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Abstract

This paper introduces a unified approach to phase-type
approximation in which the discrete and the continuous
phase-type models form a common model set. The models
of this common set are assigned with a non-negative real
parameter, thescale factor. The case when the scale factor
is strictly positive results in Discrete phase-type distribu-
tions and the scale factor represents the time elapsed in one
step. If the scale factor is 0, the resulting class is the class
of Continuous phase-type distributions. Applying the above
view, it is shown that there is no qualitative difference be-
tween the discrete and the continuous phase-type models.

Based on this unified view of phase-type models one can
choose the best phase-type approximation of a stochastic
model by optimizing the scale factor.

Keywords: Discrete and Continuous Phase type distri-
butions, Phase type expansion, approximate analysis.

1 Introduction

This paper presents new comparative results on the use
of Discrete Phase Type (DPH) distributions [11] and of
Continuous Phase Type (CPH) distributions [12] in applied
stochastic modeling.

DPH distributions of ordern are defined as the time to
absorption in a Discrete-State Discrete-Time Markov Chain
(DTMC) with n transient states and one absorbing state.
CPH distributions of ordern are defined, similarly, as the
distribution of the time to absorption in a Discrete-State
Continuous-Time Markov Chain (CTMC) withn transient
states and one absorbing state. The above definition im-
plies that the properties of a DPH distribution are computed
over the set of the natural numbers while the properties of a
CPH distribution are defined as a function of a continuous
time variablet. When DPH distributions are used to model
timed activities, the set of the natural numbers must be re-
lated to a time measure. Hence, a new parameter need to be
introduced that represents the time span associated to each

step. This new parameter is the scale factor of the DPH dis-
tribution, and can be viewed as a new degree of freedom,
since its choice largely impacts the shape and properties of
a DPH distribution over the continuous time axes. When
DPH distributions are used to approximate a given continu-
ous distribution, the scale factor affects the goodness of the
fit.

The paper starts discussing to what extent DPH or CPH
distributions can be utilized to fit a given continuous distri-
bution. It is shown that a DPH distribution of any order con-
verges to a CPH distribution of the same order as the scale
factor goes to zero. Even so, the DPH class contains dis-
tributions whose behavior differs substantially from the one
of the corresponding distributions in the CPH class. Two
main peculiar points differentiate the DPH class from the
CPH class. The first point concerns the coefficient of varia-
tion: indeed, while in the continuous case the minimum co-
efficient of variation is a function of the order only and its
lower bound is given by the well known theorem of Aldous
and Shepp [1], in the discrete case the minimum coefficient
of variation is proved to depend both on the order and on
the mean (and hence on the scale factor) [13]. Furthermore,
it is easy to see that for any order, there exist members of
the DPH class that represent a deterministic value with a
coefficient of variation equal to zero. Hence, for any order
(greater than 1), the coefficient of variation of the DPH class
spans from zero to infinity.

The second peculiar point that differentiate the DPH
class is the support of the distributions. While a CPH dis-
tribution (of any order) has always an infinite support, there
exist members of the DPH class of any order that have a
finite support (between a minimum non-negative value and
a maximum) or have a mass equal to one concentrated in a
single value (deterministic distribution).

It turns out that the possibility of
� tuning the scale factor to optimize the goodness of the

fit,
� having distributions with coefficient of variation span-

ning from 0 to infinity,
� representing deterministic values exactly,
� coping with finite support distributions,



makes the DPH class a very interesting and challenging
class of distributions to be explored in applied stochastic
models. The purpose of this paper is to show how these fa-
vorable properties can be exploited in practice, and to pro-
vide guidelines to the modeler to a reasonably good choice
of the distributions to be used. Indeed, since a DPH dis-
tribution tends to a CPH distribution as the scale factor ap-
proaches zero, considering the scale factor as a new decision
variable in a fitting experiment, and finding the value of the
optimal scale factor (with respect to some error measure)
provides a valuable tool to decide whether to use a discrete
or a continuous approximation to the given problem.

The fitting problem for the CPH class has been exten-
sively studied and reported in the literature by resorting to a
variety of structures and numerical techniques (see [10] for
a survey). Conversely, the fitting problem for the DPH class
has received very little attention [4].

