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Abstract—Modeling and analysing very large stochastic sys-
tems composed of interacting entities is a very challenging and
complex task. The usual approach, relying on the generation of
the whole state space, is bounded by the state space explosion,
even if symmetry properties, often included in the model, allow
to apply lumping techniques and building the overall model by
means of tensor algebra operations.

In this paper we resort to the mean field theory. The main
idea of the mean field theory is to focus on one particular tagged
entity and to replace all interactions with the other entities with
an average or effective interaction. The reduction of a multi-
body problem into an effective one-body problem makes the
solution easier while at the same time taking into account the
contribution of an averaged interdependence of the whole system
on the specific entity. We apply the mean field approach to very
large systems of interacting continuous time Markov chains, in
which the averaged interaction depends on the distribution of
the entity population in each state.

We report several examples of interacting Markovian queues,
showing the potentialities of the proposed technique.

Keywords: Continuous time Markov chain, Mean field method,
Performance Evaluation.

I. I NTRODUCTION

Complex systems can usually be disaggregated into inter-
acting parts or components where each part can have a local
autonomous behavior that depends on the ensemble of the
behaviors of the other parts. In recent years, an enormous
amount of literature has been devoted to the study of complex
systems in biology, economics, social science, physics, com-
puter and communication systems. In this paper, we focus the
attention on very large scale stochastic systems, in which the
basic entities evolve according to a CTMC, whose infinitesimal
generator depends on current state occupied by all the other
entities.

The analysis of large scale stochastic systems composed by
interacting objects has been mainly faced in the literature by
resorting to the superposition of interacting Markov chains or
to fluid models. In the first case, the analysis of the system
requires the generation of the global state space, defined as the
Cartesian product of the state spaces of the CTMC’s describing
the individual interacting objects. The explosion of the global

state space determines the upper bound for the application of
the methodology, even if the explosion is usually mitigated
by exploiting the symmetry properties often included in the
system definition, that allow to apply lumping techniques and
to produce the global transition rate matrix by means of tensor
algebra operators applied to the local matrices.

Representative attempts in this direction define the in-
teracting objects directly as Markov chains [5], [7], or as
finite state automata [14], [15] or as Petri nets [6], [12]. In
[14] the local entity is called automaton and theStochastic
Automata Network (SAN)is a system composed by interacting
automata. In [1], the states of the individual Markov chains
are partitioned in classes and the transition rate of each chain
depends on the classes of the other chains. A two layer view is
also proposed in social networks in [16] where the local level
is a chain that depicts an individual player and the global
view models the team action as a whole. The compositional
approaches are limited by the explosion of the state space.

A particular model of interacting objects for which a set
of exact and approximate analysis methods are available
is the queueing network model. In this model the objects
communicate via customers which visit the network nodes
according to some routing rules. We refer to [3] for a recent
survey on the related analysis results. In the most common
application of queueing networks the number of objects is
finite and the number of states of the objects can be finite and
infinite. The case of infinite number of states of finite number
of objects can also be approximated with fluid models. Fluid
models [11], [8] are able to capture the global behaviour of
the system, but they loose the capability of detailing the local
behaviour. A continuous approximation to a discrete model
is also considered in [9] where components of the same type
do not have statistical dependencies but may synchronize on
shared activities.

In this paper, we focus the attention on very large scale
stochastic systems, whose dimensions exceed the capabilities
of all the methods based on the generation of the global
state space, even if the basic entities evolve according to a
CTMC. Especially, we focus on the case when the number
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of interacting objects grows very large and the number of
states of these objects is finite and moderately large. We
propose an approximation based onmean fieldmethod [13],
[4]. The mean fieldmethod focusses on a particular tagged
entity, and replaces all the interactions with the other entities
with an average interaction. In the present case, each entity is
a CTMC described by a local infinitesimal generator whose
entries depend on the distribution of the other entities in their
state space. In this way, we can model the individuality of
each entity, but at the same time its interaction with the whole
system. Asymptotic results allow us to consider systems in
which the number of entities tends to infinity.

The mean field technique is well known and widely applied
in many different areas [13]. The main goal of this paper is
to present this methodology in a way which allows its use
in the performance evaluation community. By this reason,
we put more emphasis on how the methodology can find
application in stochastic modeling rather than in the theoretical
background of the methodology and the practical relevance
of the considered examples. [4] and [2] had partially similar
goals. The main difference is that in [4] and in [2] the
interacting entities are formulated as discrete time Markov
models, while in the present paper we take into consideration
continuous time Markov models. In some cases the transition
form continuous to discrete time Markov models are straight
forward, but we believe that it is not immediate in case of the
application of the mean field method.

