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Abstrat

The analysis of stohasti systems with non-exponential timing requires the development of suit-

able modeling tools. Reently, some e�ort has been devoted to generalize the onept of Stohasti

Petri nets, by allowing the �ring times to be generally distributed. The evolution of the PN in time

beomes a stohasti proess, for whih in general, no analytial solution is available. The paper

desribes suitable restritions of the PN model with generally distributed transition times, that have

appeared in the literature, and ompares these models from the point of view of the modeling power

and the numerial omplexity.

1 Introdution

The designer and the analyst of a system are in �rst instane interested in the solution of the modeling

problem, not in how this solution is atually derived. They should be able to desribe their system in

suh a way that it is easy and natural to use. The modeler's representation should inlude enough infor-

mation to build up an analytial representation suitable for numerial solution, and should also ontain

the spei�ation of the measures of interests. The modeler's representation should then automatially

be transformed into the analytial representation. Finally the numerial results should be again au-

tomatially mapped bak into the modeler's representation, so that the user of the tool an interpret

them in that ontext. For Markovian systems several tools have been developed in reent years, based

on various spei�ation paradigms, as surveyed in [26℄.

There are, however, situations that are not overed by these tools. One typial situation ours when

the random times harateristi of the system are not exponential. A seond situation ours when the

analyst requires the omputation of stohasti measures (like the distribution funtion of umulative

measures [34, 7℄) whose numerial evaluation annot be performed by solving a set of linear �rst order

equations typial of Markovian systems.

In reent years several lasses of Stohasti Petri Net (SPN) models have been elaborated whih in-

orporate some non-exponential harateristis in their de�nition. The semantis of SPN's with generally

distributed transition times has been disussed in [1℄. We refer to this model as Generally Distributed

Transition SPN (GDT SPN). In general, the stohasti proess underlying a GDT SPN does not have

a numerially tratable analytial formulation, while a simulative solution has been investigated in [24℄.

With the aim of providing a modeler's representation able to automatially generate an analytial

representation, various restritions of the general GDT SPN model have been disussed in the literature.

Dugan et al. have studied the onditions under whih the stohasti realization of the GDT SPN is

a semi-Markov proess [21℄. Cumani [20℄ has realized a pakage in whih eah PN-transition an be

assigned a PH distributed �ring time. We refer to this model in the following as PHSPN.

A partiular ase of non-Markovian SPN, is the lass of Deterministi and SPN (DSPN). A DSPN is

de�ned in [3℄ as a Markovian SPN where, in eah marking, a single transition is allowed to have assoiated
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a deterministi �ring time. Only the steady state analysis was elaborated in [3℄. An improved steady

state algorithm was presented in [29℄, and some strutural extensions were investigated in [15℄. Choi

et al. [13℄ have developed a tehnique for the transient analysis of the state probabilities of the DSPN

model. Reently, Choi et al. [12℄ and German and Lindemann [23℄ have extended the potentiality of the

model by allowing the presene in eah marking of a transition with a generally distributed �ring time.

In [12℄, the authors have shown that the underlying stohasti proess is a Semi Markov Regenerative

proess, for whih a transient as well as a steady state solution an be given. For this reason, Choi et.

al. refer to this model as Markov Regenerative SPN (MRSPN) [12℄. A lassi�ation of GDT SPNs and

of the related underlying stohasti proesses is in Ciardo et al. [14℄.

The aim of this paper is to ompare the available GDT SPN models reently appeared in the litera-

ture from two distint and oniting points of view: the modelling power and the analytial tratability.

To this end, the main features of the various restritions onsidered in the literature are briey desribed

with the intent of stressing the basi modeling assumptions and the omplexity of the related analytial

solution.

A �nal example, based on the transient analysis of a losed queuing system with deterministi servie

time and various kinds of preemptive servie poliies, is developed in length in order to put in evidene

the limits and the potentialities of the di�erent approahes.

The GDT SPN model is formally de�ned in Setion 2. In Setion 3 a brief survey of the most reent

restritions appeared in the literaure is reported. Two restritions are desribed in more details, namely

the PHSPN model implemented by Cumani in [20℄ and the DSPN model desribed by Choi et al. in

[13℄. A omparative disussion of the modeling power of the onsidered models is reported in Setion

4. In Setion 5, starting from a simple queuing system, inreasing modelling omplexities are added in

order to show how the onsidered models reat to these added strutures. The algorithmial omplexity

of the numerial solutions is disussed in Setion 6.

