows how to represent the formulated non-Markovian stochastic model by means of
Petri nets, and compares the results obtained from two non-Markovian PN-based models
on a simple example. Section 6 summarizes the chapter.

2 The barrier hitting problem

Given that F(t) is a Cdf, the Laplace transform (LT) F*(s) and the Laplace-Stieltjes
transform (LST) F~(s) are given by, respectively:



F*(s) = /Oooe_“F(t)dt () = /Oooe—stdF(t)

Let the structure-state process (X (t), ¢ > 0) be a right-continuous semi-Markov process
[21, 44] defined over a discrete and finite state space S of cardinality n. We denote by
H the time duration until the first embedded time point of the semi-Markov process
starting from state ¢ at time 0 (X (0) = i ), and by p(0) the row vector of the initial
probabilities. Let K(¢) = [K;;(t)] be the kernel of the semi-Markov process. The generic
element

Ky(t) = P {H < 1, X(H) = j|X(0) = i}

(with 4,7 = 1,...,n) is the distribution of H starting in state i at time 0 supposed that
a transition to state j took place. Moreover,

Kit) = P{H < 1|X(0) = i} = 3" Ky (¢) (i=1,..,n)

Jj=1

is the distribution of H starting in state ¢ at time 0 independent of the state reached
after the first embedded time point. The probability of jumping from state ¢ to state j
at time H = ¢ can be defined in terms of the kernel elements:

dK;;(t)

P{X(H) = j|H =1, X(0) = i} = Ty

Let rx(; be a non-negative real-valued function defined as:
rxw =1 if X(t) =4 ; with r, >0 and i=1,2,...,n. (1)

Tx(¢) Tepresents the instantaneous reward associated to state i. We now define a func-
tional Y'(¢) that represents the accumulation of reward in time. Y(¢) is a stochastic
process that depends on X (7) for 7 < ¢ [21]. During the sojourn of X(¢) in state i
between t and (¢ + dt), Y (¢) increases at the rate r; dt. However, a transition in X ()
may induce a modification in the accumulation process depending whether the transition
entails a loss of work, or no loss of work. A transition which does not entail a loss of the
work already accumulated by the system on the task in execution is called preemptive
resume (prs), and its effect on the model is that the functional Y'(¢) resumes the previous
value in the new state. A transition which entails a loss of the work done by the system
on the task in execution is called preemptive repeat (prt), and its effect on the model is
that the functional Y'(¢) is reset to 0 in the new state.

A possible realization of the accumulation process Y () is shown in Figure 1. The
transition from state j to state k is of prs type while the transitions from state £ to
¢ and from 7 to 7 are prt. In order to model the completion time problem, let W
be the actual work requirement of a task. W represents the time that a task would



require to be executed in isolation on a perfect system. In a degradable environment,
the task completes as soon as the work accumulated by the system reaches the actual
work requirement for the first time. Hence, W acts as an absorbing barrier for the
functional Y'(#). With reference to Figure 1, the task completion time is the time at
which Y(¢) hits the barrier W for the first time.
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Figure 1 - The behavior of the functional Y (¢) versus time.

We assume, in general, that 1 is a random variables with distribution G(x) with
support on [0, 00). The degenerate case in which W is deterministic and the distribution
G(z) becomes the unit step function U(z) located at W = z, can be considered as well.
When W is not deterministic and the preemption policy is prt, two cases arise depending
whether the repeated task has an identical work requirement as the original preempted
task (preemptive repeat identical (pri) - policy), or a different work requirement sampled
from the same distribution (preemptive repeat different (prd) - policy). With reference to
Figure 1, it is assumed that the transition from state k to state ¢ is pri and the transition
from state 7 to state j is prd. According to the previous assumptions, the accumulated
reward Y (¢) is reset and the same value W of the barrier is retained when jumping from
state k to state ¢ since the corresponding transition is pri. On the other hand, since
transition from ¢ to j is prd, the work requirement W is resampled in state j assuming
a new value W’ sampled from the same distribution and Y'(¢) is reset.

