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Abstra
t

The analysis of sto
hasti
 systems with non-exponential timing requires the development of suit-

able modeling tools. Re
ently, some e�ort has been devoted to generalize the 
on
ept of Sto
hasti


Petri nets, by allowing the �ring times to be generally distributed. The evolution of the PN in time

be
omes a sto
hasti
 pro
ess, for whi
h in general, no analyti
al solution is available. The paper

des
ribes suitable restri
tions of the PN model with generally distributed transition times, that have

appeared in the literature, and 
ompares these models from the point of view of the modeling power

and the numeri
al 
omplexity.

1 Introdu
tion

The designer and the analyst of a system are in �rst instan
e interested in the solution of the modeling

problem, not in how this solution is a
tually derived. They should be able to des
ribe their system in

su
h a way that it is easy and natural to use. The modeler's representation should in
lude enough infor-

mation to build up an analyti
al representation suitable for numeri
al solution, and should also 
ontain

the spe
i�
ation of the measures of interests. The modeler's representation should then automati
ally

be transformed into the analyti
al representation. Finally the numeri
al results should be again au-

tomati
ally mapped ba
k into the modeler's representation, so that the user of the tool 
an interpret

them in that 
ontext. For Markovian systems several tools have been developed in re
ent years, based

on various spe
i�
ation paradigms, as surveyed in [26℄.

There are, however, situations that are not 
overed by these tools. One typi
al situation o

urs when

the random times 
hara
teristi
 of the system are not exponential. A se
ond situation o

urs when the

analyst requires the 
omputation of sto
hasti
 measures (like the distribution fun
tion of 
umulative

measures [34, 7℄) whose numeri
al evaluation 
annot be performed by solving a set of linear �rst order

equations typi
al of Markovian systems.

In re
ent years several 
lasses of Sto
hasti
 Petri Net (SPN) models have been elaborated whi
h in-


orporate some non-exponential 
hara
teristi
s in their de�nition. The semanti
s of SPN's with generally

distributed transition times has been dis
ussed in [1℄. We refer to this model as Generally Distributed

Transition SPN (GDT SPN). In general, the sto
hasti
 pro
ess underlying a GDT SPN does not have

a numeri
ally tra
table analyti
al formulation, while a simulative solution has been investigated in [24℄.

With the aim of providing a modeler's representation able to automati
ally generate an analyti
al

representation, various restri
tions of the general GDT SPN model have been dis
ussed in the literature.

Dugan et al. have studied the 
onditions under whi
h the sto
hasti
 realization of the GDT SPN is

a semi-Markov pro
ess [21℄. Cumani [20℄ has realized a pa
kage in whi
h ea
h PN-transition 
an be

assigned a PH distributed �ring time. We refer to this model in the following as PHSPN.

A parti
ular 
ase of non-Markovian SPN, is the 
lass of Deterministi
 and SPN (DSPN). A DSPN is

de�ned in [3℄ as a Markovian SPN where, in ea
h marking, a single transition is allowed to have asso
iated
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a deterministi
 �ring time. Only the steady state analysis was elaborated in [3℄. An improved steady

state algorithm was presented in [29℄, and some stru
tural extensions were investigated in [15℄. Choi

et al. [13℄ have developed a te
hnique for the transient analysis of the state probabilities of the DSPN

model. Re
ently, Choi et al. [12℄ and German and Lindemann [23℄ have extended the potentiality of the

model by allowing the presen
e in ea
h marking of a transition with a generally distributed �ring time.

In [12℄, the authors have shown that the underlying sto
hasti
 pro
ess is a Semi Markov Regenerative

pro
ess, for whi
h a transient as well as a steady state solution 
an be given. For this reason, Choi et.

al. refer to this model as Markov Regenerative SPN (MRSPN) [12℄. A 
lassi�
ation of GDT SPNs and

of the related underlying sto
hasti
 pro
esses is in Ciardo et al. [14℄.

The aim of this paper is to 
ompare the available GDT SPN models re
ently appeared in the litera-

ture from two distin
t and 
on
i
ting points of view: the modelling power and the analyti
al tra
tability.

To this end, the main features of the various restri
tions 
onsidered in the literature are brie
y des
ribed

with the intent of stressing the basi
 modeling assumptions and the 
omplexity of the related analyti
al

solution.

A �nal example, based on the transient analysis of a 
losed queuing system with deterministi
 servi
e

time and various kinds of preemptive servi
e poli
ies, is developed in length in order to put in eviden
e

the limits and the potentialities of the di�erent approa
hes.

The GDT SPN model is formally de�ned in Se
tion 2. In Se
tion 3 a brief survey of the most re
ent

restri
tions appeared in the literaure is reported. Two restri
tions are des
ribed in more details, namely

the PHSPN model implemented by Cumani in [20℄ and the DSPN model des
ribed by Choi et al. in

[13℄. A 
omparative dis
ussion of the modeling power of the 
onsidered models is reported in Se
tion

4. In Se
tion 5, starting from a simple queuing system, in
reasing modelling 
omplexities are added in

order to show how the 
onsidered models rea
t to these added stru
tures. The algorithmi
al 
omplexity

of the numeri
al solutions is dis
ussed in Se
tion 6.

