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Abstract step. This new parameter is the scale factor of the DPH dis-

tribution, and can be viewed as a new degree of freedom,

This paper introduces a unified approach to phase-type since its choice largely impacts the shape and properties of
approximation in which the discrete and the continuous a DPH distribution over the continuous time axes. When
phase-type models form a common model set. The model®DPH distributions are used to approximate a given continu-
of this common set are assigned with a non-negative realous distribution, the scale factor affects the goodnedseof t
parameter, thescale factor The case when the scale factor fit.
is strictly positive results in Discrete phase-type dlstri The paper starts discussing to what extent DPH or CPH
tions and the scale factor represents the time elapsed in onddistributions can be utilized to fit a given continuous dlistr
step. If the scale factor is 0, the resulting class is theslas bution. Itis shown that a DPH distribution of any order con-
of Continuous phase-type distributions. Applying the &ov verges to a CPH distribution of the same order as the scale
view, it is shown that there is no qualitative difference be- factor goes to zero. Even so, the DPH class contains dis-
tween the discrete and the continuous phase-type models. tributions whose behavior differs substantially from timeo

Based on this unified view of phase-type models one carof the corresponding distributions in the CPH class. Two
choose the best phase-type approximation of a stochastianain peculiar points differentiate the DPH class from the

model by optimizing the scale factor. CPH class. The first point concerns the coefficient of varia-
Keywords: Discrete and Continuous Phase type distri- tion: indeed, while in the continuous case the minimum co-
butions, Phase type expansion, approximate analysis. efficient of variation is a function of the order only and its

lower bound is given by the well known theorem of Aldous

and Shepp [1], in the discrete case the minimum coefficient
1 Introduction of variation is proved to depend both on the order and on
the mean (and hence on the scale factor) [13]. Furthermore,
it is easy to see that for any order, there exist members of
%he DPH class that represent a deterministic value with a
coefficient of variation equal to zero. Hence, for any order
(greater than 1), the coefficient of variation of the DPH slas
spans from zero to infinity.

The second peculiar point that differentiate the DPH
class is the support of the distributions. While a CPH dis-
tribution (of any order) has always an infinite support, ¢her
exist members of the DPH class of any order that have a

distribution of the time to absorption in a Discrete-State . L )
. ) ! . ; finite support (between a minimum non-negative value and
Continuous-Time Markov Chain (CTMC) with transient . X
a maximum) or have a mass equal to one concentrated in a

states and one absorbing state. The above definition im-_. s
. X C single value (deterministic distribution).

plies that the properties of a DPH distribution are computed It turns out that the possibility of

over the set of the natural numbers while the propertiesofa tuning the scale factor to optimize the goodness of the

CPH distribution are defined as a function of a continuous fit

time variablef. When DPH distributions are used to model 4 having distributions with coefficient of variation span-

timed activities, the set of the natural numbers must be re- ning from O to infinity,

lated to a time measure. Hence, a new parameter need to be e representing deterministic values exactly,

introduced that represents the time span associated to each e coping with finite support distributions,

This paper presents new comparative results on the us
of Discrete Phase Type (DPH) distributions [11] and of
Continuous Phase Type (CPH) distributions [12] in applied
stochastic modeling.

DPH distributions of ordern are defined as the time to
absorption in a Discrete-State Discrete-Time Markov Chain
(DTMC) with n transient states and one absorbing state.
CPH distributions of orden are defined, similarly, as the



