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Abstract

This paper introduces a unified approach to phase-type approximation in which
the discrete and the continuous phase-type models form a common model set. The
models of this common set are assigned with a non-negative real parameter, the
scale factor. The case when the scale factor is strictly positive results in Discrete
phase-type distributions and the scale factor represents the time elapsed in one
step. If the scale factor is 0, the resulting class is the class of Continuous phase-
type distributions. Applying the above view, it is shown that there is no qualitative
difference between the discrete and the continuous phase-type models.

Based on this unified view of phase-type models one can choose the best phase-
type approximation of a stochastic model by optimizing the scale factor.

Key words: Discrete and Continuous Phase-type distributions, Phase-type
expansion, approximate analysis

1 Introduction

This paper presents new comparative results on the use of Discrete Phase Type
(DPH) distributions [22] and of Continuous Phase Type (CPH) distributions
[23] in applied stochastic modeling.

DPH distributions of order n are defined as the time to absorption in a
Discrete-State Discrete-Time Markov Chain (DTMC) with n transient states
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and one absorbing state. CPH distributions of order n are defined, similarly, as
the distribution of the time to absorption in a Discrete-State Continuous-Time
Markov Chain (CTMC) with n transient states and one absorbing state. The
above definition implies that the properties of a DPH distribution are com-
puted over the set of the natural numbers while the properties of a CPH
distribution are defined as a function of a continuous time variable t. When
DPH distributions are used to model timed activities, the set of the natural
numbers must be related to a time measure. Hence, a new parameter need
to be introduced that represents the time span associated to each step. This
new parameter is the scale factor of the DPH distribution, and can be viewed
as a new degree of freedom, since its choice largely impacts the shape and
properties of a DPH distribution over the continuous time axes. When DPH
distributions are used to approximate a given continuous distribution, the
scale factor affects the goodness of the fit.

The paper starts discussing to what extent DPH or CPH distributions can be
utilized to fit a given continuous distribution. It is shown that a DPH distri-
bution of any order converges to a CPH distribution of the same order as the
scale factor goes to zero. Even so, the DPH class contains distributions whose
behavior differs substantially from the one of the corresponding distributions
in the CPH class. Two main peculiar points differentiate the DPH class from
the CPH class. The first point concerns the coefficient of variation: indeed,
while in the continuous case the minimum coefficient of variation is a function
of the order only and its lower bound is given by the well known theorem of
Aldous and Shepp [1], in the discrete case the minimum coefficient of variation
is proved to depend

both on the order and on the mean (and hence on the scale factor) [25].
Furthermore, it is easy to see that for any order, there exist members of the
DPH class that represent a deterministic value with a coefficient of variation
equal to zero. Hence, for any order (greater than 1), the coefficient of variation
of the DPH class spans from zero to infinity.

The second peculiar point that differentiate the DPH class is the support of the
distributions. While a CPH distribution (of any order) has always an infinite
support, there exist members of the DPH class of any order that have a finite
support (between a minimum non-negative value and a maximum) or have a
mass equal to one concentrated in a single value (deterministic distribution).

It turns out that the possibility of

• tuning the scale factor to optimize the goodness of the fit,
• having distributions with coefficient of variation spanning from 0 to infinity,
• representing deterministic values exactly,
• coping with finite support distributions,
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makes the DPH class a very interesting and challenging class of distributions to
be explored in applied stochastic models. The purpose of this paper is to show
how these favorable properties can be exploited in practice, and to provide
guidelines to the modeler to a reasonably good choice of the distributions to
be used. Indeed, since a DPH distribution tends to a CPH distribution as the
scale factor approaches zero, considering the scale factor as a new decision
variable in a fitting experiment, and finding the value of the optimal scale
factor (with respect to some error measure) provides a valuable tool to decide
whether to use a discrete or a continuous approximation to the given problem.

The fitting problem for the CPH class has been extensively studied and re-
ported in the literature by resorting to a variety of structures and numerical
techniques [2,3,9,18,24]. Conversely, the fitting problem for the DPH class has
received very little attention [6].

In recent years, a considerable effort has been devoted to define models with
generally distributed timings [10,7] and to merge in the same model random
variables and deterministic duration [21]. Analytical solutions are possible
in special cases, and the approximation of the original problems by means of
CPH distributions is a rather well known technique [12,8]. This paper is aimed
at emphasizing that DPH approximation may provide a more convenient al-
ternative with respect to CPH approximation, and also to provide a way to
quantitatively support this choice. Furthermore, the use of DPH approxima-
tion can be extended from stochastic models to functional analysis where time
intervals with nondeterministic choice are considered [5,4]. Finally, discretiza-
tion techniques for continuous problems [13,14] can be restated in terms of
DPH approximations.