2 Generally Distributed Transition SPN

A marked Petri Net (PN) is a tuple PN = (P; T; I; O;H;M); where:

� P = fp

1

; p

2

; : : : ; p

np

g is the set of pla
es (drawn as 
ir
les);

� T = ft

1

; t

2

; : : : ; t

nt

g is the set of transitions (drawn as bars);

� I , O and H are the input, the output and the inhibitor fun
tions, respe
tively. The input fun
tion

I provides the multipli
ities of the input ar
s from pla
es to transitions; the output fun
tion O

provides the multipli
ities of the output ar
s from transitions to pla
es; the inhibitor fun
tion H

provides the multipli
ity of the inhibitor ar
s from pla
es to transitions.

� M = fm

1

;m

2

; : : : ;m

np

g is the marking. The generi
 entry m

i

is the number of tokens (drawn as

bla
k dots) in pla
e p

i

, in marking M .

Input and output ar
s have an arrowhead on their destination, inhibitor ar
s have a small 
ir
le. A

transition is enabled in a marking if ea
h of its ordinary input pla
es 
ontains at least as many tokens as

the multipli
ity of the input fun
tion I and ea
h of its inhibitor input pla
es 
ontains fewer tokens than

the multipli
ity of the inhibitor fun
tion H . An enabled transition �res by removing as many tokens as

the multipli
ity of the input fun
tion I from ea
h ordinary input pla
e, and adding as many tokens as

the multipli
ity of the output fun
tion O to ea
h output pla
e. The number of tokens in an inhibitor

input pla
e is not a�e
ted.

A marking M

0

is said to be immediately rea
hable from M , when is generated from M by �ring

a single enabled transition t

k

. The rea
hability set R(M

0

) is the set of all the markings that 
an be

generated from an initial markingM

0

by repeated appli
ation of the above rules. If the set T 
omprises

both timed and immediate transitions, R(M

0

) is partitioned into tangible (no immediate transitions are

enabled) and vanishing markings, a

ording to [2℄.

A timed exe
ution sequen
e T

E

is a 
onne
ted path in the rea
hability graph R(M

0

) augmented by a

non-de
reasing sequen
e of real non-negative values representing the epo
hs of �ring of ea
h transition,

su
h that 
onse
utive transition �rings 
orrespond to ordered epo
hs �

i

� �

i+1

in T

E

.
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T

E

= f (�

0

;M

(0)

) ; (�

1

;M

(1)

) ; : : : ; (�

i

;M

(i)

) ; : : :g (1)

The time interval �

i+1

� �

i

between 
onse
utive epo
hs represents the period of time that the PN

sojourns in marking M

(i)

.

A variety of timing me
hanisms have been proposed in the literature. The distinguishing features

of the timing me
hanisms are whether the duration of the events is modeled by deterministi
 variables

or random variables, and whether the time is asso
iated to the PN pla
es, transitions or tokens. If

a probability measure is assigned to the duration of the events represented by a transition, a timed

exe
ution sequen
e T

E

is mapped into a sto
hasti
 pro
ess X

T

(t); (t � 0), 
alled the Marking Pro
ess.

PN's in whi
h the timing me
hanism is sto
hasti
 are referred to as Sto
hasti
 PN (SPN).

A SPN with sto
hasti
 timing asso
iated to the PN transitions and with generally distributed �ring

times was de�ned in [1℄, with parti
ular emphasis to the semanti
al interpretation of the model. We

refer to this model as Generally Distributed Transition SPN (GDT SPN).

De�nition 3 - A sto
hasti
 GDT SPN is a marked SPN in whi
h:

� To any transition t

k

2 T is asso
iated a random variable 


k

modeling the time needed by the

a
tivity represented by t

k

to 
omplete, when 
onsidered in isolation.

� Ea
h random variable 


k

is 
hara
terized by the (possibly marking dependent) Cumulative distri-

bution fun
tion G

k

(xjM).

� A set of spe
i�
ations are given for univo
ally de�ning the ssto
hasti
 pro
ess asso
iated to the

ensemble of all the timed exe
ution sequen
es T

E

. This set of spe
i�
ations is 
alled the exe
ution

poli
y.

� A initial probability is given on the rea
hability set.