makes the DPH class a very interesting and challengingwhereB = [b;;] is the(n x n) matrix collecting the transi-
class of distributions to be explored in applied stochastic tion probabilities among the transient stafess [b; n+1]7
models. The purpose of this paper is to show how these fa-is the column vector of length grouping the probabilities
vorable properties can be exploited in practice, and to pro-from any state to the absorbing one, amd= [0] is the
vide guidelines to the modeler to a reasonably good choicezero vector. The initial probability vect@ = [a, ap41]
of the distributions to be used. Indeed, since a DPH dis-is of length(n + 1), with Z;Ll aj =1 —aptr. Inthe
tribution tends to a CPH distribution as the scale factor ap- present paper, we consider only the class of DPH distribu-
proaches zero, considering the scale factor as a new decisiotions for whicha,,+1 = 0, but the extension to the case
variable in a fitting experiment, and finding the value of the whena,, 11 > 0 is straightforward. The tupléa, B) is
optimal scale factor (with respect to some error measure)called the representation of the DPH distribution, arttie
provides a valuable tool to decide whether to use a discreteorder.
or a continuous approximation to the given problem. Similarly, a CPH distribution [12] is the distribution of
The fitting problem for the CPH class has been exten- the time to absorption in a CTMC with transient states,
sively studied and reported in the literature by resortmgt  and one absorbing state numbefed+ 1). The infinites-
variety of structures and numerical techniques (see [10] fo imal generatoiQ of the CTMC can be partitioned in the
a survey). Conversely, the fitting problem for the DPH class following way:
has received very little attention [4].
In recent years, a considerable effort has been devoted Q= { (g ? (2)
to define models with generally distributed timings and to ) _ _
merge in the same model random variables and determin\Where, Q is a (n x n) matrix that describes the tran-
istic duration. Analytical solutions are possible in spéci  Siént behavior of the CTMC and is the column vector
cases, and the approximation of the original problems byqrouplng the transition rates to. t_he absorbmg state. Let
means of CPH distributions is a rather well known tech- @ = [@; anfrll] be the(n + 1) initial probability (row)
nique [7]. This paper is aimed at emphasizing that DPH VECtor with3 55 a; = 1 — any1. The tuple(e, Q) is
approximation may provide a more convenient alternative called the representation of the CPH distribution, arttle
with respect to CPH approximation, and also to provide a Order. . . .
way to quantitatively support this choice. Furthermore, th It has been shown in [4] for the discrete case and in [6]
use of DPH approximation can be extended from stochas-for the continuous case that the representations in (1) and
tic models to functional analysis where time intervals with (2), because of their too many free parameters, do not pro-
nondeterministic choice are considered [3]. Finally, dis- vide a convenient form for running a fitting algorithm. In-

cretization techniques for continuous problems [8] can be Stead, resorting to acyclic phase-type distributionsntire-
restated in terms of DPH approximations. ber of free parameters is reduced significantly since both in

The rest of the paper is organized as follows. After defin- the discrete and the continuous case a canonical form can be

ing the notation to be used in the paper in Section 2, Sectionused. The canonical form and its constraints for the discret
3 discusses the peculiar properties of the DPH class with re-case [4] is depicted in Figure 1. Figure 2 gives the canonical
spect to the CPH class. Some guidelines for bounding theform and associated constraints for the continuous case. In
parameters of interest and extensive numerical experanent POth cases the canonical form corresponds to a mixture of
to show how the goodness of the fit is influenced by the op- HyP0-exponential distributions. . .
timal choice of the scale factor are reported in Section 4. A fitting algorithm that provides acyclic CPH, acyclic
Section 5 discusses the quality of the approximation whenDPH distributions has been provided in [2] and [4], respec-
passing from the analysis of a single distribution to thé-ana tively. Experiments suggests (an exhaustive comparison of
ysis of performance measures in complete non-Markovianfitting algorithms can be found in [10]) that, from the point

stochastic models. The paper is concluded in Section 6. Of view of applications, the Acyclic phase-type class is as
flexible as the whole phase-type class.

2 Definition and Notation
3 Comparing properties of CPH and DPH
A DPH distribution [11, 12] is the distribution of the time distributions
to absorption in a DTMC with transient states, and one
absorbing state numberéd + 1). The one-step transition CTMC are defined as a function of a continuous time
probability matrix of the corresponding DTMC can be par- variablet, while DTMC are defined over the set of the nat-
titioned as: ural numbers. In order to relate the number of jumps in a
~ B b DTMC with a time measure, a time span must be assigned
B= { 0o 1 ] (1) to each step. Lef be (in some arbitrary units) the scale



a1 a2 ordern > 1 can exhibit a coefficient of variation between

0 < ev? < oo. Forn = 1 the coefficient of variation ranges

il a2
betweer) < cv2 < 1.
1=q 1-¢ 1-q, As mentioned earlier, an important property of the DPH
Sa=10<qg<qgu<1 1<i<n-—1 class with respect to the CPH class is the possibility of

exactly representing a deterministic delay. A determinis-
tic distribution with valuez can be realized by means of a
scaled DPH distribution witlh phases with scale factérif

n = a/d is integer. In this case, the structure of the DPH
distribution is such that phagés connected with probabil-
ax az n ity 1 only to phaseé + 1 (i = 1,...,n), and with an initial

OT'O—QE - - probability concentrated in state 1.1f= a/¢ is not inte-

Figure 1. Canonical representation of acyclic
DPH distributions and its constraints

n ger for the giveny, the deterministic behavior can only be
'§1 a;i=1,0<¢ <giy1, 1 <i<n—1 approximated.
Figure 2. Canonical representation of acyclic 3.1 Firstorder discrete approximation of CTMCs

