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Abstra
t

The paper dis
usses a 
lass of Markov Regenera-

tive Sto
hasti
 Petri Nets (MRSPN) 
hara
terized by

the fa
t that the sto
hasti
 pro
ess subordinated to two


onse
utive regeneration time points is a semi-Markov

reward pro
ess. This 
lass of SPN's 
an a

ommo-

date transitions with generally distributed �ring time

and asso
iated memory poli
y of both enabling and age

type, thus generalizing and en
ompassing all the previ-

ous de�nitions of MRSPN. An uni�ed analyti
al pro-


edure is developed for the derivation of 
losed form

expressions for the transient and steady state proba-

bilities.
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1 Introdu
tion

In the usual de�nition of Sto
hasti
 Petri Nets

(SPN) all the timed transitions have asso
iated an

exponential random variable, so that their modeling

power is 
on�ned to Markovian systems. The analy-

sis of sto
hasti
 systems with non-exponential timing

is of in
reasing interest in the literature and requires

the development of suitable modeling tools. Re
ently,

some e�ort has been devoted to generalize the 
on
ept

of SPN, by allowing the �ring times to be generally

distributed.

An extensive dis
ussion of the semanti
s of SPN's

with generally distributed �ring times is in [1℄, where it

is shown that ea
h non-exponential transition should

be assigned a memory poli
y 
hosen among three

proposed alternatives: resampling, enabling and age

memory. We refer to this model as Generally Dis-

tributed Transition SPN (GDT SPN). In general, the

sto
hasti
 pro
ess underlying a GDT SPN is too 
om-

plex to be analyti
ally tra
table, while a simulative

solution has been investigated in [16℄.

With the aim of providing a modeler's represen-

tation able to automati
ally generate an analyti
al

representation [17℄, various restri
tions of the general

GDT SPN model have been dis
ussed in the litera-

ture [5℄. A 
lassi�
ation of SPN models, based on the

nature of the asso
iated marking pro
ess, has been

proposed by Ciardo et al. [9℄.

A parti
ular 
ase of non-Markovian SPN, is the


lass of Deterministi
 and SPN (DSPN) de�ned in

[3℄. A DSPN is a non-Markovian SPN, where all the

transitions are exponential, but in ea
h marking, at

most one transition is allowed to have asso
iated a de-

terministi
 �ring time with enabling memory poli
y.

Only the steady state analysis was elaborated in [3℄.

An improved steady state algorithm was presented in

[20℄, and some stru
tural extensions were investigated

in [10℄. Choi et al. [7℄ have re
ognized that the mark-

ing pro
ess underlying a DSPN is a Markov Regen-

erative Pro
ess [11℄ for whi
h a 
losed form transient

solution is available. This observation has opened a

very fertile line of resear
h aimed at the de�nition of

solvable 
lasses of models whose underlying marking

pro
ess is a Markov Regenerative Pro
ess (MRP), and

therefore referred to as Markov Regenerative Sto
has-

ti
 Petri Nets (MRSPN).

Following this line, Choi et al. [8℄ have investi-

gated a 
lass of models in whi
h one transition with a

generally distributed �ring time and enabling memory

poli
y is allowed to be enabled in ea
h marking. Ger-

man and Lindemann [15℄ have proposed a numeri
al

solution of the same model based on the method of

supplementary variables [12℄.

In the mentioned referen
es, the generally dis-

tributed (or deterministi
) transitions must be as-

signed a �ring poli
y of enabling memory type

1

. The

enabling memory poli
y means [1℄ that whenever the

transition be
omes enabled anew, its �ring distribu-

1

The enabling memory assumption is relaxed in [10℄ for van-

ishing markings only. Sin
e vanishing markings are transversed

in zero time, this assumption does not modify the behavior of

the marking pro
ess versus time



tion is resampled and the time eventually spent with-

out �ring in prior enabling periods is lost. In the lan-

guage of queueing systems the above me
hanism is

referred to as preemptive repeat di�erent (prd) poli
y

[14, 19℄.

The possibility of in
orporating non-exponential

transitions with asso
iated age memory poli
y has

been �rst explored in [6℄. The age memory is able

to 
apture preemptive me
hanisms of resume (prs)

type, where an interrupted a
tivity is re
overed by

keeping memory of the work already performed, and

upon restart, only the residual servi
e needs to be


ompleted. This modeling extension is 
ru
ial in 
on-

ne
tion with fault tolerant and dependable 
omputing

systems, where an interrupted task must be resumed

from the point it was interrupted.

The paper investigates the nature of GDT SPN

with 
ombined memory poli
ies su
h that the underly-

ing marking pro
ess is a MRP. The timed transitions

of the GDT SPN are partitioned into two subsets: the

EXP transitions have an exponentially distributed �r-

ing time, while for the GEN transitions the �ring time

is any random variable (in
luding the deterministi
).

