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Abstract

The analysis of stochastic systems with non-exponential timing requires the development of suit-
able modeling tools. Recently, some effort has been devoted to generalize the concept of Stochastic
Petri nets, by allowing the firing times to be generally distributed. The evolution of the PN in time
becomes a stochastic process, for which in general, no analytical solution is available. The paper
describes suitable restrictions of the PN model with generally distributed transition times, that have
appeared in the literature, and compares these models from the point of view of the modeling power
and the numerical complexity.

1 Introduction

The designer and the analyst of a system are in first instance interested in the solution of the modeling
problem, not in how this solution is actually derived. They should be able to describe their system in
such a way that it is easy and natural to use. The modeler’s representation should include enough infor-
mation to build up an analytical representation suitable for numerical solution, and should also contain
the specification of the measures of interests. The modeler’s representation should then automatically
be transformed into the analytical representation. Finally the numerical results should be again au-
tomatically mapped back into the modeler’s representation, so that the user of the tool can interpret
them in that context. For Markovian systems several tools have been developed in recent years, based
on various specification paradigms, as surveyed in [26].

There are, however, situations that are not covered by these tools. One typical situation occurs when
the random times characteristic of the system are not exponential. A second situation occurs when the
analyst requires the computation of stochastic measures (like the distribution function of cumulative
measures [34, 7]) whose numerical evaluation cannot be performed by solving a set of linear first order
equations typical of Markovian systems.

In recent years several classes of Stochastic Petri Net (SPN) models have been elaborated which in-
corporate some non-exponential characteristics in their definition. The semantics of SPN’s with generally
distributed transition times has been discussed in [1]. We refer to this model as Generally Distributed
Transition_.SPN (GDT-SPN). In general, the stochastic process underlying a GDT_SPN does not have
a numerically tractable analytical formulation, while a simulative solution has been investigated in [24].

With the aim of providing a modeler’s representation able to automatically generate an analytical
representation, various restrictions of the general GDT_SPN model have been discussed in the literature.
Dugan et al. have studied the conditions under which the stochastic realization of the GDT_SPN is
a semi-Markov process [21]. Cumani [20] has realized a package in which each PN-transition can be
assigned a PH distributed firing time. We refer to this model in the following as PHSPN.

A particular case of non-Markovian SPN, is the class of Deterministic and SPN (DSPN). A DSPN is
defined in [3] as a Markovian SPN where, in each marking, a single transition is allowed to have associated



a deterministic firing time. Only the steady state analysis was elaborated in [3]. An improved steady
state algorithm was presented in [29], and some structural extensions were investigated in [15]. Choi
et al. [13] have developed a technique for the transient analysis of the state probabilities of the DSPN
model. Recently, Choi et al. [12] and German and Lindemann [23] have extended the potentiality of the
model by allowing the presence in each marking of a transition with a generally distributed firing time.
In [12], the authors have shown that the underlying stochastic process is a Semi Markov Regenerative
process, for which a transient as well as a steady state solution can be given. For this reason, Choi et.
al. refer to this model as Markov Regenerative SPN (MRSPN) [12]. A classification of GDT_SPNs and
of the related underlying stochastic processes is in Ciardo et al. [14].

The aim of this paper is to compare the available GDT_SPN models recently appeared in the litera-
ture from two distinct and conflicting points of view: the modelling power and the analytical tractability.
To this end, the main features of the various restrictions considered in the literature are briefly described
with the intent of stressing the basic modeling assumptions and the complexity of the related analytical
solution.

A final example, based on the transient analysis of a closed queuing system with deterministic service
time and various kinds of preemptive service policies, is developed in length in order to put in evidence
the limits and the potentialities of the different approaches.

The GDT_SPN model is formally defined in Section 2. In Section 3 a brief survey of the most recent
restrictions appeared in the literaure is reported. Two restrictions are described in more details, namely
the PHSPN model implemented by Cumani in [20] and the DSPN model described by Choi et al. in
[13]. A comparative discussion of the modeling power of the considered models is reported in Section
4. In Section 5, starting from a simple queuing system, increasing modelling complexities are added in
order to show how the considered models react to these added structures. The algorithmical complexity
of the numerical solutions is discussed in Section 6.

