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Abstract—Modeling and analysing very large stochastic sys- state space determines the upper bound for the application of
tems composed of interacting entities is a very challenging and the methodology, even if the explosion is usually mitigated

complex task. The usual approach, relying on the generation of xploitina th mmetrv or i n incl in th
the whole state space, is bounded by the state space explosionby exploiting the sy etry properties ofte cluded the

even if symmetry properties, often included in the model, allow system definition, that aIIov_v.to apply Iumping techniques and
to apply lumping techniques and building the overall model by t0 produce the global transition rate matrix by means of tensor
means of tensor algebra operations. . ~ algebra operators applied to the local matrices.

~In this paper we resort to the mean field theory. The main Representative attempts in this direction define the in-
idea of the mean field theory is to focus on one particular tagged teracting objects directly as Markov chains [5], [7], or as

entity and to replace all interactions with the other entities with .. .
an average or effective interaction. The reduction of a multi- finite state automata [14], [15] or as Petri nets [6], [12]. In

body problem into an effective one-body problem makes the [14] the local entity is called automaton and tBéochastic
solution easier while at the same time taking into account the Automata Network (SAN$ a system composed by interacting
contribution of an averaged interdependence of the whole system gutomata. In [1], the states of the individual Markov chains
on the specific entity. We apply the mean field approach to very e nartitioned in classes and the transition rate of each chain

large systems of interacting continuous time Markov chains, in . L
which the averaged interaction depends on the distribution of depends on the classes of the other chains. A two layer view is

the entity population in each state. also proposed in social networks in [16] where the local level
We report several examples of interacting Markovian queues, is a chain that depicts an individual player and the global
showing the potentialities of the proposed technique. view models the team action as a whole. The compositional
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Performance Evaluation. approaches are limited by the explosion of the state space.

A particular model of interacting objects for which a set
of exact and approximate analysis methods are available
l. INTRODUCTION is the queueing network model. In this model the objects
Complex systems can usually be disaggregated into inteemmunicate via customers which visit the network nodes
acting parts or components where each part can have a laatording to some routing rules. We refer to [3] for a recent
autonomous behavior that depends on the ensemble of suevey on the related analysis results. In the most common
behaviors of the other parts. In recent years, an enormapplication of queueing networks the number of objects is
amount of literature has been devoted to the study of compliéite and the number of states of the objects can be finite and
systems in biology, economics, social science, physics, coimfinite. The case of infinite number of states of finite number
puter and communication systems. In this paper, we focus thfeobjects can also be approximated with fluid models. Fluid
attention on very large scale stochastic systems, in which tmedels [11], [8] are able to capture the global behaviour of
basic entities evolve according to a CTMC, whose infinitesimtie system, but they loose the capability of detailing the local
generator depends on current state occupied by all the othehaviour. A continuous approximation to a discrete model
entities. is also considered in [9] where components of the same type
The analysis of large scale stochastic systems composeddboynot have statistical dependencies but may synchronize on
interacting objects has been mainly faced in the literature bhared activities.
resorting to the superposition of interacting Markov chains or In this paper, we focus the attention on very large scale
to fluid models. In the first case, the analysis of the systestochastic systems, whose dimensions exceed the capabilities
requires the generation of the global state space, defined asahall the methods based on the generation of the global
Cartesian product of the state spaces of the CTMC's describsigte space, even if the basic entities evolve according to a
the individual interacting objects. The explosion of the glob&TMC. Especially, we focus on the case when the number



of interacting objects grows very large and the number of Let us assume that we had&identical discrete state entities
states of these objects is finite and moderately large. Wethe form of CTMC. The state transitions of the CTMCs
propose an approximation based wean fieldmethod [13], might depend on the current state of all entities, but cannot
[4]. The mean fieldmethod focusses on a particular taggedepend on the past history of the process and on the state
entity, and replaces all the interactions with the other entitigmnsitions of other entities. This second restriction excludes
with an average interaction. In the present case, each entitgysichronization between the transitions of entities.
a CTMC described by a local infinitesimal generator whose The state of entity (¢ = 1,2,...,N) at timet is denoted
entries depend on the distribution of the other entities in thdjy X,(¢) In this section we assume, as an essential property,
state space. In this way, we can model the individuality afat all the entities are identical and indistinguishable. With
each entity, but at the same time its interaction with the whoflris assumption, the behaviour of entitydoes not depend
system. Asymptotic results allow us to consider systems divectly on the particular state of a generic engifybut it may
which the number of entities tends to infinity. depend on the global number of entities in each state.