An exe
ution poli
y is a set of spe
i�
ations for univo
ally de�ning the sto
hasti
 pro
ess underlying

the GDT SPN, given the PN topology stru
ture and the set of Cdf's G

k

(xjM). Indeed, the in
lusion

of non-exponential timings destroys the memoryless property and for
es to spe
ify how the system is


onditioned upon the past history. The semanti
s of di�erent exe
ution poli
ies has been dis
ussed in

[1℄. The exe
ution poli
y 
omprises two spe
i�
ations: a 
riterion to 
hoose the next timed transition to

�re (the �ring poli
y), and a 
riterion to keep memory of the past history of the pro
ess (the memory

poli
y). A natural 
hoi
e to sele
t the next timed transition to �re is a

ording to a ra
e poli
y: if more

than one transition is enabled in a given marking, the transition �res whose asso
iated random delay is

statisti
ally the minimum. The Memory Poli
y is the part of the set of spe
i�
ations of the exe
ution

poli
y that de�nes how the pro
ess is 
onditioned upon the past. We asso
iate to ea
h transition t

k

an

age variable a

k

. The way in whi
h a

k

is related to the past history Z

(j)

determines the di�erent memory

poli
ies. We 
onsider three alternatives:

� Age memory - The age variable a

k

a

ounts for the work performed by the a
tivity 
orresponding

to t

k

from its last �ring up to the 
urrent epo
h. The �ring distribution depends on the residual

time needed for this a
tivity to 
omplete given a

k

.

� Enabling memory - The age variable a

k

a

ounts for the work performed by the a
tivity 
orre-

sponding to t

k

from the last epo
h in whi
h t

k

has been enabled. The �ring distribution depends

on the residual time needed for this a
tivity to 
omplete given a

k

. When transition t

k

is disabled

(even without �ring) the 
orresponding enabling age variable is reset.

� Resampling - The age variable a

k

is reset to zero at any 
hange of marking. The �ring distribution

depends only on the time elapsed in the present marking.

At the entran
e in a new tangible marking, the residual �ring time is 
omputed for ea
h enabled

timed transition given its age variable. The next marking is determined by the minimal residual �ring

time among the enabled timed transitions (ra
e poli
y). Under an enabling memory poli
y the �ring

time of a transition is resampled from the original distribution ea
h time the transition be
omes enabled
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so that the time eventually spent without �ring in prior enabling periods is lost. The memory of the

underlying sto
asti
 pro
ess 
annot etend beyond a single 
y
le of enable/disable of the transition with

enabling memory poli
y. On the 
ontrary, if a transition is assigned an age memory poli
y, the age

variable a

ounts for all the periods of time in whi
h the transition has been enabled, independently of

the number of enable/disable 
y
les. The memory of the pro
ess extends up to the �rst epo
h in whi
h

the transition has been enabled for the �rst time after a �ring.

3 Computational Restri
tions

The marking pro
ess X

T

(�) does not have, in general, an analyti
ally tra
table formulation, while a

simulative approa
h has been des
ribed in [24, 25℄. Various restri
tions of the general model have been

dis
ussed in the literature su
h that the underlying marking pro
ess X

T

(�) is 
on�ned to belong to a

known 
lass of analyti
ally tra
table problems.

3.1 Exponentially Distributed SPN

When the random variables 


k

asso
iated to the PN transitions are exponentially distributed, the dy-

nami
 behaviour of the net 
an be mapped into a 
ontinuous time homogeneous Markov 
hain (CTMC),

with state spa
e isomorphi
 to the rea
hability graph of the net. This restri
tion is the most popular in

the literature [31, 22, 2℄, and a number of pa
kages are built on this model [11, 16, 30, 28℄.

3.2 Semi-Markov SPN

When all the PN transitions are assigned a resampling poli
y the marking pro
ess be
omes a semi-

Markov pro
ess. This restri
tion has been studied in [32, 5℄ but is of little interest in appli
ations where

it is diÆ
ult to imagine a situation where the �ring of ea
h transition of the PN has the e�e
t of for
ing

a resampling resetting to all the other transitions. Only the 
ase in whi
h ea
h transition is 
ompeting

with all the other ones seems to be appropriate for this model.

A more interesting semi-Markov SPN model has been dis
ussed in [21℄. In this de�nition, the

transitions are partitioned into three 
lasses: ex
lusive, 
ompetitive and 
on
urrent. Provided that the

�ring time of all 
on
urrent transitions is exponentially distributed and that 
ompetitive transitions are

resampled at the time the transition is enabled, the asso
iated marking pro
ess be
omes a semi-Markov

pro
ess.

3.3 Phase Type SPN (PHSPN)

A numeri
ally tra
table realization of the GDT SPN, is obtained by restri
ting the �ring time random

variables 


k

to be PH distributed [33℄, a

ording to the following:

De�nition 1 A PHSPN is a GDT SPN in whi
h:

� To any transition t

k

2 T is asso
iated a PH random variable 


k

with Cdf G

k

(xjM). The PH model

assigned to transition t

k

has �

k

stages with a single initial stage numbered stage 1 and a single

�nal stage numbered stage �

k

.

� To any transition t

k

2 T is assigned a memory poli
y among the three de�ned alternatives: age,

enabling or resampling memory.

The distinguishing feature of this model, is that it is possible to design a 
ompletely automated tool

that responds to the requirements stated in [26℄, and, at the same time, in
ludes all the issues listed

in De�nition 4. The non-markovian pro
ess generated by the GDT SPN is 
onverted into a CTMC

de�ned over an expanded state spa
e. The measures pertinent to the original pro
ess 
an be evaluated

by solving the expanded CTMC.