The rest of the paper is organized as follows. After defining the notation to be
used in the paper in Section 2, Section 3 discusses the peculiar properties of
the DPH class with respect to the CPH class. Some guidelines for bounding
the parameters of interest and extensive numerical experiments to show how
the goodness of the fit is influenced by the optimal choice of the scale factor
are reported in Section 4. Section 5 discusses the quality of the approximation
when passing from the analysis of a single distribution to the analysis of per-
formance measures in complete non-Markovian stochastic models. The paper
is concluded in Section 6.

2 Definition and Notation

A DPH distribution [22,23] is the distribution of the time to absorption in a
DTMC with n transient states, and one absorbing state numbered (n + 1).
The one-step transition probability matrix of the corresponding DTMC can
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be partitioned as:

B̂ =



B b

0 1


 (1)

where B = [bij] is the (n × n) matrix collecting the transition probabilities
among the transient states, b = [bi,n+1]

T is the column vector of length n
grouping the probabilities from any state to the absorbing one, and 0 = [0] is
the zero vector. The initial probability vector α̂ = [α, αn+1] is of length (n+1),
with

∑n
j=1 αj = 1 − αn+1. In the present paper, we consider only the class of

DPH distributions for which αn+1 = 0, but the extension to the case when
αn+1 > 0 is straightforward. The tuple (α, B) is called the representation of
the DPH distribution, and n the order.

Similarly, a CPH distribution [23] is the distribution of the time to absorption
in a CTMC with n transient states, and one absorbing state numbered (n+1).
The infinitesimal generator Q̂ of the CTMC can be partitioned in the following
way:

Q̂ =



Q q

0 1


 (2)

where, Q is a (n×n) matrix that describes the transient behavior of the CTMC
and q is the column vector grouping the transition rates to the absorbing
state. Let α̂ = [ α, αn+1 ] be the (n + 1) initial probability (row) vector with∑n

i=1 αi = 1− αn+1. The tuple (α, Q) is called the representation of the CPH
distribution, and n the order.

It has been shown in [6] for the discrete case and in [11] for the continuous
case that the representations in (1) and (2), because of their too many free
parameters, do not provide a convenient form for running a fitting algorithm.
Instead, resorting to acyclic phase-type distributions, the number of free pa-
rameters is reduced significantly since both in the discrete and the continuous
case a canonical form can be used. The canonical form and its constraints for
the discrete case [6] is depicted in Figure 1. Figure 2 gives the canonical form
and associated constraints for the continuous case. In both cases the canonical
form corresponds to a mixture of Hypo-exponential distributions.

A fitting algorithm that provides acyclic CPH, acyclic DPH distributions has
been provided in [2,3] and [6], respectively. Experiments suggests (an exhaus-
tive comparison of fitting algorithms can be found in [20]) that, from the point
of view of applications, it is reasonable to restrict our attention to the class of
acyclic phase-type distributions.
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Fig. 1. Canonical representation of acyclic DPH distributions and its constraints
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Fig. 2. Canonical representation of acyclic CPH distributions and its constraints

3 Comparing properties of CPH and DPH distributions

CTMC are defined as a function of a continuous time variable t, while DTMC
are defined over the set of the natural numbers. In order to relate the number
of jumps in a DTMC with a time measure, a time span must be assigned to
each step. Let δ be (in some arbitrary units) the scale factor, i.e. the time
span assigned to each step. The value of δ establishes an equivalence between
the sentence ”probability at the k-th step” and ”probability at time k δ”,
and hence, defines the time scale on which the properties of the DTMC are
measured. The consideration of the scale factor δ introduces a new parameter,
and consequently a new degree of freedom, in the DPH class with respect to the
CPH class. In the following, we discuss how this new degree of freedom impacts
the properties of the DPH class and how it can be exploited in practice.

Let u be an ”unscaled” DPH distributed random variable (r.v.) of order n with
representation (α, B), defined over the set of the non-negative natural num-
bers. Let us consider a scale factor δ; the scaled r.v. τ = δ u is defined over the
discrete set of time points (1 δ, 2 δ, 3 δ, . . . , k δ, . . .), being k a non-negative
natural number. For the unscaled and the scaled DPH r.v. the following equa-
tions hold.