The mean field technique is well known and widely applied Due to the fact that the entities are identical, the state of
in many different areas [13]. The main goal of this paper i randomly chosen (tagged) entity is denotedbit). The
to present this methodology in a way which allows its usstate space of each entity, is composed by = |S| states,
in the performance evaluation community. By this reasoand N;(¢) denotes the number of entities which are in state
we put more emphasis on how the methodology can fifdi € S) at time¢. The vector composed h¥;(¢) is denoted
application in stochastic modeling rather than in the theoretid®y N(¢) and by this definitiony";_, N;(t) = N.
background of the methodology and the practical relevanceThe global behavior of the set &f entities forms a CTMC
of the considered examples. [4] and [2] had partially similajver the state space of sizé'. However, due to the fact
goals. The main difference is that in [4] and in [2] thehat the entities are identical and indistinguishable, the state
interacting entities are formulated as discrete time Mark@pace can be lumped into the aggregate state spacef
models, while in the present paper we take into consideratigie (N:r_sl—l), where a state of the overall CTMC is identified
continuous time Markov models. In some cases the transitipy the number of entities staying in each stateSofi.e., by

form continuous to discrete time Markov models are straigl_\t(t) = (Ny(t), No(t), ..., Ny(t)).
forward, but we believe that it is not immediate in case of the The evolution of the local CTMC is such that there are no
application of the mean field method. synchronous transitions in different entities and the transition

Additionally, [4] and [2] apply a set of strong restrictionsates of a given entity may depend on the global behavior
on the behavior of the interacting entities and the type of thelfrough the actual value dN(t). With this assumption, the

interactions in order to apply a well established mathematigaliowing transition rates govern the evolution of a particular
framework for proving the main convergence results. In thintity

paper, we present examples which are out of the scope of [4]
and [2] and still show a nice coincidence with the respective<i; (IN(t)) =

convergence results. These examples suggest that the condli-;,, lpT(X(HA) = jIX(t) =i,N(t)) if Ni(t) >0,
tions of [4] and [2] can be relaxed, but the investigation of the) 2—0 A

most general conditions and their proofs are out of the scop if Ni(t) =0,
of the present paper. Ki(N() == Y Ki;j(N(1).

The paper is organized as follows; Section Il introduces the JES,j# 1
mean field idea for interacting CTMC and provides the mai (1)

Note that in the first condition of (L)X (t) = « means that

theorem and results. Section Il illustrates a simple examq@ : : .
) . . () >
of interacting queues and shows how different dependen .t) Is such thatV;(t) > 1, since at least the tagged entity

strategies for accommodating the incoming customers can'% In states.
modeled and analyzed; the analysis is restricted to identica?nSte.""d of usingN(t) when N is large, we mtrogiuce the
rmalized vectorn(t) = N(t)/N, where the entriesi(t),

and indistinguishable entities. Section IV introduces a ne ' ! ) )
variant, by showing that it is possible to consider entitie < ni(t) < 1, define the proportion of quects n s_t_avleat
belonging to different types and provides a possible applicatigﬂ]e_t ar]d 2 iesni(t) =1 and the associated transition rate
example. Sections V and VI introduce memory dependencié@cnon‘

in mean field analysis and an example of application of queues kY (n(t)) = Kij (N - n(t)). @)

with memory dependent load, respectively. ) " ,
¥ CEP P y (1) and (2) describe the same transition matrix, but (1)

defines the transition rates at discrete points of integer valued
Il. MEAN FIELD METHOD FOR LARGECTMC MODELS  vectors,N(t), and (2) defines them at discrete points whose

There are several efficient methods for constructing af@ordinates are integer multiples ofN'. For the analysis of
evaluating Markovian models composed by a large finife System composed by entities &;;(s) and k(') (s) are
number of identical interacting entities. The mean field methétgfined for these discrete points.
allows to compute the behaviour of this kind of models To investigate the limiting behavior a§ tends to infinity
when the number of entities tends to infinity and suggeste need &;;(n(t)) function which is defined for all feasible

an approximation when the number of entities is large.  n(t) vectors and satisfids; (n(t)) = k;jv)(n(t)) for VN > 1.