2 Generally Distributed Transition SPN

A marked Petri Net (PN) is a tuple PN = (P; T; I; O;H;M); where:

� P = fp

1

; p

2

; : : : ; p

np

g is the set of plaes (drawn as irles);

� T = ft

1

; t

2

; : : : ; t

nt

g is the set of transitions (drawn as bars);

� I , O and H are the input, the output and the inhibitor funtions, respetively. The input funtion

I provides the multipliities of the input ars from plaes to transitions; the output funtion O

provides the multipliities of the output ars from transitions to plaes; the inhibitor funtion H

provides the multipliity of the inhibitor ars from plaes to transitions.

� M = fm

1

;m

2

; : : : ;m

np

g is the marking. The generi entry m

i

is the number of tokens (drawn as

blak dots) in plae p

i

, in marking M .

Input and output ars have an arrowhead on their destination, inhibitor ars have a small irle. A

transition is enabled in a marking if eah of its ordinary input plaes ontains at least as many tokens as

the multipliity of the input funtion I and eah of its inhibitor input plaes ontains fewer tokens than

the multipliity of the inhibitor funtion H . An enabled transition �res by removing as many tokens as

the multipliity of the input funtion I from eah ordinary input plae, and adding as many tokens as

the multipliity of the output funtion O to eah output plae. The number of tokens in an inhibitor

input plae is not a�eted.

A marking M

0

is said to be immediately reahable from M , when is generated from M by �ring

a single enabled transition t

k

. The reahability set R(M

0

) is the set of all the markings that an be

generated from an initial markingM

0

by repeated appliation of the above rules. If the set T omprises

both timed and immediate transitions, R(M

0

) is partitioned into tangible (no immediate transitions are

enabled) and vanishing markings, aording to [2℄.

A timed exeution sequene T

E

is a onneted path in the reahability graph R(M

0

) augmented by a

non-dereasing sequene of real non-negative values representing the epohs of �ring of eah transition,

suh that onseutive transition �rings orrespond to ordered epohs �

i

� �

i+1

in T

E

.
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T

E

= f (�

0

;M

(0)

) ; (�

1

;M

(1)

) ; : : : ; (�

i

;M

(i)

) ; : : :g (1)

The time interval �

i+1

� �

i

between onseutive epohs represents the period of time that the PN

sojourns in marking M

(i)

.

A variety of timing mehanisms have been proposed in the literature. The distinguishing features

of the timing mehanisms are whether the duration of the events is modeled by deterministi variables

or random variables, and whether the time is assoiated to the PN plaes, transitions or tokens. If

a probability measure is assigned to the duration of the events represented by a transition, a timed

exeution sequene T

E

is mapped into a stohasti proess X

T

(t); (t � 0), alled the Marking Proess.

PN's in whih the timing mehanism is stohasti are referred to as Stohasti PN (SPN).

A SPN with stohasti timing assoiated to the PN transitions and with generally distributed �ring

times was de�ned in [1℄, with partiular emphasis to the semantial interpretation of the model. We

refer to this model as Generally Distributed Transition SPN (GDT SPN).

De�nition 3 - A stohasti GDT SPN is a marked SPN in whih:

� To any transition t

k

2 T is assoiated a random variable 

k

modeling the time needed by the

ativity represented by t

k

to omplete, when onsidered in isolation.

� Eah random variable 

k

is haraterized by the (possibly marking dependent) Cumulative distri-

bution funtion G

k

(xjM).

� A set of spei�ations are given for univoally de�ning the sstohasti proess assoiated to the

ensemble of all the timed exeution sequenes T

E

. This set of spei�ations is alled the exeution

poliy.

� A initial probability is given on the reahability set.

An exeution poliy is a set of spei�ations for univoally de�ning the stohasti proess underlying

the GDT SPN, given the PN topology struture and the set of Cdf's G

k

(xjM). Indeed, the inlusion

of non-exponential timings destroys the memoryless property and fores to speify how the system is

onditioned upon the past history. The semantis of di�erent exeution poliies has been disussed in

[1℄. The exeution poliy omprises two spei�ations: a riterion to hoose the next timed transition to

�re (the �ring poliy), and a riterion to keep memory of the past history of the proess (the memory

poliy). A natural hoie to selet the next timed transition to �re is aording to a rae poliy: if more

than one transition is enabled in a given marking, the transition �res whose assoiated random delay is

statistially the minimum. The Memory Poliy is the part of the set of spei�ations of the exeution

poliy that de�nes how the proess is onditioned upon the past. We assoiate to eah transition t

k

an

age variable a

k

. The way in whih a

k

is related to the past history Z

(j)

determines the di�erent memory

poliies. We onsider three alternatives:

� Age memory - The age variable a

k

aounts for the work performed by the ativity orresponding

to t

k

from its last �ring up to the urrent epoh. The �ring distribution depends on the residual

time needed for this ativity to omplete given a

k

.