2 Generally Distributed Transition_SPN
A marked Petri Net (PN) is a tuple PN = (P,T,I,0,H, M), where:
o P={p1,p2,-..,Pnp} is the set of places (drawn as circles);

o T ={t1,ta,...,tnt} is the set of transitions (drawn as bars);

e [, O and H are the input, the output and the inhibitor functions, respectively. The input function
I provides the multiplicities of the input arcs from places to transitions; the output function O
provides the multiplicities of the output arcs from transitions to places; the inhibitor function H
provides the multiplicity of the inhibitor arcs from places to transitions.

o M ={mq,ma,...,mpp} is the marking. The generic entry m; is the number of tokens (drawn as
black dots) in place p;, in marking M.

Input and output arcs have an arrowhead on their destination, inhibitor arcs have a small circle. A
transition is enabled in a marking if each of its ordinary input places contains at least as many tokens as
the multiplicity of the input function I and each of its inhibitor input places contains fewer tokens than
the multiplicity of the inhibitor function H. An enabled transition fires by removing as many tokens as
the multiplicity of the input function I from each ordinary input place, and adding as many tokens as
the multiplicity of the output function O to each output place. The number of tokens in an inhibitor
input place is not affected.

A marking M' is said to be immediately reachable from M, when is generated from M by firing
a single enabled transition t;. The reachability set R(Mp) is the set of all the markings that can be
generated from an initial marking M, by repeated application of the above rules. If the set T comprises
both timed and immediate transitions, R(Mp) is partitioned into tangible (no immediate transitions are
enabled) and vanishing markings, according to [2].

A timed execution sequence Tg is a connected path in the reachability graph R(Mj) augmented by a
non-decreasing sequence of real non-negative values representing the epochs of firing of each transition,
such that consecutive transition firings correspond to ordered epochs 7; < 7511 in Tg.



Te = { (10, M)); (11, M(1y); .. (7, M(y) 5 ...} (1)

The time interval 7,41 — 7; between consecutive epochs represents the period of time that the PN
sojourns in marking M.

A variety of timing mechanisms have been proposed in the literature. The distinguishing features
of the timing mechanisms are whether the duration of the events is modeled by deterministic variables
or random variables, and whether the time is associated to the PN places, transitions or tokens. If
a probability measure is assigned to the duration of the events represented by a transition, a timed
execution sequence Tg is mapped into a stochastic process X7 (t), (¢t > 0), called the Marking Process.
PN’s in which the timing mechanism is stochastic are referred to as Stochastic PN (SPN).

A SPN with stochastic timing associated to the PN transitions and with generally distributed firing
times was defined in [1], with particular emphasis to the semantical interpretation of the model. We
refer to this model as Generally Distributed Transition.SPN (GDT_SPN).

Definition 3 - A stochastic GDT_SPN is a marked SPN in which:

e To any transition tp, € T is associated a random variable v modeling the time needed by the
activity represented by ty to complete, when considered in isolation.

e Each random variable vy, is characterized by the (possibly marking dependent) Cumulative distri-
bution function Gy (x|M).

o A set of specifications are given for univocally defining the sstochastic process associated to the
ensemble of all the timed execution sequences Tg. This set of specifications is called the execution
policy.

o A initial probability is given on the reachability set.

An ezecution policy is a set of specifications for univocally defining the stochastic process underlying
the GDT_SPN, given the PN topology structure and the set of Cdf’s Gy (z|M). Indeed, the inclusion
of non-exponential timings destroys the memoryless property and forces to specify how the system is
conditioned upon the past history. The semantics of different execution policies has been discussed in
[1]. The ezecution policy comprises two specifications: a criterion to choose the next timed transition to
fire (the firing policy), and a criterion to keep memory of the past history of the process (the memory
policy). A natural choice to select the next timed transition to fire is according to a race policy: if more
than one transition is enabled in a given marking, the transition fires whose associated random delay is
statistically the minimum. The Memory Policy is the part of the set of specifications of the ezecution
policy that defines how the process is conditioned upon the past. We associate to each transition j; an
age variable ax. The way in which ay, is related to the past history Z(;) determines the different memory
policies. We consider three alternatives:

e Age memory - The age variable a;, accounts for the work performed by the activity corresponding
to tj from its last firing up to the current epoch. The firing distribution depends on the residual
time needed for this activity to complete given ay,.

