
The Task Completion Time in Degradable Systems

Andrea Bobbio

Dipartimento di Informatia

Universit�a di Torino, 10149 Torino, Italy

Mikl�os Telek

Department of Teleommuniations

Tehnial University of Budapest, 1521 Budapest, Hungary

Abstrat

This paper assumes a user-oriented point of view in examining the performa-

bility of a dependable omputing system. The investigated performability measure

is the e�etive time that a task, with an assigned work requirement, takes to be

exeuted by the system. Assuming that the system hanges its performane har-

ateristis randomly in time, the stohasti model representing the task ompletion

time is formulated and analyzed. Appliations and extensions of the basi model

are disussed. Finally, the ompletion time model is reformulated in the language

of stohasti Petri nets, and possible omputational approahes are illustrated.

1 Introdution

The ompletion time of a task measures the time that a task takes to be exeuted by

a omputing system. If the system hanges its omputational power randomly in time

during the exeution, the task ompletion time is a random variable. The analytial

and numerial omputation of the umulative distribution funtion (Cdf) of the task

ompletion time is the subjet of this hapter.

The adopted modeling framework onsists of desribing the behavior of the system

on�guration in time by means of a stohasti proess, alled the struture-state proess,

and by assoiating to eah state of the struture-state proess a non-negative real on-

stant representing the e�etive working apaity or performane level of the system in

that state. The real variable assoiated to eah struture-state is alled the reward rate

[36℄. The struture-state proess together with the reward rates forms the Stohasti

Reward Model (SRM) [63℄.

The properties of stohasti reward proesses have been studied sine a long time

[50, 21, 41, 42, 36℄, however, only reently SRM's have reeived attention as a modeling

tool in performane/reliability evaluation. Indeed, the possibility of assoiating a reward

variable to eah struture state inreases the desriptive power and the exibility of the

model.
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Di�erent interpretations of the struture-state proess and of the assoiated reward

struture give rise to di�erent appliations [53℄. Common assignments of the reward

rates are: exeution rates of tasks in omputing systems (the omputational apaity)

[5, 67℄, number of ative proessors (or proessing power) [7, 34℄, throughput [52, 29, 35℄,

average response time [37, 43, 47℄ or response time distribution [71, 62, 72℄. The lassial

reliability theory [4℄ an be viewed as a partiular ase of SRM obtained by onstraining

the reward rates to be binary variables.

Two main di�erent points of view have been assumed in the literature when dealing

with SRM for degradable systems [45℄. In the system-oriented point of view the most

signi�ant measure is the total amount of work done by the system in a �nite interval.

The aumulated reward is a random variable whose Cdf is alled the performability [51℄.

Various numerial tehniques for the evaluation of the performability have appeared in

the literature: [38, 24, 33, 66, 25, 60, 59, 26℄. In the user-oriented (or task-oriented)

point of view the system is regarded as a server, and the emphasis of the analysis is on

the ability of the system to provide a presribed servie in due time. Consequently, the

most haraterizing measure beomes the probability of aomplishing an assigned task

in a given time. The task-oriented point of view is a more diret representation of the

quality of servie, whih, in turn, is the main target of a dependable omputation.

Gaver [28℄ analyzed the distribution of the ompletion time for a two-state server

with di�erent mehanisms of interruption and reovery poliies. Extensions to the above

model were provided in [56℄, while the ompletion time problem for fault tolerant om-

puting systems was addressed in [14℄. A uni�ed formulation to the system-oriented and

the user-oriented point of view was provided by Kulkarni et al. in [45, 46, 58℄. An alter-

native interpretation of the ompletion time problem an be given in terms of the hitting

time of an appropriate umulative funtional [21℄ against an absorbing barrier equal to

the work requirement. The de�nition of a umulative funtional was �rst suggested by

Kulkarni et al. [45℄ and then expliitly exploited in [10℄, where the ompletion time was

modeled as a �rst hitting time against an absorbing barrier. This interpretation leads

the above problem into the main stream of absorption problems in stohasti models

and has proved to be useful in assoiation with stohasti Petri nets [8℄ and with the

extension to multi-reward models [9, 10℄.

In Setion 2, the ompletion time problem is formulated as a �rst passage time aross

an absorbing barrier. The distribution of the ompletion time is derived in Setion 3, in

the Laplae transform domain and under the hypothesis that all the states pertain to the

same preemption lass. Setion 4 illustrates some appliations and extensions. Setion

5 shows how to represent the formulated non-Markovian stohasti model by means of

Petri nets, and ompares the results obtained from two non-Markovian PN-based models

on a simple example. Setion 6 summarizes the hapter.