The program pa
kage ESP [20℄ realizes the PHSPN model a

ording to De�nition 4. The program

allows the user to assign a spe
i�
 memory poli
y to ea
h PN transition so that the di�erent exe
ution

poli
ies 
an be put to work. In the ESP tool, the expanded CTMC is generated from the model
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spe
i�
ations (the PN topology, and the PH models assigned to ea
h timed transition). The generation

algorithm is driven by the di�erent exe
ution poli
ies that the user assignes to ea
h transition.

The expanded CTMC is represented by an oriented graph H = (N

H

; A

H

) where N

H

is the set of

nodes (states of the expanded CTMC) and A

H

is the set of oriented ar
s (transitions of the expanded

CTMC). The nodes in N

H

are pairs (M; W ), where M 2 R(M

0

) is a marking and W is an integer

n

t

-dimensional ve
tor, whose kth entry w

k

(1 � w

k

� �

k

) represents the stage of �ring of t

k

in its PH

distribution.

Ar
s in A

H

are represented by 5-tuples (N; N

0

; k; i; j), where N is the sour
e node, N

0

the desti-

nation node, and (i; j) is an ar
 in the PH model of transition t

k

. Therefore, (N; N

0

; k; i; j) 2 A

H

means that in the expanded graph the pro
ess goes from node N to node N

0

when the stage of �ring of

t

k

goes from stage i to stage j.

The expanded graph H is generated by an iterative algorithm illlustrated in details in [20℄. The

markingM

(`)

of the original rea
hability set, is mapped into a ma
ro stateM

(`)

formed by the union of

all the nodes N

H

(M; W ) of the expanded graph su
h thatM =M

(`)

. This mapping allows the program

to rede�ne the measures 
al
ulated as solution of the markov equation over the expanded graph in terms

of the markings of the original PN.

The 
ardinality n

H

of the expanded state spa
e is of the order of magnitude of the 
ross produ
t of

the 
ardinality of the rea
hability set of the basi
 PN times the 
ardinality of the PH distributions of

the n

t

random variables 


k

.

An alternative approa
h for the implementation of a PHSPN model 
ould 
onsist in in
luding the

PH models for ea
h transition at the PN level, thus expanding the PN. This approa
h has been strongly

dis
ouraged in [1℄ on the basis of the following motivations:

� The in
lusion of a subnet for ea
h transition makes the expanded PN very intrigued and diÆ
ult

to understand just be
ause some primitive elements (pla
es, transitions and ar
s) are added, that

only refer to the sto
hasti
 behaviour of a single transition and hiden the general stru
ture of the

model. The fas
inating simpli
ity of the PN language to represent 
omplex logi
al intera
tions

between obje
ts is destroyed.

� It seems hardly possible to automatize a pro
edure for generating the PHSPN model exapnding

the basi
 PN and taking into a

ount all the possible intera
tion among the introdu
ed memory

poli
ies.

3.4 Deterministi
 SPN

The Deterministi
 and Sto
hasti
 PN model has been introdu
ed in [1℄, with the aim of providing a

te
hnique for 
onsidering sto
hasti
 systems in whi
h some time variables assume a 
onstant value. In

[1℄ only the steady state solution has been addressed. An improved algorithm for the evaluation of the

steady state probabilities has been su

essively presented in [29℄. Re
ently, the DSPN model has been

revisited in [14℄ and [13℄ where the transient solution is provided.

De�nition 5 - A DSPN is a GDT SPN in whi
h:

� To any transition t

k

2 T is asso
iated an exponentially distributed random variable 


k

.

� At most, a single deterministi
 transition (DET) is allowed to be enabled in ea
h marking and the

�ring time of the deterministi
 transition is marking independent.

� The time elapsed in a DET 
annot be remembered when the transition be
omes disabled; the only

allowed exe
ution poli
y is the ra
e poli
y with enabling memory.

In order to prove that the marking pro
ess asso
iated to a DSPN is a Markov regenerative pro
ess

(MRP), Choi et al. [13℄ have introdu
ed the following modi�ed exe
ution sequen
e:

T

E

= f (�

�

0

;M

(0)

) ; (�

�

1

;M

(1)

) ; : : : ; (�

�

i

;M

(i)

) ; : : :g (2)

Epo
h �

�

i+1

is derived from �

�

i

as follows:
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1. If no DET transition is enabled in marking M

(i)

, de�ne �

�

i+1

to be the �rst time after �

�

i

that a

state 
hange o

urs.

2. If a DET transition is enabled in markingM

(i)

, de�ne �

�

i+1

to be the time when the DET transition

�res or is disabled as a 
onsequen
e of the �ring of a 
ompetitive exponential transition.

A

ording to 
ase 2) of the above de�nition, during [�

�

i

; �

�

i+1

), the PN 
an evolve in the subset of

R(M

0

) rea
hable from M

(i)

, through exponential transitions 
on
urrent with the given DET transition.