e Enabling memory - The age variable a; accounts for the work performed by the activity corre-
sponding to tj from the last epoch in which ¢; has been enabled. The firing distribution depends
on the residual time needed for this activity to complete given ay. When transition ¢; is disabled
(even without firing) the corresponding enabling age variable is reset.

o Resampling - The age variable a;, is reset to zero at any change of marking. The firing distribution
depends only on the time elapsed in the present marking.

At the entrance in a new tangible marking, the residual firing time is computed for each enabled
timed transition given its age variable. The next marking is determined by the minimal residual firing
time among the enabled timed transitions (race policy). Under an enabling memory policy the firing
time of a transition is resampled from the original distribution each time the transition becomes enabled



so that the time eventually spent without firing in prior enabling periods is lost. The memory of the
underlying stocastic process cannot etend beyond a single cycle of enable/disable of the transition with
enabling memory policy. On the contrary, if a transition is assigned an age memory policy, the age
variable accounts for all the periods of time in which the transition has been enabled, independently of
the number of enable/disable cycles. The memory of the process extends up to the first epoch in which
the transition has been enabled for the first time after a firing.

3 Computational Restrictions

The marking process X7(7) does not have, in general, an analytically tractable formulation, while a
simulative approach has been described in [24, 25]. Various restrictions of the general model have been
discussed in the literature such that the underlying marking process X7 (7) is confined to belong to a
known class of analytically tractable problems.

3.1 Exponentially Distributed SPN

When the random variables v, associated to the PN transitions are exponentially distributed, the dy-
namic behaviour of the net can be mapped into a continuous time homogeneous Markov chain (CTMC),
with state space isomorphic to the reachability graph of the net. This restriction is the most popular in
the literature [31, 22, 2], and a number of packages are built on this model [11, 16, 30, 28].

3.2 Semi-Markov SPN

When all the PN transitions are assigned a resampling policy the marking process becomes a semi-
Markov process. This restriction has been studied in [32, 5] but is of little interest in applications where
it is difficult to imagine a situation where the firing of each transition of the PN has the effect of forcing
a resampling resetting to all the other transitions. Only the case in which each transition is competing
with all the other ones seems to be appropriate for this model.

A more interesting semi-Markov SPN model has been discussed in [21]. In this definition, the
transitions are partitioned into three classes: exclusive, competitive and concurrent. Provided that the
firing time of all concurrent transitions is exponentially distributed and that competitive transitions are
resampled at the time the transition is enabled, the associated marking process becomes a semi-Markov
process.

3.3 Phase Type SPN (PHSPN)

A numerically tractable realization of the GDT_SPN, is obtained by restricting the firing time random
variables v to be PH distributed [33], according to the following:

Definition 1 A PHSPN is a GDT_SPN in which:

e To any transition ty, € T is associated a PH random variable vy, with Cdf Gi(x|M). The PH model
assigned to transition t; has vy stages with a single initial stage numbered stage 1 and a single
final stage numbered stage vy,.

e To any transition t, € T is assigned a memory policy among the three defined alternatives: age,
enabling or resampling memory.

The distinguishing feature of this model, is that it is possible to design a completely automated tool
that responds to the requirements stated in [26], and, at the same time, includes all the issues listed
in Definition 4. The non-markovian process generated by the GDT_SPN is converted into a CTMC
defined over an expanded state space. The measures pertinent to the original process can be evaluated
by solving the expanded CTMC.

The program package ESP [20] realizes the PHSPN model according to Definition 4. The program
allows the user to assign a specific memory policy to each PN transition so that the different execution
policies can be put to work. In the ESP tool, the expanded CTMC is generated from the model



specifications (the PN topology, and the PH models assigned to each timed transition). The generation
algorithm is driven by the different execution policies that the user assignes to each transition.