Additionally, [4] and [2] apply a set of strong restrictions
on the behavior of the interacting entities and the type of their
interactions in order to apply a well established mathematical
framework for proving the main convergence results. In this
paper, we present examples which are out of the scope of [4]
and [2] and still show a nice coincidence with the respective
convergence results. These examples suggest that the condi-
tions of [4] and [2] can be relaxed, but the investigation of the
most general conditions and their proofs are out of the scope
of the present paper.

The paper is organized as follows; Section II introduces the
mean field idea for interacting CTMC and provides the main
theorem and results. Section III illustrates a simple example
of interacting queues and shows how different dependent
strategies for accommodating the incoming customers can be
modeled and analyzed; the analysis is restricted to identical
and indistinguishable entities. Section IV introduces a new
variant, by showing that it is possible to consider entities
belonging to different types and provides a possible application
example. Sections V and VI introduce memory dependencies
in mean field analysis and an example of application of queues
with memory dependent load, respectively.

II. M EAN FIELD METHOD FOR LARGECTMC MODELS

There are several efficient methods for constructing and
evaluating Markovian models composed by a large finite
number of identical interacting entities. The mean field method
allows to compute the behaviour of this kind of models
when the number of entities tends to infinity and suggests
an approximation when the number of entities is large.

Let us assume that we haveN identical discrete state entities
in the form of CTMC. The state transitions of the CTMCs
might depend on the current state of all entities, but cannot
depend on the past history of the process and on the state
transitions of other entities. This second restriction excludes
synchronization between the transitions of entities.

The state of entitỳ (` = 1, 2, . . . , N ) at time t is denoted
by X`(t) In this section we assume, as an essential property,
that all the entities are identical and indistinguishable. With
this assumption, the behaviour of entityi does not depend
directly on the particular state of a generic entityj, but it may
depend on the global number of entities in each state.

Due to the fact that the entities are identical, the state of
a randomly chosen (tagged) entity is denoted byX(t). The
state space of each entity,S, is composed bys = |S| states,
andNi(t) denotes the number of entities which are in statei
(∀i ∈ S) at time t. The vector composed byNi(t) is denoted
by N(t) and by this definition,

∑s
i=1 Ni(t) = N .

The global behavior of the set ofN entities forms a CTMC
over the state space of sizesN . However, due to the fact
that the entities are identical and indistinguishable, the state
space can be lumped into the aggregate state spaceSL of
size

(
N+s−1

s−1

)
, where a state of the overall CTMC is identified

by the number of entities staying in each state ofS, i.e., by
N(t) = (N1(t), N2(t), . . . , Ns(t)).

The evolution of the local CTMC is such that there are no
synchronous transitions in different entities and the transition
rates of a given entity may depend on the global behavior
through the actual value ofN(t). With this assumption, the
following transition rates govern the evolution of a particular
entity

Kij(N(t)) ={
lim
∆→0

1
∆

Pr(X(t+∆) = j|X(t) = i,N(t)) if Ni(t) > 0,

0 if Ni(t) = 0,

Kii(N(t)) = −
∑

j∈S,j 6=i

Kij(N(t)).

(1)
Note that in the first condition of (1),X(t) = i means that
N(t) is such thatNi(t) ≥ 1, since at least the tagged entity
is in statei.

Instead of usingN(t) when N is large, we introduce the
normalized vector,n(t) = N(t)/N , where the entriesn(t),
0 ≤ ni(t) ≤ 1, define the proportion of objects in statei at
time t and

∑
i∈S ni(t) = 1 and the associated transition rate

function:

k
(N)
ij (n(t)) = Kij(N · n(t)). (2)

(1) and (2) describe the same transition matrix, but (1)
defines the transition rates at discrete points of integer valued
vectors,N(t), and (2) defines them at discrete points whose
coordinates are integer multiples of1/N . For the analysis of
a system composed byN entities Kij(•) and k

(N)
ij (•) are

defined for these discrete points.
To investigate the limiting behavior asN tends to infinity

we need akij(n(t)) function which is defined for all feasible
n(t) vectors and satisfieskij(n(t)) = k

(N)
ij (n(t)) for ∀N ≥ 1.
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The existence and the properties of suchkij(•) functions
play an important role in the applicability of the mean field
approach. In Section III-A we present a rather simple applica-
tion example werekij(•) exists, but it is neither bounded nor
continuous and the mean field limit seems to be valid. This
suggests us that the practical application of the mean field
approach for continuous time Markov chains requires more
relaxed conditions than the ones in [4] and [2]. Obviously
the problem of unbounded transition rate cannot occur with
discrete time Markov chains, because in that case the transition
probabilities are upper bounded by one. The discontinuity of
kij(n(t)) in the example of Section III-A is also related to
the unboundedness ofkij(n(t)), becausekij(n(t)) is discon-
tinuous at the limit where it tends to infinity. (The comments
after (9) and (14) are to emphasize this behaviour through the
studied examples.)