The marking pro
ess during this time interval is a CTMC 
alled the subordinated CTMC of marking

M

(i)

. Therefore, if a DET transition is enabled in M

(i)

, the sojourn time is given by the minimum

between the �rst passage time out of the subordinated CTMC and the 
onstant �ring time asso
iated

to the DET transition.

Choi et al. show that the sequen
e [�

�

i

forms a sequen
e of regenerative time points, so that the

marking pro
ess X

T

(�) is a Markov regenerative pro
ess MRP. A

ording to [12, 17℄, we de�ne the

following matrix valued fun
tions:

V(t) = [V

ij

(t)℄ su
h that V

ij

(t) = PrfX

T

(t) = j jX

T

(0) = ig

K(t) = [K

ij

(t)℄ " K

ij

(t) = PrfM

(1)

= j ; �

�

1

� tjX

T

(0) = ig

E(t) = [E

ij

(t)℄ " E

ij

(t) = PrfX

M

(t) = j ; �

�

1

> tjX

M

(0) = ig

(3)

Matrix V(t) is the transition probability matrix and provides the probability that the marking

pro
ess X

T

(t) is in marking j at time t given it was in i at t = 0. The matrix K(t) is the global kernel of

the MRP and provides the 
df of the regeneration interval given that the next regeneration marking is

j, starting in marking i at t = 0. Finally, the matrix E(t) is the lo
al kernel and des
ribes the behavior

of the marking pro
ess inside two 
onse
utive regeneration time points. The transient behavior of the

DSPN 
an be evaluated by solving the following generalized Markov renewal equation (in matrix form)

[17, 12℄:

V(t) = E(t) + K � V(t) (4)

Equation (4) 
an be solved numeri
ally in the time domain. An alternative approa
h suggested by

the authors 
onsists in transforming the transient solution in the Lapla
e transform domain, and then

deriving the time solution by a numeri
al inversion te
hnique. The paper proposes to use the Jagerman's

method [27℄, as adapted by Chimento and Trivedi [10℄.

3.5 Markov Regenerative SPN (MRSPN)

A further extension, 
alled Markov Regenerative SPN, has been developed in [12℄ and a 
lassi�
ation of

the sto
hasti
 pro
ess underlying a GDT SPN has been dis
ussed in [15℄.

De�nition 2 A MRSPN is a GDT SPN in whi
h:

� To any transition t

k

2 T is asso
iated an exponentially distributed random variable 


k

.

� At most, a single transition with generally distributed �ring time is allowed to be enabled in ea
h

marking.

� The only allowed exe
ution poli
y is the ra
e poli
y with enabling memory. This means that the

�ring time of the generally distributed transition is sampled at the time the transition is enabled

and 
annot 
hange until the transition either �res or is disabled.

� The �ring time distribution may depend upon the marking at the time the transition is enabled.

The 
onvolution equation (4) still holds; however, the analyti
 kernel expressions depend on the

spe
i�
 Cdf's assumed in the model. In [12℄, 
losed form expressions are derived when the Cdf of

the generally distributed transitions is the uniform distribution. A further approa
h, resorting to the

method of supplementary variables proposed by Cox [18℄, is dis
ussed in [23, 15℄, where the use of

polyexponomial distributions is investigated.
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4 Modeling Power

The 
onsidered models di�er be
ause of the di�erent 
lasses of distribution fun
tions they are able to

support, and by the way in whi
h the history of the pro
ess is taken into a

ount to 
ondition the future

evolution of the net.

Under the enabling memory poli
y the time a

umulated by a PN transition is reset as soon as the

transition is disabled, while under the age memory poli
y the time a

umulates whenever the transition

is enabled before �ring. The enabling memory poli
y is suited to realize the intera
tion me
hanism

among tasks in servi
e that in queueing theory or fault-tolerant systems is 
alled a preemptive repeat

di�erent (prd) poli
y. Whenever the task in servi
e is preempted a 
orresponding PN transition is

disabled resetting the a

umulated time. Hen
e, when the preempted task restarts its work requirement

should be resampled from the same distribution [6℄. On the other hand, the age memory poli
y is

suited to represent an intera
tion me
hanism usually referred to as preemptive resume poli
y: the server

does not loose memory of the work already done even if the task is preempted (and the 
orresponding

PN transition disabled). When the task is enabled again the exe
ution restarts from the point it was

interrupted.

The DSPN model, 
ombining 
onstant times with exponential random times, o�ers an innovative

approa
h in many pra
ti
al appli
ations. The main limitation of the DSPN model in the present state of

the art, is that only enabling memory poli
y is supported. Hen
e only systems with a servi
e dis
ipline

of preemptive di�erent type 
an be represented with this approa
h. Moreover, there no tools available

for the automati
 generation of the matri
es V(t), K(t) and E(t), and the solution of the 
onvolution

equation is performed by means of standard pa
kages for symboli
 manipulation.

Onthe 
ontrary, the PHSPN model fully supports all the de�ned memory poli
ies, and, in parti
ular,

the age memory poli
y. The modeler is allowed to represent in a natural way prs intera
tion me
hanisms.