For a structure-state process with only prs and pri transitions the barrier height W is
constant up to the completion. In these cases, conditioned to a fixed value of the barrier
height W = z, the completion time T'(x) is defined as:

T(x) =min[t>0: Y(t) = =] . (2)
Let Fr(t,z) be the conditional Cdf of the task completion time T'(z):
Fr(t,z) = P{T(z) < t} (3)

The unconditional completion time 7' is characterized by the following distribution:
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Fr(t) = P{T <t} = /0°° Fr(t, ) dG(z) (4)

and is the measure that can be evaluated if all the transitions are prd.

The distribution of the completion time, Fr(t), incorporates the effect of a random
variation of the execution speed consequent to a degradation and reconfiguration process,
combined with the effect of the preemption and recovery policy on the execution of the
task.

The following relationships between the different preemption policies can be easily
established. If the work requirement W is an exponential random variable, the two
policies prs and prd give rise to the same completion time (due to the memoryless
property of the exponential distribution, the residual task requirement under the prs
policy coincides with the resampled requirement under the prd policy). On the other
hand, if W is deterministic, the two policies pri and prd are coincident (resampling a
step function provides always the same constant value).

Moreover, assuming that the structure-states are all of prs type, so that no loss of
reward occurs,

t
Y (¢) :/ Tx(r) dT
0

and the distribution of the completion time is closely related to the distribution of the
accumulated reward (performability) by means of the following relation:

P{YV(t) < 2} = P{T(x) > t} (5)

Kulkarni et al. [45] derived the closed-form Laplace transform equations of Fr(z,t)
when X (¢) is a CTMC and all the states belong to the same preemption class. The
extension to a semi-Markov process X (¢) whose state space is partitioned in the three
preemption classes has been considered in [46]. Bobbio and Trivedi [13] studied the case
where X () is a CTMC, the work requirement W is a PH random variable [54] and the
task execution policy is a probabilistic mixture of prs and prd policies. The combination
of prs and pri policies has been investigated in [15] for the evaluation of the completion
time of a program on a gracefully-degradable computing system.

3 The distribution of the completion time

A state whose outgoing transitions are all of prs type is called a prs state; similarly, a
state whose outgoing transitions are all of prd (pri) type is called a prd (pri) state. The
following closed form expressions for the Cdf of the completion time are derived under
the hypothesis that the structure-state process is semi-Markov and all the states are of
the same preemption class. A more general derivation, in which the states are allowed
to belong to the three different defined preemption classes is in [46].

In order to evaluate (3), let us introduce the following vector valued functions F(t)
and F(¢, ) whose entries F;(t) and F;(t,z), (i = 1,2,...,n) are defined by:

Fi(t,z) = P{T(z) < t|X(0) =4} , x>0 (6)
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Fi(t) = P{T < t|X(0) = i} . (7)

Notice that, when all the states are prs or pri the quantity to be evaluated is Fj(t, )
while in the prd case only the function F;(¢) can be derived. From the above definitions,
it follows that:

Fi(s) = p(0) F*(s) = [ p(0) F~(s,2) dG(a) . (®)

Theorem 1 - Given that X(¢) is a semi-Markov process and all the states are of prs
type, the double transform F~*(s, w) satisfies the following equation:

F(s,w) = s—i—rﬁ 1 — KZ(s + wr;) Z KN (s + wrZ)FN*(s w)  (9)

Proof - Conditioning on the time until the first embedded time point in the initial state
H = h , let us define:

FX(s,z|H=h) = Elexp(—sT)|W = 2,X(0)=1i,H = h] =
exp(—sx/r;) if hr; >x (10)

" dK;;(h) _
exp(—sh) LY (s, — hry) if © > hr;
j; dK;(h) ’

In (10), two mutually exclusive events are identified: if hr; > x, then T = z/r; or if
hr; < x then a transition occurs to state j. Taking the LT with respect to x, we obtain:
hr;

F*(s,w|H=h) = / exp(—wz) exp(—sz/r;)dx +
=0

exp[—(s + wr;) h é % Fi (s, w) (11)

Unconditioning with respect to H, (11) becomes:

hr;
F* (s, w) / / exp[— (s + wry)x/ridx dK;(h) +
h=0 Jx=
/ exp[—(s +wr;)h] ZFN* s,w) dK;;(h) (12)
h=0 ot

Finally, Equation (9) is obtained from (12) by evaluating the integrals O.