The existence and the properties of sugh(e) functions depends on the distribution af(¢). The closest(¢) is to
play an important role in the applicability of the mean fieldleterministic, the better is the approximation of Corollary
approach. In Section IlI-A we present a rather simple applica: The speed of the convergence nft) to deterministic
tion example weré;; (o) exists, but it is neither bounded noras N tends to infinity is also investigated in the subsequent
continuous and the mean field limit seems to be valid. Thisimerical examples.
suggests us that the practical application of the mean field
approach for_t_:ontinuous time Marl_<ov chains requires_ MOre ||| M EAN FIELD ANALYSIS OF DEPENDENT QUEUES
relaxed conditions than the ones in [4] and [2]. Obviously i
the problem of unbounded transition rate cannot occur with TO demonstrate the mean field methodology we present
discrete time Markov chains, because in that case the transitbrsimPle example and detail its analysis according to the
probabilities are upper bounded by one. The discontinuity 6PNCePts and quantities discussed in the previous section.
ki;(n(t)) in the example of Section Ill-A is also related to L€t us consider a queueing system composed/bgentical
the unboundedness &f;(n(t)), because:;; (n(t)) is discon- Markovian queues (entities), each of which has a single server
tinuous at the limit where it tends to infinity. (The comment@nd @ buffer of siza (S = {0, 1,2}, s = 3). Customers arrive
after (9) and (14) are to emphasize this behaviour through @erate VA to this queueing system and their service time is
studied examples.) e.xponentlally dlstr|bqted W|_th pa.ram.et;ar The CTMC of a

In the rest of the paper we use small letters to denote thi@9le queue ¥ = 1) is depicted in Figure 1.
quantities which are based ar(t). We define the transition
matrix based on Equation (2) as

A A
O > >2)
K(n()) = (ki (n(t)} 3) N AT A
m m

The mean field method is based on the following essential

theorem.
Fig. 1. Markov chain of a single queue in isolation

Theorem 1. The normalized state vector of the lumped
processn(t), tends to be deterministic, in distribution, &6
tends to infinity and satisfies the following differential equation _ )
A. The incoming customer chooses the shortest queue
in(t) = n(t) k(n(t)) (4) WhenN > 1 we adopt a policy that the incoming customer
dt chooses the shortest queue and is directed to the queue which
An individual component out of the set ofquations (4) has the least number of customers in it. This policy makes

can be written as: the different queues interdependent. Whén= 2, the CTMC
d describing this behavior is depicted in Figure 2, where the first
—n,(t) = an(t) k;i(n(t)), (5) number refers to the state of queue 1 and the second to the
dt jeS state of queue 2. We can interpret the transitions of Figure 2

The proof of the theorem requires further investigation ohm the view point of queue 1. In this case, the transition
the conditionsk(n(t)) has to fulfill. In [10] we have provided rates of the arrivals to queue 1 depend on the state of queue

an initial derivation that (at the moment of writing) is currently? @S depicted in Figure 3.
being refined with respect to these condition. In [4] and

[2] very strong conditions where assumed. However in this A
work we show that the mean-field method can be successfully ~ A
applied also to cases that do not fylfill such strict requirements. \ e *
Theorem 1 provides a formulation that is easy to apply and VI M
to compute in the extreme case whéh tends to infinity, A
: S : ; 91 91 2N M 2\
but in practice it is typically not the case. The following o\ A
corollary provides an approximation method for the case when
the number of entitiesl, is finite but sufficiently large. @@@
Corollary 2. When N is sufficiently large, the normalized \ﬁ/ \ﬁ/
state vector of the lumped procesgy), is a random vector A o)
whose mean can be approximated by the following differential M M M
equation A 2\
d /_\A /_\A
G E((t)) = > E(ny(1)) kji(E(n(1))) (6) “~ “~
jes 91 ¥

Also for the proof of the Corollary we refer to [10] which
is under refinement. While Theorem 1 is exact becauge¢ Fig- 2. Markov chain of 2 queues (without lumping)
is deterministic Corollary 2 is approximate, whose accuracy
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Since the queues are identical, we can lump the Vi A 2\ 2\

states according to Figure 4 and we obtain the
CTMC depicted in Figure 5. The Ilumped state

space is composed by*(°7") = 6 states, N(t) € 1 11\0 02\0 01{-
{(2,0,0),(1,1,0),(0,2,0),(1,0,1),(0,0,2),(0,1,1)}, v

where the states are identified by the number of queues !

having a given number of customers in it. E.g., stdtgel, 0) H ,'O A 2\
means that one of the queues is idle and one of them has 1 »

customer in it. 2 101 Oll 002

(2Q0) (110) | y
A 7o Fig. 6. Dependence of the transitions of the tagged queue on the lumped
state

Markov chain in Figure 7, where

A if N(t) = (2,0,0),
Ao(N (1)) = { 2 if N(t) = (1,1,0),
21 if N(t) = (1,0,1).
0 if N(t) = (1,1,0),
A1<N<t>>:{ i N() = (0,2,0),
21 if N(t) = (0,1,1).