Moreover, if the random variables of the system to be modeled are really of PH type, the PHSPN provides

exa
t results. Otherwise, a preliminary step is needed in whi
h the random times of the system are

approximated by PH random variables resorting to a suitable estimation te
hnique [8, 9℄. A tool is


on
eivable [20℄ for supporting the generation and analysis of the model a

ording to the requirements

spe
i�ed in [26℄. The expansion of the state spa
e is, of 
ourse, a 
ause of nonnegligible diÆ
ulties, sin
e

it worsens the problem of the exponential growth of the state spa
e both with the model 
omplexity,

and with the order of the PH distribution assigned to ea
h transition.

5 Example - Finite Queue with Preemption

We 
arry on a 
omparison between the modeling power and the numeri
al results obtained from the

DSPN and the PHSPN models through the analysis of a simple �nite queueing systems with di�erent

kinds of preemption. We 
onsider, as a base example, the M/G/1/2/2 (a 
losed queueing system with

two bu�er positions and two 
ustomers) introdu
ed in [3℄ . The non-preemptive servi
e me
hanism has

been already analyzed in [3℄ for what 
on
erns the steady state measures and revisited in [13℄ for what


on
erns the transient behavior. We initially 
ompare the results obtained by approximating a DSPN

by means of a PHSPN and then we introdu
e various kinds of preemptive me
hanisms.

5.1 Non Preemptive Queue

The PN for the M/G/1/2/2 system, proposed in [3℄, is reported in Figure 1. Pla
e p

1


ontains "thinking"


ustomers (i.e. awaiting to submit a job) and transition t

a

represents the submission of jobs. Jobs

queueing for servi
e are represented by tokens in p

2

. A token in p

3

means that the server is busy while a

token in p

4

means that the server is idle. Transition t

g

is the job servi
e time; when the job is 
ompleted

the 
ustomer returns in his thinking state. Transition t

i

is an immediate transition modelling the start

of servi
e i.e. the transfer of the job from the queue to the server.

In [3, 13℄, the following assumptions were made. t

a

is exponentially distributed with ratem

1

�� being

m

1

is the number of tokens in p

1

and � = 0:5 job/hour. t

g

is a DET transition modeling a 
onstant

servi
e time of duration d = 1:0 hour.

The redu
ed rea
hability graph of the PN (after eliminating the vanishing markings arising from the

immediate transition t

i

[2℄) is 
omposed of three states, 
alled s

1

; s

2

and s

3

in Figure 1b. The PN of

7
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Figure 1 - a) - PN modelling the atomi
 operation of a M/D/1/2/2 (after

[3℄); b) - 
orresponding redu
ed rea
hability graph; 
) - simpli�ed

PN.

Figure 1 is intended to show in details the atomi
 steps by whi
h a 
ustomer submits a job and the job

is servi
ed. Figure 2 shows, however, a simpler PN isomorphi
 to the one of Figure 1.

Tokens in pla
e p

1

of Figure 2 represent 
ustomers in the thinking state, while p

2


ontains the jobs

in the queue (in
luded the one under servi
e). t

1

is the submitting time and t

2

is the servi
e time. It is

easy to verify that the above PN generates the same marking pro
ess X

T

(�) of Figure 1b) when t

1

is

exponential with rate m

1

� � and t

2

is DET. The probabilities versus time of the two states s

1

and s

3

are reported in Figure 3 in solid line.

Approximating the DSPN of Figure 2 by means of the PHSPN model is straightforward. Transition

t

2

is assigned a PH distribution and an enabling memory poli
y, in 
onformity with point 3) of De�nition

5. Sin
e the Erlang distribution is the PH with the minimum 
oeÆ
ient of variation [4℄ it is appropriate

to approximate the DSPN by assigning t

2

an Erlang distribution of in
reasing order. In Figure 3 we


ompare the results obtained from the PHSPNmodel, by reporting the behavior of the state probabilities

versus time in two 
ases: when a) the random �ring time assigned to t

2

is Erlang(5) (dashed line), and

b) when is Erlang(100) (dotted line). In both 
ases the expe
ted value of the Erlang mat
hes with the

value d = 1:0hours of the DET model, being all the other parameters un
hanged. It is interesting

to observe that with the Erlang(5) the lo
al maxima and minima in the probability behavior does not

appear, while the visual agreement is very satisfa
tory in the 
ase of the Erlang(100).

As a further 
omparison, Table I shows the values for the steady state probabilities 
al
ulated

from the DSPN model and from the PHSPN model when t

2

is assumed to be Erlang(5), Erlang(10),

Erlang(100) and Erlang(1000), respe
tively. It should be stressed that the present 
ase 
an be 
onsidered

as a worst 
ase example sin
e a DET type variable 
an be 
losely approximated by a PH only as the

number of stages grows to 1 [19, 9℄.

5.2 Preemptive Queue

Let us assume a M/G/1/2/2 with a preemptive servi
e and the same kind of 
ustomers. The job in

exe
ution is preempted as soon as a new job joins the queue. Two 
ases 
an be 
onsidered depending

whether the job restarted after preemption is resampled from the same distribution fun
tion (preemptive

repeat di�erent poli
y - prd), or is resumed (preemptive resume poli
y - prs).