The expanded CTMC is represented by an oriented graph H = (Ng, Ap) where Ny is the set of
nodes (states of the expanded CTMC) and Ap is the set of oriented arcs (transitions of the expanded
CTMC). The nodes in Np are pairs (M, W), where M € R(My) is a marking and W is an integer
n¢-dimensional vector, whose kth entry wy (1 < wy < vg) represents the stage of firing of ¢, in its PH
distribution.

Arcs in Ay are represented by 5-tuples (N, N'; k, 4, j), where N is the source node, N' the desti-
nation node, and (4, j) is an arc in the PH model of transition t;. Therefore, (N, N'; k, i, j) € Ag
means that in the expanded graph the process goes from node N to node N’ when the stage of firing of
ty, goes from stage i to stage j.

The expanded graph H is generated by an iterative algorithm illlustrated in details in [20]. The
marking M) of the original reachability set, is mapped into a macro state M formed by the union of
all the nodes N (M, W) of the expanded graph such that M = M (9. This mapping allows the program
to redefine the measures calculated as solution of the markov equation over the expanded graph in terms
of the markings of the original PN.

The cardinality ng of the expanded state space is of the order of magnitude of the cross product of
the cardinality of the reachability set of the basic PN times the cardinality of the PH distributions of
the n; random variables vy, .

An alternative approach for the implementation of a PHSPN model could consist in including the
PH models for each transition at the PN level, thus expanding the PN. This approach has been strongly
discouraged in [1] on the basis of the following motivations:

e The inclusion of a subnet for each transition makes the expanded PN very intrigued and difficult
to understand just because some primitive elements (places, transitions and arcs) are added, that
only refer to the stochastic behaviour of a single transition and hiden the general structure of the
model. The fascinating simplicity of the PN language to represent complex logical interactions
between objects is destroyed.

e It seems hardly possible to automatize a procedure for generating the PHSPN model exapnding
the basic PN and taking into account all the possible interaction among the introduced memory
policies.

3.4 Deterministic SPN

The Deterministic and Stochastic PN model has been introduced in [1], with the aim of providing a
technique for considering stochastic systems in which some time variables assume a constant value. In
[1] only the steady state solution has been addressed. An improved algorithm for the evaluation of the
steady state probabilities has been successively presented in [29]. Recently, the DSPN model has been
revisited in [14] and [13] where the transient solution is provided.

Definition 5 - A DSPN is a GDT_SPN in which:
e To any transition ty, € T is associated an exponentially distributed random variable .

e At most, a single deterministic transition (DET) is allowed to be enabled in each marking and the
firing time of the deterministic transition is marking independent.

e The time elapsed in a DET cannot be remembered when the transition becomes disabled; the only
allowed ezecution policy is the race policy with enabling memory.

In order to prove that the marking process associated to a DSPN is a Markov regenerative process
(MRP), Choi et al. [13] have introduced the following modified execution sequence:

Te = {(TgaM(O)); (Tl*aM(l)); RO (Ti*aM(i)); } (2)

Epoch 77, is derived from 7 as follows:



1. If no DET transition is enabled in marking M;), define 77, to be the first time after 7" that a
state change occurs.

2. If a DET transition is enabled in marking M;, define 7, ; to be the time when the DET transition
fires or is disabled as a consequence of the firing of a competitive exponential transition.

According to case 2) of the above definition, during [}, 7 ; ), the PN can evolve in the subset of
R(My) reachable from M;, through exponential transitions concurrent with the given DET transition.
The marking process during this time interval is a CTMC called the subordinated CTMC of marking
M;y. Therefore, if a DET transition is enabled in M(;, the sojourn time is given by the minimum
between the first passage time out of the subordinated CTMC and the constant firing time associated
to the DET transition.