In recent years, a considerable effort has been devoted
to define models with generally distributed timings and to
merge in the same model random variables and determin-
istic duration. Analytical solutions are possible in special
cases, and the approximation of the original problems by
means of CPH distributions is a rather well known tech-
nique [7]. This paper is aimed at emphasizing that DPH
approximation may provide a more convenient alternative
with respect to CPH approximation, and also to provide a
way to quantitatively support this choice. Furthermore, the
use of DPH approximation can be extended from stochas-
tic models to functional analysis where time intervals with
nondeterministic choice are considered [3]. Finally, dis-
cretization techniques for continuous problems [8] can be
restated in terms of DPH approximations.

The rest of the paper is organized as follows. After defin-
ing the notation to be used in the paper in Section 2, Section
3 discusses the peculiar properties of the DPH class with re-
spect to the CPH class. Some guidelines for bounding the
parameters of interest and extensive numerical experiments
to show how the goodness of the fit is influenced by the op-
timal choice of the scale factor are reported in Section 4.
Section 5 discusses the quality of the approximation when
passing from the analysis of a single distribution to the anal-
ysis of performance measures in complete non-Markovian
stochastic models. The paper is concluded in Section 6.

2 Definition and Notation

A DPH distribution [11, 12] is the distribution of the time
to absorption in a DTMC withn transient states, and one
absorbing state numbered(n + 1). The one-step transition
probability matrix of the corresponding DTMC can be par-
titioned as:

b
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�

B b

0 1

�

(1)

whereB = [b

ij

℄ is the(n� n) matrix collecting the transi-
tion probabilities among the transient states,b = [b

i;n+1

℄

T

is the column vector of lengthn grouping the probabilities
from any state to the absorbing one, and0 = [0℄ is the
zero vector. The initial probability vectorb� = [�; �

n+1
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is of length(n + 1), with
P

n
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. In the
present paper, we consider only the class of DPH distribu-
tions for which�

n+1

= 0, but the extension to the case
when�

n+1

> 0 is straightforward. The tuple(�; B) is
called the representation of the DPH distribution, andn the
order.

Similarly, a CPH distribution [12] is the distribution of
the time to absorption in a CTMC withn transient states,
and one absorbing state numbered(n + 1). The infinites-
imal generatorbQ of the CTMC can be partitioned in the
following way:

b

Q =

�

Q q
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(2)

where,Q is a (n � n) matrix that describes the tran-
sient behavior of the CTMC andq is the column vector
grouping the transition rates to the absorbing state. Let
�̂ = [�; �

n+1

℄ be the(n + 1) initial probability (row)
vector with

P

n

i=1

�

i

= 1 � �

n+1

. The tuple(�; Q) is
called the representation of the CPH distribution, andn the
order.

It has been shown in [4] for the discrete case and in [6]
for the continuous case that the representations in (1) and
(2), because of their too many free parameters, do not pro-
vide a convenient form for running a fitting algorithm. In-
stead, resorting to acyclic phase-type distributions, thenum-
ber of free parameters is reduced significantly since both in
the discrete and the continuous case a canonical form can be
used. The canonical form and its constraints for the discrete
case [4] is depicted in Figure 1. Figure 2 gives the canonical
form and associated constraints for the continuous case. In
both cases the canonical form corresponds to a mixture of
Hypo-exponential distributions.

A fitting algorithm that provides acyclic CPH, acyclic
DPH distributions has been provided in [2] and [4], respec-
tively. Experiments suggests (an exhaustive comparison of
fitting algorithms can be found in [10]) that, from the point
of view of applications, the Acyclic phase-type class is as
flexible as the whole phase-type class.