The a
tivity 
y
le of a GEN transition is the interval of

time in whi
h the transition has a non-null memory.

We study the 
ase of MRSPN with non overlapping

a
tivity 
y
les, su
h that the marking pro
ess subor-

dinated to two 
onse
utive regeneration time points is

a semi-Markov reward pro
ess. The proposed model

generalizes and en
ompasses all the previous formula-

tions of MRSPN.

In Se
tion 2, the 
onditions under whi
h the mark-

ing pro
ess underlying a GDT SPN is a Markov Re-

generative pro
ess are set in very general terms. In

Se
tion 3, the in
uen
e of the memory poli
y on the

a
tivity 
y
le of a transition is dis
ussed. In Se
tion

4, the subordinated pro
ess in a MRSPN with non-

overlapping a
tivity 
y
les is 
hara
terized, and a uni-

�ed analyti
al solution for the transient and steady

state transition probability matrix is proposed in Se
-

tion 5.

2 Markov Regenerative Sto
hasti


Petri Nets

A marked Petri Net is a tuple PN = (P; T; I; O;

H;M); where: P = fp

1

; p

2

; : : : ; p

np

g is the set of

pla
es, T = ft

1

; t

2

; : : : ; t

nt

g is the set of transitions and

I , O and H are the input, the output and the inhibitor

fun
tions, respe
tively. M = fm

1

;m

2

; : : : ;m

np

g is the

marking. The generi
 entrym

i

is the number of tokens

in pla
e p

i

, in marking M .

Input and output ar
s have an arrowhead on their

destination, inhibitor ar
s have a small 
ir
le. A tran-

sition is enabled in a marking if ea
h of its ordinary

input pla
es 
ontains at least as many tokens as the

multipli
ity of the input fun
tion I and ea
h of its

inhibitor input pla
es 
ontains fewer tokens than the

multipli
ity of the inhibitor fun
tion H . An enabled

transition �res by removing as many tokens as the

multipli
ity of the input fun
tion I from ea
h ordi-

nary input pla
e, and adding as many tokens as the

multipli
ity of the output fun
tion O to ea
h output

pla
e. The number of tokens in an inhibitor input

pla
e is not a�e
ted.

A marking M

0

is said to be immediately rea
hable

from M , when is generated from M by �ring an en-

abled transition. The rea
hability setR(M

0

) is the set

of all the markings that 
an be generated from an ini-

tial marking M

0

by repeated appli
ation of the above

rules. If the set T 
omprises both timed and imme-

diate transitions, R(M

0

) is partitioned into tangible

(no immediate transitions are enabled) and vanishing

markings. Sin
e the e�e
t of vanishing markings 
an

be in
orporated into the tangible ones, a

ording to

[2℄, we do not a

ount in this paper for the presen
e

of immediate transitions. Let N be the 
ardinality of

the tangible subset of R(M

0

).

De�nition 1 - A sto
hasti
 GDT SPN is a marked

SPN in whi
h [1℄:

� To any timed transition t

k

2 T is asso
iated a

random variable 


k

, with 
umulative distribution

fun
tion G

k

(x), modeling the time needed by the

a
tivity represented by t

k

to 
omplete, when 
on-

sidered in isolation.

� Ea
h timed transition t

k

is atta
hed a memory

variable a

k

and a memory poli
y; the memory

poli
y spe
i�es the fun
tional dependen
e of the

memory variable on the past enabling time of the

transition.

� A initial probability is given on R(M

0

).

The memory variable a

k

, asso
iated to transition t

k

,

is a fun
tional that depends on the time during whi
h

t

k

has been enabled. The memory variables together

with their memory poli
y univo
ally spe
ify how the

underlying sto
hasti
 pro
ess is 
onditioned upon its

past history. The semanti
s of di�erent memory poli-


ies has been dis
ussed in [1℄ where three alternatives

have been proposed and examined.

� Resampling poli
y - The memory variable a

k

is

reset to zero at any 
hange of marking.

� Enabling memory poli
y - The memory variable

a

k

a

ounts for the elapsed time sin
e the last



epo
h in whi
h t

k

has been enabled. When tran-

sition t

k

is disabled (even without �ring) the 
or-

responding enabling memory variable is reset.

� Age memory poli
y - The memory variable a

k

a

ounts for the elapsed time sin
e the last epo
h

in whi
h t

k

has been enabled without �ring. The

memory variable is reset only when t

k

�res (and

not when it is simply disabled).

At the entran
e in a new tangible marking, the resid-

ual �ring time is 
omputed for ea
h enabled timed

transition given its memory variable, so that the next

marking is determined by the minimal residual �ring

time among the enabled transitions (ra
e poli
y [1℄).