CPH distributions and its constraints _ o ~
Given a CTMC with infinitesimal generat€y, the tran-

sition probability matrix over an interval of lengéhcan be

factor, i.e. the time span assigned to each step. The valugyritten as:
of 4 establishes an equivalence between the sentence "prob- as SN i ~
ability at thek-th step” and "probability at timé: 6”, and er = Z(Q‘S) [i'=1+Qd+0(d),
hence, defines the time scale on which the properties of the =0
DTMC are measured. The consideration of the scale factorhence the first order approximationd¥ is matrixIL(s) =
0 introduces a new parameter, and consequently a new deI+QJ. TII(9) is a proper stochastic matrixdf< 1/q, where
gree of freedom, in the DPH class with respect to the CPH ¢ = max; ; |(~,)ij|. II(0) is the exact transition probability
class. In the following, we discuss how this new degree of matrix of the CTMC assumed that at most one transition
freedom impacts the properties of the DPH class and how itoccurs in the interval of length
can be exploited in practice. We can approximate the behavior of the CTMC at time

Letu be an "unscaled” DPH distributed random variable (0,6,24,34,...,kd,...) using the DTMC with transition
(r.v.) of ordem with representatio(r, B), defined overthe  probability matrixIT(§). The approximate transition prob-
set of the non-negative natural numbers. Let us consider aability matrix at timet = k¢ is:
scale factoﬁ;_ the sc_aled rvr = éuis defined overthe_dls— II(6)F = (I+ Q5)$
crete set of time point®, 14, 24, 34, ..., k4, ...), being
k a non-negative natural number. For the unscaled and the
scaled DPH r.v. the following equations hold.

The following theorem proves the property that the
Sbove first order approximation becomes exa@ as 0.
Theorem 1 As the length of the interval of the first order

Fu(k) = Priu <k} =1-aB"e approximationg, tends ta0, such that = k¢ the approxi-
F, (k) = Pr{r <0k} =1—aBFe (3y  mate transition probability matrix tends to the exact one.
m; = E(uf) ' ' Proof: The scalar version of the applied limiting behavior
m.=E(r")=0E®") i>1, is well-known in the following formlim,_o(1 + az)* =

wheree is the column vector of ones, anfd(u’) is the e, Since matriced and Q commute we can obtain the
i-th moment calculated from the factorial momentsuof  matrix version of the same expression as follows
E(w(u—1)...(u—i+1)) =ila(l - B) Bile. Itis -, ) Qt

evident from (3) that the mean of the scaled r.vr is § lim(I+Q6)% = lim I(t/k)* = lim [I+-=] =

. . . d—0 k—o00 k—o00

times the meam,, of the unscaled r.vu. While m,, is an

invariant of the representatiqa, B), ¢ is a free parame- k k Qt I
v adinoti lim Z . — | =
ter; adjusting), the scaled r.v. can assume any mean value Paroo L
m, > 0. On the other hand, one can easily infer from (3) w0 0 o~
that the coefficients of variation af andu are equal. A — Jim 3 Q) kK 3 QY _ &
consequence of the above properties is that one can easily k— o0 jv ki (k—37) = 7! '

provide a scaled DPH of order 2 with arbitrary meanand O

arbitrary coefficient of variation with an appropriate scal An obvious consequence of Theorem 1 for PH distribu-
factor. Or more formally: the unscaled DPH ra.of any tions is given in the following corollary.



Corollary 1 Given a scaled DPH distribution of order,
representatior{a, I + Q4) and scale factop, the limiting
behavior ashy — 0 is the CPH distribution of orden with
representatiorfc, Q).

3.2 The minimum coefficient of variation

It is known that one of the main limitation in approx-
imating a given distribution by a PH one is the attainable
minimal coefficient of variationgv? ;.. In order to discuss
this point, we recall two theorems that state thé , for
the class of CPH and DPH distributions.

Theorem 2 (Aldous and Shepp [1]Thecv;,;,, of a CPH
distributed r.v. of ordem is cv?,;, = 1/n and is attained
by the Erlangf) distribution independent of its meam,. or

of its parametei\ = n/m..