3 Comparing properties of CPH and DPH
distributions

CTMC are defined as a function of a continuous time
variablet, while DTMC are defined over the set of the nat-
ural numbers. In order to relate the number of jumps in a
DTMC with a time measure, a time span must be assigned
to each step. LetÆ be (in some arbitrary units) the scale
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Figure 1. Canonical representation of acyclic
DPH distributions and its constraints

a

1

a

2

q

2

q

1

a

n

q

n

n

X

i=1

a

i

= 1;

0 < q

i

� q

i+1

; 1 � i � n� 1

Figure 2. Canonical representation of acyclic
CPH distributions and its constraints

factor, i.e. the time span assigned to each step. The value
of Æ establishes an equivalence between the sentence ”prob-
ability at thek-th step” and ”probability at timek Æ”, and
hence, defines the time scale on which the properties of the
DTMC are measured. The consideration of the scale factor
Æ introduces a new parameter, and consequently a new de-
gree of freedom, in the DPH class with respect to the CPH
class. In the following, we discuss how this new degree of
freedom impacts the properties of the DPH class and how it
can be exploited in practice.

Letu be an ”unscaled” DPH distributed random variable
(r.v.) of ordernwith representation(�; B), defined over the
set of the non-negative natural numbers. Let us consider a
scale factorÆ; the scaled r.v.� = Æ u is defined over the dis-
crete set of time points(0; 1 Æ; 2 Æ; 3 Æ; : : : ; k Æ; : : :), being
k a non-negative natural number. For the unscaled and the
scaled DPH r.v. the following equations hold.
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wheree is the column vector of ones, andE(u

i

) is the
i-th moment calculated from the factorial moments ofu:
E(u(u � 1) : : : (u � i + 1)) = i!�(I � B)

�i

B
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e. It is
evident from (3) that the meanm

�

of the scaled r.v.� is Æ
times the meanm

u

of the unscaled r.v.u. While m

u

is an
invariant of the representation(�; B), Æ is a free parame-
ter; adjustingÆ, the scaled r.v. can assume any mean value
m

�

� 0. On the other hand, one can easily infer from (3)
that the coefficients of variation of� andu are equal. A
consequence of the above properties is that one can easily
provide a scaled DPH of order� 2 with arbitrary mean and
arbitrary coefficient of variation with an appropriate scale
factor. Or more formally: the unscaled DPH r.v.u of any

ordern > 1 can exhibit a coefficient of variation between
0 � v

2

u

�1. Forn = 1 the coefficient of variation ranges
between0 � v

2

u

� 1.
As mentioned earlier, an important property of the DPH

class with respect to the CPH class is the possibility of
exactly representing a deterministic delay. A determinis-
tic distribution with valuea can be realized by means of a
scaled DPH distribution withn phases with scale factorÆ if
n = a=Æ is integer. In this case, the structure of the DPH
distribution is such that phasei is connected with probabil-
ity 1 only to phasei + 1 (i = 1; : : : ; n), and with an initial
probability concentrated in state 1. Ifn = a=Æ is not inte-
ger for the givenÆ, the deterministic behavior can only be
approximated.

3.1 First order discrete approximation of CTMCs

Given a CTMC with infinitesimal generatoreQ, the tran-
sition probability matrix over an interval of lengthÆ can be
written as:

e

e

QÆ

=

1

X

i=0

(

e

QÆ)

i

=i! = I+

e

QÆ + �(Æ);

hence the first order approximation ofe

e

QÆ is matrix�(Æ) =

I+

e

QÆ. �(Æ) is a proper stochastic matrix ifÆ < 1=q, where
q = max

i;j

j

e

Q

ij

j. �(Æ) is the exact transition probability
matrix of the CTMC assumed that at most one transition
occurs in the interval of lengthÆ.

We can approximate the behavior of the CTMC at time
(0; Æ; 2Æ; 3Æ; : : : ; kÆ; : : :) using the DTMC with transition
probability matrix�(Æ). The approximate transition prob-
ability matrix at timet = kÆ is:

�(Æ)

k

= (I+

e

QÆ)

t

Æ

The following theorem proves the property that the
above first order approximation becomes exact asÆ ! 0.
Theorem 1 As the length of the interval of the first order
approximation,Æ, tends to0, such thatt = kÆ the approxi-
mate transition probability matrix tends to the exact one.
Proof: The scalar version of the applied limiting behavior
is well-known in the following formlim

x!0

(1 + ax)

1

x

=

e

a. Since matricesI and eQ commute we can obtain the
matrix version of the same expression as follows
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An obvious consequence of Theorem 1 for PH distribu-
tions is given in the following corollary.