Be
ause of the memoryless property, the value of the

memory variable is irrelevant in determining the resid-

ual �ring time for exponential transitions, so that the

three mentioned poli
ies are 
ompletely equivalent in

this 
ase. Hen
e, for an exponential transition t

k

, we

assume, 
onventionally, that the 
orresponding mem-

ory variable is always identi
ally zero. We 
an there-

fore partition the set of the transitions into EXP tran-

sitions with asso
iated an exponential r.v. and identi-


ally zero memory variable, and GEN transition with

asso
iated any r.v. (in
luding the deterministi
 
ase)

and memory variable in
reasing in the enabling mark-

ings.

De�nition 2 - The sto
hasti
 pro
ess underlying a

GDT SPN is 
alled the marking pro
ess M(x) (x �

0). M(x) is the marking of the GDT SPN at time x.

A single realization of the marking pro
ess M(x) 
an

be written as:

R = f(�

0

; M

0

); (�

1

; M

1

); : : : ; (�

i

; M

i

); : : : g

where M

i+1

is a marking immediately rea
hable from

M

i

, and �

i+1

� �

i

is the sojourn time in marking M

i

.

With the above notation, M(x) = M

i

for �

i

� x <

�

i+1

.

Assertion 1 - If at time �

+

i

of entran
e in a tan-

gible marking M

i

all the memory variables a

k

(k =

1; 2; : : : ; n

t

) are equal to zero, �

i

is a regeneration

time point for the marking pro
ess M(x).

In fa
t, if all the memory variables are equal to 0, the

future of the marking pro
ess is not 
onditioned upon

the past and depends only on the present state; hen
e,

the Markov property holds.

Let us denote by �

�

n

the sequen
e of the regenera-

tion time points embedded into a realization R. The

tangible marking M

(n)

entered at a regeneration time

point �

�

n

is 
alled a regeneration marking. The se-

quen
e (�

�

n

; M

(n)

) is a Markov renewal sequen
e and

the marking pro
ess M(x) is a Markov regenerative

pro
ess [11, 8, 9℄. From Assertion 1 follows that:

i) if all the transitions are EXP all the memory vari-

ables are identi
ally zero so that any instant of

time is a regeneration time point, and the 
orre-

sponding pro
ess is a CTMC;

ii) if at any �ring all the memory variables of the

GEN transitions are reset, the 
orresponding pro-


ess redu
es to a semi-Markov pro
ess.

iii) only GEN transitions are relevant to determine

the o

urren
e of regeneration time points.

De�nition 3 - A GDT SPN, for whi
h an embedded

Markov renewal sequen
e (�

�

n

; M

(n)

) exists, is 
alled a

Markov Regenerative Sto
hasti
 Petri Net (MRSPN)

[8℄.

Sin
e (�

�

n

; M

(n)

) is a Markov renewal sequen
e, the

following equalities hold:

PrfM

(n+1)

= j; (�

�

n+1

� �

�

n

) � x j

M

(n)

= i; �

�

n

; M

(n�1)

; �

�

n�1

; : : : ; M

(0)

; �

�

0

g =

PrfM

(n+1)

= j; (�

�

n+1

� �

�

n

) � x jM

(n)

= i; �

�

n

g =

PrfM

(1)

= j; �

�

1

� x jM

(0)

= ig

(1)

The �rst equality expresses the Markov property (i.e.

in any regeneration time point the 
ondition on the

past is 
ondensed in the present state). The se
-

ond equality expresses the time homogeneity (i.e. the

probability measures are independent of a translation

along the time axis). A

ording to [8, 11℄, we de�ne

the following matrix valued fun
tions V(x) = [V

ij

(x)℄,

K(x) = [K

ij

(x)℄ and E(x) = [E

ij

(x)℄ (all of dimension

N �N ), su
h that:

V

ij

(x) = PrfM(x) = j jM(�

�

0

) = ig

K

ij

(x) = PrfM

(1)

= j ; �

�

1

� xjM(�

�

0

) = ig

E

ij

(x) = PrfM(x) = j ; �

�

1

> xjM(�

�

0

) = ig

(2)

V(x) is the transition probability matrix and provides

the probability that the sto
hasti
 pro
essM(x) is in

marking j at time x given it was in i at x = 0. The

matrix K(x) is the global kernel of the MRP and pro-

vides the 
df of the event that the next regeneration



time point is �

�

1

and the next regeneration marking

is M

(1)

= j given marking i at �

�

0

= 0. Finally, the

matrix E(x) is the lo
al kernel sin
e des
ribes the be-

havior of the marking pro
essM(x) inside two 
onse
-

utive regeneration time points. The generi
 element

E

ij

(x) provides the probability that the pro
ess stays

in state j at time x starting from i at �

�

0

= 0 before

the next regeneration time point. From the above def-

initions:

X

j

[K

ij

(x) + E

ij

(x)℄ = 1

The transient behavior of the MRSPN 
an be evalu-

ated by solving the following generalized Markov re-

newal equation (in matrix form) [11, 8℄:

V(x) = E(x) + K � V(x) (3)

where K � V(x) is a 
onvolution matrix, whose (i; j)-

th entry is:

[K � V(x)℄

ij

=

X

k

Z

x

0

dK

ik

(y)V

kj

(x� y) (4)

By denoting the Lapla
e Stieltjes transform (LST) of

a fun
tion F (x) by F

�

(s) =

R

1

0

e

�sx

dF (x), Equation

(3) be
omes in the LST domain:

V

�

(s) = E

�

(s) + K

�

(s) V

�

(s) (5)

whose solution is:

V

�

(s) = [I � K

�

(s)℄

�1

E

�

(s) (6)

If the steady state solution exists, it 
an be evaluated

as lim

s!0

V

�

(s).