Fu(k) = Pr{u ≤ k} = 1− αBk e

Fτ (δk) = Pr{τ ≤ δk} = 1− αBk e

mi
u = E(ui)

mi
τ = E(τ i) = δi E(ui) i ≥ 1,

(3)
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where e is the column vector of ones, and E(ui) is the i-th moment calculated
from the factorial moments of u: E(u(u−1) . . . (u−i+1)) = i! α(I−B)−iBi−1e.
It is evident from (3) that the mean mτ of the scaled r.v. τ is δ times the
mean mu of the unscaled r.v. u. While mu is an invariant of the represen-
tation (α, B), δ is a free parameter; adjusting δ, the scaled r.v. can assume
any mean value mτ ≥ 0. On the other hand, one can easily infer from (3)
that the coefficients of variation of τ and u are equal. A consequence of the
above properties is that one can easily provide a scaled DPH of order ≥ 2
with arbitrary mean and arbitrary coefficient of variation with an appropriate
scale factor. Or more formally: the unscaled DPH r.v. u of any order n > 1
can exhibit a coefficient of variation between 0 ≤ cv2

u ≤ ∞. For n = 1 the
coefficient of variation ranges between 0 ≤ cv2

u ≤ 1.

As mentioned earlier, an important property of the DPH class with respect to
the CPH class is the possibility of exactly representing a deterministic delay.
A deterministic distribution with value a can be realized by means of a scaled
DPH distribution with n phases with scale factor δ if n = a/δ is integer.
In this case, the structure of the DPH distribution is such that phase i is
connected with probability 1 only to phase i + 1 (i = 1, . . . , n), and with an
initial probability concentrated in state 1. If n = a/δ is not integer for the
given δ, the deterministic behavior can only be approximated.

3.1 First order discrete approximation of CTMCs

Given a CTMC with infinitesimal generator Q̃, the transition probability ma-
trix over an interval of length δ can be written as:

eQ̃δ =
∞∑

i=0

(Q̃δ)i/i! = I + Q̃δ + σ(δ),

hence the first order approximation of eQ̃δ is matrix Π(δ) = I + Q̃δ. Π(δ)
is a proper stochastic matrix if δ < 1/q, where q = maxi,j |Q̃ij|. Π(δ) is the
exact transition probability matrix of the CTMC assumed that at most one
transition occurs in the interval of length δ.

We can approximate the behavior of the CTMC at time (δ, 2δ, 3δ, . . . , kδ, . . .)
using the DTMC with transition probability matrix Π(δ). The approximate
transition probability matrix at time t = kδ is:

Π(δ)k = (I + Q̃δ)
t
δ

The following theorem proves the property that the above first order approx-
imation becomes exact as δ → 0.
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Theorem 1 As the length of the interval of the first order approximation,
δ, tends to 0, such that t = kδ the approximate transition probability matrix
tends to the exact one.

Proof: The scalar version of the applied limiting behavior is well-known in
the form

lim
x→0

(1 + ax)
1
x = ea.

Since matrices I and Q̃ commute we can obtain the matrix version of the same
expression as follows

lim
δ→0

(I + Q̃δ)
t
δ = lim

k→∞
Π(t/k)k = lim

k→∞

(
I +

Q̃t

k

)k

=

lim
k→∞

k∑

j=0




k

j




(
Q̃t

k

)j

=

= lim
k→∞

k∑

j=0

(Q̃t)j

j!

k!

kj (k − j)!
=

∞∑

j=0

(Q̃t)j

j!
= eQ̃t.

2

An obvious consequence of Theorem 1 for PH distributions is given in the
following corollary.

Corollary 1 Given a scaled DPH distribution of order n, representation (α,
I + Qδ) and scale factor δ, the limiting behavior as δ → 0 is the CPH distri-
bution of order n with representation (α, Q).

3.2 The minimum coefficient of variation

It is known that one of the main limitation in approximating a given distri-
bution by a PH one is the attainable minimal coefficient of variation, cv2

min.
In order to discuss this point, we recall two theorems that state the cv2

min for
the class of CPH and DPH distributions.

Theorem 2 (Aldous and Shepp [1]) The cv2
min of a CPH distributed r.v. of

order n is cv2
min = 1/n and is attained by the Erlang(n) distribution indepen-

dent of its mean mc or of its parameter λ = n/mc.
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The corresponding theorem for the unscaled DPH class has been proved in [25].
In the following, bxc denotes the integer part and 〈x〉 denotes the fractional
part of x.