Fig. 4. Lumping the Markov chain of 2 queues /\/O(NQ)‘ /\/].(NQ)A
Considering the lumped process, we can interpret the be- ~— ~—
havior from the point of view of a tagged queue. In this case M H
the arrival rates depend on the states of the lumped CTMC,
as it is in Figure 6 Fig. 7. Markov chain of one of the identical entities
Due to the fact that all queues are identical Figure 6 contains _ o o
all information about the process. Consequently, Figure 6 and"aylng t_hls compact system qlescnptlon, the only remaining
Figure 5 give an equivalent description of the process. To keg{gP is to introduce the normalized occupancy veeid) =
the system description compact (and independentpfthe N(¢)/N. Doing this, we get
description of a single tagged entity (the one in Figure 6) is
used in practice. n(t) € {(1,0,0), (0.5,0.5,0), (0
For example, our queueing system can be described as the (0.5,0,0.5),(0,0,1

,1,0),
),(0,0.5,0.5)}



and no(t)Ao(n(t)) product atng(t) = 0. The same situation occurs

by if n(t) = 1’070)7 with )\1(11(25)) andnl(t).
Xom(t) =< 21 if n(t) = (0.5,0.5,0) Figure 9 shows how the limit proposed in equation (9)
0_5’0 0’.5)f actually holds, by plotting the mean number of entities in

each state as a function @f, whereA = 1.5 andu = 2.

0.5,0.5,0), The results of the figure are computed by numerically solving
0,1,0)

(

(
2\ if n(¢
0 if n(t

(

A(n(t)) = A if n(t) =(0,1,0), the stationary distribution of the lumped CTMC df objects.
2\ if n(t) = (0,0.5,0.5).
To make the system description independenf\ofve can Queue length probability
rewrite the transition rates as 8r—T 71 1 T T __
A 0.7
if ng(t 0,
Non®) = { @ 07
0 if no(t) =0, 05 [/
@) B oalV
A = I
if no(t) =0 andn4(t) > 0, 03|
M) = me 1) D
0 if ng(t) >0 orny(t) =0, 02 o
01 1 4
and obtain the CTMC shown in Figure 8. Note that the transi- o | s o 3:% o
tions with fixed rate are the transitions which are independent 0 10 20 30 40 50 60 70 8 90 100
of the state of the other entities, while the transitions that are N

funcnon _of the occupancy yector represent t.he dependencyF%f 9. Queue length probabilty as function of N
the entities, that is the action of the mean field.

Ao(n(®) A(n() nfini
@/‘\@/‘\@ B. Convergence whelV tends to infinity
In order to demonstrate the convergence to a deterministic
\ﬁ/ T~ quantity of the occupancy vectart) whenN tends to infinity,

H we have considered a system §f entities where each entity
is limited to 2 states (that is, each queue can only be empty
or in service).
In this way the complete stationary occupancy vector,
0,M1}, can be univocally defined by a single random
number,ng. The results of the exact computations over the
complete system are reported in Figures 10 and 11, when
A=15andu = 2.

Figure 10 shows how the coefficient of variation of the

Fig. 8. Markov chain of one of the identical entities

The N independent description of the system in (7) is thf
key to evaluate the limiting behaviour whé¥ tends toco. In 1"
this case, the particular form of (5) is

%{no(t), n1(t),na(t)}

= {no(t),n1(t),n2(t)} ®8) number of queues in the first state tends to zere/aends to
—Xo(n(t)) Ao(n(t)) 0 infinity in both linear and log-log scale. The log-log plot makes
7 —p—Xx1(n() M) it evident that the decreasing behaviour of the coefficient of
0 1 — 1 variation has a slope proportional N as stated by the