As spe
i�ed by (2), K(x) and E(x) depend on the

evolution of the marking pro
ess between two 
on-

se
utive regeneration time points. By virtue of the

time homogeneity property (1), we 
an always de-

�ne the two su

essive regeneration time points to be

x = �

�

0

= 0 and x = �

�

1

.

De�nition 4 - The sto
hasti
 pro
ess subordinated

to state i (denoted by M

i

(x)) is the restri
tion of the

marking pro
ess M(x) for x � �

�

1

given M(�

�

0

) = i:

M

i

(x) = [M(x) : x � �

�

1

; M(�

�

0

) = i℄

A

ording to De�nition 4,M

i

(x) des
ribes the evolu-

tion of the PN starting at the regeneration time point

x = 0 in the regeneration marking i, up to the next re-

generation time point �

�

1

. Therefore, M

i

(x) in
ludes

all the markings that 
an be rea
hed from state i be-

fore the next regeneration time point. The entries of

the i-th row of the matri
es K(x) and E(x) are deter-

mined by M

i

(x).

3 Non-Overlapping A
tivity Cy
les

The analyti
al tra
tability of the marking pro
ess

depends on the stru
ture of the subordinated pro-


esses whi
h, in turns, is related to the topology of

the PN and to the memory poli
ies of the GEN tran-

sitions.

De�nition 5 - A GEN transition is dormant in those

markings in whi
h the 
orresponding memory variable

is equal to zero and is a
tive in those markings in

whi
h the memory variable is greater than zero. The

a
tivity 
y
le of a GEN transition is the period of time

in whi
h a transition is a
tive between two dormant

periods.

Let us 
onsider a single generi
 GEN transition t

g

.

The a
tivity 
y
le of t

g

is in
uen
ed by its memory

poli
y, and 
an be 
hara
terized in the following way.

Resampling Memory - If t

g

is a resampling mem-

ory transition, its a
tivity 
y
le starts as soon as t

g

be
omes enabled, and ends at the �rst subsequent �r-

ing of any transition (in
luding t

g

itself). Therefore,

during the a
tivity 
y
le of a resampling memory tran-

sition no 
hange of marking is possible.

Enabling Memory - If t

g

is an enabling memory

transition its a
tivity 
y
le starts as soon as t

g

be-


omes enabled when dormant, and ends either when

t

g

�res, or when it be
omes disabled by the �ring of a


ompetitive transition. During the a
tivity 
y
le the

marking 
an 
hange inside the enabling subset of t

g

(where the enabling subset is de�ned as the subset

of 
onne
ted markings in whi
h t

g

is enabled). The

memory variable asso
iated to t

g

grows 
ontinuously

during the a
tivity 
y
le starting from 0. We asso
iate

a reward variable equal to 1 to all the states in the en-

abling subset, so that the value of the memory variable

is represented by the total a

umulated reward.

Age Memory - If t

g

is an age memory transition,

its a
tivity 
y
le starts as soon as t

g

be
omes enabled

when dormant, and ends only at the �ring of t

g

itself.

During the a
tivity 
y
le of an age memory transition

there is no restri
tion on the markings rea
hable by

the marking pro
ess. The age memory poli
y is the

only poli
y in whi
h a transition 
an be a
tive even in

markings in whi
h it is not enabled. During the a
tiv-

ity 
y
le, the memory variable is non-de
reasing in the

sense that it in
reases 
ontinuously in those markings

in whi
h t

g

is enabled and maintains its 
onstant posi-

tive value in those markings in whi
h t

g

is not enabled.

In order to tra
k the enabling/disabling 
ondition of

t

g

during its a
tivity 
y
le, we introdu
e a reward (in-

di
ator) variable whi
h is equal to 1 in those markings

in whi
h t

g

is enabled and equal to 0 in those mark-



Table I - Chara
terization of the a
tivity 
y
le of a

GEN transition t

g

Memory Resamp. Enabling Age

poli
y

start of t

g

t

g

enabled t

g

enabled

a
tivity enabled when when


y
le dormant dormant

end of �ring �ring or �ring

a
tivity of any disabling of


y
le transition of t

g

t

g

rea
hable starting markings in any

markings marking enabling rea
hable

only subset marking

memory in
reasing in
reasing in
reasing

variable or 
onstant

ings in whi
h t

g

is not enabled. The memory variable


orresponds to the total a

umulated reward.