In the rest of the paper we use small letters to denote the
quantities which are based onn(t). We define the transition
matrix based on Equation (2) as

k(n(t)) = {kij(n(t))} (3)

The mean field method is based on the following essential
theorem.

Theorem 1. The normalized state vector of the lumped
process,n(t), tends to be deterministic, in distribution, asN
tends to infinity and satisfies the following differential equation

d

dt
n(t) = n(t) k(n(t)) (4)

An individual component out of the set ofs equations (4)
can be written as:

d

dt
ni(t) =

∑

j∈S

nj(t) kji(n(t)), (5)

The proof of the theorem requires further investigation on
the conditionsk(n(t)) has to fulfill. In [10] we have provided
an initial derivation that (at the moment of writing) is currently
being refined with respect to these condition. In [4] and
[2] very strong conditions where assumed. However in this
work we show that the mean-field method can be successfully
applied also to cases that do not fulfill such strict requirements.

Theorem 1 provides a formulation that is easy to apply and
to compute in the extreme case whenN tends to infinity,
but in practice it is typically not the case. The following
corollary provides an approximation method for the case when
the number of entities,N , is finite but sufficiently large.

Corollary 2. When N is sufficiently large, the normalized
state vector of the lumped process,n(t), is a random vector
whose mean can be approximated by the following differential
equation

d

dt
E(ni(t)) ≈

∑

j∈S

E(nj(t)) kji(E(n(t))) (6)

Also for the proof of the Corollary we refer to [10] which
is under refinement. While Theorem 1 is exact becausen(t)
is deterministic Corollary 2 is approximate, whose accuracy

depends on the distribution ofn(t). The closestn(t) is to
deterministic, the better is the approximation of Corollary
2. The speed of the convergence ofn(t) to deterministic
as N tends to infinity is also investigated in the subsequent
numerical examples.

III. M EAN FIELD ANALYSIS OF DEPENDENT QUEUES

To demonstrate the mean field methodology we present
a simple example and detail its analysis according to the
concepts and quantities discussed in the previous section.

Let us consider a queueing system composed byN identical
Markovian queues (entities), each of which has a single server
and a buffer of size1 (S = {0, 1, 2}, s = 3). Customers arrive
at rateNλ to this queueing system and their service time is
exponentially distributed with parameterµ. The CTMC of a
single queue (N = 1) is depicted in Figure 1.

0 1 2
λ

µ µ

λ

Fig. 1. Markov chain of a single queue in isolation

A. The incoming customer chooses the shortest queue

WhenN > 1 we adopt a policy that the incoming customer
chooses the shortest queue and is directed to the queue which
has the least number of customers in it. This policy makes
the different queues interdependent. WhenN = 2, the CTMC
describing this behavior is depicted in Figure 2, where the first
number refers to the state of queue 1 and the second to the
state of queue 2. We can interpret the transitions of Figure 2
from the view point of queue 1. In this case, the transition
rates of the arrivals to queue 1 depend on the state of queue
2 as depicted in Figure 3.
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µ µ
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2λ

µ µ

λ

20 21 22

λ

µ µ

2λ

λ 2λ 2λ

λ 2λ

µ µ µ

µ µ µ

Fig. 2. Markov chain of 2 queues (without lumping)
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s1=0

λ 2λ 2λ

λ 2λ

µ

µ

s2=0 s2=1 s2=2

s1=1 s2=0 s2=1 s2=2

s1=2 s2=0 s2=1 s2=2

0

Fig. 3. Dependence of the transitions of queue 1 on the state of queue 2

Since the queues are identical, we can lump the
states according to Figure 4 and we obtain the
CTMC depicted in Figure 5. The lumped state
space is composed by

(
2+3−1
3−1

)
= 6 states, N(t) ∈

{(2, 0, 0), (1, 1, 0), (0, 2, 0), (1, 0, 1), (0, 0, 2), (0, 1, 1)},
where the states are identified by the number of queues
having a given number of customers in it. E.g., state(1, 1, 0)
means that one of the queues is idle and one of them has 1
customer in it.