� Enabling memory - The age variable a

k

aounts for the work performed by the ativity orre-

sponding to t

k

from the last epoh in whih t

k

has been enabled. The �ring distribution depends

on the residual time needed for this ativity to omplete given a

k

. When transition t

k

is disabled

(even without �ring) the orresponding enabling age variable is reset.

� Resampling - The age variable a

k

is reset to zero at any hange of marking. The �ring distribution

depends only on the time elapsed in the present marking.

At the entrane in a new tangible marking, the residual �ring time is omputed for eah enabled

timed transition given its age variable. The next marking is determined by the minimal residual �ring

time among the enabled timed transitions (rae poliy). Under an enabling memory poliy the �ring

time of a transition is resampled from the original distribution eah time the transition beomes enabled
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so that the time eventually spent without �ring in prior enabling periods is lost. The memory of the

underlying stoasti proess annot etend beyond a single yle of enable/disable of the transition with

enabling memory poliy. On the ontrary, if a transition is assigned an age memory poliy, the age

variable aounts for all the periods of time in whih the transition has been enabled, independently of

the number of enable/disable yles. The memory of the proess extends up to the �rst epoh in whih

the transition has been enabled for the �rst time after a �ring.

3 Computational Restritions

The marking proess X

T

(�) does not have, in general, an analytially tratable formulation, while a

simulative approah has been desribed in [24, 25℄. Various restritions of the general model have been

disussed in the literature suh that the underlying marking proess X

T

(�) is on�ned to belong to a

known lass of analytially tratable problems.

3.1 Exponentially Distributed SPN

When the random variables 

k

assoiated to the PN transitions are exponentially distributed, the dy-

nami behaviour of the net an be mapped into a ontinuous time homogeneous Markov hain (CTMC),

with state spae isomorphi to the reahability graph of the net. This restrition is the most popular in

the literature [31, 22, 2℄, and a number of pakages are built on this model [11, 16, 30, 28℄.

3.2 Semi-Markov SPN

When all the PN transitions are assigned a resampling poliy the marking proess beomes a semi-

Markov proess. This restrition has been studied in [32, 5℄ but is of little interest in appliations where

it is diÆult to imagine a situation where the �ring of eah transition of the PN has the e�et of foring

a resampling resetting to all the other transitions. Only the ase in whih eah transition is ompeting

with all the other ones seems to be appropriate for this model.

A more interesting semi-Markov SPN model has been disussed in [21℄. In this de�nition, the

transitions are partitioned into three lasses: exlusive, ompetitive and onurrent. Provided that the

�ring time of all onurrent transitions is exponentially distributed and that ompetitive transitions are

resampled at the time the transition is enabled, the assoiated marking proess beomes a semi-Markov

proess.

3.3 Phase Type SPN (PHSPN)

A numerially tratable realization of the GDT SPN, is obtained by restriting the �ring time random

variables 

k

to be PH distributed [33℄, aording to the following:

De�nition 1 A PHSPN is a GDT SPN in whih:

� To any transition t

k

2 T is assoiated a PH random variable 

k

with Cdf G

k

(xjM). The PH model

assigned to transition t

k

has �

k

stages with a single initial stage numbered stage 1 and a single

�nal stage numbered stage �

k

.

� To any transition t

k

2 T is assigned a memory poliy among the three de�ned alternatives: age,

enabling or resampling memory.

The distinguishing feature of this model, is that it is possible to design a ompletely automated tool

that responds to the requirements stated in [26℄, and, at the same time, inludes all the issues listed

in De�nition 4. The non-markovian proess generated by the GDT SPN is onverted into a CTMC

de�ned over an expanded state spae. The measures pertinent to the original proess an be evaluated

by solving the expanded CTMC.

The program pakage ESP [20℄ realizes the PHSPN model aording to De�nition 4. The program

allows the user to assign a spei� memory poliy to eah PN transition so that the di�erent exeution

poliies an be put to work. In the ESP tool, the expanded CTMC is generated from the model
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spei�ations (the PN topology, and the PH models assigned to eah timed transition). The generation

algorithm is driven by the di�erent exeution poliies that the user assignes to eah transition.