The above features are summarized in Table 1. By

virtue of Assertion 1, a regeneration time point for

the marking pro
ess o

urs when a �ring 
auses all

the a
tive GEN transitions to be
ome dormant.

De�nition 6 - A transition is dominant if its a
tiv-

ity 
y
le stri
tly 
ontains the a
tivity 
y
les of all the

a
tive transitions.

De�nition 7 - A MRSPN with non-overlapping a
-

tivity 
y
les is a MRSPN in whi
h all the regeneration

periods are dominated by a single transition: any two

su

essive regeneration time points 
orrespond to the

start and to the end of the a
tive 
y
le of the dominant

transition.

De�nition 7, in
ludes the possibility that the a
tive


y
les of GEN transitions are 
ompletely 
ontained

into the a
tive 
y
le of the dominant one, hen
e allow-

ing the simultaneous enabling of di�erent GEN tran-

sitions inside the same subordinated pro
ess. In order

to make the whole pro
ess analyti
ally solvable, we

further restri
t the subordinated pro
ess inside any

non-overlapping a
tivity 
y
le to be semi-Markov.

Assertion 2 - The subordinated pro
ess underlying

any non-overlapping a
tivity 
y
le is semi-Markov if

at any �ring inside the a
tivity 
y
le of the dominant

transition all the memory variables of the GEN transi-

tion are reset. This fa
t happens if the transitions 
an

be partitioned into three 
lasses (ex
lusive, 
ompeti-

tive and 
on
urrent) and only ex
lusive or 
ompetitive

transitions are allowed to be GEN [13℄.

For a regeneration period without internal state tran-

sitions (Markovian or semi-Markovian regeneration

period) any of the enabled transitions 
an be 
hosen

to be the dominant one.

4 The Subordinated Pro
ess

At x = �

�

0

= 0 a dominant GEN transition t

g

(with

memory variable a

g

and �ring time 


g

) starts its a
-

tivity 
y
le in state i (a

g

= 0). The su

essive regen-

eration time point �

�

1

is the end of the a
tivity 
y
le

of t

g

a

ording to the rules summarized in Table I.

Let Z

i

(x) (x � 0) be the pro
ess de�ned over the

states rea
hable from i during the a
tivity 
y
le of

t

g

, and r

i

the 
orresponding binary reward ve
tor.

We assume in the following that Z

i

(x) is a semi-

Markov pro
ess a

ording to Assertion 2. The sub-

ordinated pro
essM

i

(x) (De�nition 4) 
oin
ides with

Z

i

(x) when the initial state is state i with probability

1 (PrfZ

i

(0) = ig = 1). The memory variable a

g

in-


reases at a rate r

i

j

(whi
h is either equal to 0 or to 1)

when M

i

(x) = j.

We 
onsider separately the following 
ases depend-

ing whether the dominant transition t

g

is of enabling

or age memory type.

4.1 Enabling type dominant transition

The dominant GEN transition t

g

is of enabling

type. The state spa
e of the subordinated pro
ess is

partitioned into two subsets: R

i


ontains the states

in whi
h t

g

is 
ontinuously enabled, and R


i


ontains

the states in whi
h t

g

be
omes disabled by the �ring of

a 
ompetitive transition. The reward ve
tor is equal

to 1 for j 2 R

i

and 0 elsewhere. The next regener-

ation time point o

urs be
ause one of the following

two mutually ex
lusive events:

� t

g

�res: this event 
an be formulated as a 
om-

pletion time problem [4℄ when the a

umulated

reward (memory variable) a

g

rea
hes an absorb-

ing barrier equal to the �ring requirement 


g

.

� t

g

is disabled: this event 
an be formulated as a
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Figure 1 - a) PN of the periodi
ally self tested M/M/1/k;

b) 
orresponding rea
hability graph.

�rst passage time in the subset R


i

, and there-

fore R


i

is made absorbing in the subordinated

pro
ess.

We further parti
ularize the following two 
ases:

CASE A - no other GEN transitions are a
tivated

during the a
tivity 
y
le of t

g

. The subordinated

pro
ess Z

i

(x) is a CTMC.

Case A is the one 
onsidered in the DSPN model

de�ned in [3, 7, 20℄, and in the su

essive exten-

sions to general distributions elaborated in [8, 15℄.

All the examples reported in the mentioned pa-

pers belong to this 
ase.

CASE B - during the a
tivity 
y
les of t

g

, Assertion 2

is satis�ed and the subordinated pro
ess is a semi-

Markov pro
ess.

The Markovian (semi-Markovian) regeneration

period belongs to Case A (Case B), where R

i


ontains only the initial state. The steady state

analysis of a MRSPN with semi-Markovian sub-

ordinated pro
ess has been 
onsidered in [9℄.

Example 1 - A periodi
ally self-tested system.