00 01 02

λ

µ µ

10 11 12

2λ

µ µ

λ

20 21 22

λ

µ µ

2λ

λ 2λ 2λ

λ 2λ

µ µ µ

µ µ µ

(200) (110)
(101)

(011)

(002)

(020)

Fig. 4. Lumping the Markov chain of 2 queues

Considering the lumped process, we can interpret the be-
havior from the point of view of a tagged queue. In this case
the arrival rates depend on the states of the lumped CTMC,
as it is in Figure 6

Due to the fact that all queues are identical Figure 6 contains
all information about the process. Consequently, Figure 6 and
Figure 5 give an equivalent description of the process. To keep
the system description compact (and independent ofN ) the
description of a single tagged entity (the one in Figure 6) is
used in practice.

For example, our queueing system can be described as the

2 0 0 1 1 0 0 2 0

0 1 1

0 0 2

1 0 1

2λ 2λ

2λ 2λ

2λ

µ
µ

µ

µ
2µ

2µ

Fig. 5. Markov chain of the overall behaviour

0

λ 2λ 2λ

λ 2λ

µ

µ

200 110 101

1 110 020 011

2 101 011 002

0

Fig. 6. Dependence of the transitions of the tagged queue on the lumped
state

Markov chain in Figure 7, where

Λ0(N(t)) =





λ if N(t) = (2, 0, 0),
2λ if N(t) = (1, 1, 0),
2λ if N(t) = (1, 0, 1).

Λ1(N(t)) =





0 if N(t) = (1, 1, 0),
λ if N(t) = (0, 2, 0),
2λ if N(t) = (0, 1, 1).

0 1 2
Λ0(N(t))

µ µ

Λ1(N(t))

Fig. 7. Markov chain of one of the identical entities

Having this compact system description, the only remaining
step is to introduce the normalized occupancy vectorn(t) =
N(t)/N . Doing this, we get

n(t) ∈ {(1, 0, 0), (0.5, 0.5, 0), (0, 1, 0),
(0.5, 0, 0.5), (0, 0, 1), (0, 0.5, 0.5)}
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and

λ0(n(t)) =





λ if n(t) = (1, 0, 0),
2λ if n(t) = (0.5, 0.5, 0),
2λ if n(t) = (0.5, 0, 0.5).

λ1(n(t)) =





0 if n(t) = (0.5, 0.5, 0),
λ if n(t) = (0, 1, 0),
2λ if n(t) = (0, 0.5, 0.5).

To make the system description independent ofN we can
rewrite the transition rates as

λ0(n(t)) =





λ

n0(t)
if n0(t) 6= 0,

0 if n0(t) = 0,

λ1(n(t)) =





λ

n1(t)
if n0(t) = 0 andn1(t) > 0,

0 if n0(t) > 0 or n1(t) = 0,

(7)

and obtain the CTMC shown in Figure 8. Note that the transi-
tions with fixed rate are the transitions which are independent
of the state of the other entities, while the transitions that are
function of the occupancy vector represent the dependency of
the entities, that is the action of the mean field.

0 1 2
λ0(n(t))

µ µ

λ1(n(t))

Fig. 8. Markov chain of one of the identical entities

The N independent description of the system in (7) is the
key to evaluate the limiting behaviour whenN tends to∞. In
this case, the particular form of (5) is

d

dt
{n0(t), n1(t), n2(t)}

= {n0(t), n1(t), n2(t)}

−λ0(n(t)) λ0(n(t)) 0

µ −µ− λ1(n(t)) λ1(n(t))
0 µ −µ




(8)

and starting fromn(0) = {1, 0, 0} the transient behaviour of
n(t) can be computed using numerical methods. The limiting
behaviour whent → ∞ can also be obtained as the limit of
the transient results

lim
t→∞

n(t) =

{ {1− λ
µ , λ

µ , 0} if λ
µ < 1,

{0, 0, 1} if 1 ≤ λ
µ ,

(9)

which agree with our intuitive understanding on the model
behaviour.

Note thatλ0(n(t)) is always multiplied byn0(t) in the rhs
of (8). This is why the unboundedness ofλ0(n(t)) does not
cause problem for the computation of (8). In this example the
n0(t)λ0(n(t)) product is not continuous atn0(t) = 0. It equals
to λ whenn0(t) > 0 and to0 whenn0(t) = 0. The definition
of λ0(n(t)) in (7) provides the required discontinuity of the

n0(t)λ0(n(t)) product atn0(t) = 0. The same situation occurs
with λ1(n(t)) andn1(t).