5.2.1 prd poli
y

With referen
e to Figure 2, ea
h time transition t

1

�res (a thinking 
ustomer submits a job) while p

2

is

marked (a job is 
urrently under servi
e) transition t

2

should be reset and resampled. In the PHSPN

model this me
hanism 
an be simply realized by assigning to t

2

a resampling poli
y. It is easy to prove

8



Table - Steady state probabilities

PHSPN

State DSPN

Erl(5) Erl(10) Erl(100) Erl(1000)

TABLE I - Non preemptive poli
y

s

1

0.37754 0.38307 0.38039 0.37783 0.37757

s

2

0.48984 0.46773 0.47845 0.48867 0.48972

s

3

0.13262 0.14920 0.14116 0.13350 0.13271

TABLE II - Preemptive prd poli
y

s

1

0.33942 0.35317 0.34642 0.34014 0.33950

s

2

0.44038 0.43122 0.43572 0.43991 0.44034

s

3

0.22019 0.21561 0.21786 0.21995 0.22017

TABLE III - Preemptive prs poli
y

s

1

0.35015 0.36194 0.35618 0.35076 0.35021

s

2

+ s

3

0.45429 0.44193 0.44801 0.45365 0.45423

s

4

0.19556 0.19613 0.19582 0.19558 0.19556

that the underlying pro
ess X

T

(�) is a semi-Markov pro
ess, sin
e ea
h time the (generally distributed)

transition t

2

is entered, a regeneration point is produ
ed sin
e a new job starts.

Even if the 
lass of semi-markov pro
esses is a proper sub
lass of the Markov regenerative pro
esses,

the above preemptive me
hanism 
annot be naturally generated from the 
urrent de�nition of DSPN.

In fa
t, sin
e t

1

is not 
ompetitive with respe
t to t

2

, the �ring of the former does not disable the latter,

that indeed is not resampled. The PN in Figure 4 des
ribes the preemption without this anomaly. Pla
e

p

1

in Figure 4 
ontains the 
ustomers thinking, while pla
e p

2


ontains the number of submitted jobs

(in
luded the one under servi
e). Pla
e p

3

represents a single job getting servi
e: servi
e is interrupted

(t

2

is disabled) if a new job joins the queue (if transition t

3

�res before t

2

). t

1

and t

3

are assigned the

exponential submitting time and transitions t

2

and t

4

the generally distributed servi
e time. Assigning

an enabling memory poli
y to t

2

and t

4

the M/G/1/2/2 system with prd preemption is generated.

Table II 
ompares the steady state probabilities assuming the submitting and servi
e time distri-

butions identi
al to the non preemptive 
ase. The transient behavior is 
ompared in Figure 5 where

the results from the DSPN model are drawn in solid line while the results from the PHSPN model and

with the servi
e time given by an Erlang(5) and an Erlang(100) are drawn in dashed and in dotted line,

respe
tively.

5.2.2 prs poli
y

The prs poli
y means that when a new job joins the queue the job under servi
e is preempted until the

newly arrived job 
ompletes his servi
e. The preempted job is resumed and put to exe
ution from the

point of preemption without loss of the work previously performed.

The prs me
hanism for the M/G/1/2/2 queue 
orresponds to the PN of Figure 4 when t

2

and t

4

is

assigned an age memory poli
y. The preemption me
hanism does not �t the rules of De�nition 5 and

thus 
annot be modeled in the framework of the a
tual implementation of the DSPN model. When t

2

9



Figure 2 - Transient behavior of the state probabilities for the non preemp-

tive M/D/1/2/2

and t

4

are both Erlang(100) the numeri
al results for the steady state probabilities are s

1

= 0.4, s

2

=

0.4, s

3

= 0.2. The transient behaviour is depi
ted in Figure 9 as Case III.

5.3 Preemptive Queue with Di�erent Classes of Customers

A interesting 
ase arises when the two 
ustomers are of di�erent 
lasses, and 
ustomer of 
lass 2 preempts


ustomer of 
lass 1 but not vi
e versa. A PN illustrating the M/G/1/2/2 queue in whi
h the jobs

submitted by 
ustomer 2 have higher priority over the jobs submitted by 
ustomer 1 is reported in

Figure 6. Pla
e p

1

(p

3

) represents 
ustomer 1 (2) thinking, while pla
e p

2

(p

4

) represent job 1 (2)

under servi
e. Transition t

1

(t

3

) is the submission of a job of type 1 (2), while transition t

2

(t

4

) is

the 
ompletion of servi
e of a job of type 1 (2). The inhibitor ar
 from p

4

to t

2

models the des
ribed

preemption me
hanism: as soon as a type 2 job joins the queue the type 1 job eventually under servi
e

is interrupted.