The expanded CTMC is represented by an oriented graph H = (N

H

; A

H

) where N

H

is the set of

nodes (states of the expanded CTMC) and A

H

is the set of oriented ars (transitions of the expanded

CTMC). The nodes in N

H

are pairs (M; W ), where M 2 R(M

0

) is a marking and W is an integer

n

t

-dimensional vetor, whose kth entry w

k

(1 � w

k

� �

k

) represents the stage of �ring of t

k

in its PH

distribution.

Ars in A

H

are represented by 5-tuples (N; N

0

; k; i; j), where N is the soure node, N

0

the desti-

nation node, and (i; j) is an ar in the PH model of transition t

k

. Therefore, (N; N

0

; k; i; j) 2 A

H

means that in the expanded graph the proess goes from node N to node N

0

when the stage of �ring of

t

k

goes from stage i to stage j.

The expanded graph H is generated by an iterative algorithm illlustrated in details in [20℄. The

markingM

(`)

of the original reahability set, is mapped into a maro stateM

(`)

formed by the union of

all the nodes N

H

(M; W ) of the expanded graph suh thatM =M

(`)

. This mapping allows the program

to rede�ne the measures alulated as solution of the markov equation over the expanded graph in terms

of the markings of the original PN.

The ardinality n

H

of the expanded state spae is of the order of magnitude of the ross produt of

the ardinality of the reahability set of the basi PN times the ardinality of the PH distributions of

the n

t

random variables 

k

.

An alternative approah for the implementation of a PHSPN model ould onsist in inluding the

PH models for eah transition at the PN level, thus expanding the PN. This approah has been strongly

disouraged in [1℄ on the basis of the following motivations:

� The inlusion of a subnet for eah transition makes the expanded PN very intrigued and diÆult

to understand just beause some primitive elements (plaes, transitions and ars) are added, that

only refer to the stohasti behaviour of a single transition and hiden the general struture of the

model. The fasinating simpliity of the PN language to represent omplex logial interations

between objets is destroyed.

� It seems hardly possible to automatize a proedure for generating the PHSPN model exapnding

the basi PN and taking into aount all the possible interation among the introdued memory

poliies.

3.4 Deterministi SPN

The Deterministi and Stohasti PN model has been introdued in [1℄, with the aim of providing a

tehnique for onsidering stohasti systems in whih some time variables assume a onstant value. In

[1℄ only the steady state solution has been addressed. An improved algorithm for the evaluation of the

steady state probabilities has been suessively presented in [29℄. Reently, the DSPN model has been

revisited in [14℄ and [13℄ where the transient solution is provided.

De�nition 5 - A DSPN is a GDT SPN in whih:

� To any transition t

k

2 T is assoiated an exponentially distributed random variable 

k

.

� At most, a single deterministi transition (DET) is allowed to be enabled in eah marking and the

�ring time of the deterministi transition is marking independent.

� The time elapsed in a DET annot be remembered when the transition beomes disabled; the only

allowed exeution poliy is the rae poliy with enabling memory.

In order to prove that the marking proess assoiated to a DSPN is a Markov regenerative proess

(MRP), Choi et al. [13℄ have introdued the following modi�ed exeution sequene:

T

E

= f (�

�

0

;M

(0)

) ; (�

�

1

;M

(1)

) ; : : : ; (�

�

i

;M

(i)

) ; : : :g (2)

Epoh �

�

i+1

is derived from �

�

i

as follows:
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1. If no DET transition is enabled in marking M

(i)

, de�ne �

�

i+1

to be the �rst time after �

�

i

that a

state hange ours.

2. If a DET transition is enabled in markingM

(i)

, de�ne �

�

i+1

to be the time when the DET transition

�res or is disabled as a onsequene of the �ring of a ompetitive exponential transition.

Aording to ase 2) of the above de�nition, during [�

�

i

; �

�

i+1

), the PN an evolve in the subset of

R(M

0

) reahable from M

(i)

, through exponential transitions onurrent with the given DET transition.

The marking proess during this time interval is a CTMC alled the subordinated CTMC of marking

M

(i)

. Therefore, if a DET transition is enabled in M

(i)

, the sojourn time is given by the minimum

between the �rst passage time out of the subordinated CTMC and the onstant �ring time assoiated

to the DET transition.