Corollary 1 Given a scaled DPH distribution of ordern,
representation(�; I+QÆ) and scale factorÆ, the limiting
behavior asÆ ! 0 is the CPH distribution of ordern with
representation(�; Q).

3.2 The minimum coefficient of variation

It is known that one of the main limitation in approx-
imating a given distribution by a PH one is the attainable
minimal coefficient of variation,v2

min

. In order to discuss
this point, we recall two theorems that state thev

2

min

for
the class of CPH and DPH distributions.

Theorem 2 (Aldous and Shepp [1])Thev2
min

of a CPH
distributed r.v. of ordern is v

2

min

= 1=n and is attained
by the Erlang(n) distribution independent of its meanm



or
of its parameter� = n=m



.

The corresponding theorem for the unscaled DPH class
has been proved in [13]. In the following,bx denotes the
integer part andhxi denotes the fractional part ofx.

Theorem 3 Thev2
min

of an unscaled DPH r.v. of ordern
and meanm

u

is:
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� n ;
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1
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u

if m
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> n ;

(4)

The unscaled DPH r.v. which exhibits this minimal coeffi-
cient of variation has the following canonical structure:

� if m
u

� n: each state is connected to the next with
probability 1 and the nonzero initial probabilities are
�

n�bm

u



= hm

u

i and�
n�bm

u

+1

= 1� hm

u

i (Fig-
ure 3);

� if m
u

> n: each state is connected to the next with
probabilityn=m

u

and the only nonzero initial proba-
bility is �

1

= 1 (Figure 4).
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Implications of the above theorems for what concerns the
ability of approximating distributions with low coefficient
of variation is drawn in [4].

3.3 The minimum coefficient of variation of scaled
DPH distributions

For scaled DPH distribution Theorem 3 can be restated
as follows.

Theorem 4 Thev2
min

of a scaled DPH r.v. of ordern with
scale factorÆ and meanm

�

= Æ m

u

is:
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(5)

The scaled DPH r.v. which exhibits thev2
min

has the same
MDPH structure of Figures (3) and (4), as in the unscaled
case (see Theorem 3).

Corollary 2 For finite meanm
�

, asÆ ! 0 only the second
part of (5) remains effective, andv2

min

! 1=n asÆ ! 0.

Corollary 2 proves that thev2
min

of the DPH class con-
verges to thev2

min

of the CPH class of the same order as
Æ  0. The following corollary presents a much stronger
convergence result for the case of approximating distribu-
tions with low coefficient of variation. It is about the con-
vergence of the distributions.

Corollary 3 Thebest fittingscaled DPH approximation of
distributions with low coefficient of variation converges,in
distribution, to thebest fittingCPH approximation of the
same distribution asÆ tends to0, where thebest fittingPH
approximation is defined as the one which exhibits the same
mean and provides the closest approximation for the 2nd
moment.

Proof: Both the CPH and the DPH classes have limits
in approximating distributions with low coefficient of vari-
ation. The best approximation of a distribution with coeffi-
cient of variation less than these limits is the Erlang(n) dis-
tribution in both the discrete and the continuous case (The-
orem 2 and 3).

The representation(�; Q) of the continuous Erlang(n)
with meanm

�

and the representation(�; B) of the discrete
Erlang(n) with meanm

�

, scale factorÆ are:

� = f1; 0; : : : ; 0g; Q =

�

n

m

�

n

m

�

0 : : : 0

0 �

n

m

�

n

m

�

: : :

. . .
0 : : : �

n

m

�

� = f1; 0; : : : ; 0g; B =

1�

nÆ

m

�

nÆ

m

�

0 : : : 0

0 1�

nÆ

m

�

nÆ

m

�

: : :

. . .
0 : : : 1�

nÆ

m

�

Note thatB = I�QÆ and Corollary 3 follows from Corol-
lary 1.2



In this particular case, when the structure of the best fit-
ting scaled DPH and CPH distributions are known, we can
show that the distribution of the best fitting scaled DPH dis-
tribution converges to the distribution of the best fitting CPH
distribution whenÆ ! 0. Unfortunately, the same conver-
gence property cannot be proved in general, since the struc-
tural properties of the best fitting PH distributions are not
known and they depend on the chosen (arbitrary) optimiza-
tion criterion. Instead, in Section 4 we provide an extensive
experimental study on the behavior of the best fitting scaled
DPH and CPH distributions as a function of the scale factor
Æ .

