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Quantitative modeling of software aging and rejuvenation has been the object
of a vast literature in the last decades. Due to the probabilistic nature of the
phenomena to which these studies are devoted, the models rely on the theory of
stochastic processes. The present Chapter is intended to provide an overview of
the methods and analytical solution techniques related to the stochastic processes
that are more often encountered in the literature on software aging and rejuve-
nation. The Chapter is particularly addressed to researchers who want to have
an initial approach to these topics.

1. Introduction

The phenomenon of software aging has come to light in the last decades as a cause of

the degradation of the software performance in time. Although we adopt the phrase

software aging, it should be clear that no deterioration of the software system per

se is implied but rather, the software appears to age due to the degradation of the

operating environment (for example, gradual depletion of resources).1 Software re-

juvenation has been proposed for the first time in the seminal paper by Huang et

al.2 as a proactive maintenance technique to counteract aging. Software rejuvena-

tion involves occasionally stopping the running software, cleaning its internal state

or its environment, and restarting it. Likewise aging, software rejuvenation actually

does not imply any modification of the software but refers to rejuvenation of the

environment in which the software is executing.3

The aging of the software and the action of rejuvenation can be captured and

analyzed through stochastic models that aim to characterize their behavior accord-

ing to quantitative parameters such as the mean time to a failure condition, the

optimal rejuvenation interval, the probability to be in a fully working condition and

so on.

1
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In their original paper, Huang et al.2 consider the software aging as a two-step

process. From the clean state the system jumps into a “degraded” state from which

two further actions are possible: rejuvenation (with return back to the clean state)

or transition to the complete failure state. The authors model a three-state process

as a continuous-time Markov chain (CTMC) for which they derive and discuss only

the steady-state behavior.

The problem connected to software rejuvenation has then been investigated by

many research groups introducing more refined modeling assumptions by aban-

doning the exponential assumption in the time evolution of the phenomenon and

considering the interaction of the software aging with the workload on the system.

Further, rejuvenation can be activated at constant intervals, at random intervals or

at time epochs related to the software degradation.

Garg et al.4,5 consider the effect of the workload by including the arrival and

queuing of jobs in the system, and the time dependency of the load and of the service

time on the age of the system. With this addition, the arrival and service rates are

time-varying and the overall model becomes a three-state non-homogeneous Markov

process. Zheng et al.6 investigate workload-based policies where the arrival stream

of jobs follows a Markovian arrival process (MAP).

In the analytical approach, different authors have assumed general transition

time distributions, and have developed Markov, semi-Markov (SMP), Markov re-

generative processes (MRGP), to compute and optimize system availability or re-

lated measures. For instance, semi-Markov models were used in7,8 and Markov

regenerative models were considered in.9,10

Stochastic Petri net models and their variants have been often invoked to gen-

erate the system model like Markov regenerative stochastic Petri nets (MRSPNs)

in9 or fluid stochastic Petri nets (FSPNs) in.11,12

The present Chapter is intended to provide the readers, who are not particularly

aware of the theory of stochastic modeling, with the basic notions, definitions and

formulas that are encountered in the Chapters of the book. In each Section, some

relevant references are cited and an example taken from the software rejuvenation

literature is described and fully developed and solved.

Section 2 introduces the renewal theory with particular reference to the Poisson

process that is usually used to model the stream of jobs arriving to a software system.

A Poisson shock model, utilized in,13,14 to characterize a software aging process is

reported. In Section 3, the homogeneous Markov chain model is introduced and the

basic solution equations for both transient and steady-state case are discussed. As

an example, the rejuvenation model discussed in2 is presented and analyzed.

Section 4 reports the transient and steady-state solutions for the non-

homogeneous Markov process and illustrates the corresponding rejuvenation ex-

ample taken from.5

Sections 5 and 6 deal with SMP and MRGP respectively, and provide the steady-

state and transient solution equations in both cases. A SMP example taken from15
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and an MRGP in9 are also introduced.

Finally, Section 7 is devoted to the introduction of Petri net (PN) formalism and

focuses its attention on stochastic Petri net (SPN) such as generalized Stochastic

PN (GSPN), Stochstic Reward Nets (SRN) and non-Markovian SPN etc. In par-

ticular, an MRSPN model derived from9 is provided to show how an MRGP can be

generated from MRSPN.

2. Renewal Process

The stochastic process generated by a sequence of independent identically dis-

tributed random variables (Y1, Y2, . . . , Yn, . . .) (Fig. 1) with cumulative distribu-

tion function (CDF) F (t), density f(t), t ≥ 0, and expected value E[Y ] is called a

renewal process.16

F (t) = P{Y ≤ t}, f(t) =
dF (t)

d t
, E[Y ] = m.

The corresponding Laplace transforms (LTs) are denoted by the symbol ∗:

t

Y1

×

Y2

×

Y3

×

Yn

× ×
T1 T2 T3 Tn−1 Tn

Fig. 1. A renewal process

F ∗(s) = L [F (t)] =

∫ +∞

t

e−stF (t)dt, f∗(s) = L [f(t)] =

∫ +∞

t

e−stf(t)dt .

Let Tk =
∑k
i=1 Yi, with k ≥ 1 denote the time of the k-th event in the renewal

process, and Fk(t) and fk(t) denote its CDF and density, respectively. We can

write:

Fk(t) = P{Tk ≤ t}, fk(t) =
dFk(t)

d t
. (1)

Applying the convolution theorem for LTs, it could be represented as Eq. (1) in the

Laplace domain:

F ∗k (s) =
1

s
[f∗(s)]k, f∗k (s) = [f∗(s)]k . (2)

If N(t) is the number of renewals in the interval (0, t], then the following relation

holds:

N(t) < k if and only if Tk > t
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from which:

P{N(t) < k} = P{Tk > t} = 1 − Fk(t) . (3)

From Equation (3), we obtain:

P{N(t) = k} = P{N(t) < k + 1} − P{N(t) < k}
= Fk(t) − Fk+1(t) . (4)

2.1. Poisson Process

A renewal process in which the generating random variable Y is exponentially dis-

tributed is called a Poisson Process. Assume that Y , is exponentially distributed

with rate λ, then:

F (t) = 1 − e−λ t =⇒ F ∗(s) =
λ

s (s + λ)

f(t) = λ e−λ t =⇒ f∗(s) =
λ

s + λ
.

The CDF and density of the time up to the k-th arrival Tk can be obtained from

Equation (2), in LT domain:

F ∗k (s) =
λk

s (s + λ)k
, f∗k (s) =

(
λ

s + λ

)k
. (5)

Transforming back to the time domain the LT density (5) for k = 1, 2, . . . we obtain

f1(t) = L−1

[
λ

s + λ

]
= λ e−λ t

f2(t) = L−1

[
λ2

(s + λ)2

]
= λ2 t e−λ t

· · · · · · · · ·

fk(t) = L−1

[
λk

(s + λ)k

]
=

λ (λ t)k−1

(k − 1)!
e−λ t

and its CDF of order k:

Fk(t) =

∫ t

0

fk(u) du = 1 −
k−1∑
i=0

(λ t)i

i !
e−λ t

which is actually the CDF of the k-stage Erlang random variable with parameter

λ.17,18

Denote Pk(t) as the probability of having k renewals in a time duration of length

t, then from Equation (4):

Pk(t) = P{N(t) = k} = Fk(t) − Fk+1(t) .

Taking LTs:

P ∗k (s) =
λk

s (s + λ)k
− λk+1

s (s + λ)k+1
=

λk

(s + λ)k+1
.
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Inverting again to the time domain, we obtain the Poisson probability mass function

(pmf):

Pk(t) = P{N(t) = k} =
(λ t) k

k !
e−λ t (6)

or, in a recursive form:

Pk(t) = P{N(t) = k} =
λ t

k
Pk−1(t) . (7)

In a Poisson process, the number of renewals at time t follows a Poisson distribution

of parameter λ t.