2 The barrier hitting problem

Given that F (t) is a Cdf, the Laplae transform (LT) F

�

(s) and the Laplae-Stieltjes

transform (LST) F

�

(s) are given by, respetively:
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F

�

(s) =

Z

1

0

e

�st

F (t) dt ; F

�

(s) =

Z

1

0

e

�st

dF (t)

Let the struture-state proess (X(t); t � 0) be a right-ontinuous semi-Markov proess

[21, 44℄ de�ned over a disrete and �nite state spae S of ardinality n. We denote by

H the time duration until the �rst embedded time point of the semi-Markov proess

starting from state i at time 0 (X(0) = i ), and by p(0) the row vetor of the initial

probabilities. Let K(t) = [K

ij

(t)℄ be the kernel of the semi-Markov proess. The generi

element

K

ij

(t) = IP fH � t; X(H) = jjX(0) = ig

(with i; j = 1; :::; n) is the distribution of H starting in state i at time 0 supposed that

a transition to state j took plae. Moreover,

K

i

(t) = IP fH � tjX(0) = ig =

n

X

j=1

K

ij

(t) (i = 1; :::; n)

is the distribution of H starting in state i at time 0 independent of the state reahed

after the �rst embedded time point. The probability of jumping from state i to state j

at time H = t an be de�ned in terms of the kernel elements:

IP fX(H) = jjH = t; X(0) = ig =

dK

ij

(t)

dK

i

(t)

Let r

X(t)

be a non-negative real-valued funtion de�ned as:

r

X(t)

= r

i

if X(t) = i ; with r

i

� 0 and i = 1; 2; : : : ; n: (1)

r

X(t)

represents the instantaneous reward assoiated to state i. We now de�ne a fun-

tional Y (t) that represents the aumulation of reward in time. Y (t) is a stohasti

proess that depends on X(�) for � � t [21℄. During the sojourn of X(t) in state i

between t and (t + dt), Y (t) inreases at the rate r

i

dt. However, a transition in X(t)

may indue a modi�ation in the aumulation proess depending whether the transition

entails a loss of work, or no loss of work. A transition whih does not entail a loss of the

work already aumulated by the system on the task in exeution is alled preemptive

resume (prs), and its e�et on the model is that the funtional Y (t) resumes the previous

value in the new state. A transition whih entails a loss of the work done by the system

on the task in exeution is alled preemptive repeat (prt), and its e�et on the model is

that the funtional Y (t) is reset to 0 in the new state.

A possible realization of the aumulation proess Y (t) is shown in Figure 1. The

transition from state j to state k is of prs type while the transitions from state k to

i and from i to j are prt. In order to model the ompletion time problem, let W

be the atual work requirement of a task. W represents the time that a task would
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require to be exeuted in isolation on a perfet system. In a degradable environment,

the task ompletes as soon as the work aumulated by the system reahes the atual

work requirement for the �rst time. Hene, W ats as an absorbing barrier for the

funtional Y (t). With referene to Figure 1, the task ompletion time is the time at

whih Y (t) hits the barrier W for the �rst time.

-
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Figure 1 - The behavior of the funtional Y (t) versus time.

We assume, in general, that W is a random variables with distribution G(x) with

support on [0; 1). The degenerate ase in whihW is deterministi and the distribution

G(x) beomes the unit step funtion U(x) loated at W = x, an be onsidered as well.

When W is not deterministi and the preemption poliy is prt, two ases arise depending

whether the repeated task has an idential work requirement as the original preempted

task (preemptive repeat idential (pri) - poliy), or a di�erent work requirement sampled

from the same distribution (preemptive repeat di�erent (prd) - poliy). With referene to

Figure 1, it is assumed that the transition from state k to state i is pri and the transition

from state i to state j is prd. Aording to the previous assumptions, the aumulated

reward Y (t) is reset and the same value W of the barrier is retained when jumping from

state k to state i sine the orresponding transition is pri. On the other hand, sine

transition from i to j is prd, the work requirement W is resampled in state j assuming

a new value W

0

sampled from the same distribution and Y (t) is reset.

For a struture-state proess with only prs and pri transitions the barrier heightW is

onstant up to the ompletion. In these ases, onditioned to a �xed value of the barrier

height W = x, the ompletion time T (x) is de�ned as:

T (x) = min [t � 0 : Y (t) = x℄ : (2)

Let F

T

(t; x) be the onditional Cdf of the task ompletion time T (x):

F

T

(t; x) = IP fT (x) � tg (3)

The unonditional ompletion time T is haraterized by the following distribution:
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F

T

(t) = IP fT � tg =

Z

1

0

F

T

(t; x) dG(x) (4)

and is the measure that an be evaluated if all the transitions are prd.

The distribution of the ompletion time, F

T

(t), inorporates the e�et of a random

variation of the exeution speed onsequent to a degradation and reon�guration proess,

ombined with the e�et of the preemption and reovery poliy on the exeution of the

task.