3.4 DPH distributions with finite support

Another peculiar characteristic of the DPH class is to
contain distributions with finite support. A DPH distribu-
tion has finite support if its structure does not contain cycles
and self-loops (any cycle or self loop implies an infinite sup-
port).

Let [a; b℄ be the finite support of a given distribution, with
a; b � 0 anda � b (whena = b the finite support distri-
bution reduces to a deterministic distribution with mass 1 at
a = b). If a=Æ andb=Æ are both integers, it is possible to
construct a scaled DPH of orderb=Æ for which the probabil-
ity mass function has non-zero elements only for the values
a; a+ Æ; a+ 2Æ; :::; b. As an example, the discrete uniform
distribution betweena = 2 andb = 6 is reported in Figure
5, for scale factorÆ = 1.

1=5

0

1

1=5

1

1=5

1

1=5

1

1=5

1 1

Figure 5. DPH representation of the discrete
uniform distribution [a = 2; b = 6℄

4 The optimal Æ in PH fitting

The scale factorÆ provides a new degree of freedom in
fitting, and, furthermore, since the limit of a DPH distribu-
tion for Æ ! 0 is a CPH distribution, the optimization of the
scale factor in a fitting problem provides a quantitative way
to decide whether a continuous or a discrete approximation
performs better in the given problem. Hence, assumingÆ as
a decision variable, we can consider the CPH and the DPH
class as a unique model set in which the choice among DPH
or CPH classes is given by the optimal value ofÆ.

Let X be the continuous r.v. to be fit by a PH distri-
bution, and letF

X

(x) be its cdf,E(X

i

) the i-th moment
andv2(X) the squared coefficient of variation. In order
to define a fitting procedure, a distance measure between

X and the approximating PH distribution needs to be de-
fined. Then, the fitting algorithm provides the PH distri-
bution which minimizes the chosen distance measure. In
order to compare, in a unified framework, the goodness of
the approximation reached by CPH and DPH distributions,
we need to chose a distance measure that is meaningful and
applicable both in the continuous as well as in the discrete
setting. The selected distance measure is the squared area
difference between the original cdfF (�) and the approxi-
mating cdf ^F (�):

D =

Z

x

(F (x)�

^

F (x))

2

dx (6)

The distance measureD is easily applicable for any com-
bination of discrete and continuous distributions. All the
numerical experiments reported in the sequel are based on
the minimization of the area difference given in (6).

4.1 Fitting distributions with low v

2

The following considerations provide practical upper
and lower bounds to guide in the choice of a suitable scale
factor Æ, and are mainly based on the dependence of the
minimal coefficient of variation of a scaled DPH distribu-
tion on the ordern and on the meanm

�

.
Since we only consider DPH distributions with no mass

at zero, the mean of any unscaled DPH distribution is
greater than1. This means thatÆ should be less thanE(X).
However, a more convenient upper bound that exploits the
flexibility associated with then phases, is given by:

Æ �

E(X)

n� 1

: (7)

If the squared coefficient of variation of the distribution to
be approximated is less than1=n, Æ should satisfy the fol-
lowing relation (see Theorem 3):

Æ >

�

1

n

� v

2

(X)

�

E(X) (8)

Let X be a Lognormal r.v. with parameters (1; 0:2),
whose mean isE(X) = 1 andv2(X) = 0:0408 (this dis-
tribution is the distribution L3 taken from the benchmark
examined in [5, 4], hence we refer to it as L3). Table 1 re-
ports the lower and upper bounds ofÆ, withn = 2; 4; 8; 12,
computed from (8) and (7).