2.2. Poisson Shock Process19

The aging process of a software system consists of a sequence of additive random

shocks and is monitored by observing a degradation level of the system performance,

whose value at time t is denoted by S(t). The shock events occur according to a

Poisson process with rate λ. Each shock increases the degradation level by a positive

damage denoted as variable X (X ≥ 0) with CDF FX(x). All demages X1, X2, . . .

from successive shocks are mutually independent with the common CDF FX(x).

Damages accumulate additively, and the system survives if the amount of damage

accumulated does not exceed a threshold a, representing the maximum tolerated

value of the degradation level. We call Ta the random time at which the degradation

level reaches the threshold a. The CDF HTa
(t) = P{Ta < t} = P{S(t) > a}

is the probability that at time t the degradation level has reached level a and

HTa(t) = 1−HTa(t) = P{S(t) < a} is the probability that at time t the degradation

level is below the threshold a, i.e., the survival probability.

After k shocks, the degradation level will be Sk =
∑k
i=0 Xi, with distribution

F †kX (x) = P{Sk < x} where F †kX (x) can be obtained form FX(x) by the k-fold

convolution F †kX (x) =
∫ x

0
F †k−1
X (x − y)dFX(y) (or in Laplace domain as in (5)).

Since shocks occur according to a Poisson process with rate λ, N(t), the survival

probability is given by

HTa
(t) = P{S(t) < a} =

∞∑
i=0

P{N(t) = k}P{Sk < a} =

∞∑
i=0

e−λ t
(λ t)k

k !
F †kX (a) .

The above equation is essentially a compound Poisson distribution. A software

aging model based on a Poisson shock process has been utilized in.13,14

3. Homogeneous Continuous-Time Markov Chain

A stochastic process is a family of random variables X(t) on a sample space. The

value assumed by X(t) are called states, and the set of all the possible states is the

state space. When the value of X(t) changes, the process undergoes a state transi-

tion. The state space of a stochastic process can be either discrete or continuous.



September 19, 2018 17:22 ws-rv961x669 Book Title BPST-model-v2 page 6

6 Andrea Bobbio, Antonio Puliafito, Marco Scarpa and Miklós Telek

If the state space is discrete, we call the process a chain. The time parameter of a

stochastic process can be either discrete or continuous.

A stochastic process can be classified by the dependence of its state at a partic-

ular time on the states at previous time. If the state of a stochastic process depends

only on the immediately preceding state, we have a Markov process. Discrete state

Markov processes are known as Markov chains. We distinguish among Discrete-

time (DTMC) Markov chain and continuous-time Markov chain, depending on the

nature of the time parameter. Let P{X(tn) = j} be the probability that the process

is in the state j at the time tn. X(t) is a Markov chain if, for any ordered time

sequence t1 < t2 < ... < tn and all in ∈ S, the conditional probability of being in

any state j is such that:

P{X(tn) = j|X(tn−1) = in−1, X(tn−2) = in−2, . . . , X(t1) = i1} =

= P{X(tn) = j|X(tn−1) = in−1}. (8)

The condition in Equation (8) defines what is called the Markov property that says

that the state of a Markov chain after a transition may (but does not have to)

depend on the state immediately before it, but it cannot depend on any states

before that. In other words, at the time of a transition, the entire past history is

summarized by the current state. If the conditional probability is invariant with

respect to the time origin u, the Markov chain is said to be homogeneous. To be

more specific, a Markov chain is homogeneous if for any t and u,

P{X(t) = j|X(u) = i} = P{X(t− u) = j|X(0) = i}. (9)

For homogeneous Markov chains, if X(u) = j, then the probability of finding

the system in state j at time t > u depends on state j but not on the time the

system has been in state j before u. The process can therefore be said to be

memoryless, as regards not only the states it has occupied in the past, but also

the amount of time it has already spent in the current state. This implies that the

time a homogeneous Markov chain spends in a state (the sojourn time) cannot be

arbitrarily distributed, but it can only follow a memoryless distribution, which is

the geometric distribution for discrete time models and the exponential distribution

for continuous time models.

3.1. Basic Equations

Without loss of generality, the state space of a Markov chain is given by S =

{0, 1, 2, . . .}. A purpose of the analysis of a Markov chain is to compute the state

probabilities πj(t) = P{X(t) = j}, for all states j, i.e., the vector of state probabil-

ities is πππ(t) = [π0(t), π1(t), . . . ], both for finite values of t (transient solution) and

for t→∞ (steady-state solution). We define a transition probability to be

pij(t− u) = P{X(t) = j|X(u) = i}, (10)

the probability that the system is in state j at time t, given that it was in state i

at time u; most often, we will have u = 0. The matrix PPP (t) is the square matrix of
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the transition probabilities pij(t). For the system to be in state j at time t, it must

have been in some state i at time u, which we can express as:

πππ(t) = πππ(u) ·PPP (t− u) (11)

This is a form of the Chapman-Kolmogorov equation that will be used for cal-

culating πππ(t) for both the discrete and continuous parameter cases.

3.2. Discrete-time Markov Chains

Let the points at which a DTMC changes state be {0, 1, · · · }. Let us define PPP =

PPP (1) = [pij ] the one-step transition probability matrix. All the elements of PPP are

probabilities and should lie in the range [0, 1] and the elements of any row must

sum to one because they describe the probability of a complete set of events, with

respect to the next state of the process.

A matrix with such properties is called a stochastic matrix. For a homogeneous

DTMC, Eq. (11) simplifies to the following recurrence relation:

πππ(n+ 1) = πππ(n) ·PPP . (12)

The state probability vector after n steps πππ(n) can be computed in terms of the

initial probability vector πππ(0), as:

πππ(n) = πππ(0) ·PPPn. (13)

If limn→∞ πππ(n) exists, taking the limit on both sides of Eq. (12) gives the following

system of equations for computing the limiting probability vector:

πππ = πππ ·PPP (14)

where we impose the normalization condition,

πππ · eeeT = 1, (15)

where eee is the row vector with all its elements equal to one.

3.3. Continuous-Time Markov Chains

If we let u = t−∆t and subtract πππ(t−∆t) from both sides of (11), we get

πππ(t)− πππ(t−∆t) = πππ(t−∆t) [PPP (∆t)− III] . (16)

If we then divide by ∆t and take the limit as ∆t→ 0, we get the following relation:

dπππ(t)

dt
= πππ(t) lim

∆t→0

PPP (∆t)− III
∆t

. (17)

By introducing the Kronecker delta symbol δij (δij = 1 if i = j, zero otherwise), in

the homogeneous case, the matrix QQQ = [qij ] can be written as

qij = lim
∆t→0

pij(∆t)− δij
∆t

. (18)
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We can rewrite Eq. (17) as

dπππ(t)

dt
= πππ(t)QQQ . (19)

The above equation is known as the Kolmogorov differential equation, whose initial

condition is the initial behavior of the Markov chain, πππ(0). The solution of Eq. (19)

is

πππ(t) = πππ(0)eQQQt = πππ(0)

∞∑
i=0

ti

i!
QQQi. (20)

The definition of QQQ implies that, for a small interval ∆t, we have

1− pii(∆t) ≈ −qii∆t ,
pij(∆t) ≈ qij∆t, ∀i 6= j .