The following relationships between the di�erent preemption poliies an be easily

established. If the work requirement W is an exponential random variable, the two

poliies prs and prd give rise to the same ompletion time (due to the memoryless

property of the exponential distribution, the residual task requirement under the prs

poliy oinides with the resampled requirement under the prd poliy). On the other

hand, if W is deterministi, the two poliies pri and prd are oinident (resampling a

step funtion provides always the same onstant value).

Moreover, assuming that the struture-states are all of prs type, so that no loss of

reward ours,

Y (t) =

Z

t

0

r

X(�)

d�

and the distribution of the ompletion time is losely related to the distribution of the

aumulated reward (performability) by means of the following relation:

IP fY (t) � xg = IP fT (x) � tg (5)

Kulkarni et al. [45℄ derived the losed-form Laplae transform equations of F

T

(x; t)

when X(t) is a CTMC and all the states belong to the same preemption lass. The

extension to a semi-Markov proess X(t) whose state spae is partitioned in the three

preemption lasses has been onsidered in [46℄. Bobbio and Trivedi [13℄ studied the ase

where X(t) is a CTMC, the work requirement W is a PH random variable [54℄ and the

task exeution poliy is a probabilisti mixture of prs and prd poliies. The ombination

of prs and pri poliies has been investigated in [15℄ for the evaluation of the ompletion

time of a program on a graefully-degradable omputing system.

3 The distribution of the ompletion time

A state whose outgoing transitions are all of prs type is alled a prs state; similarly, a

state whose outgoing transitions are all of prd (pri) type is alled a prd (pri) state. The

following losed form expressions for the Cdf of the ompletion time are derived under

the hypothesis that the struture-state proess is semi-Markov and all the states are of

the same preemption lass. A more general derivation, in whih the states are allowed

to belong to the three di�erent de�ned preemption lasses is in [46℄.

In order to evaluate (3), let us introdue the following vetor valued funtions F(t)

and F(t; x) whose entries F

i

(t) and F

i

(t; x), (i = 1; 2; : : : ; n) are de�ned by:

F

i

(t; x) = IPfT (x) � t jX(0) = ig ; x � 0 (6)
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F

i

(t) = IPfT � t jX(0) = ig : (7)

Notie that, when all the states are prs or pri the quantity to be evaluated is F

i

(t; x)

while in the prd ase only the funtion F

i

(t) an be derived. From the above de�nitions,

it follows that:

F

�

T

(s) = p(0) F

�

(s) =

Z

1

0

p(0) F

�

(s; x) dG(x) : (8)

Theorem 1 - Given that X(t) is a semi-Markov proess and all the states are of prs

type, the double transform F

��

(s; w) satis�es the following equation:

F

��

i

(s; w) =

r

i

s + w r

i

[1 � K

�

i

(s + w r

i

) ℄ +

n

X

j=1

K

�

ij

(s + w r

i

)F

��

j

(s; w) (9)

Proof - Conditioning on the time until the �rst embedded time point in the initial state

H = h , let us de�ne:

F

�

i

(s; x jH = h) = IE [exp(�s T )jW = x;X(0) = i; H = h℄ =

8

>

>

>

>

<

>

>

>

>

:

exp(�sx=r

i

) if h r

i

� x

exp(�sh)

n

X

j=1

dK

ij

(h)

dK

i

(h)

F

�

j

(s; x� hr

i

) if x > h r

i

(10)

In (10), two mutually exlusive events are identi�ed: if h r

i

� x, then T = x=r

i

or if

h r

i

< x then a transition ours to state j. Taking the LT with respet to x, we obtain:

F

��

i

(s; w jH = h) =

Z

hr

i

x=0

exp(�w x ) exp(� s x=r

i

) dx +

exp[�(s + wr

i

) h℄

n

X

j=1

dK

ij

(h)

dK

i

(h)

F

��

j

(s; w) (11)

Unonditioning with respet to H, (11) beomes:

F

��

i

(s; w) =

Z

1

h=0

Z

hr

i

x=0

exp[� ( s + w r

i

)x=r

i

℄dx dK

i

(h) +

Z

1

h=0

exp[�(s + w r

i

)h℄

n

X

j=1

F

��

j

(s; w) dK

ij

(h) (12)

Finally, Equation (9) is obtained from (12) by evaluating the integrals 2.
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Corollary 2 - Under the assumptions of Theorem 1, given that X(t) is a CTMC with

in�nitesimal generator Q, the double transform F

��

(s; w) satis�es the following matrix

equation [45℄:

F

��

(s; w) = [sI + wR � Q℄

�1

r (13)

where

r = [r

1

; r

2

; : : : ; r

n

℄

T

; R = diag [r

1

; r

2

; : : : ; r

n

℄ (14)

are a vetor and a matrix of reward rates.