) ) ) strong law of large numbers. Figure 11 plots instead the whole
and starting from(0) = {1,0,0} the transient behaviour of yiciibition of the number of entities in the first state, and
n(t) can be computed using numerical methods. The limiting, ;s how it tends to become deterministic.
behaviour whent — oo can also be obtained as the limit of

the transient results

lim n(t) =

t—o0o

{ {1- %, %’0} if % <1, C. The incoming customer chooses the shortest afueues

{0,0,1} if 1< 2 ©) Other management policies, introducing different and more
K complex dependencies among the queues, are also easy to
which agree with our intuitive understanding on the modehodel and analyze with the mean field method. A variant
behaviour. of the previous example is when the new incoming customer
Note thatAo(n(t)) is always multiplied byny(t) in the rhs randomly selectsK' queues and it joins the one with the
of (8). This is why the unboundedness kf(n(t)) does not less customers out of the selectéd queues. This variant
cause problem for the computation of (8). In this example thiepresents the random queue selection (independent case)
no(t)Ao(n(t)) product is not continuous a}(¢) = 0. Itequals when K = 1 and it represents the shortest queue selection of
to A whenng(t) > 0 and to0 whenng(t) = 0. The definition Section Ill-A whenK = N. The subsequent analysis assumes
of A\o(n(t)) in (7) provides the required discontinuity of thea fixed K independent ofV.
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According to this policy, the probability that an arriving

customer attends a queue withcustomers in it can be
computed as follows

Pr(new customer goes to queue of lengih=
Pr(K selected queues are longer than 1
and at least one selected queue has leagth (10)
Pr(K selected queues are longer thian 1)—
Pr(K selected queues are longer than

Based on (11), the overall arrival rate towards the queues of

Sz‘(t)> ~ (Siﬁ;(t))

lengthi is AN(

K N and the arrival rate to
K
one of the queues of lengthis
(Si(t)> B <5i+1(t))
AN K K

(i)

Similarly when N tends to infinity, from (12), we have

(50" = 50200

Note that, in this cas@;(n(t)) is finite asn;(t) — 0 because
(si(t)® —s;41(t)%) contains am;(t) factor. Due to this finite
limit the n;(¢)A;(n(¢)) product, which appears on the rhs of
(5) vanishes asi;(t) — 0. Consequently, in this case it is
indifferent if A\;(n(¢)) is set to0 atn;(t) = 0 (in which case
Ai(e) is not continuous) or it is defined to be continuous at
We have implemented the mean field analysis of the above
detailed queue selection policy when each queue has at most
3 customers and we have evaluated the system behaviour in
two cases:

Cv of the exact system as function of N (linear and logarithmic

A

Ai(n(t)) = (14)

Case i) - lightload,p=A/u=05A=1,u=2)
Case ii) - heavy loadp = A/p=2 (A =2,u=1).

As a result of the mean field analysis, i.e., numerical
solution of (4) using Runge-Kutta or Euler elementary steps
refined to avoid negative probabilities, we have depicted in
Figures 12 and 13 the mean queue length for the light and
heavy load, respectively.

We observe different trends in the light and the heavy
loaded cases. Under light load (Figure 12), the selection of
the shortest queugK = N) means that half of the queues
have 1 customer and half of them are idle. Instead, with a

To compute these probabilities we introduce the followingyngom queue selectiofi’ = 1) the probability of having

notation. The number of queues with at leastustomers in  some queues with 2 customers is positive and the mean queue
itis Si(t) = >°j_; N;(t). The proportion of queues with atlength is higher.

leasti customers in it iss;(t) = S;(t)/N = Z;:i n;(t).
Using these notations
Pr(K selected queues are longer thanl) =
Si(t
Si(t) Si(t) -1 Si(t) —K+1 _ < K > (112)
N N-1""7N-K+1  (N\
K
When N tends to infinity we have
lim Pr(K selected queues are longer thanl) (12)

= s (1) .

In case of heavy load (Figure 13), the selection of the
shortest queu¢K = N) means that all the queues are going
to be saturated (i.e., in state 2) with probability 1. Instead in
case of random queue selectigi = 1) the probability that a
significant portion of the queues is not selected for a long time
is so high that the probability of having less than 2 customers
in a significant portion of the queues is positive. As a result
the mean queue length is less in this case.