Thus, qij is the rate at which the system goes from state i to j and −qii is the rate

at which the system departs from state i, since we must have∑
j 6=i

pij(∆t) + pii(∆t) = 1 . (21)

Because of this interpretation, QQQ is called the infinitesimal generator matrix of the

CTMC. We can apply Eq. (21) and take the limit as ∆t→ 0 to get:∑
j

qij = 0. (22)

This means that all elements in any row of QQQ must sum to 0, which can be

written, in matrix form, as QQQeeeT = 000T . Since the off- diagonal elements must be non

negative (qij∆t is a probability), we deduce that the elements along the diagonal

of QQQ must be non-positive. In fact, the diagonal entry equals the negative sum of

the off-diagonal entries in any row:

qii = −
∑
j 6=i

qij , (23)

and qi = −qii is the net rate out of state i. The average amount of time spent by

the CTMC in state i during the interval (0, t] is Li(t) =
∫ t

0
πi(x)dx. Integrating

both sides of Eq. (19), we obtain a differential equation for the vector LLL(t) =

[L0(t), L1(t), . . . ]:

dLLL(t)

dt
= LLL(t)QQQ+ πππ(0), L(0) = 0 . (24)

If the state transition graph of a CTMC is such that every state is reachable from

every other state, the CTMC is said to be irreducible. For an irreducible CTMC the

state probabilities reach an asymptotic value, independent of the initial condition,

as the time goes to infinity.20,21 We call the asymptotic solution the steady-state

solution. If the steady-state solution exists, then for any state i:

lim
t→∞

πi(t) = πi, lim
t→∞

d πi(t)

d t
= 0, (25)
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and, in vector form, we immediately get

lim
t→∞

πππ(t) = πππ, lim
t→∞

dπππ(t)

d t
= 000 , (26)

where πππ is the steady-state value of the state probability vector and 000 is the vector

of appropriate dimension with all entries equal to 0. Taking into account Eq. (19)

and (26), we get accordingly

πππ ·QQQ = 000 with πππ eeeT = 1 . (27)

Equation (27) is a linear homogeneous set of n equations with constant coefficients.

It is easy to verify that πππ = 0 is a solution for πππ ·QQQ = 000. If a non-zero solution exists,

multiplication of the solution by any constant will still be a solution to the equation.

But since πππ is a probability vector, it should also satisfy the normalization condition

represented in vector form in Eq. (27). The normalized steady-state solution is then

unique when the Markov chain is irreducible.

3.4. Example

The paper by Huang et al.,2 that initiated the study of software aging and reju-

venation, proposed the CTMC model shown in Fig. 2, where we have maintained

the same symbols of the original figure. The system first starts in a highly robust

S0

SRSPSF

r1 r3
r2

λ r4

Fig. 2. The CTMC rejuvenation model in Huang et al.2

state S0 and then goes into a failure probable state Sp due to software aging with

transition rate r2. From state SP two actions are possible: a transition to the failure

state SF with rate λ and a transition to the rejuvenation state SR with rate r4. r1 is

the repair rate that takes back the system from a failure state to the highly robust

state, and r3 is the rejuvenation rate of the transition from rejuvenation state to

the highly robust state. In Huang et al.2 the rejuvenation is assumed to be periodic

with mean period equaul to t so that r4 = 1/t. Applying Eq. (27), the steady-state

solution is:

πP =
1

1 + λ
r1

+ r4
r3

+ λ+r4
r2

; π0 =
λ+ r4

r2
πP ; πF =

λ

r1
πP ; πR =

r4

r3
πP
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3.5. Markov Reward Model (MRM)

In a Markov reward model (MRM), we attach to each state of a CTMC with state

space S a non-negative real variable, called reward rate, that indicates the level

of performance or the cost incurred by the system in that state. In particular,

the reward rates are defined based on the system requirements, be it availability-

, reliability-, or task-oriented. If ri is the reward rate attached to state i, then,

a reward ri ∆t is accumulated when the CTMC spends a time ∆t in state i. If

R(t) is the instantaneous reward rate of the MRM at time t and YR(t) the total

accumulated reward up to time t, we have the expected instantaneous reward rate

at time t, E[R(t)], and the expected accumulated reward up to time t, E[YR(t)], as

below:

E[R(t)] =
∑
i∈S

riπi(t) ,

YR(t) =

∫ t

0

R(u) du ,

E[YR(t)] =
∑
i∈S

ri

∫ t

0

πi(u) du =
∑
i∈S

ri Li(t).

4. Non-Homogeneous Continuous-Time Markov Chain

Non-homogeneous continuous-time Markov chains (NHCTMCs) are discrete-state,

continuous-time stochastic processes that satisfy the Markov property, but not the

homogeneity property. In these models, the transition rates are dependent on the

global time, i.e. the variable taking care of the flow of time since the starting of the

whole process. Thus, the sojourn time distributions are not exponential anymore

and do not experience the memoryless property. We note here the distinction be-

tween the Markov property and the memoryless property: the former is a property

of some stochastic processes (e.g., DTMC, CTMC, NHCTMC) while the latter is

the property of some distributions (e.g., the exponential and the geometric). To

distinguish between homogeneous and non-homogeneous CTMC, we refer in this

Section to the first type as HCTMC and to the latter as NHCTMC.

4.1. Basic Equations

Similarly to HCTMCs, the transient behavior of a NHCTMC is defined by the

system of Kolmogorov ordinary differential equations (ODE):17,18

dπππ(t)

dt
= πππ(t)QQQ(t) (28)

whose initial condition is the initial behavior of the Markov chain, πππ(0). Equation

(28) is very similar to Eq. (19), defined for a HCTMC, with one difference: the

generator matrix QQQ(t) = [qij(t)] is now time-dependent.
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The solution of Eq. (28) can be computed with various numerical ODE solver

methods. Apart of general ODE solver approaches like Euler method, Runge-Kutta

method,22 specific methods (e.g., TR-BFD2) have been developed for improving

the numerical properties of the computation.23,24

For special NHCTMC models various alternative methods have been proposed

for the transient analysis such as the convolution integration approach, the uni-

formization and the piecewise constant approximation (PCA) approach. Yet

another approach is based on using a phase-type (PH) expansion of the non-

exponential distributions.18

A special case of NHCTMC could be considered where the matrix QQQ(t) can be

factored so that QQQ(t) = g(t)WWW , with matrix WWW having all its entries independent

of time. In this case the solution to the NHCTMC can be written down as:

πππ(t) = πππ(0) e(
∫ t
0
g(τ)dτ)WWW = πππ(0) eWWWg∗t , (29)

where g∗ = (
∫ t

0
g(τ)dτ)/t and WWW g∗ is the generator matrix of an HCTMC. Thus

by solving an “equivalent” HCTMC, we can obtain the solution of the original

NHCTMC in this special case. We refer to this method of solution of an NHCTMC

as the Equivalent-HCTMC method.

When the above factorization in not possible and the NHCTMC is acyclic, con-

volution integration approach can be recommended,17,25 which is based on the fol-

lowing equation:

pij(t) = δije
−

∫ t
0
qii(τ)dτ +

∫ t

0

∑
k

pik(x)qkj(x)e−
∫ t
x
qjj(τ)dτdx, (30)

where δij is the Kronecker delta function defined by δij = 1 if i = j and 0 otherwise.

The corresponding equation for unconditional state probability is thus:

πi(t) = πi(0)e−
∫ t
0
qii(τ)dτ +

∫ t

0

∑
k 6=i

πk(x)qki(x)e−
∫ t
x
qii(τ)dτdx. (31)

The PCA method is based on approximating a continuous function of time by

a stair-case function whose value remains constant in certain intervals. We divide

the interval (0, t] over which the original continuous function should be evaluated,

into n smaller intervals, such that the function can be considered approximately

constant over any of the n small intervals. In this way, computing the value of

the original function in the midpoint of each small interval, we can generate the

approximating stair-case function. The approximation improves as n increases and

the length of each small interval decreases.