Choi et al. show that the sequene [�

�

i

forms a sequene of regenerative time points, so that the

marking proess X

T

(�) is a Markov regenerative proess MRP. Aording to [12, 17℄, we de�ne the

following matrix valued funtions:

V(t) = [V

ij

(t)℄ suh that V

ij

(t) = PrfX

T

(t) = j jX

T

(0) = ig

K(t) = [K

ij

(t)℄ " K

ij

(t) = PrfM

(1)

= j ; �

�

1

� tjX

T

(0) = ig

E(t) = [E

ij

(t)℄ " E

ij

(t) = PrfX

M

(t) = j ; �

�

1

> tjX

M

(0) = ig

(3)

Matrix V(t) is the transition probability matrix and provides the probability that the marking

proess X

T

(t) is in marking j at time t given it was in i at t = 0. The matrix K(t) is the global kernel of

the MRP and provides the df of the regeneration interval given that the next regeneration marking is

j, starting in marking i at t = 0. Finally, the matrix E(t) is the loal kernel and desribes the behavior

of the marking proess inside two onseutive regeneration time points. The transient behavior of the

DSPN an be evaluated by solving the following generalized Markov renewal equation (in matrix form)

[17, 12℄:

V(t) = E(t) + K � V(t) (4)

Equation (4) an be solved numerially in the time domain. An alternative approah suggested by

the authors onsists in transforming the transient solution in the Laplae transform domain, and then

deriving the time solution by a numerial inversion tehnique. The paper proposes to use the Jagerman's

method [27℄, as adapted by Chimento and Trivedi [10℄.

3.5 Markov Regenerative SPN (MRSPN)

A further extension, alled Markov Regenerative SPN, has been developed in [12℄ and a lassi�ation of

the stohasti proess underlying a GDT SPN has been disussed in [15℄.

De�nition 2 A MRSPN is a GDT SPN in whih:

� To any transition t

k

2 T is assoiated an exponentially distributed random variable 

k

.

� At most, a single transition with generally distributed �ring time is allowed to be enabled in eah

marking.

� The only allowed exeution poliy is the rae poliy with enabling memory. This means that the

�ring time of the generally distributed transition is sampled at the time the transition is enabled

and annot hange until the transition either �res or is disabled.

� The �ring time distribution may depend upon the marking at the time the transition is enabled.

The onvolution equation (4) still holds; however, the analyti kernel expressions depend on the

spei� Cdf's assumed in the model. In [12℄, losed form expressions are derived when the Cdf of

the generally distributed transitions is the uniform distribution. A further approah, resorting to the

method of supplementary variables proposed by Cox [18℄, is disussed in [23, 15℄, where the use of

polyexponomial distributions is investigated.
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4 Modeling Power

The onsidered models di�er beause of the di�erent lasses of distribution funtions they are able to

support, and by the way in whih the history of the proess is taken into aount to ondition the future

evolution of the net.

Under the enabling memory poliy the time aumulated by a PN transition is reset as soon as the

transition is disabled, while under the age memory poliy the time aumulates whenever the transition

is enabled before �ring. The enabling memory poliy is suited to realize the interation mehanism

among tasks in servie that in queueing theory or fault-tolerant systems is alled a preemptive repeat

di�erent (prd) poliy. Whenever the task in servie is preempted a orresponding PN transition is

disabled resetting the aumulated time. Hene, when the preempted task restarts its work requirement

should be resampled from the same distribution [6℄. On the other hand, the age memory poliy is

suited to represent an interation mehanism usually referred to as preemptive resume poliy: the server

does not loose memory of the work already done even if the task is preempted (and the orresponding

PN transition disabled). When the task is enabled again the exeution restarts from the point it was

interrupted.

The DSPN model, ombining onstant times with exponential random times, o�ers an innovative

approah in many pratial appliations. The main limitation of the DSPN model in the present state of

the art, is that only enabling memory poliy is supported. Hene only systems with a servie disipline

of preemptive di�erent type an be represented with this approah. Moreover, there no tools available

for the automati generation of the matries V(t), K(t) and E(t), and the solution of the onvolution

equation is performed by means of standard pakages for symboli manipulation.

Onthe ontrary, the PHSPN model fully supports all the de�ned memory poliies, and, in partiular,

the age memory poliy. The modeler is allowed to represent in a natural way prs interation mehanisms.