Corollary 2 - Under the assumptions of Theorem 1, given that X (¢) is a CTMC with
infinitesimal generator Q, the double transform F~*(s, w) satisfies the following matrix
equation [45]:
F*(s,w) = [sI + wvR — Q] 'r (13)
where
r=[r,ro...,m]" R = diag [r1, 12y ..., 0] (14)

are a vector and a matrix of reward rates.

Proof - Equation (13) is obtained by substituting the following Markovian kernel in (9):

% if:i # 4
S .
K (s) = G

0 lf 1= ]
where ¢; =37 1., ¢i; O.

In general, the kernel K(¢) of a semi-Markov process can have non-zero positive
entries on the main diagonal. Therefore, from a given state ¢ either a ”virtual” transition
into state ¢ itself can take place or a real transition to a different state j # i. In the
previously considered prs case, the accumulation process resumes the value reached by
the total reward in the previous state and there is no need to distinguish between a jump
into the same state or into a different one.

The situation is different in the prt case (either prd or pri). Indeed, a jump into a
new state reset the accumulated reward while a jump into the same state should retain
the same reward level. However, it has been shown in [70] that a semi-Markov kernel
can be transformed into a canonical form in which the entries on the main diagonal are
zero while preserving the same transition probabilities for all the transitions from i to j
with 7 # j. The canonical representation of the semi-Markov kernel K*(¢) is given by
[70]:

K (s)
1— K (s)

22

if:i#£7

K (s) = (15)

0 if:i=7
With a kernel in a canonical form, the problem of distinguishing between transitions
into the same state or into a different state is avoided. Therefore, in the following we
implicitly assume that the kernel is, or has been transformed, in a canonical form with
zero entries on the main diagonal.
Theorem 3 - Given that X(¢) is a semi-Markov process and all the states are of prd
type, the LST F~(s) satisfies the following equation:

Fr(s) = /0 T erp(—sa/r) [1 — Ki(x/r)] dG(x) +
i F7(s) /0 " eap(—sh) [L — G(hry)] dE;(h) (16)

7=1



Proof - Conditioning on the time until the first embedded time point in the initial state
H = h , let us define:

FX(s|W=uxz,H=h) = Elexp(—sT)|W = z,X(0) =i, H=h] =

exp(—sxz/r;) if hr; >z
(17)
" dK;i(h) ,
exp(—sh) L2 F(s) if x > hr;
jz_:l dKi(h)

In (17), two mutually exclusive events are identified: if hr; > z, then T = x/r; or if
hr; < z then a transition occurs to state j (j # i) and a different task independent and
with the same distribution is restarted. By unconditioning Equation (17) with respect
to W and then with respect to H, we obtain:

Fr(s) = /}:0 /xi/: exp(—sz/ri) dG(z) d K;(h)

+ / / s) exp(—sh) dG(z) d Ky (h) (18)
h=0 Jz= h/rl _
Solving the integrals in (18), the theorem is proved O.

Corollary 4 - Under the assumptions of Theorem 3, given that X (¢) is a CTMC with
infinitesimal generator Q, the LST F;(s) satisfies the following Equation [45]:

Fr(s) = G (s + qz> i Z [ _ o <s + qz'>]FjN(s) (19)

r; j=1;j#i (S + QZ) r;

Theorem 5 - Given that X (¢) is a semi-Markov process and all the states are of pri
type, the LST F[~(s,x) satisfies the following equation:

n

Fr(s,2) = eap(—sz/r) [| — Kiw/r)] + 3 Fy(s,2) /0 " eup(—sh) dKis(h) (20)

j=1
Proof - Conditioning on the sojourn time in the initial state H = h , let us define:

Fr(s,x|H="h) = Elexp(—sT)| X = 2,X(0) =4, H=h| =

exp(—sx/r;) if hr; > x (21)
2 dK;;(h
exp(—sh) ; dKZ((h)) F (s, ) if © > hr;



Unconditioning with respect to H yields Equation (20) O.

Corollary 6 - Under the assumptions of Theorem 5, given that X (¢) is a CTMC with
infinitesimal generator Q, the LST F; (s, x) satisfies the following Equation [45]:

F{(s,x) = exp[—(s + @) x/ri] + i _ %

s+ qi(l —exp[—(s + @) x/ri]) F(s,7) (22)

4 Applications and Extensions of the Basic Model

In this section we present some applications and extensions of the basic model, considered
so far in the literature.