Proof - Equation (13) is obtained by substituting the following Markovian kernel in (9):

K

�

ij

(s) =

8

>

>

<

>

>

:

q

ij

s + q

i

if : i 6= j

0 if : i = j

where q

i

=

P

n

j=1;j 6=i

q

ij

2.

In general, the kernel K(t) of a semi-Markov proess an have non-zero positive

entries on the main diagonal. Therefore, from a given state i either a "virtual" transition

into state i itself an take plae or a real transition to a di�erent state j 6= i. In the

previously onsidered prs ase, the aumulation proess resumes the value reahed by

the total reward in the previous state and there is no need to distinguish between a jump

into the same state or into a di�erent one.

The situation is di�erent in the prt ase (either prd or pri). Indeed, a jump into a

new state reset the aumulated reward while a jump into the same state should retain

the same reward level. However, it has been shown in [70℄ that a semi-Markov kernel

an be transformed into a anonial form in whih the entries on the main diagonal are

zero while preserving the same transition probabilities for all the transitions from i to j

with i 6= j. The anonial representation of the semi-Markov kernel K

u

(t) is given by

[70℄:

K

u�

ij

(s) =

8

>

>

>

<

>

>

>

:

K

�

ij

(s)

1�K

�

ii

(s)

if : i 6= j

0 if : i = j

(15)

With a kernel in a anonial form, the problem of distinguishing between transitions

into the same state or into a di�erent state is avoided. Therefore, in the following we

impliitly assume that the kernel is, or has been transformed, in a anonial form with

zero entries on the main diagonal.

Theorem 3 - Given that X(t) is a semi-Markov proess and all the states are of prd

type, the LST F

�

i

(s) satis�es the following equation:

F

�

i

(s) =

Z

1

0

exp(�s x=r

i

) [1 � K

i

(x=r

i

)℄ dG(x) +

n

X

j=1

F

�

j

(s)

Z

1

0

exp(�sh) [1 � G(hr

i

)℄ dK

ij

(h) (16)

7



Proof - Conditioning on the time until the �rst embedded time point in the initial state

H = h , let us de�ne:

F

�

i

(s jW = x;H = h) = IE [exp(�s T )jW = x;X(0) = i; H = h℄ =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

exp(�sx=r

i

) if hr

i

� x

exp(�sh)

n

X

j=1

dK

ij

(h)

dK

i

(h)

F

�

j

(s) if x > h r

i

(17)

In (17), two mutually exlusive events are identi�ed: if h r

i

� x, then T = x=r

i

or if

h r

i

< x then a transition ours to state j (j 6= i) and a di�erent task independent and

with the same distribution is restarted. By unonditioning Equation (17) with respet

to W and then with respet to H, we obtain:

F

�

i

(s) =

Z

1

h=0

Z

h=r

i

x=0

exp(�s x=r

i

) dG(x) dK

i

(h)

+

Z

1

h=0

Z

1

x=h=r

i

n

X

j=1

F

j

(s) exp(�sh) dG(x) dK

ij

(h) (18)

Solving the integrals in (18), the theorem is proved 2.

Corollary 4 - Under the assumptions of Theorem 3, given that X(t) is a CTMC with

in�nitesimal generator Q, the LST F

�

i

(s) satis�es the following Equation [45℄:

F

�

i

(s) = G

�

�

s + q

i

r

i

�

+

n

X

j=1;j 6=i

q

ij

(s + q

i

)

�

1 � G

�

�

s + q

i

r

i

� �

F

�

j

(s) (19)

Theorem 5 - Given that X(t) is a semi-Markov proess and all the states are of pri

type, the LST F

�

i

(s; x) satis�es the following equation:

F

�

i

(s; x) = exp(�s x=r

i

) [1 � K

i

(x=r

i

)℄ +

n

X

j=1

F

�

j

(s; x)

Z

x=r

i

0

exp(�sh) dK

ij

(h) (20)

Proof - Conditioning on the sojourn time in the initial state H = h , let us de�ne:

F

�

i

(s; x jH = h) = IE [exp(�s T ) jX = x;X(0) = i; H = h℄ =

8

>

>

>

>

<

>

>

>

>

:

exp(�sx=r

i

) if h r

i

� x

exp(�sh)

n

X

j=1

dK

ij

(h)

dK

i

(h)

F

�

j

(s; x) if x > h r

i

(21)
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Unonditioning with respet to H yields Equation (20) 2.