2

The corresponding theorem for the unscaled DPH class

has been proved in [13]. In the followingz | denotes the
integer part andz) denotes the fractional part of
2

Theorem 3 Thecv;, ,,, of an unscaled DPH r.v. of ordet

and meamn,, is:

()1~ ()
1 mul

n My
The unscaled DPH r.v. which exhibits this minimal coeffi-
cient of variation has the following canonical structure:

e if m, < n: each state is connected to the next with
probability 1 and the nonzero initial probabilities are
Op—|m,| = (mu> anda,,_ [ |41 = 1-— (mu> (Fig-
ure 3);

e if m, > n: each state is connected to the next with
probability n/m,, and the only nonzero initial proba-
bility is a; = 1 (Figure 4).

if m, <mn,
(4)

if my >n,

0 0 <mu> 17<mu> 0
OO0 040

Figure 3. m, <n

m

Figure 4. m, >n

Implications of the above theorems for what concerns the
ability of approximating distributions with low coefficien
of variation is drawn in [4].

3.3 The minimum coefficient of variation of scaled
DPH distributions

For scaled DPH distribution Theorem 3 can be restated
as follows.

Theorem 4 Thecv?,,,, of a scaled DPH r.v. of ordes with

scale factord and meann, = d m, is:

mz\ (1 _ (M=
C T o) R
(%) (5)
1 i ifm, >nd,
no ms
The scaled DPH r.v. which exhibits the? . has the same

MDPH structure of Figures (3) and (4), as in the unscaled
case (see Theorem 3).

Corollary 2 For finite meann., asé — 0 only the second
part of (5) remains effective, and?,., — 1/n asd — 0.
Corollary 2 proves that thev? ; of the DPH class con-
verges to thew? ;,, of the CPH class of the same order as
0 < 0. The following corollary presents a much stronger
convergence result for the case of approximating distribu-
tions with low coefficient of variation. It is about the con-

vergence of the distributions.

Corollary 3 Thebest fittingscaled DPH approximation of
distributions with low coefficient of variation converges,
distribution, to thebest fitting CPH approximation of the
same distribution as tends to0, where thebest fittingPH
approximation is defined as the one which exhibits the same
mean and provides the closest approximation for the 2nd
moment.

Proof:  Both the CPH and the DPH classes have limits
in approximating distributions with low coefficient of vari
ation. The best approximation of a distribution with coeffi-
cient of variation less than these limits is the Erlafglis-
tribution in both the discrete and the continuous case (The-
orem 2 and 3).

The representatiofry, Q) of the continuous Erlangy
with meanm . and the representatign, B) of the discrete
Erlang@) with meanm ., scale factob are:

= om0 0

0 _mLTmLT
a:{l,O,...,O}, Q:

0 —

nd nd

l—m—T m_T 0 0

0 1-28 nd
a={1,0,...,0}, B= nm

nd
0 .l—m—T

Note thatB = I — Q4 and Corollary 3 follows from Corol-
lary 1.0



In this particular case, when the structure of the best fit-

X and the approximating PH distribution needs to be de-

ting scaled DPH and CPH distributions are known, we can fined. Then, the fitting algorithm provides the PH distri-

show that the distribution of the best fitting scaled DPH dis-
tribution convergesto the distribution of the best fittingkC
distribution wheny — 0. Unfortunately, the same conver-

bution which minimizes the chosen distance measure. In
order to compare, in a unified framework, the goodness of
the approximation reached by CPH and DPH distributions,

gence property cannot be proved in general, since the strucwe need to chose a distance measure that is meaningful and

tural properties of the best fitting PH distributions are not

applicable both in the continuous as well as in the discrete

known and they depend on the chosen (arbitrary) optimiza-setting. The selected distance measure is the squared area

tion criterion. Instead, in Section 4 we provide an extemsiv

difference between the original cdf(-) and the approxi-

experimental study on the behavior of the best fitting scaledmating cdfF'(-):

DPH and CPH distributions as a function of the scale factor

0.
3.4 DPH distributions with finite support

Another peculiar characteristic of the DPH class is to
contain distributions with finite support. A DPH distribu-
tion has finite support if its structure does not containegcl
and self-loops (any cycle or self loop implies an infinitesup
port).

Let[a, b] be the finite support of a given distribution, with
a,b > 0anda < b (Wwhena = b the finite support distri-
bution reduces to a deterministic distribution with mass 1 a
a = b). If a/6 andb/é are both integers, it is possible to
construct a scaled DPH of ordiefs for which the probabil-

D= / (F(z) — F(x))?da (6)

The distance meagu&is easily applicable for any com-
bination of discrete and continuous distributions. All the
numerical experiments reported in the sequel are based on
the minimization of the area difference given in (6).