Figure 9 shows how the limit proposed in equation (9)
actually holds, by plotting the mean number of entities in
each state as a function ofN , whereλ = 1.5 and µ = 2.
The results of the figure are computed by numerically solving
the stationary distribution of the lumped CTMC ofN objects.
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Fig. 9. Queue length probability as function of N

B. Convergence whenN tends to infinity

In order to demonstrate the convergence to a deterministic
quantity of the occupancy vectorn(t) whenN tends to infinity,
we have considered a system ofN entities where each entity
is limited to 2 states (that is, each queue can only be empty
or in service).

In this way the complete stationary occupancy vector,
{n0, n1}, can be univocally defined by a single random
number,n0. The results of the exact computations over the
complete system are reported in Figures 10 and 11, when
λ = 1.5 andµ = 2.

Figure 10 shows how the coefficient of variation of the
number of queues in the first state tends to zero asN tends to
infinity in both linear and log-log scale. The log-log plot makes
it evident that the decreasing behaviour of the coefficient of
variation has a slope proportional to

√
N as stated by the

strong law of large numbers. Figure 11 plots instead the whole
distribution of the number of entities in the first state, and
shows how it tends to become deterministic.

C. The incoming customer chooses the shortest ofK queues

Other management policies, introducing different and more
complex dependencies among the queues, are also easy to
model and analyze with the mean field method. A variant
of the previous example is when the new incoming customer
randomly selectsK queues and it joins the one with the
less customers out of the selectedK queues. This variant
represents the random queue selection (independent case)
whenK = 1 and it represents the shortest queue selection of
Section III-A whenK = N . The subsequent analysis assumes
a fixedK independent ofN .
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Fig. 10. Cv of the exact system as function of N (linear and logarithmic
scale)
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Fig. 11. Distribution of the exact system as function of N

According to this policy, the probability that an arriving
customer attends a queue withi customers in it can be
computed as follows

Pr(new customer goes to queue of lengthi) =
Pr(K selected queues are longer thani− 1

and at least one selected queue has lengthi) =
Pr(K selected queues are longer thani− 1)−

Pr(K selected queues are longer thani)

(10)

To compute these probabilities we introduce the following
notation. The number of queues with at leasti customers in
it is Si(t) =

∑s
j=i Nj(t). The proportion of queues with at

least i customers in it issi(t) = Si(t)/N =
∑s

j=i nj(t).
Using these notations

Pr(K selected queues are longer thani−1) =

Si(t)
N

· Si(t)− 1
N − 1

. . .
Si(t)−K + 1
N −K + 1

=

(
Si(t)
K

)

(
N

K

) .
(11)

WhenN tends to infinity we have

lim
N→∞

Pr(K selected queues are longer thani−1)

= si(t)K .
(12)

Based on (11), the overall arrival rate towards the queues of

length i is λN

(
Si(t)
K

)
−

(
Si+1(t)

K

)

(
N

K

) and the arrival rate to

one of the queues of lengthi is

Λi(N(t)) =
λN

Ni(t)
·

(
Si(t)
K

)
−

(
Si+1(t)

K

)

(
N

K

) . (13)

Similarly whenN tends to infinity, from (12), we have

λi(n(t)) =
λ

ni(t)

(
si(t)K − si+1(t)K

)
. (14)

Note that, in this caseλi(n(t)) is finite asni(t) → 0 because
(si(t)K−si+1(t)K) contains anni(t) factor. Due to this finite
limit the ni(t)λi(n(t)) product, which appears on the rhs of
(5) vanishes asni(t) → 0. Consequently, in this case it is
indifferent if λi(n(t)) is set to0 at ni(t) = 0 (in which case
λi(•) is not continuous) or it is defined to be continuous at
ni(t) = 0.

We have implemented the mean field analysis of the above
detailed queue selection policy when each queue has at most
3 customers and we have evaluated the system behaviour in
two cases:

Case i) - light load, ρ = λ/µ = 0.5 (λ = 1, µ = 2)
Case ii) - heavy load,ρ = λ/µ = 2 (λ = 2, µ = 1).

As a result of the mean field analysis, i.e., numerical
solution of (4) using Runge-Kutta or Euler elementary steps
refined to avoid negative probabilities, we have depicted in
Figures 12 and 13 the mean queue length for the light and
heavy load, respectively.