Another important performance metric that can be computed
from the model is the mean loss probability of an incoming
customer, that is the probability that a client is routed to a
gueue which is already full and cannot hold it. This metric is



Light load Loss probability L oss probability

08 0.6 1 -
0.7 05 0.01
- 06 / 0.0001
=) [ 04
% 0.5 éy/ z 2 1e006 \
3 oa 3 3 \
s ( bréagdcfm; 7777777777 g 0 S 1e0m
§ o3 bestofs g ¢ \
= best of 4 | 0.2 1e-010
02 best of 5 ------
best of 10 ------
0.1 best of 20 q o1 1e-012
o shortest ’
0 5 10 15 20 25 30 35 40 s e leow4 oy lood —— |
Time 0 2 4 6 8 10 12 14 16 18 20 1 10 100
K K
Fig. 12. System behaviour with light load
Fig. 14. Loss probability (linear and logarithmic scale)
Heavy load
2 we have already proven that this approximation is valid for
25 /‘ N — oo. In Figure 15, we elaborate on this problem, focusing
s Ll on the loss probability of the heavy loaded model of Section
5 !/ [lI-C, and comparing the loss performance index on a finite
3 15 system with/N queues, using discrete event simulation, with
= random —— . i’ .
5 / bestof 2 the results obtained from the mean field analysis With- co.
= ! / best of 4 i The solid line in Figure 15 refers to the mean field computation
05 s ofs with N — oo and K = 3 and the dotted line to the mean field
best of 20 analysis withK = 2. It can be seen, that tf#% confidence
O 5 10 15 20 2 3 3 intervals computed by simulation with’ = 2; K = 2 and
Time with N = 3; K = 3 are well centered on the asymptotic mean
_ _ _ field results. Moreover, folV > 10 the simulated confidence
Fig. 13 System behaviour with heavy load intervals of the loss probability shrink around the asymptotic
mean field values.
computed as follows:
Simulation vs. Mean Field
Pr(loss) = 0.545
Mean Field, K=3 ———
. . 0.54 SmK=3 -+ q
E(# incoming customels — E(# served customers 0535 Mean Field, K=2 |
A T == : Sim, K=2 x
E(# incoming customejs . 08 "
NA— (N — Ny(t A—(1—no(t g o
lim ( o)) = lim (—O(»M S o0s
tmo0 NA tmo0 A (15) g 0515
Figure 14 shows this quantity for both the light and the ~ 0% %5
heavy loaded cases as a function &t In both cases, in- 05;: ER S S
creasingK reduces the loss probability of the system. When 0455
the system is light loaded (i.e\ < ), it is sufficient to B 10 100
have K > 4 to obtain loss probabilities smaller than the N

machine pr.e.CISlon. For the heavy Ioadegicase e p), Fig. 15. Comparison of the loss probability between mean field, and
the probability does not tend t0, but to =5*. In order t0  simulation of a finite system with N queues

better understand how the loss probability reaches this limit,
in the logarithmic version of Figure 14, we have plotted
Pr(loss)— % As it can be seen, when the system is heavil%
loaded, K must be increased much more than in the Iightlye
loaded case to reduce the losses.

However the quality of the approximation depends also very
uch on the load of the system. In particular, one of our
viewers recommended to check it at a system load close
to 1. It turned out that the convergence to the asymptotic
results is slower in this case. For example Figure 16 shows
D. Comparison with finiteV systems the comparison of loss probability for a system with= 2,

In practice systems are finite, and the assumptiofvdhat with p = 0.99 and p = 1.01 for increasing values ofV.
tends to the infinity is often non-realistic. One of the questions this case, in order to have an accurate approximation, we
is thus whether the mean field approach is appropriate to apust haveN > 1000. Figure 17 justifies this conclusion with
proximate finite systems, and up to which extent. In Corollangspect to the mean queue length.



Simulation vs. Mean Field transition rates of a type entity are
0.128

M= — K (N(1) =
Mean Field, p=1.01 -~ |

0.124 % Sim, p=1.01 * 1

5 012 lim — Pr(X©t+A) = j|X© ) =i,N(t)),

5 on X A-0 A

KT (N(1)) = = ¥ ez K17 (N(1):

® 0116

3 o114 Introducing again, n(t) = N(¢)/N, assuming that
0112 } limy oo NO/N = nl® € (0,1) and taking the limit
011 3 N — oo we obtain the same differential equation as (5), but
0108 = - = : o this time vectorn(t), contains the proportion of entities of

each type in each state.

As a result, the cardinality of the differential equation (5)
Fig. 16.  Comparison of the loss probability between mean field, aircreases linearly with the number of different types, since
simulation of a finite system with N queues, when the total lpae 1 matrix k(n(t)) is of sizes x s (Withls — 2521 S(c)) and is
composed by non-zero blocks of sigé) x s().