Corollary 6 - Under the assumptions of Theorem 5, given that X(t) is a CTMC with

in�nitesimal generator Q, the LST F

�

i

(s; x) satis�es the following Equation [45℄:

F

�

i

(s; x) = exp[�(s + q

i

) x=r

i

℄ +

n

X

j=1;j 6=i

q

ij

s + q

i

( 1� exp[�(s + q

i

) x=r

i

℄) F

�

j

(s; x) (22)

4 Appliations and Extensions of the Basi Model

In this setion we present some appliations and extensions of the basi model, onsidered

so far in the literature.

Binary reward variables - When the reward rates are onstrained to be binary

variables, a binary partition of the state spae is indued. Classial reliability-availability

models fall in this lass. The oneptual framework, formulated in the previous setions,

o�ers an uni�ed view to subtle reliability problems in whih the system atastrophi

failure depends on the duration of the downtime. The problem has a long history in the

reliability literature [27, 64, 61, 65℄ and an be formulated in terms of the ompletion

time of a "virtual task" whose work requirement is equal to the assigned downtime

threshold [57℄. If the down state is either of pri or prd type, a fatal failure ours as

soon as a single downtime greater than the threshold is enountered, while if the down

state is of prs type, the fatal failure ours when the threshold level is exeeded by the

total aumulated down time. Niola et al. [57℄ have alulated the ompletion time

under fairly more general onditions, and have derived several related measures from the

knowledge of the ompletion time distribution.

State spae partition in preemption lasses - The expressions in Setion 3 are

derived under the simplifying hypothesis that all the struture states of X(t) belong to

the same preemption lass. A natural and useful extension is to onsider a partition

of the state spae into di�erent preemption lasses. The aumulation of the reward

is thus resumed or reset aording to the harateristis of the state just abandoned

at the transition. In [46℄, losed-form Laplae transform solutions are provided when

all the three types of preemption poliies are eventually present in the system, with

a semi-Markov struture-state proess. More general task exeution proesses an be

modeled and estimated, and di�erent kinds of failures an be taken into aount. The

same authors [58℄ have further extended their analysis, by onsidering a stream of jobs

arriving at the server aording to a Poisson proess.

The ompletion time of programs - A speialized appliation of the above theory

has been devoted to study the exeution time of programs on omputing systems. In their

pioneering work Castillo and Siewiorek [14℄ have onsidered the time required to orretly

exeute a program, taking into aount hardware reliability, software (operating system)
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reliability, the workload of the system while the program is exeuting, and the type

and amount of resoures required to exeute the program. The hardware and software

reliabilities and the workload and resoure harateristis, ontribute to the de�nition of

the random environment in whih the task is performed, and are represented by X(t).

The evaluation of the ompletion time of programs exeuted on degradable systems

with di�erent types of hekpointing mehanisms is the subjet of [15℄. By a ombination

of prs and pri kinds of interruptions, and the onsideration of blok strutured programs,

the authors are able to ompare di�erent reovery mehanisms at di�erent levels of

nesting in the program struture.

Multiple reward models - The simultaneous exeution of parallel tasks with di�erent

work requirements on a omputing system has been onsidered in [9, 10℄. Eah task �

(� = 1; : : : ; �) is served in eah state i of X(t) (i = 1; : : : ; n) at a di�erent reward rate

r

i�

. The reward rates are therefore grouped into a reward matrix, whose generi row

r

i

is the �-dimensional vetor representing how the total omputational apaity of the

system in state i is shared among the � parallel tasks running in state i. On the other

hand, the generi olumn r

�

ontains the servie rates at whih task � is exeuted in the

di�erent struture-states in whih the system operates. The minimal ompletion time

has been derived in [10℄ under various ombinations of preemption poliies and being

X(t) semi-Markovian.

5 Completion Time and Petri Nets

The funtional Y (t), whih allowed us to de�ne the ompletion time as the hitting

time against an absorbing barrier (Equation 2), is a omplex stohasti proess even if

the struture-state proess X(t) is a CTMC (Corollaries 2, 4 and 6). Stohasti Petri

nets (SPN) are usually restrited to be Markovian and therefore annot be invoked to

model and analyze the stohasti problem formulated in the previous setions. Reently,

some attempts have been presented in the literature aimed at generalizing the onept

of stohasti Petri nets by allowing the �ring times to be generally distributed [1, 40,

18, 11℄. The inlusion of non-exponential �ring times poses intriguing problems about

the interpretation of the evolution of the net versus time. A detailed disussion of

the semantis of a SPN with generally distributed transition times an be found in

[1℄. We refer to this model as GDT SPN (Generally Distributed Transitions SPN). The

marking proess underlying a GDT SPN does not have, in general, a tratable analytial

formulation. Therefore, various restritions have been proposed in the literature. A

partiular ase of non-Markovian SPN, is the lass of DSPN (Deterministi and SPN).