Theorem 3 The cv2
min of an unscaled DPH r.v. of order n and mean mu is:

〈mu〉(1− 〈mu〉)
m2

u

if mu ≤ n ,

1

n
− 1

mu

if mu > n ,

(4)

The unscaled DPH r.v. which exhibits this minimal coefficient of variation has
the following canonical structure:

• if mu ≤ n: each state is connected to the next with probability 1 and the
nonzero initial probabilities are αn−bmuc = 〈mu〉 and αn−bmuc+1 = 1− 〈mu〉
(Figure 3);

• if mu > n: each state is connected to the next with probability n/mu and the
only nonzero initial probability is α1 = 1 (Figure 4).
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Fig. 3. mu ≤ n
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Fig. 4. mu > n

Implications of the above theorems for what concerns the ability of approxi-
mating distributions with low coefficient of variation are drawn in [6].

3.3 The minimum coefficient of variation of scaled DPH distributions

For scaled DPH distribution Theorem 3 can be restated as follows.

Theorem 4 The cv2
min of a scaled DPH r.v. of order n with scale factor δ
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and mean mτ = δ mu is:

〈
mτ

δ

〉 (
1−

〈
mτ

δ

〉)

(
mτ

δ

)2 if mτ ≤ n δ ,

1

n
− δ

mτ

if mτ > n δ ,

(5)

The scaled DPH r.v. which exhibits the cv2
min has the same structure of Figures

(3) and (4), as in the unscaled case (see Theorem 3).

Corollary 2 For finite mean mτ , as δ → 0 only the second part of (5) remains
effective, and cv2

min → 1/n as δ → 0.

Corollary 2 proves that the cv2
min of the DPH class converges to the cv2

min of the
CPH class of the same order as δ → 0. The following corollary presents a much
stronger convergence result for the case of approximating distributions with
low coefficient of variation. It is about the convergence of the distributions. In
the corollary and its proof the term best cv fitting PH approximation will be
used which refers to the PH approximation that exhibits the same mean and
provides the closest approximation for the 2nd moment.

Corollary 3 The best cv fitting scaled DPH approximation of distributions
with low coefficient of variation converges, in distribution, to the best cv fitting
CPH approximation of the same distribution as δ tends to 0.

Proof: Both the CPH and the DPH classes have limits in approximating
distributions with low coefficient of variation. As given in Theorem 2 and 3,
the best cv fitting approximation of a distribution with coefficient of variation
less than these limits is the Erlang(n) distribution in both the continuous and
the discrete case (assuming that mτ > nδ).

The representation (α, Q) of the continuous Erlang(n) with mean mτ and the
representation (α, B) of the discrete Erlang(n) with mean mτ , scale factor δ
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are:

α = {1, 0, . . . , 0}, Q =

− n
mτ

n
mτ

0 . . . 0

0 − n
mτ

n
mτ

. . .
. . .

0 . . . − n
mτ

α = {1, 0, . . . , 0}, B =

1−nδ
mτ

nδ
mτ

0 . . . 0

0 1−nδ
mτ

nδ
mτ

. . .
. . .

0 . . . 1−nδ
mτ

Note that B = I−Qδ and Corollary 3 follows from Corollary 1. 2

In this particular case, when the structure of the best cv fitting scaled DPH
and CPH distributions are known, we can show that the distribution of the
best cv fitting scaled DPH distribution converges to the distribution of the best
cv fitting CPH distribution when δ → 0. Unfortunately, the same convergence
property cannot be proved in general, since the structural properties of the
best cv fitting PH distributions are not known and they depend on the chosen
(arbitrary) optimization criterion. Instead, in Section 4 we provide an exten-
sive experimental study on the behavior of the best cv fitting scaled DPH and
CPH distributions as a function of the scale factor δ .

3.4 DPH distributions with finite support

Another peculiar characteristic of the DPH class is to contain distributions
with finite support. A DPH distribution has finite support if its structure
does not contain cycles and self-loops (any cycle or self loop implies an infinite
support).