We observe different trends in the light and the heavy
loaded cases. Under light load (Figure 12), the selection of
the shortest queue(K = N) means that half of the queues
have 1 customer and half of them are idle. Instead, with a
random queue selection(K = 1) the probability of having
some queues with 2 customers is positive and the mean queue
length is higher.

In case of heavy load (Figure 13), the selection of the
shortest queue(K = N) means that all the queues are going
to be saturated (i.e., in state 2) with probability 1. Instead in
case of random queue selection(K = 1) the probability that a
significant portion of the queues is not selected for a long time
is so high that the probability of having less than 2 customers
in a significant portion of the queues is positive. As a result
the mean queue length is less in this case.

Another important performance metric that can be computed
from the model is the mean loss probability of an incoming
customer, that is the probability that a client is routed to a
queue which is already full and cannot hold it. This metric is
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Fig. 13. System behaviour with heavy load

computed as follows:

Pr(loss) =

E(# incoming customers) − E(# served customers)
E(# incoming customers)

=

lim
t→∞

Nλ− (N −N0(t))µ
Nλ

= lim
t→∞

λ− (1− n0(t))µ
λ

(15)
Figure 14 shows this quantity for both the light and the

heavy loaded cases as a function ofK. In both cases, in-
creasingK reduces the loss probability of the system. When
the system is light loaded (i.e.λ < µ), it is sufficient to
have K ≥ 4 to obtain loss probabilities smaller than the
machine precision. For the heavy loaded case (i.e.λ > µ),
the probability does not tend to0, but to λ−µ

λ . In order to
better understand how the loss probability reaches this limit,
in the logarithmic version of Figure 14, we have plotted
Pr(loss)− λ−µ

λ . As it can be seen, when the system is heavily
loaded,K must be increased much more than in the lightly
loaded case to reduce the losses.

D. Comparison with finiteN systems

In practice systems are finite, and the assumption ofN that
tends to the infinity is often non-realistic. One of the questions
is thus whether the mean field approach is appropriate to ap-
proximate finite systems, and up to which extent. In Corollary

0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12 14 16 18 20

L
os

s 
pr

ob
ab

ili
ty

K

Loss probability

Light load
Heavy load

1e-014

1e-012

1e-010

1e-008

1e-006

0.0001

0.01

1

1 10 100

L
os

s 
pr

ob
ab

ili
ty

K

Loss probability

Light load
Heavy load

Fig. 14. Loss probability (linear and logarithmic scale)

2 we have already proven that this approximation is valid for
N →∞. In Figure 15, we elaborate on this problem, focusing
on the loss probability of the heavy loaded model of Section
III-C, and comparing the loss performance index on a finite
system withN queues, using discrete event simulation, with
the results obtained from the mean field analysis withN →∞.
The solid line in Figure 15 refers to the mean field computation
with N →∞ andK = 3 and the dotted line to the mean field
analysis withK = 2. It can be seen, that the95% confidence
intervals computed by simulation withN = 2; K = 2 and
with N = 3; K = 3 are well centered on the asymptotic mean
field results. Moreover, forN ≥ 10 the simulated confidence
intervals of the loss probability shrink around the asymptotic
mean field values.
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Fig. 15. Comparison of the loss probability between mean field, and
simulation of a finite system with N queues

However the quality of the approximation depends also very
much on the load of the system. In particular, one of our
reviewers recommended to check it at a system load close
to 1. It turned out that the convergence to the asymptotic
results is slower in this case. For example Figure 16 shows
the comparison of loss probability for a system withK = 2,
with ρ = 0.99 and ρ = 1.01 for increasing values ofN .
In this case, in order to have an accurate approximation, we
must haveN > 1000. Figure 17 justifies this conclusion with
respect to the mean queue length.
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The above results indicate that the solutions computed via
mean field analysis, can be considered as a meaningful ap-
proximation of the exact performance indices, in some cases,
even for relatively small (i.e.,N = 10) numbers of entities
in the system, but in some cases accurate approximation is
obtained only at aroundN = 100− 500.

IV. M EAN FIELD METHOD WITH DIFFERENT KINDS OF

ENTITIES

In section II, we considered the mean field analysis ofN
dependent identical Markovian entities. In this section we ex-
tend the analysis to systems composed by more than one type
of dependent Markovian entities. LetN (1), N (2), . . . , N (C) be
the number of identical entities of type1, 2, . . . , C, respec-
tively. The state space of a typec entity is denoted byS(c)

(c ∈ {1, 2, . . . , C}), and is composed bys(c) = |S(c)| states.
N

(c)
i (t) denotes the number of typec entities which are in state

i at time t. We introduce vectorN(c)(t) of size s(c), whose
elements areN (c)

i (t) and vectorN(t) of sizes =
∑C

c=1 s(c),
whose blocks areN(c)(t).