The PH expansion method consists in replacing the non-exponential distribu-

tions present into the model by a PH distribution, which is defined by the probability

distribution of the absorbing time in a HCTMC. Since the PH distribution family is

dense, the PH distribution can approximate any probability distribution with high

precision. In this way, the original non-exponential model can be approximated by

an expanded HCTMC that can be solved using the methods of Section 3.
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4.2. Example

A system consists of a server type software to which transactions arrive according to

a Poisson process of rate λ (Section 2.1).5 The software system is subject to aging

0 1 2 3 K-1 K

λ

ρ(t)

µ(t)

ρ(t)

λ

µ(t)

ρ(t)

λ

µ(t)

ρ(t) ρ(t)

λ

µ(t)

ρ(t)

λ

µ(t)

hang/crash failure

Fig. 3. A NHCTMC model for a software system with aging and failure

and hang/crash failures that are assumed to be stochastically independent processes.

Rejuvenation (or Preventive Maintenance) to counteract aging, and recovering to

restore from failure are regenerative actions that take back the system to a as good

as new state. Each transaction receives service for a random period. The effect of

aging may be captured by using decreasing service rate and increasing failure rate,

where the decrease or the increase, respectively, can be a function of time since the

last rejuvenation/recovery action. Assuming that the software queue may allocate

up to K transactions, the state transition diagram of the software system is given in

Fig. 3, where t is the time from the last renewal. We have maintained the notation

in Garg et al.5

5. Semi-Markov process (SMP)

The discrete-state continuous-time random process, X(t), is a Semi-Markov process

(SMP) if it is time-homogeneous and it experiences the Markov property at the state

transition instances (see Fig. 4).

T4T3T2

j

X(t)

tT1

k

i

Fig. 4. Semi-Markov process, which experiences the Markov property at the indicated time points
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The name of SMP comes from the fact that an SMP does not always experience

the Markov property (during the sojourn in a state), but only at the state transition

instances. Specifically, during a sojourn in state i, both the remaining time in that

state and the next visited state depend on the elapsed time since the process is in

state i. The state transition instances where the Markov property holds are marked

with a circle in Fig. 4.

The most important consequences of the definition of SMP are:

- the sojourn time in a state can be any positive random variable;

- the distribution of the next state and the time spent in a state are not

independent.

Consequently, to define an SMP the following joint distribution has to be given. It is

usually done by the definition of the kernel matrix of the processKKK(t) = [Kij(t)] (we

adopt the notation from18). Let X(t) ∈ S be a continuous-time SMP, T1, T2, T3, ...

be the state transition instances, then, the (i, j) entry of the kernel matrix is:

Kij(t) = P{X(Ti+1) = j, Ti+1 − Ti ≤ t |X(Ti) = i}.

Utilizing the time homogeneity property of the process we further have for Ti that

P{X(Ti+1) = j, Ti+1 − Ti ≤ t |X(Ti) = i} = P{X(T1) = j, T1 ≤ t |X(0) = i}.

The analysis of an SMP is based on the results of renewal theory and the analysis of

embedded Markov chain (EMC) built on the sequence of the transition instances.

The definition of an SMP requires the knowledge of the kernel matrix KKK(t) =

{Kij(t)} (for t ≥ 0) and an initial distribution. It is commonly assumed that X(t)

experiences the Markov property at time t = 0.

5.1. Analysis based on State Transitions

We intend to compute the transient state transition probability Vij(t) =

P{X(t) = j | X(0) = i} assuming that the sojourn in the first state finishes at time

h (T1 = h), that is

Vij(t|T1 = h) = P{X(t) = j | X(0) = i, T1 = h}.

In this case

Vij(t|T1 = h) =


δij h > t∑
k∈S

P{X(T1) = k | X(0) = i, T1 = h} Vkj(t− h) h ≤ t, (32)

where P{X(T1) = k | X(0) = i, T1 = h} is the probability that the process starts

from state i at time t = 0 and it is in state k right after the state transition at

time T1 assuming T1 = h. In contrast with CTMCs this probability depends on the
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sojourn time in state i:

P{X(T1) = k | X(0) = i, T1 = h}

= lim
∆→0

P{X(T1) = k, h < T1 ≤ h+ ∆ |X(0) = i}
P{h < T1 ≤ h+ ∆ |X(0) = i}

= lim
∆→0

Kik(h+ ∆)−Kik(h)

Hi(h+ ∆)−Hi(h)
=
dKik(h)

dHi(h)
,

(33)

where Hi(h) denotes the distribution of time spent in state i,

Hi(t) = P{T1 ≤ t |X(0) = i} =∑
k∈S

P{X(T1) = k, T1 ≤ t |X(0) = i} =
∑
k∈S

Kik(t) . (34)

It is commonly assumed that the state transitions are real, which means that

after staying in state i a state transition moves the process to a different state.

It means that Kii(t) = 0, ∀i ∈ S. It is also possible to consider virtual state

transitions from state i to state i, but it does not expand the set of SMPs and we

do not consider this case here. Note that the meaning of a diagonal element of a

SMP kernel matrix is completely different from the meaning of a diagonal element

of an infinitesimal generator of a CTMC. One of the technical consequences of this

difference is the fact that we do not need to exclude the diagonal element from the

summations over the set of states.

There are two cases considered in Eq. (32):

• If the time point of interest, t, is before the first state transition of the

process (i.e. t < h), then the conditional state transition probability is

either 0 or 1 depending on the initial and the final state. If the initial

state i is identical with the final state j then the transition probability is

1, because there is no state transition up to time t, otherwise it is 0.

• If the time point of interest, t is after the first state transition of the process

(i.e. h ≤ t) then we need to evaluate the distribution of the next state k

assuming that the state transition occurs at time h, and after that the state

transition probability from the new state k to the final state j during time

t− h, using the Markov property of the process at time h. The probability

that the process moves to state k assuming it occurs at time h is
dKik(h)

dHi(h)
and the probability of moving from state k to state j during an interval of

length t− h is Vkj(t− h).

The distribution of the condition of Eq. (32) is known. The distribution of the

sojourn time in state i is Hi(h). Using the law of total probability we obtain

Vij(t) =

∫ ∞
h=t

δij dHi(t) +

∫ t

h=0

∑
k∈S

dKik(h)

dHi(h)
Vkj(t− h) dHi(h)

= δij (1−Hi(t)) +

∫ t

h=0

∑
k∈S

Vkj(t− h) dKik(h).

(35)
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The analysis of an SMP based on the first state transition resulted in a Volterra

integral equation. The transient behaviour of SMPs can be computed using numer-

ical methods for Volterra integral equations.26

Transform domain description: We take the Laplace-Stieltjes transform (LST)

of both sides of the Volterra integral equation (35). The only non-trivial term is a

convolution integral on the right hand side.

V ∼ij (s) = δij (1−H∼i (s)) +
∑
k∈S

K∼ik(s) V ∼kj (s),

where the LST functions are defined as f∼(s) =
∫∞

0
e−stdf(t).

Introducing the diagonal matrix EEE∼(s) composed by the elements 1 − H∼i (s),

that is EEE∼(s) = diag〈1−H∼i (s)〉, the LST of the state transition probabilities are

obtained in matrix form:

VVV ∼(s) = EEE∼(s) +KKK∼(s)VVV ∼(s),

from which

VVV ∼(s) = [III −KKK∼(s)]−1EEE∼(s).

Stationary behaviour: Let the transition probability matrix of the EMC be

PPP = [pij ]. It is obtained from the kernel matrix through the following relation

pij = P{X(T1) = j |X(0) = i} = lim
t→∞

P{X(T1) = j, T1 ≤ t |X(0) = i} = lim
t→∞

Kij(t).