DSPN's were introdued in [3℄ as generalized stohasti Petri nets (GSPN) [2℄ where in

eah marking a single transition is allowed to have assoiated a deterministi �ring time,

being all the other timed transitions exponential. DSPN beomes of potential onern

in the ompletion time analysis, when the struture state proess is a CTMC and the

work requirement is a onstant.

Several extensions of the original DSPN model have been reently appeared in the
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literature [18, 11℄, aimed at inluding into the model non-deterministi distributions,

and at aommodating more omplex preemption poliies for the general distributed

transitions.

In the following three subsetions, we enumerate the features and the properties of

the mentioned SPN-based models that are relevant in the ontext of the problems dis-

ussed in the present hapter. Subsetion 5.4 provides a general framework for modeling

ompletion time problems in terms of GDT SPN, and a numerial example is presented

in Subsetion 5.5.

5.1 Generally Distributed Transitions SPN

De�nition 1: Aording to [1℄, a GDT SPN is de�ned as a marked PN in whih:

1. The set of transitions is partitioned into a subset of immediate transitions (thin

bars) and a subset of timed transitions (thik bars). Immediate transitions �re in

zero time and have higher priority over timed transitions [2℄.

2. To eah timed transition t

k

is assigned a generally distributed random �ring time



k

, with Cdf G

k

(t), modeling the time ourring to omplete the ativity assoiated

to t

k

.

3. An exeution poliy is de�ned, whih spei�es the way in whih a transition is

seleted to �re (among those enabled in a given marking), and the way in whih

the GDT SPN keeps trak of the past history.

The exeution poliy is needed to univoally determine a stohasti proess assoiated

to the PN. The exeution poliy omprises two spei�ations: a riterion to hoose the

next transition to �re (the seletion poliy), and a riterion to keep memory of the past

history of the proess (the memory poliy). A natural hoie to selet the next transition

to �re is aording to a rae poliy: if more than one transition (of the same highest

priority level) is enabled in a given marking, the transition �res whose assoiated random

delay is statistially the minimum. The memory poliy spei�es how to realulate the

�ring time distribution of a transition whih has been disabled without �ring when it is

enabled again. In the exponential ase, the same problem is hidden by the memoryless

property. Two alternative memory poliies are onsidered:

- age memory: an age variable a

k

, assoiated with transition t

k

, ounts the time sine

the last �ring epoh of t

k

; when t

k

is enabled, its �ring distribution is alulated

as the residual Cdf of the assoiated random variable 

k

, onditioned to a

k

.

- enabling memory: the age variable a

k

ounts the time sine the last epoh in whih

t

k

has been enabled. When t

k

is disabled (even without �ring), a

k

is reset.

Under the age memory poliy the time spent in a PN transition aumulates whenever

the transition is enabled and an be utilized to realize a prs preemption poliy. Under the

enabling memory poliy the time spent in the transition is reset as soon as the transition

is disabled and therefore an realize a prd preemption poliy.

A numerially tratable realization of the GDT SPN de�ned in De�nition 1, is ob-

tained by restriting the �ring time random variables 

k

to be PH-distributed [11℄. The

11



non-Markovian proess generated by the GDT SPN is onverted into a CTMC de�ned

over an expanded state spae. The ardinality of the expanded state spae is of the order

of the ross produt of the timed reahability set of the basi PN times the state spaes

of the PH distributions of the 

k

random variables.

The program pakage ESP [23℄ realizes the GDT SPN model with PH distributions.

Aording to De�nition 1, the program allows the user to assign a spei� memory

poliy to eah PN transition so that the di�erent exeution poliies an be put to work.

The important point about the ESP pakage is that the expanded CTMC is generated

automatially from the model spei�ations. The generation of the expanded state spae

is driven by the di�erent exeution poliies assigned by the user at the spei�ation level.

The appliability of the GDT SPN model with PH distributions to the ompletion

time problem is legitimated by the following theorem proved in [13℄ and rederived by

Neuts in [55℄:

The lass of PH distributions is losed with respet to the ompletion time problem

in Markov Reward Models under any probabilisti mixing of prs and prd transitions.

Hene, when the work requirement W is a PH random variable, or is approximated

by a PH random variable, we are inside the area overed by the modeling power of the

ESP pakage.

5.2 Deterministi SPN

De�nition 2: Aording to [3℄, a DSPN is de�ned as a marked PN in whih:

1. The set of transitions is partitioned into a subset of immediate transitions, a subset

of exponential transitions and a subset of deterministi transitions.

2. At most, a single deterministi transition is allowed to be enabled in eah marking

and the �ring time of a deterministi transition is marking independent.

3. The time elapsed in a deterministi transition annot be remembered when the

transition beomes disabled; the only allowed exeution poliy is the rae poliy

with enabling memory.