In general, the transition matrix of the Markov chain of
a type c entity may depend on the whole vectorN(t). The

transition rates of a typec entity are

K
(c)
ij (N(t)) =

lim
∆→0

1
∆

Pr(X(c)(t + ∆) = j|X(c)(t) = i,N(t)),

K
(c)
ii (N(t)) = −∑

j∈S,j 6=i K
(c)
ij (N(t)).

Introducing again, n(t) = N(t)/N , assuming that
limN→∞N (c)/N = n(c) ∈ (0, 1) and taking the limit
N → ∞ we obtain the same differential equation as (5), but
this time vectorn(t), contains the proportion of entities of
each type in each state.

As a result, the cardinality of the differential equation (5)
increases linearly with the number of different types, since
matrix k(n(t)) is of sizes × s (with s =

∑C
c=1 s(c)) and is

composed by non-zero blocks of sizes(c) × s(c).

A. Example of a system with regular and spare queues

Let us consider the queueing system of Section III with two
types of queues: regular queues andsparequeues. For each
regular queue, there areγ spares. For exampleγ = 0.5 means
that there is a spare every2 regular queues. Both regular and
spare queues have the same service rateµ, and the same buffer
capacityB. Customers arrive at rateλ per regular queue, and
are directed to the queue with the lowest occupancy. Spare
queues are used only if the mean number of customers in
the regular queues exceeds a given thresholdβ. We call α =

1
1+γ the fraction of regular queues. Since the arrival rate is
expressedper regular queue, we compute the total arrival rate
as λ̃ = αλ.

We can apply mean field analysis to this system considering
regular queues (identified by vectorn(R)), and spare queues
(identified by vectorn(S)) separately. In particular, if we
considerB = 1 for sake of simplicity, we have:

n(t) = {n(R)
0 (t), n(R)

1 (t), n(S)
0 (t), n(S)

1 (t)}
n(0) = {α, 0, 1− α, 0}

k(n(t)) =



−λR(n(t)) λR(n(t)) 0 0

µ −µ 0 0
0 0 −λS(n(t)) λS(n(t))
0 0 µ −µ




where:

λR =





λ̃

n
(R)
0 (t)

if n
(R)
1 (t) ≤ αβ

λ̃

n
(R)
0 (t) + n

(S)
0 (t)

if n
(R)
1 (t) > αβ

λS =





0 if n
(R)
1 (t) ≤ αβ

λ̃

n
(R)
0 (t) + n

(S)
0 (t)

if n
(R)
1 (t) > αβ

Figure 18 shows some results forγ = 0.5, varying both the
load of the systemρ = λ

µ , and the switching pointβ. The
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introduction of the spare queues allows the system to respond
to load greater than1 (up toρ = 1+γ). Spare queues are used
only if the total load produces a mean queue length larger than
β. After this threshold, the mean queue length of the regular
queues remains constant, until it is reached by the mean length
of the spare queues. From this point on both regular and spare
queues grow with the same slope. If we consider a fixed load
ρ < 1, we can see that large values ofβ reduce spare queues
usage, while small values ofβ improve the response time by
allowing shorter queues.
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Fig. 18. Mean queue length in a system with 50% spare queues

V. M EAN FIELD METHOD WITH MEMORY DEPENDENCY

The mean field framework allows to consider the depen-
dency of the individual entities on a set of reward variables.
The reward variables represent a kind of memory on the
past evolution of the process, hence the reward variables are
interchangeably referred to as memory variables.

We introduce vectorM(t), whosed-th elementMd(t) (d ∈
{1, 2, . . . , D}) denotes the accumulated reward of typed at
time t. When an entity is in statei it accumulates reward of
typed at rater

(d)
i and the overall accumulation rate of typed

reward (generated by all entities) is

d

dt
Md(t) =

∑

i∈S

r
(d)
i Ni(t) .

In general, asN tends to infinityMd(t) tends to infinity as
well. By this reason we introducemd(t) = Md(t)/N and the
associated vectorm(t) = M(t)/N . Using this notation

d

dt
md(t) =

∑

i∈S

r
(d)
i ni(t) .

If the k(•) transition rate matrix depends not only onn(t),
but also onm(t), the behavior of the system is characterized
by the following theorem.