A system is exe
uting tasks a

ording to a

M/M/1/k queue (Figure 1a). Pla
e p

1

represents user

thinking and p

2

is the queue in
luding the task under

servi
e. t

1

is the exponential submitting time with

marking dependent rate m

1

�, and t

2

is the exponen-

tial servi
e time with rate �. p

3

represents the system

waiting for the test and p

4

the system under test. t

3

is the deterministi
 testing interval, and t

4

the expo-

nentially distributed test duration with rate Æ. When

t

3

�res the exe
ution of the M/M/1/k queue is frozen

until the test is 
ompleted (t

4

�res). The state spa
e

Æ
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Figure 2 - Preemptive M/G/1/2/2 queue with two 
lasses

of 
ustomers.

of the PN of Figure 1a with k = 2 
ustomers is in

Figure 1b. All the states 
an be regeneration states,

but not all the transitions provide regeneration time

points. States s

4

, s

5

and s

6

are always regeneration

states from whi
h a single EXP transition is enabled

(Case A). States s

1

or s

2

or s

3

are regeneration states

only when entered by �ring t

4

, i.e. when the a
tivity


y
le of the dominant GEN transition t

3

starts. Dur-

ing the a
tivity 
y
le of t

3

, the subordinated pro
ess


an move among s

1

, s

2

and s

3

whi
h therefore form

the subordinated CTMC (Case A).

If transitions t

1

and t

2

are GEN with enabling mem-

ory poli
y, the features of states s

4

, s

5

and s

6

do not


hange, while the subordinated pro
ess during the a
-

tivity 
y
le of t

3

be
omes semi-Markovian thus repre-

senting a Case B example.

4.2 Age type dominant transition

The situation in whi
h the dominant GEN transi-

tion t

g

is of age type has been addressed for the �rst

time in [6℄. The state spa
e of the subordinated pro-


ess R

i


ontains all the states rea
hable during the a
-

tivity 
y
le of t

g

, and the disabling subset R




is empty

(the only 
riterion for the termination of the a
tivity


y
le is the �ring of t

g

). The reward ve
tor is equal to

1 for the states j 2 R

i

in whi
h t

g

is enabled and 0 for

the states j 2 R

i

in whi
h t

g

is not enabled. The �ring

of t

g


an be formulated as a 
ompletion time problem

[4℄ when the a

umulated reward (memory variable)

a

g

rea
hes the �ring requirement 


g

. We further par-

ti
ularize the following two 
ases:

CASE C - During the a
tivity 
y
le of t

g

no other

GEN transitions are a
tivated and the subordi-

nated pro
ess is a reward CTMC.



CASE D - during the a
tivity 
y
les of t

g

, Assertion

2 is satis�ed and the subordinated pro
ess is a Re-

ward semi-Markov pro
ess.

Example 2 - Preemptive M/G/1/2/2 with di�erent


ustomers

In this example, Cases C and D are mixed in a sin-

gle PN [5℄. The PN of Figure 2a models a M/G/1/2/2

queue in whi
h the jobs submitted by 
ustomer 2 have

higher priority and preempt the jobs submitted by 
us-

tomer 1. The server has a prs servi
e dis
ipline. Pla
e

p

1

(p

3

) represents 
ustomer 1 (2) thinking, while pla
e

p

2

(p

4

) represent job 1 (2) under servi
e. Transitions

t

1

and t

3

are EXP and represent the submission of a

job of type 1 or 2, respe
tively. t

2

and t

4

are GEN

transitions, and represent the 
ompletion of servi
e of

a job of type 1 or 2, respe
tively. A prs servi
e dis
i-

pline is modeled by assigning to t

2

and t

4

an age mem-

ory poli
y. The inhibitor ar
 from p

4

to t

2

models the

des
ribed preemption me
hanism: as soon as a type 2

job joins the queue the type 1 job eventually under ser-

vi
e is interrupted. The rea
hability graph of the PN

of Figure 2a is in Figure 2b. Under a prs servi
e, after


ompletion of the type 2 job, the interrupted type 1 job

is resumed 
ontinuing the new servi
e period from the

point rea
hed just before the last interruption. From

Figure 2b, it is easily re
ognized that s

1

, s

2

and s

3


an all be regeneration states, while s

4


an never be a

regeneration state (in s

4

a type 2 job is always in ex-

e
ution so that its 
orresponding memory variable a

2

is never 0). Only exponential transitions are enabled

in s

1

and the next regeneration states 
an be either

s

2

or s

3

depending whether t

1

or t

3

�res �rst. From

state s

3

the next regeneration marking 
an be either

state s

1

or s

2

depending whether during the exe
ution

of the type 2 job a type 1 job does require servi
e (but

remains blo
ked until 
ompletion of the type 2 job) or

does not. The subordinated pro
ess is a CTMC, and

belongs to Case C. From s

2

the next regeneration state


an be only s

1

, but multiple 
y
les (s

2

- s

4

) 
an o

ur

depending whether type 2 jobs arrive to interrupt the

exe
ution of the type 1 job. The subordinated pro
ess

is a SMP (t

4

is GEN), and belongs to 
ase D.