4.1 Fitting distributions with low cv?

The following considerations provide practical upper
and lower bounds to guide in the choice of a suitable scale
factor §, and are mainly based on the dependence of the
minimal coefficient of variation of a scaled DPH distribu-
tion on the order. and on the meam .

Since we only consider DPH distributions with no mass

ity mass function has non-zero elements only for the valuesat zero, the mean of any unscaled DPH distribution is

a,a+ d0,a + 24,...,b. As an example, the discrete uniform
distribution betweem = 2 andb = 6 is reported in Figure
5, for scale factod = 1.

1/5

1/5

15 1/5  1/5 0

1

1 1 1 1 1

Figure 5. DPH representation of the discrete
uniform distribution  [a = 2,b = 6]

4 The optimal ¢ in PH fitting

The scale factod provides a new degree of freedom in
fitting, and, furthermore, since the limit of a DPH distribu-
tion for§ — 0is a CPH distribution, the optimization of the
scale factor in a fitting problem provides a quantitative way

greater than. This means that should be less thaf(X).
However, a more convenient upper bound that exploits the
flexibility associated with the phases, is given by:
E(X)

n—1

d <

(7)

If the squared coefficient of variation of the distributian t
be approximated is less tharin, ¢ should satisfy the fol-
lowing relation (see Theorem 3):

5> (1 - ch(X)> E(X)

n

(8)

Let X be a Lognormal r.v. with parameters, (.2),
whose mean i€(X) = 1 andev?(X) = 0.0408 (this dis-
tribution is the distribution L3 taken from the benchmark
examined in [5, 4], hence we refer to it as L3). Table 1 re-
ports the lower and upper boundsiofvithn = 2, 4, 8, 12,
computed from (8) and (7).

The cdf and pdf of the approximating CPH and DPH dis-

to decide whether a continuous or a discrete approximationinytions of order, = 10, with different scale factors, are

performs better in the given problem. Hence, assuniiag

presented in Figure 6. When considering the approximate

a decision variable, we can consider the CPH and the DPHppy gjstribution, thef (z) values are calculated at the dis-
class as a unique model set in which the choice among DPHgate points &, 26,39, . .., kd,...) to which the following

or CPH classes is given by the optimal valué of

Let X be the continuous r.v. to be fit by a PH distri-
bution, and letFx (z) be its cdf, E(X?) thei-th moment
andcv?(X) the squared coefficient of variation. In order

mass is assigned:
f(kd) = 1/6(F (k) — F((k —1)0)) 9)
For the ease of visual interpretation the points are coedect

to define a fitting procedure, a distance measure betweermwith a line.
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Whend is less than its lower bound the required can-
not be attained; whefibecomes too large the wide separa-
tion of the discrete steps increases the approximatiom;erro
whenJ is in the proper range (e.g» = 10; § = 0.06) a
reasonably good fit is achieved. This example also suggest
that an optimal value of exists that minimizes the chosen
distance measur® in (6).

In order to display the goodness of fit for the L3 distribu-
tion, Figure 7 shows the distance measras a function of
o for various values of the order. A minimum value of§
is attained in the range where the parameters fit the bound
of Table 1. Notice also that, asincreases, the advantage
of having more phases disappears, according to Theorem 3
The circles in the left part of this figure (as well as in all
the successive _figures) indicate_ the corresponding distanc shows the measure of the goodness of fit as a functian of
measureD obtained from CPH fitting. The figure (and the for various orders (the cases when the number of phases

Slé?s.eqléefnt ongsl:i's fV\tlte Il) suggests th?t t{;]e désti[ance measulte greater than 2 result in practically the same goodness of
obtained trom Itting converges 1o the distance mea- fit). The distance measurésdecreases as— 0 indicating

sure obtained by the CPH approximationjasnds ta0. that the optimal fitting is achieved by applying CPH distri-
bution. This example suggests that, for distributions with

Figure 8. Distance measure as the function of
the scale factor ¢ for high cv? (L1)

2.2 Fitting distributions with high cv?

We have seen in the previous subsections that it is ben-
eficial to approximate distributions with a low coefficient
of variation by means of a DPH distributions. In this sub-
section, we investigate the optimal valuedoivhen fitting
Yistributions with a high coefficient of variation.

Let X be a Lognormal r.v. with parameters {.8) (this
is the distribution L1 taken from the benchmark in [5, 4]).
For X we haveE(X) = 1 andcv?(X) = 24.534. Figure 8

Table 1. Upper and lower bound of

distribution L3

o for fitting

n | lower bound o | upper bound of infinite support andv?(X) > 1/n, the optimal value o
equation (8) equation (7) tends to 0, implying that the best fit is obtained by a CPH.