If we assume that the servi
e time is not exponentially distributed, two possible preemption poli
ies


an be 
onsidered depending whether the job of type 1, restarted after preemption, is resampled (prd


ase) or is resumed (prs 
ase). In the PHSPN model, the two poli
ies 
an be naturally realized by

assigning to the servi
e transitions t

2

and t

4

an enabling memory poli
y in the prd 
ase and a age

memory poli
y in the prs 
ase.

Sin
e in the DSPN only the prd poli
y is supported the transient results for prd poli
y by the di�erent

methods are reported in Figure 7 and in Table III for what 
on
erns the steady state probability values.

The e�e
t of the di�erent kinds of preemptions are 
ompared for the DSPN in Figure 8 and for the

PHSPN in Figure 9. (Case I refers to the non preemptive system, Case II to the preemptive system with

identi
al 
ustomers and prd poli
y, Case III to the preemptive system with identi
al 
ustomers and prs

poli
y, Case IV to the preemptive system with di�erent 
ustomers and prd poli
y, and Case V to the

preemptive system with di�erent 
ustomers and prs poli
y). In the DSPN model only 
ases I, II and

IV 
an be 
omputed.

6 Computational 
omplexity

Let us brie
y summarize the elementary 
omputational steps for the two 
onsidered methodologies

(DSPN and PHSPN), taking into a

ount that the DSPN solution requires manual and automati


manipulation, while the PHSPN solution is fully supported by a tool.

10
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Figure 3 - Preemptive M/D/1/2/2 ith identi
al 
ustomers

6.1 Evaluation of DSPN model

A

ording to [13℄, we 
an divide the 
omputational method in the following steps:

1. generation of the rea
hability tree;

2. manual derivation of the entries of the K(t) and E(t) matri
es symboli
ally in Lapla
e transform

domain;

3. symboli
al matrix inversion and matrix multipli
ation by using a standard pa
kage (e.g. MATH-

EMATICA) in order to obtain the V(t) (Equation 4) matrix in the LT domain;

4. time domain solution obtained by a numeri
al inversion of the entries of the V(t), resorting

to the Jagerman's method [27℄. For the sake of uniformity, this step has been implemented in

MATHEMATICA language.

Step 1) 
an be performed with any PN pa
kage. Step 2) is done manually, and its diÆ
ulty depends

on the non-zero entries of the involved matri
es, and on the 
omplexity of the CTMCs subordinated

to the di�erent deterministi
 transitions. The 
omputational 
omplexity of step 3) depends on the

dimension of the matri
es (i.e. the number of tangible markings) and the 
omplexity of the elements

of the kernels (whi
h is similar to the diÆ
ulty of the �rst step). The 
omplexity of the numeri
al

inversion at step 4) also depends on two fa
tors; the 
omplexity of the fun
tion to invert, and the

pres
ribed a

ura
y.

For the example des
ribed in the previous se
tion, the 
omputational time for the symboli
 inversion

was not signi�
ant, while the numeri
al inversion required about 30 s on an IBM RISC 6000 ma
hine,

for ea
h point of the graph.

6.2 Evaluation of PHSPN model

For the evaluation of this model we used the ESP tool ([20℄). The pro
edure 
an be devided into the

following steps:

1. generation of the rea
hability tree;

2. generation of the expanded CTMC;

3. solution of the resulting CTMC.

Step 1) is standard. The 
omputational 
omplexity of steps 2) and 3) depends on the number

of tangible states and on the order of the PH distribution asso
iated to ea
h transition. With PH

11



Figure 4 - Transient behavior of the state probabilities for the preemptive

M/D/1/2/2 with identi
al 
ustomers.

transitions of order n the 
ardinality of the expanded CTMC is 2n + 1 in Case I, 2n + 1 in Case II,

n

2

+ n+ 1 in Case III, 3n+ 1 in Case IV, n

2

+ 2n+ 1 in Case V. In this trivial example, with n = 100

(Erl100) the generation of the CTMC takes 2 m for Caes II and V, and the whole analysis two further

minutes on the same IBM RISC 6000 
omputer.

7 Con
lusion

The development of methodologies able to a

ommodate non exponential random variables is of in
reas-

ing interest in the analysis of sto
hasti
 systems. The paper has examined and 
ompared PN based

models whose de�nition allows the modeler to asso
iate, to some extent, non exponential distributions

to timed PN transitions.

The modeling power and the numeri
al 
apabilities are investigated, with parti
ular referen
e to the

DSPN model, in whi
h a single deterministi
 transition 
an be assigned in ea
h marking (being all the

other transitions exponential), and the PHSPN model in whi
h ea
h transition 
an be assigned a PH

distributed �ring time.

A simple queueing system is 
ompletely analysed. Even if the deterministi
 distribution is typi
ally

non PH, an approximation error for the steady state probabilities of the order of 10

�2

is rea
hed by

modeling the deterministi
 transition with an Erlang(5) and an error of the order of 10

�4

by modeling

the deterministi
 transition with an Erlang(1000). However, the use of PH distribution and of the

PHSPN model o�ers the modeler a more 
exible tool for de�ning a more extended intera
tions between

the server and the job in progress.
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