5 Uni�ed Transient Analysis

The global and lo
al kernels K(x) and E(x) 
an be

evaluated row by row. In this se
tion, we provide an

uni�ed analyti
al pro
edure for determining in 
losed

form the entries of a generi
 row i, given that i is

a regeneration marking whose subordinated pro
ess

is a semi-Markov reward pro
ess as des
ribed in the

previous se
tion.

Let Q

i

(x) = [Q

i

k`

(x)℄ be the kernel of the subor-

dinated semi-Markov pro
ess (Z

i

(x)). Z

i

(x) starts in

markingM

i

(Z

i

(0) = i), so that the initial probability

ve
tor is V

i

0

= [0; 0; : : : ; 1

i

; : : : ; 0℄ (a ve
tor with all

the entries equal to 0 but entry i equals to 1). For no-

tational 
onvenien
e we do not renumber the states in

Z

i

(x) so that all the subsequent matrix fun
tions have

the dimensions (N �N ) (
ardinality of R(M

0

)), but

with the signi�
ant entries lo
ated in position (k; `)

only, with k; ` 2 R

i

[ R


i

. We denote by H the time

duration until the �rst embedded time point in Z

i

(x)

from time x = 0.

Let us �x the value of the �ring requirement 


g

=

w, and let us de�ne the following matrix fun
tions

P

i

(x;w), F

i

(x;w), D

i

(x;w) and �

i

:

P

i

k`

(x;w) = PrfZ

i

(x) = ` 2 R

i

; �

�

1

> x j

Z

i

(0) = k 2 R

i

; 


g

= wg

F

i

k`

(x;w) = PrfZ

i

(�

� �

1

) = ` 2 R

i

; �

�

1

� x; t

g

�res j

Z

i

(0) = k 2 R

i

; 


g

= wg

D

i

k`

(x;w) = PrfZ

i

(�

�

1

) = ` 2 R


 i

; �

�

1

� x j

Z

i

(0) = k 2 R

i

; 


g

= wg

�

i

k`

= Prf next tangible marking is ` j


urrent marking is k; t

g

�res g

(7)

By the above de�nitions, the entries P

i

k`

(x;w) and

F

i

k`

(x;w) are signi�
ant only for k; ` 2 R

i

and are

0 otherwise; the entries D

i

k`

(x;w) are signi�
ant for

k 2 R

i

and ` 2 R


i

, and are 0 otherwise.

� P

i

k`

(x;w) is the probability of being in state ` 2

R

i

at time x before absorption either at the bar-

rier w or in the absorbing subset R


 i

, starting in

state k 2 R

i

at x = 0.

� F

i

k`

(x;w) is the probability that t

g

�res from state

` 2 R

i

(hitting the absorbing barrier w in `) be-

fore x, starting in state k 2 R

i

at x = 0.

� D

i

k`

(x;w) is the probability of �rst passage from

a state k 2 R

i

to a state ` 2 R


 i

before hitting

the barrier w, starting in state k 2 R

i

at x = 0.

� �

i

is the bran
hing probability matrix and rep-

resents the su

essor tangible marking ` that is

rea
hed by �ring t

g

in state k 2 R

i

(the �ring of

t

g

in the subordinated pro
ess M

i

(x), 
an only

o

ur in a state k in whi
h r

i

k

= 1).

From (7), it follows for any x:

X

`2R

i

[R


i

[P

i

k`

(x;w) + F

i

k`

(x;w) + D

i

k`

(x;w) ℄ = 1



Given that G

g

(w) is the 
umulative distribution

fun
tion of the r.v. 


g

asso
iated to the transition

t

g

, the elements of the i-th row of matri
es K(x) and

E(x) 
an be expressed as follows, as a fun
tion of the

matri
es P

i

(x;w), F

i

(x;w) and D

i

(x;w):

K

ij

(x) =

Z

1

w=0

[

X

k2R

i

F

i

ik

(x;w)�

i

kj

+

D

i

ij

(x;w) ℄ dG

g

(w)

E

ij

(x) =

Z

1

w=0

P

i

ij

(x;w) dG

g

(w)

(8)

In order to avoid unne
essarily 
umbersome nota-

tion in the following derivation, we negle
t the ex-

pli
it dependen
e on the parti
ular subordinated pro-


ess Z

i

(x), by eliminating the supers
ript i. It is how-

ever ta
itly intended, that all the quantities r, Q(x),

P(x;w), F(x;w), D(x;w), �, R and R




refer to the

spe
i�
 pro
ess subordinated to the regeneration pe-

riod starting from state i.