The stationary distribution of the EMC ννν = [νi] is the solution of the linear

system ννν = νννPPP ,
∑
i νi = 1. The stationary distribution of the SMP is given by

πi =
νi hi∑
j

νj hj
, (36)

where hi is the mean time spent in state i and can be computed from the kernel

matrix through hi =
∫∞

0
(1−Hi(t))dt.

5.2. Example

The system we study is taken from Chen and Trivedi15 and consists of a server

type software that is available in state UUU . The software can fail, upon which,

recovery procedure is started. The state, in which the software is recovering and is

unavailable for service, is denoted as state DDD. The software occasionally undergoes

rejuvenation, or preventive maintenance (PM). This state is denoted as state RRR.

When the system stays in the available state UUU , it will undergo a rejuvenation and

enter state RRR after a random time with distribution function F0(t) or fail and enter

state DDD with a general distribution function F2(t). The distribution function for

the duration of a preventive maintenance is F1(t), and the distribution function for

the duration of repair is F3(t). We assume that all the states are regenerative, that
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D(2)U(0)R(1)

F0(t)

F1(t) F2(t)

F3(t)

Fig. 5. An SMP model for a software system with preventive maintenance (rejuvenation) and
failure

is, any transition instance experiences the Markov property. Hence, the process is

an SMP to which we can apply the transient and steady-state analysis of Section

5. The kernel matrix KKK(t) has the following structure:

KKK(t) =

 0 K01(t) K02(t)

K10(t) 0 0

K20(t) 0 0


With

K01(t) = P{PM occurs before failure within time t}

=

∫ t

0

(1− F2(x)) dF0(x) ,

K02(t) = P{failure occurs before PM within time t}

=

∫ t

0

(1− F0(x)) dF2(x) ,

K10(t) = P{PM completes within time t} = F1(t) ,

K20(t) = P{repairs completes within time t} = F3(t) .

It follows that the one-step transition probability matrix of the EMC PPP =

limt→∞ KKK(t) becomes:

PPP =

 0 p01 p02

p10 0 0

p20 0 0


Solving the EMC steady-state equations ννν = νννPPP ,

∑
i νi = 1 we get

ν0 = 1/2, νi = p0i/2, i = 1, 2

Further the expected sojourn time in all states are

h0 = E[H0] =

∫ ∞
0

(1− F0(t))(1− F2(t)) dt ,

h1 = E[H1] =

∫ ∞
0

(1− F1(t)) dt ,

h2 = E[H2] =

∫ ∞
0

(1− F3(t)) dt .
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D(2)U(0)R(1)

u(t− t0)

F1(t) F2(t)

F3(t)

Fig. 6. An SMP model for a software system with rejuvenation triggered at constant time t0

Applying Eq. (36), we obtain the steady-state availability of the system as:

A = π0 =
h0

h0 + h1p01 + h2p02
. (37)

In a special case of great importance in realistic applications where the rejuve-

nation (or the preventive maintenance) is executed periodically with a deterministic

time period t0, we have F0(t) = u(t − t0) (see Fig. 6), and the one-step transition

probabilities simplify to

p01 = P{PM triggers before failure occurs} = 1− F2(t0) ,

p02 = P{failure occurs before PM triggers} = F2(t0) ,

p10 = p20 = 1 .

The mean sojourn times h1 and h2 remain unchanged and

h0 = E[H0] =

∫ t0

0

(1− F2(t)) dt .

To proceed further and compute the availability in Eq. (37), the distribution func-

tions Fi(t), (i = 1−3) should be assigned. Examples assuming Weibull, Two-stage

Hypoexponential or Log-normal distributions are given in.15,18

6. Markov Regenerative Process

The discrete-state, continuous-time, and time-homogeneous stochastic process X(t)

is a Markov regenerative process (MRGP) if there exists a random time series

T0, T1, T2, . . . (T0 = 0) such that the process X(t) experiences the Markov property

at time epochs T0, T1, T2, . . .
21,27 (see Fig. 7). The time epochs T0, T1, T2, . . . that

satisfy the Markov property are called regeneration time points (RTPs).

An MRGP is a generalization of many stochastic processes.21,27 In a CTMC

any time epoch t satisfies the Markov property (Eq. 8), in an SMP the Markov

property is satisfied at all the time instances at which the process undergoes a state

transition, in an MRGP the Markov property holds only when the process enters a

subset of specific states called regeneration states.
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tT2T1 T4T3

j

X(t)

k

i

Fig. 7. Markov regenerative process – circles denote the points with Markov property

Compared to the properties of SMP, where the process experiences the Markov

property at all state transition instances, the definition of MRGPs is less restrictive

since the MRGP experiences the Markov property only at some transition instances,

i.e. the RTPs. The analysis of MRGPs is based on the occurrence of the RTPs where

the process experiences the Markov property.

The definition of an MRGP does not prescribe how the behaviour of the process

between two consecutive RTPs T0, T1, T2, . . . should be. Hence, MRGPs can be

characterized by any kind of stochastic process between two consecutive RTPs. In

practice, the use of renewal theorem for the analysis of these processes is meaningful

only when the stochastic behavior between consecutive time points T0, T1, T2, . . . is

analytically tractable. The common analysis method of MRGPs is based on the

analysis of the next time point with Markov property (T1).

We denote by Y0, Y1, Y2, . . . the series of states reached by the MRGP right after

an RTP: i.e. Yi = X(Ti). The series of random variables {Yn, Tn;n ≥ 0} is a

time-homogeneous Markov renewal series since it satisfies the following relation

P{Yn+1 = y, Tn+1 − Tn ≤ t |Y0, . . . , Yn, T0, . . . , Tn}

= P{Yn+1 = y, Tn+1 − Tn ≤ t |Yn}

= P{Y1 = y, T1 − T0 ≤ t |Y0}
for all n ≥ 0, y ∈ Ω and t ≥ 0. From the definition of Markov renewal series, the

sequence of states Y0, Y1, Y2, . . . forms a DTMC.

The analysis of an MRGP is based on this embedded Markov renewal series. To

this end the joint distribution of the next RTP and the state in that RTP has to

be known, and it is denoted as

Kij(t) = P{Y1 = j, T1 − T0 ≤ t |Y0 = i} , i, j ∈ S

Matrix KKK(t) = {Kij(t)} is referred to as the global kernel of the MRGP and com-

pletely characterizes the stochastic properties of the MRGP at the RTPs. The

description of the process between RTPs is complex, but for the transient analysis

(more precisely for computing transient state probabilities) it is enough to know

the transient state probabilities between consecutive RTPs. It is given by the local
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kernel matrix of the MRGP EEE(t) = {Eij(t)}, whose elements are

Eij(t) = P{X(t) = j, T1 > t, |Y0 = i} .

Eij(t) is the probability that the process starts in state i, the first RTP is later than

t and the process stays in state j at time t.

6.1. Transient Analysis based on the Embedded Markov Renewal

Series

Let the transient state transition probability matrix be VVV (t), whose elements are

Vij(t) = P{X(t) = j |X(0) = i} .

Assuming that T1 = h we can compute the conditional state transition proba-

bility as follows

Vij(t |T1 = h) =


P{X(t) = j |T1 = h, X(0) = i}, h > t,∑
k∈S

P{X(T1) = k | X(0) = i, T1 = h} · Vkj(t− h), h ≤ t.

(38)

Similar to the transient analysis of SMPs, the Eq. (38) describes two exhaustive

and exclusive events h ≤ t and h > t. In case of SMPs the h > t case resulted in 0

or 1, while in case of a MRGP the conditional probability for h > t can be different

from 0 or 1, because the process can have state transitions also before T1.