N

Simulation vs. Mean Field

192 - A. Example of a system with regular and spare queues
119; Let us consider the queueing system of Section Il with two
£ 189 % types of queues: regular queues amire queues. For each
5 1gs regular queue, there afespares. For example = 0.5 means
§ 187 . * . that there is a spare eve?yregular queues. Both regular and
g 1.86 spare queues have the same servicegatand the same buffer
S 18 ¥ capacityB. Customers arrive at rate per regular queue, and
184 M e oo s | are directed to the queue with the lowest occupancy. Spare
183 M P oo e | gueues are used only if the mean number of customers in
182 = 100 1000 the regular queues exceeds a given threspioldve calla =
N ﬁ the fraction of regular queues. Since the arrival rate is

expressegber regular queugwe compute the total arrival rate
Fig. 17. Comparison of the mean queue length between mean field, gpg\ — )\,
simulation of a finite system with N queues, when the total Ipaé 1 . . . . .
We can apply mean field analysis to this system considering
regular queues (identified by vectaf?), and spare queues

o _ (identified by vectorn(®)) separately. In particular, if we
The above results indicate that the solutions computed VignsiderB — 1 for sake of simplicity, we have:

mean field analysis, can be considered as a meaningful ap-

proximation of the exact performance indices, in some cases,

even for relatively small (i.e.N = 10) numbers of entities n(t) (0§ @), n (1), n§ (£), 0V (1)}
in the system, but in some cases accurate approximation is  n(0) = {a,0,1— 0,0}

obtained only at around&v = 100 — 500.

IV. MEAN FIELD METHOD WITH DIFFERENT KINDS OF —Ar(n(t)) Ar(n(t)) 0 0
— 0 0
ENTITIES k(n(t)) = lé O'u Cas(n(®)  As(n(®)
In section I, we considered the mean field analysis\of 0 0 K —H
dependent identical Markovian entities. In this section we ewhere:
tend the analysis to systems composed by more than one type X R
of dependent Markovian entities. Lat(), N?) . N(©) pe 00 () if 0,7 (t) < af
the number of identical entities of typg2,...,C, respec- AR = "5
tively. The state space of a typeentity is denoted byS(¢) OIS if n{™(t) > o
(c € {1,2,...,C}), and is composed by®) = |S(°)| states. 0 0
Ni(c) (t) denotes the number of typeentities which are in state 0 it n{®(t) < apB
i at time t. We introduce vectolN(®)(t) of size s(®), whose Ag = N
elements areV ) () and vectorN() of sizes = >, s(, ﬁ it () > aB
whose blocks ar&N(©) (t). ng (8) +ng (1)
In general, the transition matrix of the Markov chain of Figure 18 shows some results for= 0.5, varying both the

a typec entity may depend on the whole vectdi(¢). The load of the systenp = % and the switching point. The



introduction of the spare queues allows the system to respond
to load greater thai (up top = 1++y). Spare queues are used

only if the total load produces a mean queue length larger than in(t) = n(t) k(n(t), m(t))
(6. After this threshold, the mean queue length of the regular dt ’ ’ (16)
queues remains constant, until it is reached by the mean length T m(t) = n(t) R,

of the spare queues. From this point on both regular and spare
gueues grow with the same slope. If we consider a fixed load

p <1, we can see that large values @freduce spare queuesyhere thei, d element of matridR is R,y = T,Z(d)_
usage, while small values @f improve the response time by

allowing shorter queues. Introducing vector v(¢) = [n(¢),m(¢)] and matrix
k(n(t t) | R .
H(v(t)) = (n( )6m( ) 0l (16) can be rewritten to the
. System with spare quees following form which is similar to the differential equation in
09 4)
08 / d
5 07 —v(t) =v(t) H(v(t)). a7)
5 06 et dt
g 0.5 v T 5:8% f—
0.4 A / /spare, =0.2 - 8 .. X
§ ; v‘vr‘rea%lar, B=04 | Similar to Theorem 1, the proof of the Theorem 3 requires
= 03 7 ; 7 spare, p=0.4 . . . . . .
02 - S regular =06 | a detailed investigation of the properties lofe), which we
01 FARR .. vy . | neglect here.
o Z _spare, @:0.8 ‘
0 0.2 0.4 0.6 0.8 1 12 14 16
Load p
Flg 18. Mean queue Iength ina system with 50% Spare queues VI. MEAN FIELD ANALYSIS OF QUEUES WITH MEMORY