Let [a, b] be the finite support of a given distribution, with a, b ≥ 0 and
a ≤ b (when a = b the finite support distribution reduces to a deterministic
distribution with mass 1 at a = b). If a/δ and b/δ are both integers, it is
possible to construct a scaled DPH of order b/δ for which the probability
mass function has non-zero elements only for the values a, a + δ, a + 2δ, ..., b.
As an example, the discrete uniform distribution between a = 2 and b = 6 is
reported in Figure 5, for scale factor δ = 1.
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Fig. 5. DPH representation of the discrete uniform distribution [a = 2, b = 6]

4 The optimal δ in PH fitting

The scale factor δ provides a new degree of freedom in fitting, and, further-
more, since the limit of a DPH distribution for δ → 0 is a CPH distribution,
the optimization of the scale factor in a fitting problem provides a quantita-
tive way to decide whether a continuous or a discrete approximation performs
better in the given problem. Hence, assuming δ as a decision variable, we can
consider the CPH and the DPH class as a unique model set in which the choice
among DPH or CPH classes is given by the optimal value of δ.

Let X be the continuous r.v. to be fit by a PH distribution, and let FX(x)
be its cdf, E(X i) the i-th moment and cv2(X) the squared coefficient of vari-
ation. In order to define a fitting procedure, a distance measure between X
and the approximating PH distribution needs to be defined. Then, the fitting
algorithm provides the PH distribution which minimizes the chosen distance
measure. The minimization of the measure is performed as follows. Starting
from the initial guess, the non-linear optimization problem is solved by an it-
erative linearization method. In each step the partial derivatives with respect
to the parameters of the PH distribution are computed numerically. Then, the
simplex method is applied to determine the direction in which the distance
measure decreases optimally. The constraints of the linear programming is
given by probabilistic constraints, by the restriction on the structure of the
PH distribution and by confining the change of parameters. (More detailed
description of the fitting procedure, which is implemented in the tool PhFit
[17], is given in [16].)

In order to compare, in a unified framework, the goodness of the approximation
reached by CPH and DPH distributions, we need to choose a distance measure
that is meaningful and applicable both in the continuous as well as in the
discrete setting. The selected distance measure is the squared area difference
between the original cdf F (·) and the approximating cdf F̂ (·):

D =
∫

x

(F (x)− F̂ (x))2dx (6)

The distance measure D is easily applicable for any combination of discrete
and continuous distributions. All the numerical experiments reported in the
sequel are based on the minimization of the area difference given in (6).
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4.1 Fitting distributions with low cv2

The following considerations provide practical upper and lower bounds to
guide in the choice of a suitable scale factor δ, and are mainly based on the
dependence of the minimal coefficient of variation of a scaled DPH distribution
on the order n and on the mean mτ .

Since we only consider DPH distributions with no mass at zero, the mean of
any unscaled DPH distribution is greater than 1. This means that δ should be
less than E(X). However, a more convenient upper bound that exploits the
flexibility associated with the n phases, is given by:

δ ≤ E(X)

n− 1
. (7)

If the squared coefficient of variation of the distribution to be approximated
is less than 1/n, δ should satisfy the following relation (see Theorem 3):

δ >
(

1

n
− cv2(X)

)
E(X) (8)

Let X be a Lognormal r.v. with parameters (1, 0.2), whose mean is E(X) = 1
and cv2(X) = 0.0408 (this distribution is the distribution L3 taken from the
benchmark examined in [9,6], hence we refer to it as L3). Table 1 reports the
lower and upper bounds of δ, with n = 2, 4, 8, 12, computed from (8) and (7).

The cdf and pdf of the approximating CPH and DPH distributions of order
n = 10, with different scale factors δ, are presented in Figure 6. When consid-
ering the approximate DPH distribution, the f(x) values are calculated at the
discrete points (δ, 2δ, 3δ, . . . , kδ, . . .) to which the following mass is assigned:

f(kδ) = 1/δ(F (kδ)− F ((k − 1)δ)) (9)

For the ease of visual interpretation the points are connected with a line.

When δ is less than its lower bound the required cv2 cannot be attained; when
δ becomes too large the wide separation of the discrete steps increases the
approximation error; when δ is in the proper range (e.g. n = 10; δ = 0.06) a
reasonably good fit is achieved. This example also suggests that an optimal
value of δ exists that minimizes the chosen distance measure D in (6).

In order to display the goodness of fit for the L3 distribution, Figure 7 shows
the distance measure D as a function of δ for various values of the order n.
A minimum value of D is attained in the range where the parameters fit the
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Fig. 6. Approximating the L3 distribution with 10-phase PH approximations
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bounds of Table 1. Notice also that, as δ increases, the advantage of having
more phases disappears, according to Theorem 4. The circles in the left part of
this figure (as well as in all the successive figures) indicate the corresponding
distance measure D obtained from CPH fitting. The figure (and the subsequent
ones as well) suggests that the distance measure obtained from DPH fitting
converges to the distance measure obtained by the CPH approximation as δ
tends to 0.