The cdf and pdf of the approximating CPH and DPH dis-
tributions of ordern = 10, with different scale factorsÆ, are
presented in Figure 6. When considering the approximate
DPH distribution, thef(x) values are calculated at the dis-
crete points (Æ; 2Æ; 3Æ; : : : ; kÆ; : : :) to which the following
mass is assigned:

f(kÆ) = 1=Æ(F (kÆ)� F ((k � 1)Æ)) (9)

For the ease of visual interpretation the points are connected
with a line.
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Figure 6. Approximating the L3 distribution
with 10-phase PH approximations

WhenÆ is less than its lower bound the requiredv

2 can-
not be attained; whenÆ becomes too large the wide separa-
tion of the discrete steps increases the approximation error;
whenÆ is in the proper range (e.g.n = 10; Æ = 0:06) a
reasonably good fit is achieved. This example also suggests
that an optimal value ofÆ exists that minimizes the chosen
distance measureD in (6).

In order to display the goodness of fit for the L3 distribu-
tion, Figure 7 shows the distance measureD as a function of
Æ for various values of the ordern. A minimum value ofÆ
is attained in the range where the parameters fit the bounds
of Table 1. Notice also that, asÆ increases, the advantage
of having more phases disappears, according to Theorem 3.
The circles in the left part of this figure (as well as in all
the successive figures) indicate the corresponding distance
measureD obtained from CPH fitting. The figure (and the
subsequent ones as well) suggests that the distance measure
obtained from DPH fitting converges to the distance mea-
sure obtained by the CPH approximation asÆ tends to0.

n lower bound ofÆ upper bound ofÆ
equation (8) equation (7)

4 0.2092 0.333
8 0.0792 0.1428
12 0.0425 0.0909
16 0.0217 0.0666

Table 1. Upper and lower bound of Æ for fitting
distribution L3
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the scale factor Æ for high v

2 (L1)

4.2 Fitting distributions with high v

2

We have seen in the previous subsections that it is ben-
eficial to approximate distributions with a low coefficient
of variation by means of a DPH distributions. In this sub-
section, we investigate the optimal value ofÆ when fitting
distributions with a high coefficient of variation.

Let X be a Lognormal r.v. with parameters (1; 1:8) (this
is the distribution L1 taken from the benchmark in [5, 4]).
ForX we haveE(X) = 1 andv2(X) = 24:534. Figure 8
shows the measure of the goodness of fit as a function ofÆ

for various ordersn (the cases when the number of phases
are greater than 2 result in practically the same goodness of
fit). The distance measuresD decreases asÆ ! 0 indicating
that the optimal fitting is achieved by applying CPH distri-
bution. This example suggests that, for distributions with
infinite support andv2(X) > 1=n, the optimal value ofÆ
tends to 0, implying that the best fit is obtained by a CPH.
However, this conclusion might not be true for distributions
with finite support, as it is explored in the next subsection.

4.3 Fitting distributions with finite support

In this case, two features must be considered, namely the
v

2 and the maximum value of the finite support. It should
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Figure 9. Distance measure as the function of
the scale factor Æ for Uniform(1,2) (U2)
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Figure 10. Distance measure as the function
of the scale factor Æ for Uniform(0,1) (U1)

be stressed that the chosen distance measureD in (6) can
be considered as not completely appropriate in the case of
finite support, since it does not force the approximating PH
to have its mass confined in the finite support and 0 outside.

Let X be a uniform r.v. over the interval[1; 2℄, with
E(X) = 1:5 andv2(X) = 0:0370 (this is the distribution
U2 taken from the benchmark in [5, 4]). Figure 9 shows
the distance measure as a function ofÆ for various orders
n. It is evident that, for eachn, a minimal value ofÆ is
obtained, that provides the best approximation according to
the chosen distance measure.

As a second example, letX be a uniform r.v. over the
interval[0; 1℄, with E(X) = 0:5 andv2(X) = 0:333 (this
is the distribution U1 taken from the benchmark in [5, 4]).
Figure 10 shows the distance measure as a function ofÆ for
various ordersn. Since, in this examplev2(X) = 0:333,
an ordern = 3 is large enough for a CPH to attain the
coefficient of variation of the distribution. Nevertheless, the
optimalÆ in Figure (10), which minimizes the distance mea-
sureD for high order PH (n > 2), ranges betweenÆ = 0:02

andÆ = 0:05, thus leading to the conclusion that a DPH
provides a better fit. This example evidences that the coef-
ficient of variation is not the only factor which influences
the optimalÆ value. The shape of the distribution plays an
essential role as well. Our experiments show that a discon-
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Figure 11. Approximating the Uniform ( 0; 1)
distribution (U1)

tinuity in the pdf (or in the cdf) is hard to approximate with
CPH, hence in the majority of these cases DPH provides a
better approximation.