4 0.2092 0.333 However, this conclusion might not be true for distributon

8 0.0792 0.1428 with finite support, as it is explored in the next subsection.

12 0.0425 0.0909

16 0.0217 0.0666 4.3 Fitting distributions with finite support

In this case, two features must be considered, namely the
cv? and the maximum value of the finite support. It should
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tinuity in the pdf (or in the cdf) is hard to approximate with
CPH, hence in the majority of these cases DPH provides a
better approximation.

Figure 11 shows the cdf and the pdf of the U1 distribu-
tion, compared with the best fit PH approximations of order
n = 10, and various scale factofis In the case of DPH ap-

be considered as not completely appropriate in the case oproximation, thef () values are calculated as in (9). With
finite support, since it does not force the approximating PH yespect to the chosen distance measure, the best approxi-
to have its mass confined in the finite support and 0 outside.mation is obtained fo5 = 0.03, which corresponds to a

Let X be a uniform r.v. over the intervdl, 2], with
E(X) = 1.5 andcv?(X) = 0.0370 (this is the distribution
U2 taken from the benchmark in [5, 4]). Figure 9 shows
the distance measure as a functionjdbr various orders
n. It is evident that, for each, a minimal value of§ is
obtained, that provides the best approximation according t
the chosen distance measure.

As a second example, Iéf be a uniform r.v. over the
interval[0, 1], with E(X) = 0.5 andcv?(X) = 0.333 (this
is the distribution U1 taken from the benchmark in [5, 4]).
Figure 10 shows the distance measure as a functiériaf
various orders:. Since, in this examplev?(X) = 0.333,
an ordern = 3 is large enough for a CPH to attain the
coefficient of variation of the distribution. Neverthelgtse
optimald in Figure (10), which minimizes the distance mea-
sureD for high order PH#4 > 2), ranges betweeh= 0.02
andd = 0.05, thus leading to the conclusion that a DPH

DPH distribution with infinite support . Wheh = 0.1 the
approximate distribution has a finite support. Hence, the
valued = 0.1 (for n = 10) provides a DPH able to rep-
resent the logical property that the random variable is less
thanl. Another fitting criterion may, of course, stress this

property.
5 Approximating non-Markovian models

Section 4 has explored the problem of how to find the
best fit among either a DPH or a CPH distribution by tuning
the scale factof. When dealing with a stochastic model of
a system that incorporates non exponential distributians,
well know solution technique consists in a markovianiza-
tion of the underlying non-Markovian process by substi-
tuting the non exponential distribution with a best fit PH

provides a better fit. This example evidences that the coef-distribution, and then expanding the state space. A natural

ficient of variation is not the only factor which influences
the optimalj value. The shape of the distribution plays an

guestion arises also in this case, on how to decide among a
discrete (using DPH) or a continuous (using CPH) approx-

essential role as well. Our experiments show that a discon-imation, in order to minimize the error in the performance
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Figure 12. The state space of the considered

M/G/1/2/2 queue Figure 13. esar With scale factor ¢ and distri-
bution L3
measures we are interested in for the overall model. 0.06 R
One possible way to handle this problem could consist 005 BN e e
in finding the best PH fits for any single distribution and i eo—
to plug them in the model. In the present paper, we only 0.04 8 bhases

10 phases ----
12 phases ------

consider the case where the PH distributions are either all
discrete (and with the same scale facipror they are all
continuous. Various embedding techniques have been ex- ,
plored in the literature for mixing DPH (with different seal 001 fgre o e S
factors) and CPH ([8, 9]), but these techniques are out of
the scope of the paper.

In order to quantitatively evaluate the influence of the
scale factor on some performance measures defined at the Figure 14. ejr4x with scale factor ¢ and distri-
system level, we have considered a preemptive M/G/1/2/2  bution L3
gueue with two classes of customers. We have chosen this
example because accurate analytical solutions are alailab
both in transient condition and in steady-state using the
methods presented in e.g.[8]. The general distribufios
taken from the set of distributions (L1, L3, U1, U2) already
considered in the previous section.