Binary reward variables - When the reward rates are constrained to be binary
variables, a binary partition of the state space is induced. Classical reliability-availability
models fall in this class. The conceptual framework, formulated in the previous sections,
offers an unified view to subtle reliability problems in which the system catastrophic
failure depends on the duration of the downtime. The problem has a long history in the
reliability literature [27, 64, 61, 65] and can be formulated in terms of the completion
time of a "virtual task” whose work requirement is equal to the assigned downtime
threshold [57]. If the down state is either of pri or prd type, a fatal failure occurs as
soon as a single downtime greater than the threshold is encountered, while if the down
state is of prs type, the fatal failure occurs when the threshold level is exceeded by the
total accumulated down time. Nicola et al. [57] have calculated the completion time
under fairly more general conditions, and have derived several related measures from the
knowledge of the completion time distribution.

State space partition in preemption classes - The expressions in Section 3 are
derived under the simplifying hypothesis that all the structure states of X (¢) belong to
the same preemption class. A natural and useful extension is to consider a partition
of the state space into different preemption classes. The accumulation of the reward
is thus resumed or reset according to the characteristics of the state just abandoned
at the transition. In [46], closed-form Laplace transform solutions are provided when
all the three types of preemption policies are eventually present in the system, with
a semi-Markov structure-state process. More general task execution processes can be
modeled and estimated, and different kinds of failures can be taken into account. The
same authors [58] have further extended their analysis, by considering a stream of jobs
arriving at the server according to a Poisson process.

The completion time of programs - A specialized application of the above theory
has been devoted to study the execution time of programs on computing systems. In their
pioneering work Castillo and Siewiorek [14] have considered the time required to correctly
execute a program, taking into account hardware reliability, software (operating system)



reliability, the workload of the system while the program is executing, and the type
and amount of resources required to execute the program. The hardware and software
reliabilities and the workload and resource characteristics, contribute to the definition of
the random environment in which the task is performed, and are represented by X ().

The evaluation of the completion time of programs executed on degradable systems
with different types of checkpointing mechanisms is the subject of [15]. By a combination
of prs and pri kinds of interruptions, and the consideration of block structured programs,
the authors are able to compare different recovery mechanisms at different levels of
nesting in the program structure.

Multiple reward models - The simultaneous execution of parallel tasks with different
work requirements on a computing system has been considered in [9, 10]. Each task «
(aw = 1, ..., v)isserved in each state i of X (¢) (1 = 1, ..., n) at a different reward rate
ria. The reward rates are therefore grouped into a reward matrix, whose generic row
r; is the v-dimensional vector representing how the total computational capacity of the
system in state ¢ is shared among the v parallel tasks running in state . On the other
hand, the generic column r, contains the service rates at which task « is executed in the
different structure-states in which the system operates. The minimal completion time
has been derived in [10] under various combinations of preemption policies and being
X (t) semi-Markovian.

5 Completion Time and Petri Nets

The functional Y'(¢), which allowed us to define the completion time as the hitting
time against an absorbing barrier (Equation 2), is a complex stochastic process even if
the structure-state process X (t) is a CTMC (Corollaries 2, 4 and 6). Stochastic Petri
nets (SPN) are usually restricted to be Markovian and therefore cannot be invoked to
model and analyze the stochastic problem formulated in the previous sections. Recently,
some attempts have been presented in the literature aimed at generalizing the concept
of stochastic Petri nets by allowing the firing times to be generally distributed [1, 40,
18, 11]. The inclusion of non-exponential firing times poses intriguing problems about
the interpretation of the evolution of the net versus time. A detailed discussion of
the semantics of a SPN with generally distributed transition times can be found in
[1]. We refer to this model as GDT_SPN (Generally Distributed Transitions_SPN). The
marking process underlying a GDT_SPN does not have, in general, a tractable analytical
formulation. Therefore, various restrictions have been proposed in the literature. A
particular case of non-Markovian SPN, is the class of DSPN (Deterministic and SPN).
DSPN’s were introduced in [3] as generalized stochastic Petri nets (GSPN) [2] where in
each marking a single transition is allowed to have associated a deterministic firing time,
being all the other timed transitions exponential. DSPN becomes of potential concern
in the completion time analysis, when the structure state process is a CTMC and the
work requirement is a constant.