Using the distribution of T1 and the formula of total probability we obtain

Vij(t) =

∫ ∞
h=t

P{X(t) = j |T1 = h, X(0) = i} dHi(h)

+

∫ t

h=0

∑
k∈S

dKik(h)

dHi(h)
Vkj(t− h) dHi(h) ,

(39)

where Hi(t) =
∑
j Kij(t) (see Eq. (34)) is the distribution of time spent in state i.

Let us consider the first term of the right hand side∫ ∞
h=t

P{X(t) = j |T1 = h, X(0) = i} dHi(h)

=

∫ ∞
h=t

lim
∆→0

P{X(t) = j |h ≤ T1 < h+ ∆, X(0) = i} dHi(h)

=

∫ ∞
h=t

lim
∆→0

P{X(t) = j, h ≤ T1 < h+ ∆ |X(0) = i}
P{h ≤ T1 < h+ ∆, |X(0) = i} dHi(h)

=

∫ ∞
h=t

dh P{X(t) = j, T1 < h |X(0) = i}
dHi(h)

dHi(h)

= P{X(t) = j, t < T1 |X(0) = i}
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from which

Vij(t) = Eij(t) +
∑
k∈S

∫ t

h=0

Vkj(t− h) dKik(h) , (40)

which is a Volterra integral equation.

Similar to the transient analysis of CTMCs and SMPs, we obtained the above

Volterra equation for the transient analysis of MRGPs.

Transform domain description: The LST of Eq. (40) is

V ∼ij (s) = E∼ij (s) +
∑
k∈Ω

K∼ik(s)V ∼kj (s), (41)

which can be written in matrix form

VVV ∼(s) = EEE∼(s) + KKK∼(s)VVV ∼(s). (42)

The solution of Eq. (42) is

VVV ∼(s) = [III −KKK∼(s)]−1EEE∼(s). (43)

Based on Eq. (43), numerical inverse Laplace methods can also be used for the

transient analysis of MRGPs.

Stationary behaviour: In spite of the differences between SMP and Markov

regenerative processes their stationary analysis goes along the same steps. The state

transition probability of the DTMC embedded in the RTPs PPP = [pij ] is computed

from:

pij = P{X(T1) = j |X(0) = i} = lim
t→∞

P{X(T1) = j, T1 ≤ t |X(0) = i}

= lim
t→∞

Kij(t) .

The stationary distribution of the EMC ννν = [νij ] is the solution of

ννν = νννPPP ,
∑
i

νi = 1. (44)

Now we need to compute the mean time spent in different states during the interval

(T0, T1). Fortunately, the local kernel carries the necessary information. Let αij be

the mean time the process spends in state j during the interval (T0, T1) assuming

that it starts from state i (X(T0) = i). Then

αij = E

[∫ ∞
t=0

I{X(t)=j,T1>t} | X(T0) = i dt

]
(45)

where I{•} is the binary indicator variable of event •, i.e. I{•} = 1 when event

• = true and I{•} = 0 when event • = false. When the process stays in state j at

time t and T1 is greater than t then I{X(t)=j,T1>t} = 1, that is, the integral in (45)

counts the time the process spends in state j during the interval (T0, T1). This is a
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random time which depends on the evolution of the process and its mean is needed

for the stationary analysis. From Eq.(45) we derive:

αij =

∫ ∞
t=0

E
[
I{X(t)=j,T1>t} | X(T0) = i

]
dt

=

∫ ∞
t=0

P{X(t) = j, T1 > t | X(T0) = i}dt

=

∫ ∞
t=0

Eij(t)dt,

The mean length of the interval (T0, T1) is

αi =
∑
j∈Ω

αij .

Finally the stationary distribution of the process can be computed as

πi =

∑
j∈Ω

νj αji∑
j∈Ω

νj αj
. (46)

6.2. Example

This example is taken from Garg et al.9 and refers to a client-server type system,

where the server software is required to run continuously for very long periods, and

is periodically rejuvenated at a constant interval of length δ. In their paper, the

system was modeled through a Markov regenerative stochastic Petri net (MRSPN)

(see Section 7.4); however, in this example we utilize the state transition model

derived from the MRSPN, reported in Garg et al.,9 and shown in Fig. 8. State 1

213

5

4

EXP(λ1)

u(t-δ)

EXP(λ5) EXP(λ2)

u(t-
δ)

EXP(λ3)

EXP(λ4)

Fig. 8. Markov regenerative process

models the robust up state. The aging of the software moves the system to the

failure probable state 2. From state 2 a crash failure of the software leads the

system to state 4, where a restart is initiated and every other activity is suspended.

Rejuvenation is activated at constant intervals of duration δ. The dashed transitions
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labelled u(t−δ) indicate that the clock count is not reset by the possible jump from

state 1 to state 2, and it is resumed in state 2 from the value it had before the jump.

If the system is in state 1 when rejuvenation is triggered the system transits to state

3, while if the system is in the failure probable state 2, the transition is toward state

5. From both states 3 and 5 the rejuvenation leads back the system to the robust

state 1, and every other activity is suspended. It is assumed that rejuvenation and

repair are completely regenerative. We assume that all the transition times are

exponentially distributed, but the trigger time of rejuvenation is deterministic.

Considering the presence of exponential transitions, it can he seen from Fig. 8

that the regeneration times exactly correspond to times of entering either of states

1, 3, 4 or 5. In contrast, when the process transits from state 1 to state 2 the

deterministic activity initiated in state 1 goes on. Thus, in order to probabilistically

determine future state of the process, the time already spent in state 1 needs to

be known apart from the knowledge that the process is in state 2. The process

identified in Fig. 8 is an MRGP.

The set of states at regeneration instants is Ω = {1, 3, 4, 5} and the global kernel

matrix becomes:

KKK(t) =


0 K13(t) K14(t) K15(t)

K31(t) 0 0 0

K41(t) 0 0 0

K51(t) 0 0 0


Note that the subscripts ij on Kij(t) denote the actual state labels in Fig. 8. For

the non-zero entries, we have

K13(t) = e−λ1 δ u(t− δ) ,

K14(t) =


1− λ1

λ1 − λ2
e−λ2 t +

λ2

λ1 − λ2
e−λ1 t , 0 ≤ t < δ

1− λ1

λ1 − λ2
e−λ2 δ +

λ2

λ1 − λ2
e−λ1 δ , t ≥ δ ,

K15(t) =
λ1

λ1 − λ2

[
e−λ2 δ − e−λ1 δ

]
u(t− δ) ,

Ki1(t) = 1− e−λi t, i = 3, 4, 5.

Since the local kernel EEE(t) describes the time behavior of the process between two

consecutive RTPs, starting from an RTP, hence it is a 4 x 5 matrix given as:

EEE(t) =


E11(t) E12(t) 0 0 0

0 0 E33(t) 0 0

0 0 0 E44(t) 0

0 0 0 0 E55(t)


Again, the subscripts ij on Eij(t) denote the actual state labels in Fig. 8. Zero

entries in the matrix at ij-th location indicate that either a transition from i to j
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is not possible or it results in a regeneration. The non-zero entries are

E11(t) = e−λ1 t (u(t)− u(t− δ)) ,

E12(t) =
λ1

λ1 − λ2

[
e−λ2 t − e−λ1 t

]
(u(t)− u(t− δ)) ,

Eii(t) = e−λi t, i = 3, 4, 5.

E11(t) is the probability that the process starting in state 1, stays in it till time t.