Choi et al. show that the sequence [} forms a sequence of regenerative time points, so that the
marking process X7 (7) is a Markov regenerative process MRP. According to [12, 17], we define the
following matrix valued functions:

V(t) = [Vij(t)] suchthat Vi(t) = Pr{Xs(t)=j|X7(0) =1}
K(t) = [Ki(t)] 7 Kij(t) = Pr{Muy =j,n <t X7(0) =1} (3)
E(t) = [Ei()] ” E;j(t) = Pr{Xm(t) =7, >t|Xm(0) =1}

Matrix V(t) is the transition probability matrix and provides the probability that the marking
process X7 (t) is in marking j at time ¢ given it was in 7 at ¢ = 0. The matrix K(¢) is the global kernel of
the MRP and provides the cdf of the regeneration interval given that the next regeneration marking is
Jj, starting in marking i at ¢ = 0. Finally, the matrix E(t) is the local kernel and describes the behavior
of the marking process inside two consecutive regeneration time points. The transient behavior of the
DSPN can be evaluated by solving the following generalized Markov renewal equation (in matrix form)
[17, 12]:

V() = E(t) + K = V(t) (4)

Equation (4) can be solved numerically in the time domain. An alternative approach suggested by
the authors consists in transforming the transient solution in the Laplace transform domain, and then
deriving the time solution by a numerical inversion technique. The paper proposes to use the Jagerman’s
method [27], as adapted by Chimento and Trivedi [10].

3.5 Markov Regenerative SPN (MRSPN)

A further extension, called Markov Regenerative SPN, has been developed in [12] and a classification of
the stochastic process underlying a GDT_SPN has been discussed in [15].

Definition 2 A MRSPN is a GDT_SPN in which:
e To any transition ty, € T is associated an exponentially distributed random variable .

o At most, a single transition with generally distributed firing time is allowed to be enabled in each
marking.

e The only allowed execution policy is the race policy with enabling memory. This means that the
firing time of the generally distributed transition is sampled at the time the transition is enabled
and cannot change until the transition either fires or is disabled.

e The firing time distribution may depend upon the marking at the time the transition is enabled.

The convolution equation (4) still holds; however, the analytic kernel expressions depend on the
specific Cdf’s assumed in the model. In [12], closed form expressions are derived when the Cdf of
the generally distributed transitions is the uniform distribution. A further approach, resorting to the
method of supplementary variables proposed by Cox [18], is discussed in [23, 15], where the use of
polyexponomial distributions is investigated.



4 Modeling Power

The considered models differ because of the different classes of distribution functions they are able to
support, and by the way in which the history of the process is taken into account to condition the future
evolution of the net.

Under the enabling memory policy the time accumulated by a PN transition is reset as soon as the
transition is disabled, while under the age memory policy the time accumulates whenever the transition
is enabled before firing. The enabling memory policy is suited to realize the interaction mechanism
among tasks in service that in queueing theory or fault-tolerant systems is called a preemptive repeat
different (prd) policy. Whenever the task in service is preempted a corresponding PN transition is
disabled resetting the accumulated time. Hence, when the preempted task restarts its work requirement
should be resampled from the same distribution [6]. On the other hand, the age memory policy is
suited to represent an interaction mechanism usually referred to as preemptive resume policy: the server
does not loose memory of the work already done even if the task is preempted (and the corresponding
PN transition disabled). When the task is enabled again the execution restarts from the point it was
interrupted.

The DSPN model, combining constant times with exponential random times, offers an innovative
approach in many practical applications. The main limitation of the DSPN model in the present state of
the art, is that only enabling memory policy is supported. Hence only systems with a service discipline
of preemptive different type can be represented with this approach. Moreover, there no tools available
for the automatic generation of the matrices V(¢), K(¢) and E(t), and the solution of the convolution
equation is performed by means of standard packages for symbolic manipulation.

Onthe contrary, the PHSPN model fully supports all the defined memory policies, and, in particular,
the age memory policy. The modeler is allowed to represent in a natural way prs interaction mechanisms.
Moreover, if the random variables of the system to be modeled are really of PH type, the PHSPN provides
exact results. Otherwise, a preliminary step is needed in which the random times of the system are
approximated by PH random variables resorting to a suitable estimation technique [8, 9]. A tool is
conceivable [20] for supporting the generation and analysis of the model according to the requirements
specified in [26]. The expansion of the state space is, of course, a cause of nonnegligible difficulties, since
it worsens the problem of the exponential growth of the state space both with the model complexity,
and with the order of the PH distribution assigned to each transition.