In [3℄, the steady-state probability distribution is the only addressed solution. An im-

proved algorithm for the evaluation of the steady state probabilities has been suessively

proposed in [48, 49℄, and some strutural extensions, with respet to the spei�ations of

De�nition 2, have been presented in [19℄. However, the omputation of the distribution

of the ompletion time requires the transient analysis.

The DSPNmodel has been revisited by Choi et al. [16℄. In [16℄, the stohasti proess

assoiated with the DSPN model is proved to be a Markov regenerative proess and an

analytial method for the derivation of both the transient and the steady-state solution

is provided. The analytial solution is derived in the Laplae transform domain, whose

inversion neessitates a numerial tehnique. The paper proposes to use the Jagerman's

method [39℄, as adapted by Chimento and Trivedi [15℄.

An alternative numerial solution tehnique, based on the use of supplementary vari-

ables [22℄, was originally proposed in [32℄ for the steady state analysis and then extended

in [30℄ to the transient analysis of partiularly strutured DSPN's.

12
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Figure 2 - A ompletion time problem represented as a �rst marking

time in plae p

A

.

5.3 Markov Regenerative SPN

A further extension, alled Markov Regenerative SPN

�

(MRSPN

�

) model, has been de-

veloped in [17℄, where the strutural restritions implied in De�nition 2 are retained,

while replaing the deterministi transitions with generally distributed transitions. In

partiular, only the enabling memory poliy an be assigned to the generally distributed

transitions. This extension makes it possible to evaluate ompletion time problems in

whih the struture-state proess is a CTMC, the work requirement is any random vari-

able and the preemption poliy is prd.

The supplementary variable approah to the same model has been disussed in [30℄

and a tool has been built based on this tehnique [31℄.

In order to relax the restrition on the enabling memory poliy Bobbio and Telek [12℄

have de�ned a new lass of MRSPN based on the onept of non-overlapping dominant

transitions. In this model, any two suessive regeneration time points of the marking

proess orrespond to the �rst enabling and to the �ring (or disabling) of a single gen-

erally distributed transition alled the dominant transition. The enabling yles of the

dominant transitions annot overlap. This de�nition inludes the possibility that the

struture-state proess is semi-Markov, and allows the aommodation of di�erent pre-

emption poliies. The prs ase has been introdued in [12, 68℄, and a spei� algorithm

for the steady-state analysis has been elaborated in [69℄. Finally, the inlusion of the pri

poliy has been disussed in [6℄.

5.4 Modeling Completion Time by Petri Nets

The ompletion time problem an be pitorially represented, at the SPN level, as a

�rst marking problem. To this end, let us suppose that the reward rate is equal to one

(r = 1) in all the states produing useful work. By this we physially mean that the task

ompletes as soon as the total aumulated time spent in the markings produing useful

work reahes the work requirement W . We introdue in the basi PN two additional

plaes: an indiator plae p

I

and an absorbing plae p

A

(Figure 2).
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Figure 3 - PN modeling the attainment of a atastrophi failure when
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The indiator plae p

I

is onneted to the original SPN in suh a way that it remains

marked as long as the system is produing useful work; on the other hand, the absorbing

plae p

A

is inserted to stop the exeution of the net as soon as it beomes marked for

the �rst time. The two plaes p

I

and p

A

are onneted with eah other by a single timed

transition t

A

. The random variable assoiated to the timed transition t

A

is oinident

with the work requirement W .

Interpreting the model as a GDT SPN, the transition �ring ours aording to the

semantis of the rae poliy: t

A

�res when its assoiated �ring time W is the minimum

among the ativities enabled in p

I

. Hene, the epoh at whih p

A

beomes marked for

the �rst time is the epoh at whih the time elapsed in p

I

exeeds W for the �rst time,

thus, by onstrution, is the ompletion time. In standard PN models, stopping the net

usually requires additional elements, like immediate transitions or inhibitor ars. Using

higher level nets, like nets with enabling funtions [20℄, the indiator, absorption and

stopping property an be obtained by means of simpler and natural spei�ations.

The semantis of the memory poliies of a GDT SPN [1℄ is suited to model di�erent

preemptive disiplines in the task ompletion time problem. This feature di�erentiates

the GDT SPN model from the DSPN where the enabling memory poliy is the only

available one. If transition t

A

(Figure 2) follows a rae poliy with age memory, it �res

as the total marking time aumulated in p

I

exeeds W (independently of the number

of times plae p

I

has beome marked); from the point of view of the ompletion time

problem, a prs poliy is realized. If t

A

follows a rae poliy with enabling memory, it �res

the �rst time a ontinuous marked interval in plae p

I

(without interruptions) exeeds

W . The GDT SPN models a ompletion time problem with prd poliy.