Here t lies in the interval [0, δ) as at time δ, the process transits to state 3 resulting

in a regeneration. E12(t) is the probability that at time t the process is in state 2

given that it was in state 1 at t = 0. Note that t takes values in [0, δ). E12(t) is

obtained by conditioning on time to enter state 2 and un-conditioning. Eii(t), for

i = 3, 4, 5 is the probability that the corresponding enabled exponential transition

does not fire by time t .

The transient solution is obtained by applying Eq. (43) and inverting the related

LST. To compute the steady state distribution the non-zero αij entries are

α11 =

∫ ∞
0

E11(t) dt =
1

λ1
[1− e−λ1 δ] ,

α12 =

∫ ∞
0

E12(t) dt =
1

λ2
− λ1

λ1 − λ2

[
e−λ2 δ

λ2
− e−λ1 δ

λ1

]
,

αii =

∫ ∞
0

Eii(t) dt =
1

λi
, i = 3, 4, 5

and the solution of (44) is

ν1 =
1

2
,

ν3 =
1

2
e−λ1 δ ,

ν4 =
1

2
− λ1

2(λ1 − λ2)
e−λ2 δ − λ2

2(λ1 − λ2)
e−λ1 δ ,

ν5 =
λ1

2(λ1 − λ2)

[
e−λ2 δ − e−λ1 δ

]
.

The stationary distribution is obtained from Eq. (46) as

πi = νiαii, i = 1, 3, 4, 5,

π2 = ν1α12 .

7. Petri Nets

Petri nets (PNs) are a mathematical and graphical tool for describing complex

systems with concurrent and conflicting activities. The structure of a standard Petri

net (PN) is a bipartite graph that comprises a set of places, a set of transitions, and

a set of directed arcs.28

Formally a PN is defined by a tuple PN = (P, T , I, O,H,M0), where:
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• P is the set of places with cardinality nP ;

• T is the set of transitions with cardinality nT ;

• I,O,H : T → Bag(P) are respectively the sets of input, output, and

inhibition functions, that map transitions to bagsa of places;

• M0 is the initial marking of the net, i.e., the initial distribution of tokens

among the places in P.

A place p is called (i) an input place for a given transition t if there is an input

arc that connects p to t; (ii) an output place if there is an output arc that connects

t to p; (iii) an inhibitor place if an inhibitor arc connects p to t. In the following,

the symbols I(t), O(t) and H(t) respectively denote the sets of input, output and

inhibitor places of transition t.

The marking of a PN, is defined by a bagMi with the number of tokens contained

in each places. The symbol Mi(p) denotes the numbers of tokens contained in place

p in marking Mi. The graphical structure of a PN is a bipartite directed graph

where places (drawn as circles) and transitions (drawn as bar) are the nodes, and

arcs (drawn as arrows) are the edges. Markings are represented by black dots (called

tokens) in the places. An example of graphical representation of a PN is shown in

Fig. 9(a) with initial marking M0 = (1001100).

•P1

P2

P3

• P5

P6

P7•

P4

t1

t2

t3

t4

t5

t6

a)

1001100

1

0101100

2

1001010

3

0010100

4

0101010

5

1000001

6

0010010

7

0100001

8

t1 t4

t2 t4 t1 t5

t4 t2 t5 t1

t3 t6

t3t6

b)

Fig. 9. A marked PN a) and its reachability graph b).

The dynamic evolution of a PN is specified by the enabling and firing rules. A

transition t ∈ T is enabled in marking Mi if

(1) each input place contains at least as many tokens as the multiplicity of the

corresponding input arc,

aA bag is a set with duplication of elements allowed; that is, it keeps track of “occurrence count”
of each set element.
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(2) each inhibitor place contains a number of tokens strictly smaller than the mul-

tiplicity of the corresponding inhibitor arc.

When a transition tk is enabled in marking Mi it can fire, removing from each

input place as many tokens as the multiplicity of the input arcs, and adding in all

the output places as many tokens as the multiplicity of the output arcs. The firing

of a transition in marking Mi produces a new marking Mj with a token count given

by:

Mj = Mi − I(tk) +O(tk). (47)

If two transitions are enabled in the same marking and the firing of one does not

disable the other one the two transitions are said to be concurrent. If the firing of

one of the two disables the other one, the two transitions are said to be in conflict.

Reachability graph - The firing rules allow to describe the evolution of a marked

PN starting from its initial marking M0. Every time an enabled transition tk ∈ T
fires in marking Mi a new marking Mj is computed; the marking Mj is said to

be directly reachable from Mi, and this property is denoted with Mi − tk → Mj .

Applying the firing rule to the reached marking, it is possible to find a sequence

of transition firings and new markings describing the net evolution. The set of all

reachable markings starting from an initial marking M0 is called the reachability set

and is denoted by RS(M0). The reachability set can be represented as a graph whose

nodes are the markings in RS(M0) and the arcs connecting the nodes are labelled

with the transitions whose firing causes the change of marking Mi− tk →Mj . This

graph is called reachability graph, and is denoted by R(M0). The reachability graph

of the PN shown in Fig. 9(a) is represented in Fig. 9(b). Starting from the initial

marking M0, shown in Fig. 9(a), and applying the enabling and firing rules, it is

possible to derive the structure of Fig. 9(b).

An execution sequence E in a marked PN, is a sequence of legal markings obtained

by firing a sequence of enabled transitions (note that M(0) = M0):

E = { (M(0), t(0)) ; (M(1), t(1)) ; . . . ; (M(j), t(j)) ; . . .} .

An execution sequence E can be viewed as a connected path in the reachability

graph R(M0) of the PN.

7.1. Stochastic Petri Net (SPN)

Original PNs did not carry any notion of time.29 In order to use the PN for-

malism for the quantitative analysis of software systems, several extensions have

been proposed in the literature, in particular by associating firing times with the

transitions.30

A timed execution sequence SE of a marked PN starting from an initial marking

M(0), is an execution sequence E augmented by a non-decreasing sequence of real

values representing the epochs of firing of each transition, such that consecutive



September 19, 2018 17:22 ws-rv961x669 Book Title BPST-model-v2 page 26

26 Andrea Bobbio, Antonio Puliafito, Marco Scarpa and Miklós Telek

transitions (t(j) ; t(j+1)) in E correspond to ordered epochs τj ≤ τj+1 in SE . Thus

formally:31,32

SE = { (M(0), t(0), τ0) ; (M(1), t(1), τ1) ; . . . ; (M(j), t(j), τj) ; . . .} .

The time interval τj+1 − τj between consecutive epochs represents the period that

the PN sojourns in marking M(j). In the sequel we always assume the initial epoch

to be τ0 = 0. The ensemble of all the possible timed execution sequences defines

the Marking Process M(t).

Stochastic Petri nets (SPNs)31,33 are PNs in which the firing delays between

successive transitions are exponentially distributed random variables. To this end,

a transition tk enabled in marking Mj is associated a constant, possibly marking

dependent, firing rate λk(Mj). Molloy33 has proved that when the random firing

times associated with PN transitions are exponentially distributed, the dynamic be-

havior of the PN can be mapped into a homogeneous continuous-time Markov chain

with state space isomorphic to the reachability graph of the PN. The isomorphic

CTMC can be automatically generated from the reachability graph RS(M0) with

the following rules:

- at each marking Mi ∈ RS(M0) corresponds a state i in the CTMC,

- an arc between two states i and j of the CTMC has a rate given by the sum of

rates of the transitions whose individual firings produce the change of marking

from Mi to Mj .

From the reachability graph of Fig. 9(b) it is immediate to derive the corresponding

CTMC, by replacing markings with states, and assigning to each arc the constant

transition rate λi assigned to the PN transition ti.