DEPENDENT LOAD

V. MEAN FIELD METHOD WITH MEMORY DEPENDENCY Let us consider the queueing system of Section Il but with

The mean field framework allows to consider the depefi¥0 types of queues of different buffer _|€n1931(1) and B®)
dency of the individual entities on a set of reward variable§Uch that portion of the queues are of siz€") and1—o por-

The reward variables represent a kind of memory on tﬁi@rl‘ of them of S;ZEB(Q)- |-e-15(1)2= {07217--~7B;(1)}75(1) =
past evolution of the process, hence the reward variables &e’ + 1, andS® ={0,1,...,B®},5s?) = B® 4+ 1.
interchangeably referred to as memory variables. The goal is to set the traffic served by the different type of

We introduce vectoM (t), whosed-th elementM;(t) (d € queues to a predefined valug, To this end, we can apply a
{1,2,...,D}) denotes the accumulated reward of typat reward based queue selection policy: we define two memory
time t. When an entity is in statéit accumulates reward of variablesm; (t) andmg(t) accumulating the amount of traffic
typed at ratergd) and the overall accumulation rate of type served by type 1 and 2 queues. The associated type 1 reward

reward (generated by all entities) is rates are
d
i Mq(t) = ngd) Ni(t) . p B - BM o
i _ 1 1 o 1
€s dt m(t) = ZZ:% rpomg () = ; pong () .

In general, asV tends to infinityM,(¢) tends to infinity as
well. By this reason we introduce.;(t) = My(t)/N and the

associated vectam(t) = M(t)/N. Using this notation le.,r") is u if i > 1. The reward rates associated with(t)
are defined similarly.
d =S D o .
at ma(t) = Zn ni(t) . An incoming customer is directed to that type of queues
€S which served less customers than the predefined ratio and

If the k(e) transition rate matrix depends not only axft), among the queues of this type it attenc(its the shortest one. l.e.,
but also onmy(t), the behavior of the system is characterize@ customer attends a type 1 queuell < %, a type 2

by the following theorem. queue if if Z;gg > 1%5 and attends the shortest of all queues
Theorem 3. The normalized state vecton(t), and the if 7;28 = 1%5

normalized reward vectonn(t), of the process tends to be The structure of the transition matrix of type 1 and 2 entities
deterministic, in distribution, asV tends to infinity and they remains the same as the one in (8) witH? and B®

satisfy the following differential equations customers, but the arrival rates depend also on the memory




variables
AD(n@t), m)) =
; (n(t), m(?)) and
0 if ’;28 > 1% or n{"(t) =0 or
my(t)
m;Et) - lifé and
1
Jk<i st n,(cl)(t) >0), o
A . [2
— if Tl o &
n (1) mat e
A . 3]
if (M — € and [
() +n(2) <””<“ o )
vi<i,n{(t) = P () = 0),

(18) Bl

The arrival rates to type 2 entities are symmetric with (18). [6]
Starting fromn(0) = {0,0,...,0} andn®(0) = {1 —

0,0,...,0} this memory based queue selection policy result§’]

n

A A A o
—g2 €2 0,...,00 if2<cg (8]

lim H(l)(t) :{ {U gxm w ) } I m < &

t—o0 {0,0,...,0,0} if ¢ <2,
Jim n®(t) = [9]
{1-0-(1-6)3,(1-6)2,0,...,0} if & < i=¢, 110]

i l—0o A

{070,0,...,1—0'} |f 1775 S E

and [11]

B _ a9

Note that the memory variables tends to infinity as timi@3]
increases.

lim

t—oo

(12]

(14]

VII. CONCLUSION

Mean field theory aims at representing a multi-body pro
lem constituted by a large number of interacting identical enti-
ties with a one-body problem where the interdependencies
still considered. We have shown how the mean field method
can be applied to performance problems where the interacting
entities are represented by Continuous Time Markov Chains
(CTMC). We have applied this powerful method to study
different dependent policies for feeding Markovian queues
with a finite buffer. The mutual interaction is modeled by
defining the transition rates of a tagged entity as a function of
the proportion of queues in each state and solving a differential
equation defined over the normalized state occupancies. Var-
ious performance indices are computed and the behaviour of
the interdependent policies is compared with the independent
case.
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