In the DSPN model, t

A

is a deterministi transition. The semantis of the DSPN

model of Subsetion 5.2 enfores a preemptive repeat poliy: eah time plae p

I

is enabled

again, a new task is started. Sine in this ase, the task requirement is deterministi,

the pri and prd poliies are oinident.
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Figure 4 - Cdf of the lifetime of a 2-states system subjet to a bounded

atastrophi breakdown.

5.5 Numerial Examples

We ompare the results obtained from the GDT SPN with PH distributions and the

DSPN models, on two simple examples. The omparison is partiularly signi�ant to

explore the exibility and the auray of the PH approximation in a limiting ase, sine

a deterministi variable is known to be typially non-PH.

Case 1 - Bounded atastrophi breakdown - A system alternates between an up

state (plae p

1

) and a down state (plae p

2

). Transition t

1

represents system failure

(with failure rate �) and transition t

2

system repair (with repair rate �). A atastrophi

(unsafe) ondition is reahed if and only if the time elapsed in the failed state exeeds

a tolerane threshold W . This problem is represented in Figure 3, where plae p

2

ats

as indiator plae and plae p

A

is the absorbing plae representing the atastrophi

ondition.

Transition t

A

is assigned the tolerane thresholdW so that the atastrophi ondition

(token in p

A

) is reahed when the total down time exeeds W aording to the assigned

memory poliy. If t

A

is assigned an age memory poliy, a prs strategy is realized sine

the time in p

A

aumulates independently of the number of passages. On the other hand,

if t

A

is assigned an enabling memory poliy, a prd strategy is realized. The distribution

of the system lifetime an be interpreted as the distribution of the ompletion time of

a "virtual task" of duration W , exeuted in plae p

2

. Sine in the following we use the

results obtained from [16℄ in the framework of DSPN models, only the prd poliy an be

onsidered.

Figure 4 shows the lifetime Cdf with � = 0:001 h

�1

, � = 0:1 h

�1

and with prd poliy.

The solid line represents the deterministi ase with W = 10 h and is omputed by

numerially inverting the Laplae transform obtained from [16℄. Dashed lines represent

the ases in whihW is Erlang with expeted value IE(W ) = 10 h and inreasing number

of stages (2, 10 and 100, respetively). Sine the resulting Cdf is rather smooth also

in the limiting deterministi ase, the PH approximation beomes already lose to the
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Figure 5 - PN modeling the ompletion time of a task on a 2-states

server subjet to a bounded atastrophi breakdown.

deterministi ase with only a small number of stages.

Case 2 - Completion time with bounded atastrophi breakdown - A system,

that an reah a atastrophi ondition, as in the previous ase, exeutes a task of length

Z. The PN modeling the system is shown in Figure 5 [57℄, where t

B

is assigned a �ring

time equal to the work requirement Z, and a token in p

B

stops the net as soon as the

task exeution is ompleted. The PN models a ompeting multiple ompletion time

example, and the analysis is aimed at evaluating the defetive Cdf of ompleting the

task before reahing the atastrophi state (a token arrives in p

B

before one arrives in

p

A

). Computations are performed supposing that the up state is prd and the down state

is prs. The deterministi ase is solved by numerially inverting the losed-form Laplae

transform given in [57℄.

Figure 6 ompares the ase in whih both barrier levels W and Z are deterministi

with the ase in whih both are Erlang of the same inreasing order (2, 10 and 100

stages, respetively). Failure and repair rates are as in Case 1; the expeted value of W

is IE(W ) = 10 h, and the expeted value of Z is IE(Z) = 1000 h. As it an be observed,

abrupt hanges in the Cdf shape require PH variables of very high order.

6 Conlusion

The distribution of the task ompletion time is a performability measure that harater-

izes the quality of the servie in a dependable omputing system.

Interpreting the task ompletion time as the hitting time of a suitable umulative

funtional against an absorbing barrier, provides a exible and useful representation of

the problem in many appliations. In fat, various kinds of poliies an be aommo-

dated for modeling the interruption and the subsequent reovery of the exeution of a

task. Three di�erent preemption poliies have been extensively disussed and losed-

form expression for the Cdf of the ompletion time have been derived in the Laplae
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Figure 6 - Cdf of the ompletion time of a 2-states server with prd up

state and prs down state.

transform domain.

Non-exponential stohasti Petri net an provide a graphial desriptive tool for the

ompletion time analysis. In partiular, reently proposed SPN model are reviewed.

These models allow to some extent the inlusion of generally distributed �ring times. A

numerial example ompares the results obtained from two spei� models. In the �rst

one, the �ring time distributions are allowed to be of PH type, while in the seond one a

single transition in eah marking is allowed to have a deterministi �ring time, with all

the other �ring times being exponential.
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