Moreover, if the random variables of the system to be modeled are really of PH type, the PHSPN provides

exat results. Otherwise, a preliminary step is needed in whih the random times of the system are

approximated by PH random variables resorting to a suitable estimation tehnique [8, 9℄. A tool is

oneivable [20℄ for supporting the generation and analysis of the model aording to the requirements

spei�ed in [26℄. The expansion of the state spae is, of ourse, a ause of nonnegligible diÆulties, sine

it worsens the problem of the exponential growth of the state spae both with the model omplexity,

and with the order of the PH distribution assigned to eah transition.

5 Example - Finite Queue with Preemption

We arry on a omparison between the modeling power and the numerial results obtained from the

DSPN and the PHSPN models through the analysis of a simple �nite queueing systems with di�erent

kinds of preemption. We onsider, as a base example, the M/G/1/2/2 (a losed queueing system with

two bu�er positions and two ustomers) introdued in [3℄ . The non-preemptive servie mehanism has

been already analyzed in [3℄ for what onerns the steady state measures and revisited in [13℄ for what

onerns the transient behavior. We initially ompare the results obtained by approximating a DSPN

by means of a PHSPN and then we introdue various kinds of preemptive mehanisms.

5.1 Non Preemptive Queue

The PN for the M/G/1/2/2 system, proposed in [3℄, is reported in Figure 1. Plae p

1

ontains "thinking"

ustomers (i.e. awaiting to submit a job) and transition t

a

represents the submission of jobs. Jobs

queueing for servie are represented by tokens in p

2

. A token in p

3

means that the server is busy while a

token in p

4

means that the server is idle. Transition t

g

is the job servie time; when the job is ompleted

the ustomer returns in his thinking state. Transition t

i

is an immediate transition modelling the start

of servie i.e. the transfer of the job from the queue to the server.

In [3, 13℄, the following assumptions were made. t

a

is exponentially distributed with ratem

1

�� being

m

1

is the number of tokens in p

1

and � = 0:5 job/hour. t

g

is a DET transition modeling a onstant

servie time of duration d = 1:0 hour.

The redued reahability graph of the PN (after eliminating the vanishing markings arising from the

immediate transition t

i

[2℄) is omposed of three states, alled s

1

; s

2

and s

3

in Figure 1b. The PN of
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[3℄); b) - orresponding redued reahability graph; ) - simpli�ed

PN.

Figure 1 is intended to show in details the atomi steps by whih a ustomer submits a job and the job

is servied. Figure 2 shows, however, a simpler PN isomorphi to the one of Figure 1.

Tokens in plae p

1

of Figure 2 represent ustomers in the thinking state, while p

2

ontains the jobs

in the queue (inluded the one under servie). t

1

is the submitting time and t

2

is the servie time. It is

easy to verify that the above PN generates the same marking proess X

T

(�) of Figure 1b) when t

1

is

exponential with rate m

1

� � and t

2

is DET. The probabilities versus time of the two states s

1

and s

3

are reported in Figure 3 in solid line.

Approximating the DSPN of Figure 2 by means of the PHSPN model is straightforward. Transition

t

2

is assigned a PH distribution and an enabling memory poliy, in onformity with point 3) of De�nition

5. Sine the Erlang distribution is the PH with the minimum oeÆient of variation [4℄ it is appropriate

to approximate the DSPN by assigning t

2

an Erlang distribution of inreasing order. In Figure 3 we

ompare the results obtained from the PHSPNmodel, by reporting the behavior of the state probabilities

versus time in two ases: when a) the random �ring time assigned to t

2

is Erlang(5) (dashed line), and

b) when is Erlang(100) (dotted line). In both ases the expeted value of the Erlang mathes with the

value d = 1:0hours of the DET model, being all the other parameters unhanged. It is interesting

to observe that with the Erlang(5) the loal maxima and minima in the probability behavior does not

appear, while the visual agreement is very satisfatory in the ase of the Erlang(100).

As a further omparison, Table I shows the values for the steady state probabilities alulated

from the DSPN model and from the PHSPN model when t

2

is assumed to be Erlang(5), Erlang(10),

Erlang(100) and Erlang(1000), respetively. It should be stressed that the present ase an be onsidered

as a worst ase example sine a DET type variable an be losely approximated by a PH only as the

number of stages grows to 1 [19, 9℄.

5.2 Preemptive Queue

Let us assume a M/G/1/2/2 with a preemptive servie and the same kind of ustomers. The job in

exeution is preempted as soon as a new job joins the queue. Two ases an be onsidered depending

whether the job restarted after preemption is resampled from the same distribution funtion (preemptive

repeat di�erent poliy - prd), or is resumed (preemptive resume poliy - prs).