The lowest applied scale factor is 0.01. Lower values of the scale factor renders
the fitting procedure numerically unstable because the diagonal elements of
the transition matrix are close to 1.

n lower bound of δ upper bound of δ

equation (8) equation (7)

4 0.2092 0.333

8 0.0842 0.1428

12 0.0425 0.0909

16 0.0217 0.0666
Table 1
Upper and lower bound of δ for fitting distribution L3
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4.2 Fitting distributions with high cv2

We have seen in the previous subsections that it is beneficial to approximate
distributions with a low coefficient of variation by means of a DPH distribu-
tions. In this subsection, we investigate the optimal value of δ when fitting
distributions with a high coefficient of variation.

Let X be a Lognormal r.v. with parameters (1, 1.8) (this is the distribution L1
taken from the benchmark in [9,6]). For X we have E(X) = 1 and cv2(X) =
24.534. Figure 8 shows the measure of the goodness of fit as a function of δ
for various orders n (the cases when the number of phases are greater than
2 result in practically the same goodness of fit). The distance measures D
decreases as δ → 0 indicating that the optimal fitting is achieved by applying
CPH distribution. This example suggests that, for distributions with infinite
support and cv2(X) > 1/n, the optimal value of δ tends to 0, implying that
the best fit is obtained by a CPH. However, this conclusion might not be true
for distributions with finite support, as it is explored in the next subsection.

4.3 Fitting distributions with finite support

In this case, two features must be considered, namely the cv2 and the maximum
value of the finite support. It should be stressed that the chosen distance
measure D in (6) can be considered as not completely appropriate in the case
of finite support, since it does not force the approximating PH to have its
mass confined in the finite support and 0 outside.

Let X be a uniform r.v. over the interval [1, 2], with E(X) = 1.5 and cv2(X) =
0.0370 (this is the distribution U2 taken from the benchmark in [9,6]). Figure
9 shows the distance measure as a function of δ for various orders n. It is
evident that, for each n, a minimal value of δ is obtained, that provides the
best approximation according to the chosen distance measure.

As a second example, let X be a uniform r.v. over the interval [0, 1], with
E(X) = 0.5 and cv2(X) = 0.333 (this is the distribution U1 taken from
the benchmark in [9,6]). Figure 10 shows the distance measure as a function
of δ for various orders n. Since, in this example cv2(X) = 0.333, an order
n = 3 is large enough for a CPH to attain the coefficient of variation of the
distribution. Nevertheless, the optimal δ in Figure (10), which minimizes the
distance measure D for high order PH (n > 2), ranges between δ = 0.02 and
δ = 0.05, thus leading to the conclusion that a DPH provides a better fit. This
example evidences that the coefficient of variation is not the only factor which
influences the optimal δ value. The shape of the distribution plays an essential
role as well. Our experiments show that a discontinuity in the pdf (or in the
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of the scale factor δ for Uniform(1,2)
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Fig. 11. Approximating the Uniform (0, 1) distribution (U1)

cdf) is hard to approximate with CPH, hence in the majority of these cases
DPH provides a better approximation.

Figure 11 shows the cdf and the pdf of the U1 distribution, compared with
the best fit PH approximations of order n = 10, and various scale factors δ. In
the case of DPH approximation, the f(x) values are calculated as in (9). With
respect to the chosen distance measure, the best approximation is obtained
for δ = 0.03, which corresponds to a DPH distribution with infinite support
. When δ = 0.1 the approximate distribution has a finite support. Hence,
the value δ = 0.1 (for n = 10) provides a DPH able to represent the logical
property that the random variable is less than 1. Another fitting criterion may,
of course, stress this property.

4.4 Approximating exponential distributions

When it comes to discrete approximation of continuous models, exponential
durations are usually approximated by a discrete PH distribution with a single
phase (see, for example, [15]). This approximation, however, is precise only if
the scale factor is small enough. Figure 12 shows the goodness of fitting as
function of the scale factor for the exponential distribution with mean equal
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distribution

to 1.0. The figure suggests that it is not worth to use more than 2 phases to
approximate exponential distributions. (Note that this statement might not
be true in case of other distance measures.)