Customers arrive at the queue with rate= 0.5 in both

classes. The service time of a higher priority job is expenen th;g%g:’:;gg %ﬁ?@%ﬂ??ﬁgréf;rcotrslfegfa:;f: I?gggﬁi t?;
tially distributed with parameter = 1. The service time y P

distribution of the lower priority job is either L1, L3, Ul pi and the approximate steady state probabilifies Two

or U2. Arrival of a higher priority job preempts the lower error measures are defined:

priority one. The policy associated to the preemption of the esum = Z lpi —pi| and eprax = max|p; — pil.

lower priority job is preemptive repeat different (prdg.i. i ’

after the departure of the higher priority customer the ser- The evaluated numerical values fe§y s andey4x are

vice of the low priority customer starts from the beginning reported in Figures 13 and 14 for the distribution L3. Since

with a new service time sample. the behavior ofeasax is very similar to the behavior of
The system has 4 states (Figure 12): in stdfine server  egyas in all the cases, for the other distributions we report

is empty, in stats2a higher priority customer is under ser- esyas only (Figures 15, 16, 17). The figures, which re-

vice with no lower priority customer in the system, in state fer to the error measure in a performance index of a global

s3a higher priority customer is under service with a lower stochastic model, show a behavior similar to the one ob-

priority customer waiting, in state4 a lower priority job is tained for a single distribution fitting. Depending on the

under service (in this case there cannot be a higher prioritycoefficient of variation and on the shape of the considered

sum of errors
o
o
w

o

0.02 0.04 0.06 0.08 0.1 0.12 014 0.16 0.18 0.2
scale factor

tion we have solved the model by substituting the original
general distribution (either L1, L3, U1 or U2) with approx-
imating DPH or CPH distributions. Let; (i = 1, ..., 4)
denote the steady state probability of the M/PH/1/2/2 queue
with the PH approximation.

job). non-exponential distributions an optimal valueja$ found

Letp; (i =1, ..., 4) denote the steady state probability which minimizes the approximation error. In this example,
of the M/G/1/2/2 queue obtained from an exact analytical the optimal value ob is close to the one obtained for the
solution. single distribution fitting.

In order to evaluate the correctness of the PH approxima- Based on our experiments, we guess that the observed
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bution U1 ties

captures better the sharp change in the transient protyabili
Moreover, this value of is the only one among the values
reported in the figure that results in 0 probability for time
points smaller than 1. In other words, the second example
depicts the advantage given by DPH distributions to model
durations with finite support. This example suggests also
that DPH approximation can be of importance when pre-
serving reachability properties is crucial (like in modeli
time-critical systems) and, hence, DPH approximation can
be seen as a bridge between the world of stochastic model-

In order to investigate the approximation error in the . . . :
. : . o ing and the world of functional analysis and model checking
transient behavior, we have considered distribution U2 for 3]

the service time and we have computed the transient proba-
bility of states; with two differentinitial conditions. Figure ]
18 depicts the transient probability of statewith initial 6 Concluding remarks

states;. Figure 19 depicts the transient probability of the

same states;, when the service of a lower priority job starts The main result of this paper has been to show that the
at time O (the initial state is4). All approximations are  DPH and CPH classes of distributions of the same order
with DPH distributions of order. = 10. Only the DPH ap-  can be considered a single model set as a function of a scale
proximations are depicted because the CPH approximatiorfactoré. The optimal value of, d,,:, determines the best

is very similar to the DPH one with scale factbe= 0.03. distribution in a fitting experiment. Whef,,; = 0 the best

In the first case, (Figure 18), the scale factore= 0.03, choice is a CPH distribution, while whei,; > 0 the best
which was the optimal one from the point of view of fitting choice is a DPH distribution. This paper has also shown
the single distribution in isolation, provides the mostwacc  that the transition from DPH class to CPH class is continu-
rate results for the transient analysis as well. Insteathén  ous with respect to several properties, like the distanee (d
second case, the approximation with a scale fatter(.2 noted byD in 6) between the original and the approximate

property is rather general. If the stochastic model under
study contains a single non-exponential distributionnthe
the approximation error in the evaluation of the perfor-
mance indices of the global model can be minimized by re-
sorting to a PH type approximation (and subsequent DTMC
or CTMC expansion) with the optimalof the single distri-
bution. The same should be true if the stochastic model
under study contains more than one general distribution,
whose best PH fit provides the same optidhal



0.3

Acknowledgments

T T
Transient behaviour
Scale factor: 0.03 -------

Scale factor: 0.1 -------- i

02 /\ Scale factor: 02 This work has been performed under the Italian-Hungarian
02 P R&D program supported by the Italian Ministry of Foreign
oas / Affairs and the Hungarian Ministry of Education. A. Bob-

] bio was partially supported by the MURST Under Grant
01 i ISIDE; M. Telek was partially supported by Hungarian Sci-

transient probability

0.05 entific Research Fund (OTKA) under Grant No. T-34972.
0
° ' e ‘ ’ References
Figure 19. Approximating transient probabili- [1] D. Aldous and L. Shepp. The least variable phase type dis-
ties tribution is Erlang.Stochastic Mode|3:467—473, 1987.