Several extensions of the original DSPN model have been recently appeared in the
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literature [18, 11], aimed at including into the model non-deterministic distributions,
and at accommodating more complex preemption policies for the general distributed
transitions.

In the following three subsections, we enumerate the features and the properties of
the mentioned SPN-based models that are relevant in the context of the problems dis-
cussed in the present chapter. Subsection 5.4 provides a general framework for modeling
completion time problems in terms of GDT_SPN, and a numerical example is presented
in Subsection 5.5.

5.1 Generally Distributed Transitions_SPN
Definition 1: According to [1], a GDT_SPN is defined as a marked PN in which:

1. The set of transitions is partitioned into a subset of immediate transitions (thin
bars) and a subset of timed transitions (thick bars). Immediate transitions fire in
zero time and have higher priority over timed transitions [2].

2. To each timed transition ¢, is assigned a generally distributed random firing time
vk, with Cdf G (t), modeling the time occurring to complete the activity associated
to tk.

3. An ezxecution policy is defined, which specifies the way in which a transition is
selected to fire (among those enabled in a given marking), and the way in which
the GDT_SPN keeps track of the past history.

The ezxecution policy is needed to univocally determine a stochastic process associated
to the PN. The ezxecution policy comprises two specifications: a criterion to choose the
next transition to fire (the selection policy), and a criterion to keep memory of the past
history of the process (the memory policy). A natural choice to select the next transition
to fire is according to a race policy: if more than one transition (of the same highest
priority level) is enabled in a given marking, the transition fires whose associated random
delay is statistically the minimum. The memory policy specifies how to recalculate the
firing time distribution of a transition which has been disabled without firing when it is
enabled again. In the exponential case, the same problem is hidden by the memoryless
property. Two alternative memory policies are considered:

- age memory: an age variable ay, associated with transition #;, counts the time since
the last firing epoch of t;; when ¢, is enabled, its firing distribution is calculated
as the residual Cdf of the associated random variable v, conditioned to ay.

- enabling memory: the age variable a; counts the time since the last epoch in which
t;. has been enabled. When #; is disabled (even without firing), ay is reset.

Under the age memory policy the time spent in a PN transition accumulates whenever
the transition is enabled and can be utilized to realize a prs preemption policy. Under the
enabling memory policy the time spent in the transition is reset as soon as the transition
is disabled and therefore can realize a prd preemption policy.

A numerically tractable realization of the GDT_SPN defined in Definition 1, is ob-
tained by restricting the firing time random variables ~; to be PH-distributed [11]. The
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non-Markovian process generated by the GDT_SPN is converted into a CTMC defined
over an expanded state space. The cardinality of the expanded state space is of the order
of the cross product of the timed reachability set of the basic PN times the state spaces
of the PH distributions of the 7, random variables.

The program package ESP [23] realizes the GDT_SPN model with PH distributions.
According to Definition 1, the program allows the user to assign a specific memory
policy to each PN transition so that the different execution policies can be put to work.
The important point about the ESP package is that the expanded CTMC is generated
automatically from the model specifications. The generation of the expanded state space
is driven by the different execution policies assigned by the user at the specification level.

The applicability of the GDT_SPN model with PH distributions to the completion
time problem is legitimated by the following theorem proved in [13] and rederived by
Neuts in [55]:

The class of PH distributions is closed with respect to the completion time problem
in Markov Reward Models under any probabilistic mizing of prs and prd transitions.

Hence, when the work requirement W is a PH random variable, or is approximated
by a PH random variable, we are inside the area covered by the modeling power of the
ESP package.

5.2 Deterministic SPN
Definition 2: According to [3], a DSPN is defined as a marked PN in which:

1. The set of transitions is partitioned into a subset of immediate transitions, a subset
of exponential transitions and a subset of deterministic transitions.

2. At most, a single deterministic transition is allowed to be enabled in each marking
and the firing time of a deterministic transition is marking independent.

3. The time elapsed in a deterministic transition cannot be remembered when the
transition becomes disabled; the only allowed execution policy is the race policy
with enabling memory.

In [3], the steady-state probability distribution is the only addressed solution. An im-
proved algorithm for the evaluation of the steady state probabilities has been successively
proposed in [48, 49], and some structural extensions, with respect to the specifications of
Definition 2, have been presented in [19]. However, the computation of the distribution
of the completion time requires the transient analysis.