5 Approximating non-Markovian models

Section 4 has explored the problem of how to find the best fit among either a
DPH or a CPH distribution by tuning the scale factor δ. When dealing with a
stochastic model of a system that incorporates non exponential distributions, a
well-known solution technique consists in a markovianization of the underlying
non-Markovian process by substituting the non exponential distribution with
a best fit PH distribution, and then expanding the state space. A natural
question arises also in this case, on how to decide between discrete (using
DPH) and continuous (using CPH) approximation, in order to minimize the
error in the performance measures we are interested in for the overall model.

One possible way to handle this problem could consist in finding the best PH fit
for any single distribution and to plug them in the model. In the present paper,
we only consider the case where the PH distributions are either all discrete
with the same scale factor or they are all continuous. With this limitation
some of the freedom in choosing the scale factor disappears because a single
scale factor is chosen for the whole model. Various embedding techniques have
been explored in the literature for mixing DPH with different scale factors and
CPH ([13,19]), but these techniques are out of the scope of the paper.

In order to quantitatively evaluate the influence of the scale factor on some
performance measures defined at the system level, we have considered a pre-
emptive M/G/1/2/2 queue with two classes of customers. We have chosen this
example because accurate analytical solutions are available both in transient
condition and in steady-state using the methods presented in e.g.[13]. The
general distribution G is taken from the set of distributions (L1, L3, U1, U2)
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Fig. 13. The state space of the considered M/G/1/2/2 queue

already considered in the previous section.

Customers arrive at the queue with rate λ = 0.5 in both classes. The service
time of a higher priority job is exponentially distributed with parameter µ = 1.
The service time distribution of the lower priority job is either L1, L3, U1
or U2. Arrival of a higher priority job preempts the lower priority one. The
policy associated to the preemption of the lower priority job is preemptive
repeat different (prd), i.e. after the departure of the higher priority customer
the service of the low priority customer starts from the beginning with a new
service time sample.

The system has 4 states (Figure 13): in state s1 the server is empty, in state s2
a higher priority customer is under service with no lower priority customer in
the system, in state s3 a higher priority customer is under service with a lower
priority customer waiting, in state s4 a lower priority job is under service (in
this case there cannot be a higher priority job).

5.1 Steady state behavior

Let pi (i = 1, . . . , 4) denote the steady state probability of the M/G/1/2/2
queue obtained from an exact analytical solution.

In order to evaluate the correctness of the PH approximation we have solved
the model by substituting the original general distribution (either L1, L3,
U1 or U2) with approximating DPH or CPH distributions. (The fitting was
performed applying the same distance measure as before, it is given in (6)).
Let p̂i (i = 1, . . . , 4) denote the steady state probability of the M/PH/1/2/2
queue with the PH approximation.

The overall approximation error is measured in terms of the difference between
the exact steady state probabilities pi and the approximate steady state prob-
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abilities p̂i. Two error measures are defined:

εSUM =
∑

i

|pi − p̂i|
pi

and εMAX = max
i

|pi − p̂i|
pi

.

All the experiments were performed applying both 1-phase and 2-phase ap-
proximation for the exponential durations. The evaluated numerical values for
εSUM and εMAX are reported in Figures 14-15 and 16-17 for the distribution
L3. Since the behavior of εMAX is very similar to the behavior of εSUM in all
the cases, for the other cases we report εSUM only (L1: Figures 18-19, U1:
Figures 20-21, U2: Figures 22-23).

Figures 24 and 25 report two cases when both the service times are non-
exponential. In the first case both the service distributions are L3, while in
the second case, higher (lower) priority costumers are served according to
distribution L3 (L1).
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Fig. 14. εSUM for distribution L3 with
1-phase appr. for exponential durations
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Fig. 15. εSUM for distribution L3 with
2-phase appr. for exponential durations
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Fig. 16. εMAX for distribution L3 with
1-phase appr. for exponential durations
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Fig. 17. εMAX for distribution L3 with
2-phase appr. for exponential durations

Based on the above experiments, it is rather hard to draw general guidelines
for the choice of the scale factor. Some rather general observations, however,
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Fig. 18. εSUM for distribution L1 with
1-phase appr. for exponential durations
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Fig. 19. εSUM for distribution L1 with
2-phase appr. for exponential durations
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Fig. 20. εSUM for distribution U1 with
1-phase appr. for exponential durations
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Fig. 21. εSUM for distribution U1 with
2-phase appr. for exponential durations
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Fig. 22. εSUM for distribution U2 with
1-phase appr. for exponential durations
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Fig. 23. εSUM for distribution U2 with
2-phase appr. for exponential durations

can be made:

• If all the optimal scale factors are 0, the approximation error in the evalu-
ation of the performance indices of the global model can be minimized by
resorting to continuous PH type approximation. See, for example, the case
when the only non-exponential distribution in the model is L1 (Figure 18).