5.2.1 prd poliy

With referene to Figure 2, eah time transition t

1

�res (a thinking ustomer submits a job) while p

2

is

marked (a job is urrently under servie) transition t

2

should be reset and resampled. In the PHSPN

model this mehanism an be simply realized by assigning to t

2

a resampling poliy. It is easy to prove

8



Table - Steady state probabilities

PHSPN

State DSPN

Erl(5) Erl(10) Erl(100) Erl(1000)

TABLE I - Non preemptive poliy

s

1

0.37754 0.38307 0.38039 0.37783 0.37757

s

2

0.48984 0.46773 0.47845 0.48867 0.48972

s

3

0.13262 0.14920 0.14116 0.13350 0.13271

TABLE II - Preemptive prd poliy

s

1

0.33942 0.35317 0.34642 0.34014 0.33950

s

2

0.44038 0.43122 0.43572 0.43991 0.44034

s

3

0.22019 0.21561 0.21786 0.21995 0.22017

TABLE III - Preemptive prs poliy

s

1

0.35015 0.36194 0.35618 0.35076 0.35021

s

2

+ s

3

0.45429 0.44193 0.44801 0.45365 0.45423

s

4

0.19556 0.19613 0.19582 0.19558 0.19556

that the underlying proess X

T

(�) is a semi-Markov proess, sine eah time the (generally distributed)

transition t

2

is entered, a regeneration point is produed sine a new job starts.

Even if the lass of semi-markov proesses is a proper sublass of the Markov regenerative proesses,

the above preemptive mehanism annot be naturally generated from the urrent de�nition of DSPN.

In fat, sine t

1

is not ompetitive with respet to t

2

, the �ring of the former does not disable the latter,

that indeed is not resampled. The PN in Figure 4 desribes the preemption without this anomaly. Plae

p

1

in Figure 4 ontains the ustomers thinking, while plae p

2

ontains the number of submitted jobs

(inluded the one under servie). Plae p

3

represents a single job getting servie: servie is interrupted

(t

2

is disabled) if a new job joins the queue (if transition t

3

�res before t

2

). t

1

and t

3

are assigned the

exponential submitting time and transitions t

2

and t

4

the generally distributed servie time. Assigning

an enabling memory poliy to t

2

and t

4

the M/G/1/2/2 system with prd preemption is generated.

Table II ompares the steady state probabilities assuming the submitting and servie time distri-

butions idential to the non preemptive ase. The transient behavior is ompared in Figure 5 where

the results from the DSPN model are drawn in solid line while the results from the PHSPN model and

with the servie time given by an Erlang(5) and an Erlang(100) are drawn in dashed and in dotted line,

respetively.

5.2.2 prs poliy

The prs poliy means that when a new job joins the queue the job under servie is preempted until the

newly arrived job ompletes his servie. The preempted job is resumed and put to exeution from the

point of preemption without loss of the work previously performed.

The prs mehanism for the M/G/1/2/2 queue orresponds to the PN of Figure 4 when t

2

and t

4

is

assigned an age memory poliy. The preemption mehanism does not �t the rules of De�nition 5 and

thus annot be modeled in the framework of the atual implementation of the DSPN model. When t

2

9



Figure 2 - Transient behavior of the state probabilities for the non preemp-

tive M/D/1/2/2

and t

4

are both Erlang(100) the numerial results for the steady state probabilities are s

1

= 0.4, s

2

=

0.4, s

3

= 0.2. The transient behaviour is depited in Figure 9 as Case III.

5.3 Preemptive Queue with Di�erent Classes of Customers

A interesting ase arises when the two ustomers are of di�erent lasses, and ustomer of lass 2 preempts

ustomer of lass 1 but not vie versa. A PN illustrating the M/G/1/2/2 queue in whih the jobs

submitted by ustomer 2 have higher priority over the jobs submitted by ustomer 1 is reported in

Figure 6. Plae p

1

(p

3

) represents ustomer 1 (2) thinking, while plae p

2

(p

4

) represent job 1 (2)

under servie. Transition t

1

(t

3

) is the submission of a job of type 1 (2), while transition t

2

(t

4

) is

the ompletion of servie of a job of type 1 (2). The inhibitor ar from p

4

to t

2

models the desribed

preemption mehanism: as soon as a type 2 job joins the queue the type 1 job eventually under servie

is interrupted.