5 Example - Finite Queue with Preemption

We carry on a comparison between the modeling power and the numerical results obtained from the
DSPN and the PHSPN models through the analysis of a simple finite queueing systems with different
kinds of preemption. We consider, as a base example, the M/G/1/2/2 (a closed queueing system with
two buffer positions and two customers) introduced in [3] . The non-preemptive service mechanism has
been already analyzed in [3] for what concerns the steady state measures and revisited in [13] for what
concerns the transient behavior. We initially compare the results obtained by approximating a DSPN
by means of a PHSPN and then we introduce various kinds of preemptive mechanisms.

5.1 Non Preemptive Queue

The PN for the M/G/1/2/2 system, proposed in [3], is reported in Figure 1. Place p; contains ”thinking”
customers (i.e. awaiting to submit a job) and transition t, represents the submission of jobs. Jobs
queueing for service are represented by tokens in ps. A token in ps means that the server is busy while a
token in p4 means that the server is idle. Transition ¢, is the job service time; when the job is completed
the customer returns in his thinking state. Transition ¢; is an immediate transition modelling the start
of service i.e. the transfer of the job from the queue to the server.

In [3, 13], the following assumptions were made. ¢, is exponentially distributed with rate m4 - A being
my is the number of tokens in p; and A = 0.5 job/hour. t, is a DET transition modeling a constant
service time of duration d = 1.0 hour.

The reduced reachability graph of the PN (after eliminating the vanishing markings arising from the
immediate transition ¢; [2]) is composed of three states, called s, s2 and s3 in Figure 1b. The PN of
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Figure 1 - a) - PN modelling the atomic operation of a M/D/1/2/2 (after
[3]); b) - corresponding reduced reachability graph; c) - simplified
PN.

Figure 1 is intended to show in details the atomic steps by which a customer submits a job and the job
is serviced. Figure 2 shows, however, a simpler PN isomorphic to the one of Figure 1.

Tokens in place p; of Figure 2 represent customers in the thinking state, while py contains the jobs
in the queue (included the one under service). t; is the submitting time and - is the service time. It is
easy to verify that the above PN generates the same marking process X7(7) of Figure 1b) when #; is
exponential with rate mq - A and t5 is DET. The probabilities versus time of the two states s; and s3
are reported in Figure 3 in solid line.

Approximating the DSPN of Figure 2 by means of the PHSPN model is straightforward. Transition
to is assigned a PH distribution and an enabling memory policy, in conformity with point 3) of Definition
5. Since the Erlang distribution is the PH with the minimum coefficient of variation [4] it is appropriate
to approximate the DSPN by assigning t» an Erlang distribution of increasing order. In Figure 3 we
compare the results obtained from the PHSPN model, by reporting the behavior of the state probabilities
versus time in two cases: when a) the random firing time assigned to #5 is Erlang(5) (dashed line), and
b) when is Erlang(100) (dotted line). In both cases the expected value of the Erlang matches with the
value d = 1.0 hours of the DET model, being all the other parameters unchanged. It is interesting
to observe that with the Erlang(5) the local maxima and minima in the probability behavior does not
appear, while the visual agreement is very satisfactory in the case of the Erlang(100).

As a further comparison, Table I shows the values for the steady state probabilities calculated
from the DSPN model and from the PHSPN model when ¢, is assumed to be Erlang(5), Erlang(10),
Erlang(100) and Erlang(1000), respectively. It should be stressed that the present case can be considered
as a worst case example since a DET type variable can be closely approximated by a PH only as the
number of stages grows to oo [19, 9].

5.2 Preemptive Queue

Let us assume a M/G/1/2/2 with a preemptive service and the same kind of customers. The job in
execution is preempted as soon as a new job joins the queue. Two cases can be considered depending
whether the job restarted after preemption is resampled from the same distribution function (preemptive
repeat different policy - prd), or is resumed (preemptive resume policy - prs).