Theorem 3. The normalized state vector,n(t), and the
normalized reward vector,m(t), of the process tends to be
deterministic, in distribution, asN tends to infinity and they
satisfy the following differential equations

d

dt
n(t) = n(t) k(n(t),m(t)),

d

dt
m(t) = n(t) R,

(16)

where thei, d element of matrixR is Rid = r
(d)
i .

Introducing vector v(t) = [n(t),m(t)] and matrix

H(v(t)) =
k(n(t),m(t)) R

0 0 , (16) can be rewritten to the

following form which is similar to the differential equation in
(4)

d

dt
v(t) = v(t) H(v(t)). (17)

Similar to Theorem 1, the proof of the Theorem 3 requires
a detailed investigation of the properties ofk(•), which we
neglect here.

VI. M EAN FIELD ANALYSIS OF QUEUES WITH MEMORY

DEPENDENT LOAD

Let us consider the queueing system of Section III but with
two types of queues of different buffer lengthB(1) andB(2)

such thatσ portion of the queues are of sizeB(1) and1−σ por-
tion of them of sizeB(2). I.e.,S(1) = {0, 1, . . . , B(1)}, s(1) =
B(1) + 1, andS(2) = {0, 1, . . . , B(2)}, s(2) = B(2) + 1.

The goal is to set the traffic served by the different type of
queues to a predefined value,ξ. To this end, we can apply a
reward based queue selection policy: we define two memory
variablesm1(t) andm2(t) accumulating the amount of traffic
served by type 1 and 2 queues. The associated type 1 reward
rates are

d

dt
m1(t) =

B(1)∑

i=0

r
(1)
i n

(1)
i (t) =

B(1)∑

i=1

µ n
(1)
i (t) .

I.e., r(1)
i is µ if i ≥ 1. The reward rates associated withm2(t)

are defined similarly.

An incoming customer is directed to that type of queues
which served less customers than the predefined ratio and
among the queues of this type it attends the shortest one. I.e.,
a customer attends a type 1 queue, ifm1(t)

m2(t)
< ξ

1−ξ , a type 2

queue if if m1(t)
m2(t)

> ξ
1−ξ , and attends the shortest of all queues

if m1(t)
m2(t)

= ξ
1−ξ .

The structure of the transition matrix of type 1 and 2 entities
remains the same as the one in (8) withB(1) and B(2)

customers, but the arrival rates depend also on the memory



10

variables

λ
(1)
i (n(t),m(t)) =





0 if m1(t)
m2(t)

> ξ
1−ξ or n

(1)
i (t) = 0 or(

m1(t)
m2(t)

= ξ
1−ξ and

∃k<i s.t. n(1)
k (t)>0

)
,

λ

n
(1)
i (t)

if m1(t)
m2(t)

< ξ
1−ξ ,

λ

n
(1)
i (t) + n

(2)
i (t)

if

(
m1(t)
m2(t)

= ξ
1−ξ and

∀k<i, n
(1)
k (t) = n

(2)
k (t) = 0

)
,

(18)
The arrival rates to type 2 entities are symmetric with (18).

Starting fromn(1)(0) = {σ, 0, . . . , 0} andn(2)(0) = {1 −
σ, 0, . . . , 0} this memory based queue selection policy results
in

lim
t→∞

n(1)(t) =

{ {σ−ξ λ
µ , ξ λ

µ , 0, . . . , 0} if λ
µ < σ

ξ ,

{0, 0, . . . , 0, σ} if σ
ξ ≤ λ

µ ,

lim
t→∞

n(2)(t) ={ {1−σ−(1−ξ)λ
µ , (1−ξ)λ

µ , 0, . . . , 0} if λ
µ < 1−σ

1−ξ ,

{0, 0, 0, . . . , 1−σ} if 1−σ
1−ξ ≤ λ

µ .

and

lim
t→∞

m(t)
t

= {λξ, λ(1−ξ)} .

Note that the memory variables tends to infinity as time
increases.

VII. C ONCLUSION

Mean field theory aims at representing a multi-body prob-
lem constituted by a large number of interacting identical enti-
ties with a one-body problem where the interdependencies are
still considered. We have shown how the mean field method
can be applied to performance problems where the interacting
entities are represented by Continuous Time Markov Chains
(CTMC). We have applied this powerful method to study
different dependent policies for feeding Markovian queues
with a finite buffer. The mutual interaction is modeled by
defining the transition rates of a tagged entity as a function of
the proportion of queues in each state and solving a differential
equation defined over the normalized state occupancies. Var-
ious performance indices are computed and the behaviour of
the interdependent policies is compared with the independent
case.
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