The DSPN model has been revisited by Choi et al. [16]. In [16], the stochastic process
associated with the DSPN model is proved to be a Markov regenerative process and an
analytical method for the derivation of both the transient and the steady-state solution
is provided. The analytical solution is derived in the Laplace transform domain, whose
inversion necessitates a numerical technique. The paper proposes to use the Jagerman’s
method [39], as adapted by Chimento and Trivedi [15].

An alternative numerical solution technique, based on the use of supplementary vari-
ables [22], was originally proposed in [32] for the steady state analysis and then extended
in [30] to the transient analysis of particularly structured DSPN’s.
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Figure 2 - A completion time problem represented as a first marking
time in place p4.

5.3 Markov Regenerative SPN

A further extension, called Markov Regenerative SPN* (MRSPN*) model, has been de-
veloped in [17], where the structural restrictions implied in Definition 2 are retained,
while replacing the deterministic transitions with generally distributed transitions. In
particular, only the enabling memory policy can be assigned to the generally distributed
transitions. This extension makes it possible to evaluate completion time problems in
which the structure-state process is a CTMC, the work requirement is any random vari-
able and the preemption policy is prd.

The supplementary variable approach to the same model has been discussed in [30]
and a tool has been built based on this technique [31].

In order to relax the restriction on the enabling memory policy Bobbio and Telek [12]
have defined a new class of MRSPN based on the concept of non-overlapping dominant
transitions. In this model, any two successive regeneration time points of the marking
process correspond to the first enabling and to the firing (or disabling) of a single gen-
erally distributed transition called the dominant transition. The enabling cycles of the
dominant transitions cannot overlap. This definition includes the possibility that the
structure-state process is semi-Markov, and allows the accommodation of different pre-
emption policies. The prs case has been introduced in [12, 68], and a specific algorithm
for the steady-state analysis has been elaborated in [69]. Finally, the inclusion of the pri
policy has been discussed in [6].

5.4 Modeling Completion Time by Petri Nets

The completion time problem can be pictorially represented, at the SPN level, as a
first marking problem. To this end, let us suppose that the reward rate is equal to one
(r = 1) in all the states producing useful work. By this we physically mean that the task
completes as soon as the total accumulated time spent in the markings producing useful
work reaches the work requirement W. We introduce in the basic PN two additional
places: an indicator place p; and an absorbing place p4 (Figure 2).
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Figure 3 - PN modeling the attainment of a catastrophic failure when
the down time exceeds a critical threshold.

The indicator place p; is connected to the original SPN in such a way that it remains
marked as long as the system is producing useful work; on the other hand, the absorbing
place p4 is inserted to stop the execution of the net as soon as it becomes marked for
the first time. The two places p; and p4 are connected with each other by a single timed
transition t4. The random variable associated to the timed transition ¢4 is coincident
with the work requirement W.

Interpreting the model as a GDT_SPN, the transition firing occurs according to the
semantics of the race policy: t4 fires when its associated firing time W is the minimum
among the activities enabled in p;. Hence, the epoch at which p4 becomes marked for
the first time is the epoch at which the time elapsed in p; exceeds W for the first time,
thus, by construction, is the completion time. In standard PN models, stopping the net
usually requires additional elements, like immediate transitions or inhibitor arcs. Using
higher level nets, like nets with enabling functions [20], the indicator, absorption and
stopping property can be obtained by means of simpler and natural specifications.

The semantics of the memory policies of a GDT_SPN [1] is suited to model different
preemptive disciplines in the task completion time problem. This feature differentiates
the GDT_SPN model from the DSPN where the enabling memory policy is the only
available one. If transition ¢4 (Figure 2) follows a race policy with age memory, it fires
as the total marking time accumulated in p; exceeds W (independently of the number
of times place p; has become marked); from the point of view of the completion time
problem, a prs policy is realized. If £ 4 follows a race policy with enabling memory, it fires
the first time a continuous marked interval in place p; (without interruptions) exceeds
W. The GDT_SPN models a completion time problem with prd policy.

In the DSPN model, t, is a deterministic transition. The semantics of the DSPN
model of Subsection 5.2 enforces a preemptive repeat policy: each time place p; is enabled
again, a new task is started. Since in this case, the task requirement is deterministic,
the pri and prd policies are coincident.