• When some of the individual optimal scale factors are 0, while others are
not (this is the case, for example, when there are exponential durations
and durations with low coefficient of variation in the same model, Figure
14), there is an optimal scale factor value (or a range) that gives optimal
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rations

results for what concerns performance measures of the global model. In this
case, on the one hand, decreasing the scale factor worsen the precision of the
approximation because with lower scale factor durations with low coefficient
of variation are approximated worse. On the other hand, increasing the
scale factor worsen the approximation because the approximation of the
exponential durations are getting less accurate. (See Figure 14.)

• In the cases when one of the individual optimal scale factors is rather far
from 0, there is a wide range of scale factor values for which the discrete
approximation yields better results than the continuous one. See, for exam-
ple, Figure 22 where in case of 10 phases the discrete approximation gives
better results in the range [0,0.2].

• Applying 2-phase discrete PH approximations for the exponential durations
slows down the rate at which the approximation error grows with increasing
scale factor. See, for example, Figure 14 compared to Figure 15.

5.2 Transient behavior

In order to investigate the approximation error in the transient behavior, we
have considered distribution U2 for the service time and we have computed the
transient probability of state s1 with two different initial conditions. Figure
26 depicts the transient probability of state s1 with initial state s1. Figure 27
depicts the transient probability of the same state, s1, when the service of a
lower priority job starts at time 0 (the initial state is s4). All approximations
are with DPH distributions of order n = 10. Only the DPH approximations are
depicted because the CPH approximation is very similar to the DPH one with
scale factor δ = 0.03. In the first case, (Figure 26), the scale factor δ = 0.03,
which was the optimal one from the point of view of fitting the single distribu-
tion in isolation, provides the most accurate results for the transient analysis
as well. Instead, in the second case, the approximation with a scale factor
δ = 0.2 captures better the sharp change in the transient probability. More-
over, this value of δ is the only one among the values reported in the figure
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that results in 0 probability for time points smaller than 1. In other words, the
second example depicts the advantage given by DPH distributions to model
durations with finite support. This example suggests also that DPH approxi-
mation can be of importance when preserving reachability properties is crucial
(like in modeling time-critical systems) and, hence, DPH approximation can
be seen as a bridge between the world of stochastic modeling and the world
of functional analysis and model checking [5].

6 Concluding remarks

The main result of this paper has been to show that the DPH and CPH classes
of distributions of the same order can be considered a single model set as a
function of a scale factor δ. The optimal value of δ, δopt, determines the best
distribution in a fitting experiment. When δopt = 0 the best choice is a CPH
distribution, while when δopt > 0 the best choice is a DPH distribution. This
paper has also shown that the transition from DPH class to CPH class is
continuous with respect to several properties, like the distance (denoted by
D in 6) between the original and the approximate distributions. The paper
presents limit theorems for special cases; however, extensive numerical exper-
iments show that the limiting behavior is far more general than the special
cases considered in the theorems.

The numerical examples have also evidenced that for very small values of δ,
the diagonal elements of the transition probability matrix are very close to 1,
rendering numerically unstable the DPH fitting procedure.

A deep analytical and numerical sensitivity analysis is required to draw more
general conclusions for the model level “optimal δ value” and its dependence
on the considered performance measure than the ones presented in this work.
It is definitely a field of further research.

Finally, we summarize the advantages and the disadvantages of applying ap-
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proximate DPH models (even with optimal δ value) with respect to using CPH
approximations.

Advantages of using DPH:

An obvious advantage of the application of DPH distributions is that one can
have a closer approximate of distributions with low coefficient of variation. An
other important quantitative property of the DPH class is that it can capture
distributions with finite support and deterministic values. This property allows
to capture the periodic behavior of a complex stochastic model, while any CPH
based approximation of the same model tends to a steady state.

Numerical experiments have also shown that DPH can better approximate
distributions with some abrupt or sharp changes in the CDF or in the PDF.

Disadvantages of using DPH:

There is a definite disadvantage of discrete time approximation of continuous
time models. In the case of CPH approximation, coincident events do not
have to be considered (they have zero probability of occurrence). Instead,
when applying DPH approximation coincident events have to be handled, and
their consideration may burden significantly the complexity of the analysis.
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