[2] A. Bobbio and A. Cumani. ML estimation of the param-
eters of a PH distribution in triangular canonical form. In
S L . G. Balbo and G. Serazzi, editor€omputer Performance
distributions. The paper_ presents_llmlt theo_rems for spleci Evaluation pages 33-46. Elsevier Science Publishers, 1992.
cases; however, extensive numerical experiments show that [3] A. Bobbio and A. Horvath. Petri nets with discrete phase
the limiting behavior is far more general than the special type timing: A bridge between stochastic and functional
cases considered in the theorems. analysis.Electronic Notes in Theoretical Computer Scignce
52(3), 2001.
[4] A. Bobbio, A. Horvath, M. Scarpa, and M. Telek. Acyclic
discrete phase type distributions: Properties and a paeame

The numerical examples have also evidenced that for
very small values of, the diagonal elements of the tran-

sition probability matrix become very close torendering estimation algorithm. Technical Report of Budapest Uni-
numerically unstable the DPH fitting procedure. versity of Technology and Economics, Submitted to Perfor-
A deep analytical and numerical sensitivity analysis is mance Evaluation, 2000.

[5] A. Bobbio and M. Telek. A benchmark for PH estima-

required to draw more general conclusions for the model . X . .
q 9 tion algorithms: results for Acyclic-PHStochastic Models

level “optimal § value” and its dependence on the consid- 10'661-677. 1994
ered performance measure than the ones presented in this[s] A. Cumani. On the canonical representation of homoge-

work. It is definitely a field of further research. neous Markov processes modelling failure-time distribu-
Finally, we summarize the advantages and the disadvan- tions. Micr_oelectronics and Reliability22:583—_602, 1982.
tages of applying approximate DPH models (even with op- 1 A. Cumani. Esp - A package for the evaluation of stochas-

timal § value) with respect to using CPH approximations tic Petri nets with phase-type distributed transition sme
P 9 PP ’ In Proceedings International Workshop Timed Petri Nets

Advantages of using DPHn obvious advantage of the ap- pages 144-151, Torino (ltaly), 1985. o
plication of DPH distributions is that one can have a closer [8] R. German.Performance Analysis of Communication Sys-
approximate of distributions with low coefficient of varia- tems: Modeling with Non-Markovian Stochastic Petri Nets

John Wiley and Sons, 2000.

[9] R. Jones and G. Ciardo. On phased delay stochastic Petri
nets: Definition and application. IRroceedings 9th Inter-
national Workshop on Petri Nets and Performance Models -

tion. An other important quantitative property of the DPH
class is that it can capture distributions with finite suppor
and deterministic values. This property allows to capture

the periodic behavior of a complex stochastic model, while PNPMO1 IEEE Computer Society, 2001.
any CPH based approximation of the same model tends to a10] A. Lang and J. L. Arthur. Parameter approximation for
steady state. phase-type distributions. IMatrix-analytic methods in

. : stochastic mode]d_ecture notes in pure and applied mathe-
Numerical experiments have also shown that DPH can matics, pages 151-206. Marcel Dekker, Inc., 1996.

better approximate distributions with some abrupt or sharp [11] M. Neuts. Probability distributions of phase type. Liiber
changes in the CDF or in the PDF. Amicorum Prof. Emeritus H. Florinpages 173-206. Uni-
Disadvantages of using DPHrhere is a definite disad- versity of Louvain, 1975. o _
vantage of discrete time approximation of continuous time [12] M. Neuts.Matrix Geometric Solutions in Stochastic Models
models. In the case of CPH approximation, coincident Johns Hopkins University Press, Baltimore, 1981.

ts d th to b idered (thev h b [13] M. Telek. Minimal coefficient of variation of discrete
events do not have to be considered (they have zero proba- phase type distributions. [8rd International Conference

bility of occurrence). Instead, when applying DPH approxi- on Matrix-Analitic Methods in Stochastic models, MAM3
matlon_commdent events_haye to be handled, and_ their con- pages 391-400, Leuven, Belgium, 2000. Notable Publica-
sideration may burden significantly the complexity of the tions Inc.

analysis.