Figure 11 shows the cdf and the pdf of the U1 distribu-
tion, compared with the best fit PH approximations of order
n = 10, and various scale factorsÆ. In the case of DPH ap-
proximation, thef(x) values are calculated as in (9). With
respect to the chosen distance measure, the best approxi-
mation is obtained forÆ = 0:03, which corresponds to a
DPH distribution with infinite support . WhenÆ = 0:1 the
approximate distribution has a finite support. Hence, the
valueÆ = 0:1 (for n = 10) provides a DPH able to rep-
resent the logical property that the random variable is less
than1. Another fitting criterion may, of course, stress this
property.

5 Approximating non-Markovian models

Section 4 has explored the problem of how to find the
best fit among either a DPH or a CPH distribution by tuning
the scale factorÆ. When dealing with a stochastic model of
a system that incorporates non exponential distributions,a
well know solution technique consists in a markovianiza-
tion of the underlying non-Markovian process by substi-
tuting the non exponential distribution with a best fit PH
distribution, and then expanding the state space. A natural
question arises also in this case, on how to decide among a
discrete (using DPH) or a continuous (using CPH) approx-
imation, in order to minimize the error in the performance
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Figure 12. The state space of the considered
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measures we are interested in for the overall model.
One possible way to handle this problem could consist

in finding the best PH fits for any single distribution and
to plug them in the model. In the present paper, we only
consider the case where the PH distributions are either all
discrete (and with the same scale factorÆ) or they are all
continuous. Various embedding techniques have been ex-
plored in the literature for mixing DPH (with different scale
factors) and CPH ([8, 9]), but these techniques are out of
the scope of the paper.

In order to quantitatively evaluate the influence of the
scale factor on some performance measures defined at the
system level, we have considered a preemptive M/G/1/2/2
queue with two classes of customers. We have chosen this
example because accurate analytical solutions are available
both in transient condition and in steady-state using the
methods presented in e.g.[8]. The general distributionG is
taken from the set of distributions (L1, L3, U1, U2) already
considered in the previous section.

Customers arrive at the queue with rate� = 0:5 in both
classes. The service time of a higher priority job is exponen-
tially distributed with parameter� = 1. The service time
distribution of the lower priority job is either L1, L3, U1
or U2. Arrival of a higher priority job preempts the lower
priority one. The policy associated to the preemption of the
lower priority job is preemptive repeat different (prd), i.e.
after the departure of the higher priority customer the ser-
vice of the low priority customer starts from the beginning
with a new service time sample.

The system has 4 states (Figure 12): in states1the server
is empty, in states2a higher priority customer is under ser-
vice with no lower priority customer in the system, in state
s3a higher priority customer is under service with a lower
priority customer waiting, in states4a lower priority job is
under service (in this case there cannot be a higher priority
job).

Let p
i

(i = 1; : : : ; 4) denote the steady state probability
of the M/G/1/2/2 queue obtained from an exact analytical
solution.

In order to evaluate the correctness of the PH approxima-
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tion we have solved the model by substituting the original
general distribution (either L1, L3, U1 or U2) with approx-
imating DPH or CPH distributions. Let̂p

i

(i = 1; : : : ; 4)

denote the steady state probability of the M/PH/1/2/2 queue
with the PH approximation.

The overall approximation error is measured in terms of
the difference between the exact steady state probabilities
p

i

and the approximate steady state probabilitiesp̂

i

. Two
error measures are defined:

�

SUM

=

X

i

jp

i

� p̂

i

j and �

MAX

= max

i

jp

i

� p̂

i

j:

The evaluated numerical values for�
SUM

and �
MAX

are
reported in Figures 13 and 14 for the distribution L3. Since
the behavior of�

MAX

is very similar to the behavior of
�

SUM

in all the cases, for the other distributions we report
�

SUM

only (Figures 15, 16, 17). The figures, which re-
fer to the error measure in a performance index of a global
stochastic model, show a behavior similar to the one ob-
tained for a single distribution fitting. Depending on the
coefficient of variation and on the shape of the considered
non-exponential distributions an optimal value ofÆ is found
which minimizes the approximation error. In this example,
the optimal value ofÆ is close to the one obtained for the
single distribution fitting.