5.2.1 prd policy

With reference to Figure 2, each time transition ¢; fires (a thinking customer submits a job) while p, is
marked (a job is currently under service) transition ¢» should be reset and resampled. In the PHSPN
model this mechanism can be simply realized by assigning to ¢» a resampling policy. It is easy to prove



Table - Steady state probabilities

PHSPN
State DSPN
Erl(5) | Erl(10) | Eri(100) | Erl(1000)

TABLE I - Non preemptive policy

51 0.37754 | 0.38307 | 0.38039 | 0.37783 0.37757
52 0.48984 | 0.46773 | 0.47845 | 0.48867 0.48972
83 0.13262 | 0.14920 | 0.14116 | 0.13350 0.13271

TABLE II - Preemptive prd policy

81 0.33942 | 0.35317 | 0.34642 | 0.34014 0.33950
52 0.44038 | 0.43122 | 0.43572 | 0.43991 0.44034
53 0.22019 | 0.21561 | 0.21786 | 0.21995 0.22017

TABLE III - Preemptive prs policy

51 0.35015 | 0.36194 | 0.35618 | 0.35076 0.35021
s + s3 | 0.45429 | 0.44193 | 0.44801 | 0.45365 0.45423
84 0.19556 | 0.19613 | 0.19582 | 0.19558 0.19556

that the underlying process X7(7) is a semi-Markov process, since each time the (generally distributed)
transition t- is entered, a regeneration point is produced since a new job starts.

Even if the class of semi-markov processes is a proper subclass of the Markov regenerative processes,
the above preemptive mechanism cannot be naturally generated from the current definition of DSPN.
In fact, since t; is not competitive with respect to to, the firing of the former does not disable the latter,
that indeed is not resampled. The PN in Figure 4 describes the preemption without this anomaly. Place
p1 in Figure 4 contains the customers thinking, while place ps contains the number of submitted jobs
(included the one under service). Place ps represents a single job getting service: service is interrupted
(t2 is disabled) if a new job joins the queue (if transition t3 fires before ¢5). ¢, and t3 are assigned the
exponential submitting time and transitions t> and t4 the generally distributed service time. Assigning
an enabling memory policy to ty and t4 the M/G/1/2/2 system with prd preemption is generated.

Table II compares the steady state probabilities assuming the submitting and service time distri-
butions identical to the non preemptive case. The transient behavior is compared in Figure 5 where
the results from the DSPN model are drawn in solid line while the results from the PHSPN model and
with the service time given by an Erlang(5) and an Erlang(100) are drawn in dashed and in dotted line,
respectively.

5.2.2 prs policy

The prs policy means that when a new job joins the queue the job under service is preempted until the
newly arrived job completes his service. The preempted job is resumed and put to execution from the
point of preemption without loss of the work previously performed.

The prs mechanism for the M/G/1/2/2 queue corresponds to the PN of Figure 4 when ¢, and ¢4 is
assigned an age memory policy. The preemption mechanism does not fit the rules of Definition 5 and
thus cannot be modeled in the framework of the actual implementation of the DSPN model. When 5



Figure 2 - Transient behavior of the state probabilities for the non preemp-
tive M/D/1/2/2

and t4 are both Erlang(100) the numerical results for the steady state probabilities are s; = 0.4, s =
0.4, s3 = 0.2. The transient behaviour is depicted in Figure 9 as Case III

5.3 Preemptive Queue with Different Classes of Customers

A interesting case arises when the two customers are of different classes, and customer of class 2 preempts
customer of class 1 but not vice versa. A PN illustrating the M/G/1/2/2 queue in which the jobs
submitted by customer 2 have higher priority over the jobs submitted by customer 1 is reported in
Figure 6. Place p; (p3) represents customer 1 (2) thinking, while place p> (p4) represent job 1 (2)
under service. Transition ¢; (f3) is the submission of a job of type 1 (2), while transition to (t4) is
the completion of service of a job of type 1 (2). The inhibitor arc from p, to t models the described
preemption mechanism: as soon as a type 2 job joins the queue the type 1 job eventually under service
is interrupted.

If we assume that the service time is not exponentially distributed, two possible preemption policies
can be considered depending whether the job of type 1, restarted after preemption, is resampled (prd
case) or is resumed (prs case). In the PHSPN model, the two policies can be naturally realized by
assigning to the service transitions ¢ and ¢4 an enabling memory policy in the prd case and a age
memory policy in the prs case.