7.2. Generalized Stochastic Petri Nets (GSPN)

Activities whose durations differ by orders of magnitude can often be encountered

in the modeling process of software systems. The corresponding CTMC becomes

stiff and hard to solve numerically.24

To overcome this problem, Ajmone et al.34 have introduced two classes of tran-

sitions: timed transitions with exponentially distributed firing times and untimed

or immediate transitions. Immediate transitions fire in zero time and have higher

priority over the timed ones. SPNs augmented with immediate transitions are called

generalized SPNs (GSPNs).34,35

The markings where only timed transitions are enabled are referred to as tangible

markings, in contrast, markings where at least one single immediate transition is

enabled are called vanishing markings. Vanishing markings are traversed in zero

time and do not contribute to the time evolution of the net but only influence the

logic evolution.

In a vanishing marking only immediate transitions can fire since they have higher

priority over the timed ones. If in a vanishing marking more than one immediate
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transition is enabled, a rule to select the one that fires needs to be introduced.

The choice is done in a probabilistic way associating a weight wi to any immediate

transition ti. Given the set of immediate transitions T
(i)
e enabled in marking Mi,

the probability that transitions tk ∈ T (i)
e fires is

P{tk fires|marking Mi} =
wk∑

t∈T (i)
e

wt
. (48)

These probabilities are called switching probabilities in GSPN terminology.

The evolution of a GSPN cannot be described by a CTMC, due to the presence of

vanishing markings.36 However, an automated procedure can be envisaged to pro-

gressively eliminate vanishing states from the reachability graph until only tangible

states remain. A reachability graph where all the vanishing markings are elimi-

nated is called reduced reachability graph and over the reduced reachability graph

an isomorphic CTMC can be build. The reduction procedure, described in,18,34,36

can be implemented in software tools so that becomes completely transparent to

the analyst.

The marking process M(t) after elimination of vanishing states is a CTMC

generated as explained in Section 7.1, and can be solved using Eqs. (19) and (27).

7.3. Stochastic Reward Nets (SRN)

GSPNs provide a useful high-level language but their use in the representation of

large systems may lead to very intricate structures. To alleviate this problem and

make the high level representation more compact and readable, several structural

extensions to PNs were introduced in the literature. We refer, in particular, to the

Stochastic Reward Nets (SRN) formslism defined in.36,37

The SRN extensions include guard functions, very general marking dependency,

variable cardinality arcs and the superposition of a reward structure. From an

SRN, a Markov reward model is thus generated, facilitating the specification and

computation of important reward-based metrics (see Section 3.5). Parameters such

as the firing rate of the timed transitions, the multiplicities of input/output arcs

and the reward rate in a marking can be specified as functions of the number of

tokens in any place in the SRN. Another important characteristic of SRN is the

ability to express complex enabling/disabling conditions through guard functions

that greatly simplify the graphical representations of complex systems.

To get the performance and reliability/availability measures of a system, ap-

propriate reward rates are assigned to its SRN model. As SRN is automatically

transformed into a Markov reward model (MRM), thence steady state and/or tran-

sient numerical solution of the MRM produces the required measures of the original

SRN. Examples of use of SRN models in rejuvenation problems can be found in.38–40
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7.4. Non-Markovian Stochastic Petri Net (NMSPN)

Non-Markovian stochastic Petri net (NMSPN) enriches the formalism of SPN, by as-

suming that the firing time associated to a transition can be a generally distributed

random variable with known CDF. The inclusion of non-exponential distributions

destroys the memoryless property of the associated marking process,41,42 and fur-

ther specifications are needed at the PN level for univocally defining the stochastic

process underlying an NMSPN, given the topology of the PN and the set of CDFs

associated to each timed transition. The set of specifications constitutes the execu-

tion policy whose semantic was first investigated by Ajmone et al.32

The execution policy comprises two specifications, the firing policy and the mem-

ory policy. The firing policy specifies how to select the next transition to fire. The

standard choice is to adopt a race policy: the transition that fires is the one with

minimum stochastic delay among the enabled transitions.

The memory policy specifies the way in which the process is conditioned upon

the past history. In NMSPN the memory is represented by an age variable ak
associated to each timed transition tk that increases with the time in which the

transition is enabled. The way in which ak is related to the past history determines

the different memory policies. Three alternatives are considered:

- Age memory - The age variable ak accounts for the total time in which tk has

been enabled from its last firing. The distribution of the firing delay in a given

marking depends on the residual time needed for the transition to complete

given ak.

- Enabling memory - The age variable ak accounts for the time elapsed from

the last epoch in which tk has been enabled. When transition tk is disabled

(even without firing) the corresponding enabling age variable is reset. The

distribution of the firing delay in a given marking depends on the residual time

needed for the transition to complete given ak.

- Resampling - The age variable ak is reset to zero at any change of marking. The

firing distribution depends only on the time elapsed in the current marking.

At the entrance in a new tangible marking, the residual firing time is computed

for each enabled timed transition given its age variable and memory policy and then

the race policy is applied. The marking processM(t) does not have, in general, an

analytically tractable formulation, unless various restrictions are applied.42,43

A Markov regenerative stochastic Petri net (MRSPN) is an NMSPN whose mark-

ing processM(t) is an MRGP (Section 6).44 In an MRSPN an embedded sequence

of RTPs should be present in the marking process, where an RTP occurs when at

the entrance in a new tangible marking all the age variables are equal to 0. A suffi-

cient condition for an NMSPN to be an MRSPN is that in each tangible marking at

most one single transition with generally distributed firing time is allowed (being all

the other ones exponential). Some extensions to the above rule have been studied

in the literature.45
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7.5. Example

The MRGP presented in Example 6.2 was generated by Garg et al.9 by resorting to

the MRSPN of Fig. 10. White rectangles represent transitions with exponentially

•
Pck

Prej

•
Pup

Fp

Pd

Tdw

Tup

Tr1 Tr2

Tck
Tf

Fig. 10. The MRSPN generating the MRGP of Example 6.2

distributed firing time while the black rectangles represent a transition with gener-

ally distributed firing time. In the case of Fig. 10, the black rectangle models the

clock with associated deterministic delay, which triggers rejuvenation at constant

intervals. Place Pup is the up state. Transition Tf models the aging process of the

software. When this transition fires the software enters the failure probable state

Fp. The transition Tdw models crash failure of the software. During the restart of

the software, represented by the firing of transition Tup, the clock count Tck is sus-

pended. The transition Tck fires when the clock expires by moving a token in place

Prej. The token in Prej starts the action related with software rejuvenation and, at

the same time, suspends any other activity by means of inhibitors arcs. Upon the

completion of rejuvenation, the net is reinitialized by putting one token again in

place Pup, one in place Pck, being all the other places empty. If the software was in

state Pup when Tck fired the rejuvenation action is represented by transition Tr2.

If the software had reached the failure probable state Fp, then Tr1 fires to complete

the rejuvenation. In both cases the net is reinitialized.

As there is only one deterministic transition in the net, the condition for at most

one generally distributed transition enabled at any time is automatically satisfied,

and the SPN model belongs to the MRSPN class.

The generation of the corresponding MRGP from the MRSPN of Fig. 10 has been

already discussed in Example 6.2, and the reachability graph has been presented in

Fig. 8, where the following distributions were assigned to the PN transitions:
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Tf → EXP(λ1) Tdw → EXP(λ2)

Tup → EXP(λ4) Tr2 → EXP(λ5)

Tr1 → EXP(λ3) Tck → u(t− δ)

8. Conclusions

We have provided an overview on the theory of stochastic processes and Petri nets

that are mainly used in the literature on quantitative modeling of software aging

and rejuvenation. We hope that the reader not particularly accustomed with this

matter can find useful material to pursuing his/her investigation and research about

the topics on which this book is centered.
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