If we assume that the servie time is not exponentially distributed, two possible preemption poliies

an be onsidered depending whether the job of type 1, restarted after preemption, is resampled (prd

ase) or is resumed (prs ase). In the PHSPN model, the two poliies an be naturally realized by

assigning to the servie transitions t

2

and t

4

an enabling memory poliy in the prd ase and a age

memory poliy in the prs ase.

Sine in the DSPN only the prd poliy is supported the transient results for prd poliy by the di�erent

methods are reported in Figure 7 and in Table III for what onerns the steady state probability values.

The e�et of the di�erent kinds of preemptions are ompared for the DSPN in Figure 8 and for the

PHSPN in Figure 9. (Case I refers to the non preemptive system, Case II to the preemptive system with

idential ustomers and prd poliy, Case III to the preemptive system with idential ustomers and prs

poliy, Case IV to the preemptive system with di�erent ustomers and prd poliy, and Case V to the

preemptive system with di�erent ustomers and prs poliy). In the DSPN model only ases I, II and

IV an be omputed.

6 Computational omplexity

Let us briey summarize the elementary omputational steps for the two onsidered methodologies

(DSPN and PHSPN), taking into aount that the DSPN solution requires manual and automati

manipulation, while the PHSPN solution is fully supported by a tool.
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Figure 3 - Preemptive M/D/1/2/2 ith idential ustomers

6.1 Evaluation of DSPN model

Aording to [13℄, we an divide the omputational method in the following steps:

1. generation of the reahability tree;

2. manual derivation of the entries of the K(t) and E(t) matries symbolially in Laplae transform

domain;

3. symbolial matrix inversion and matrix multipliation by using a standard pakage (e.g. MATH-

EMATICA) in order to obtain the V(t) (Equation 4) matrix in the LT domain;

4. time domain solution obtained by a numerial inversion of the entries of the V(t), resorting

to the Jagerman's method [27℄. For the sake of uniformity, this step has been implemented in

MATHEMATICA language.

Step 1) an be performed with any PN pakage. Step 2) is done manually, and its diÆulty depends

on the non-zero entries of the involved matries, and on the omplexity of the CTMCs subordinated

to the di�erent deterministi transitions. The omputational omplexity of step 3) depends on the

dimension of the matries (i.e. the number of tangible markings) and the omplexity of the elements

of the kernels (whih is similar to the diÆulty of the �rst step). The omplexity of the numerial

inversion at step 4) also depends on two fators; the omplexity of the funtion to invert, and the

presribed auray.

For the example desribed in the previous setion, the omputational time for the symboli inversion

was not signi�ant, while the numerial inversion required about 30 s on an IBM RISC 6000 mahine,

for eah point of the graph.

6.2 Evaluation of PHSPN model

For the evaluation of this model we used the ESP tool ([20℄). The proedure an be devided into the

following steps:

1. generation of the reahability tree;

2. generation of the expanded CTMC;

3. solution of the resulting CTMC.

Step 1) is standard. The omputational omplexity of steps 2) and 3) depends on the number

of tangible states and on the order of the PH distribution assoiated to eah transition. With PH

11



Figure 4 - Transient behavior of the state probabilities for the preemptive

M/D/1/2/2 with idential ustomers.

transitions of order n the ardinality of the expanded CTMC is 2n + 1 in Case I, 2n + 1 in Case II,

n

2

+ n+ 1 in Case III, 3n+ 1 in Case IV, n

2

+ 2n+ 1 in Case V. In this trivial example, with n = 100

(Erl100) the generation of the CTMC takes 2 m for Caes II and V, and the whole analysis two further

minutes on the same IBM RISC 6000 omputer.

7 Conlusion

The development of methodologies able to aommodate non exponential random variables is of inreas-

ing interest in the analysis of stohasti systems. The paper has examined and ompared PN based

models whose de�nition allows the modeler to assoiate, to some extent, non exponential distributions

to timed PN transitions.

The modeling power and the numerial apabilities are investigated, with partiular referene to the

DSPN model, in whih a single deterministi transition an be assigned in eah marking (being all the

other transitions exponential), and the PHSPN model in whih eah transition an be assigned a PH

distributed �ring time.

A simple queueing system is ompletely analysed. Even if the deterministi distribution is typially

non PH, an approximation error for the steady state probabilities of the order of 10

�2

is reahed by

modeling the deterministi transition with an Erlang(5) and an error of the order of 10

�4

by modeling

the deterministi transition with an Erlang(1000). However, the use of PH distribution and of the

PHSPN model o�ers the modeler a more exible tool for de�ning a more extended interations between

the server and the job in progress.
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