Since in the DSPN only the prd policy is supported the transient results for prd policy by the different
methods are reported in Figure 7 and in Table III for what concerns the steady state probability values.
The effect of the different kinds of preemptions are compared for the DSPN in Figure 8 and for the
PHSPN in Figure 9. (Case I refers to the non preemptive system, Case II to the preemptive system with
identical customers and prd policy, Case III to the preemptive system with identical customers and prs
policy, Case IV to the preemptive system with different customers and prd policy, and Case V to the
preemptive system with different customers and prs policy). In the DSPN model only cases I, IT and
IV can be computed.

6 Computational complexity
Let us briefly summarize the elementary computational steps for the two considered methodologies

(DSPN and PHSPN), taking into account that the DSPN solution requires manual and automatic
manipulation, while the PHSPN solution is fully supported by a tool.
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Figure 3 - Preemptive M/D/1/2/2 ith identical customers

6.1 Evaluation of DSPN model

According to [13], we can divide the computational method in the following steps:
1. generation of the reachability tree;

2. manual derivation of the entries of the K(¢) and E(¢) matrices symbolically in Laplace transform
domain;

3. symbolical matrix inversion and matrix multiplication by using a standard package (e.g. MATH-
EMATICA) in order to obtain the V() (Equation 4) matrix in the LT domain;

4. time domain solution obtained by a numerical inversion of the entries of the V(t), resorting
to the Jagerman’s method [27]. For the sake of uniformity, this step has been implemented in
MATHEMATICA language.

Step 1) can be performed with any PN package. Step 2) is done manually, and its difficulty depends
on the non-zero entries of the involved matrices, and on the complexity of the CTM(Cs subordinated
to the different deterministic transitions. The computational complexity of step 3) depends on the
dimension of the matrices (i.e. the number of tangible markings) and the complexity of the elements
of the kernels (which is similar to the difficulty of the first step). The complexity of the numerical
inversion at step 4) also depends on two factors; the complexity of the function to invert, and the
prescribed accuracy.

For the example described in the previous section, the computational time for the symbolic inversion
was not significant, while the numerical inversion required about 30 s on an IBM RISC 6000 machine,
for each point of the graph.

6.2 Evaluation of PHSPN model

For the evaluation of this model we used the ESP tool ([20]). The procedure can be devided into the
following steps:

1. generation of the reachability tree;
2. generation of the expanded CTMC;
3. solution of the resulting CTMC.

Step 1) is standard. The computational complexity of steps 2) and 3) depends on the number
of tangible states and on the order of the PH distribution associated to each transition. With PH
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Figure 4 - Transient behavior of the state probabilities for the preemptive
M/D/1/2/2 with identical customers.

transitions of order n the cardinality of the expanded CTMC'is 2n + 1 in Case I, 2n + 1 in Case II,
n? +n+ 1in Case III, 3n 4+ 1 in Case IV, n? 4+ 2n + 1 in Case V. In this trivial example, with n = 100
(Erl100) the generation of the CTMC takes 2 m for Caes IT and V, and the whole analysis two further
minutes on the same IBM RISC 6000 computer.

7 Conclusion

The development of methodologies able to accommodate non exponential random variables is of increas-
ing interest in the analysis of stochastic systems. The paper has examined and compared PN based
models whose definition allows the modeler to associate, to some extent, non exponential distributions
to timed PN transitions.

The modeling power and the numerical capabilities are investigated, with particular reference to the
DSPN model, in which a single deterministic transition can be assigned in each marking (being all the
other transitions exponential), and the PHSPN model in which each transition can be assigned a PH
distributed firing time.

A simple queueing system is completely analysed. Even if the deterministic distribution is typically
non PH, an approximation error for the steady state probabilities of the order of 1072 is reached by
modeling the deterministic transition with an Erlang(5) and an error of the order of 10~* by modeling
the deterministic transition with an Erlang(1000). However, the use of PH distribution and of the
PHSPN model offers the modeler a more flexible tool for defining a more extended interactions between
the server and the job in progress.
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