Based on our experiments, we guess that the observed
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property is rather general. If the stochastic model under
study contains a single non-exponential distribution, then
the approximation error in the evaluation of the perfor-
mance indices of the global model can be minimized by re-
sorting to a PH type approximation (and subsequent DTMC
or CTMC expansion) with the optimalÆ of the single distri-
bution. The same should be true if the stochastic model
under study contains more than one general distribution,
whose best PH fit provides the same optimalÆ.

In order to investigate the approximation error in the
transient behavior, we have considered distribution U2 for
the service time and we have computed the transient proba-
bility of states

1

with two different initial conditions. Figure
18 depicts the transient probability of states

1

with initial
states

1

. Figure 19 depicts the transient probability of the
same state,s

1

, when the service of a lower priority job starts
at time 0 (the initial state iss

4

). All approximations are
with DPH distributions of ordern = 10. Only the DPH ap-
proximations are depicted because the CPH approximation
is very similar to the DPH one with scale factorÆ = 0:03.
In the first case, (Figure 18), the scale factorÆ = 0:03,
which was the optimal one from the point of view of fitting
the single distribution in isolation, provides the most accu-
rate results for the transient analysis as well. Instead, inthe
second case, the approximation with a scale factorÆ = 0:2
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Figure 18. Approximating transient probabili-
ties

captures better the sharp change in the transient probability.
Moreover, this value ofÆ is the only one among the values
reported in the figure that results in 0 probability for time
points smaller than 1. In other words, the second example
depicts the advantage given by DPH distributions to model
durations with finite support. This example suggests also
that DPH approximation can be of importance when pre-
serving reachability properties is crucial (like in modeling
time-critical systems) and, hence, DPH approximation can
be seen as a bridge between the world of stochastic model-
ing and the world of functional analysis and model checking
[3].

6 Concluding remarks

The main result of this paper has been to show that the
DPH and CPH classes of distributions of the same order
can be considered a single model set as a function of a scale
factorÆ. The optimal value ofÆ, Æ

opt

, determines the best
distribution in a fitting experiment. WhenÆ

opt

= 0 the best
choice is a CPH distribution, while whenÆ

opt

> 0 the best
choice is a DPH distribution. This paper has also shown
that the transition from DPH class to CPH class is continu-
ous with respect to several properties, like the distance (de-
noted byD in 6) between the original and the approximate
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ties

distributions. The paper presents limit theorems for special
cases; however, extensive numerical experiments show that
the limiting behavior is far more general than the special
cases considered in the theorems.

The numerical examples have also evidenced that for
very small values ofÆ, the diagonal elements of the tran-
sition probability matrix become very close to1, rendering
numerically unstable the DPH fitting procedure.

A deep analytical and numerical sensitivity analysis is
required to draw more general conclusions for the model
level “optimal Æ value” and its dependence on the consid-
ered performance measure than the ones presented in this
work. It is definitely a field of further research.

Finally, we summarize the advantages and the disadvan-
tages of applying approximate DPH models (even with op-
timal Æ value) with respect to using CPH approximations.

Advantages of using DPH:An obvious advantage of the ap-
plication of DPH distributions is that one can have a closer
approximate of distributions with low coefficient of varia-
tion. An other important quantitative property of the DPH
class is that it can capture distributions with finite support
and deterministic values. This property allows to capture
the periodic behavior of a complex stochastic model, while
any CPH based approximation of the same model tends to a
steady state.

Numerical experiments have also shown that DPH can
better approximate distributions with some abrupt or sharp
changes in the CDF or in the PDF.

Disadvantages of using DPH:There is a definite disad-
vantage of discrete time approximation of continuous time
models. In the case of CPH approximation, coincident
events do not have to be considered (they have zero proba-
bility of occurrence). Instead, when applying DPH approxi-
mation coincident events have to be handled, and their con-
sideration may burden significantly the complexity of the
analysis.
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