14
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Figure 4 - Cdf of the lifetime of a 2-states system subject to a bounded
catastrophic breakdown.

5.5 Numerical Examples

We compare the results obtained from the GDT_SPN with PH distributions and the
DSPN models, on two simple examples. The comparison is particularly significant to
explore the flexibility and the accuracy of the PH approximation in a limiting case, since
a deterministic variable is known to be typically non- PH.

Case 1 - Bounded catastrophic breakdown - A system alternates between an up
state (place p;) and a down state (place p,). Transition ¢; represents system failure
(with failure rate A) and transition ¢, system repair (with repair rate p). A catastrophic
(unsafe) condition is reached if and only if the time elapsed in the failed state exceeds
a tolerance threshold W. This problem is represented in Figure 3, where place p, acts
as indicator place and place p, is the absorbing place representing the catastrophic
condition.

Transition ¢4 is assigned the tolerance threshold W so that the catastrophic condition
(token in py) is reached when the total down time exceeds W according to the assigned
memory policy. If ¢4 is assigned an age memory policy, a prs strategy is realized since
the time in p4 accumulates independently of the number of passages. On the other hand,
if £ 4 is assigned an enabling memory policy, a prd strategy is realized. The distribution
of the system lifetime can be interpreted as the distribution of the completion time of
a ”virtual task” of duration W, executed in place p,. Since in the following we use the
results obtained from [16] in the framework of DSPN models, only the prd policy can be
considered.

Figure 4 shows the lifetime Cdf with A = 0.001 A~ !, = 0.1 ! and with prd policy.
The solid line represents the deterministic case with W = 10h and is computed by
numerically inverting the Laplace transform obtained from [16]. Dashed lines represent
the cases in which W is Erlang with expected value IE(1¥) = 10 h and increasing number
of stages (2, 10 and 100, respectively). Since the resulting Cdf is rather smooth also
in the limiting deterministic case, the PH approximation becomes already close to the
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Figure 5 - PN modeling the completion time of a task on a 2-states
server subject to a bounded catastrophic breakdown.

deterministic case with only a small number of stages.

Case 2 - Completion time with bounded catastrophic breakdown - A system,
that can reach a catastrophic condition, as in the previous case, executes a task of length
Z. The PN modeling the system is shown in Figure 5 [57], where tp is assigned a firing
time equal to the work requirement 7, and a token in pgp stops the net as soon as the
task execution is completed. The PN models a competing multiple completion time
example, and the analysis is aimed at evaluating the defective Cdf of completing the
task before reaching the catastrophic state (a token arrives in pg before one arrives in
pa). Computations are performed supposing that the up state is prd and the down state
is prs. The deterministic case is solved by numerically inverting the closed-form Laplace
transform given in [57].

Figure 6 compares the case in which both barrier levels W and Z are deterministic
with the case in which both are Erlang of the same increasing order (2, 10 and 100
stages, respectively). Failure and repair rates are as in Case 1; the expected value of W
is IE(W) = 10 h, and the expected value of Z is IE(Z) = 1000 h. As it can be observed,
abrupt changes in the Cdf shape require PH variables of very high order.

6 Conclusion

The distribution of the task completion time is a performability measure that character-
izes the quality of the service in a dependable computing system.

Interpreting the task completion time as the hitting time of a suitable cumulative
functional against an absorbing barrier, provides a flexible and useful representation of
the problem in many applications. In fact, various kinds of policies can be accommo-
dated for modeling the interruption and the subsequent recovery of the execution of a
task. Three different preemption policies have been extensively discussed and closed-
form expression for the Cdf of the completion time have been derived in the Laplace
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Figure 6 - Cdf of the completion time of a 2-states server with prd up
state and prs down state.

transform domain.

Non-exponential stochastic Petri net can provide a graphical descriptive tool for the
completion time analysis. In particular, recently proposed SPN model are reviewed.
These models allow to some extent the inclusion of generally distributed firing times. A
numerical example compares the results obtained from two specific models. In the first
one, the firing time distributions are allowed to be of PH type, while in the second one a
single transition in each marking is allowed to have a deterministic firing time, with all
the other firing times being exponential.
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