5.1 Derivation of P(x;w), F(x;w) and

D(x;w)

The derivation of these matrix fun
tions is de-

s
ribed in more detail in [21, 6℄ and follows the same

pattern of the 
ompletion time analysis presented in

[19, 4℄.

Theorem 1 - For the �ring probability F

k`

(x;w) the

following double transform equation holds:

F

��

k`

(s; v) = Æ

k`

r

k

[1 � Q

�

k

(s + v r

k

) ℄

s + v r

k

+

X

u2R

Q

�

ku

(s + v r

k

)F

��

u`

(s; v)

(9)

Proof - Conditioning on H = h and 


g

= w, let us

de�ne:

F

k`

(x;w jH = h) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Æ

k`

U

�

x �

w

r

k

�

if : h r

k

� w

X

u2R

dQ

ku

(h)

dQ

k

(h)

� F

u`

(x� h;w � hr

k

)

if : h r

k

< w

(10)

In (10), two mutually ex
lusive events are identi-

�ed. If r

k

6= 0 and h r

k

� w, a sojourn time equals to

w is a

umulated before leaving state k, so that the �r-

ing time (next regeneration time point) is �

�

1

= w=r

k

.

If h r

k

< w then a transition o

urs to state u with

probability dQ

ku

(h)=dQ

k

(h) and the residual servi
e

(w � hr

k

) should be a

omplished starting from state

u at time (x � h). Taking the LST transform with re-

spe
t to x (denoting the transform variable by s), the

LT transform with respe
t to w (denoting the trans-

form variable by v) of (10) and un
onditioning with

respe
t to H , (10) be
omes (9). 2

Theorem 2 - The state probability P

k`

(x;w) satis�es

the following double transform equation:

P

��

k`

(s; v) = Æ

k`

s [1 � Q

�

k

(s + v r

k

) ℄

v(s + v r

k

)

+

X

u2R

Q

�

ku

(s + v r

k

)P

��

u`

(s; v)

(11)

Proof - Conditioning on H = h , and 


g

= w let us

de�ne:

P

k`

(x;w jH = h) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

Æ

k`

�

U(x) � U

�

x �

w

r

k

��

if : h r

k

� w

Æ

k`

[U(x)� U(x� h)℄ +

X

u2R

dQ

ku

(h)

dQ

k

(h)

P

u`

(x � h;w � hr

k

)

if : h r

k

< w

(12)

The derivation of the matrix fun
tion P(x;w) based

on (12) follows the same pattern as for the fun
tion

F(x;w) [21℄. 2

Theorem 3 - The probability D

k`

(x;w) of �rst pas-

sage into R




satis�es the following double transform

equation:

D

��

k`

(s; v) =

1

v

Q

�

kl

(s + v r

k

) +

X

u2R

Q

�

ku

(s + v r

k

)D

��

u`

(s; v)

(13)

Proof - Conditioning on H = h , and 


g

= w let us

de�ne:



D

k`

(x;w jH = h) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

0 if : h r

k

� w

dQ

k`

(h)

dQ

k

(h)

U(x� h)+

X

u2R

dQ

ku

(h)

dQ

k

(h)

D

u`

(x� h;w � hr

k

)

if : h r

k

< w

(14)

The derivation of the matrix fun
tion D(x;w)

based on (14) follows the same pattern as for the fun
-

tion F(x;w) [21℄. 2

5.2 The subordinated pro
ess is a Reward

CTMC

Let us 
onsider the parti
ular 
ase in whi
h the

subordinated pro
ess Z(x) is a reward CTMC with

in�nitesimal generator A = fa

k`

g. Let us suppose

that the states numbered 1; 2; : : : ;m belong to R

(1; 2; : : : ;m 2 R) and the states numbered m+1;m+

2; : : : ; n belong to R




(m + 1;m+ 2; : : : ; n 2 R




). By

this ordering of states A 
an be partitioned into the

following submatri
esA =

B C

U

1

U

2

whereB 
on-

tains the intensity of the transitions inside R, and C


ontains the intensity of the transitions from R to R




.

U

1

and U

2

refer to the portion of the state spa
e not

involved in the 
urrent subordinated marking pro
ess,

and are, thus, not in
uential for the problem at hand.

For this reason, their entries 
an be assumed equal to

zero.

Corollary 4 - The entries of the matrix fun
tions

P

k`

(x;w), F

k`

(x;w) and D

k`

(x;w), in double trans-

form domain, take the following expression:

(s+ vr

k

)F

��

k`

(s; v) = Æ

k`

r

k

+

X

u2R

a

ku

F

��

u`

(s; v)

(s+ vr

k

)P

��

k`

(s; v) = Æ

k`

s

v

+

X

u2R

a

ku

P

��

u`

(s; v)

(s+ vr

k

)D

��

k`

(s; v) =

a

k`

v

+

X

u2R

a

ku

D

��

u`

(s; v)

(15)

Proof - The kernel (transition probability matrix) of

the given CTMC 
an be written as:

Q

k`

(x) =

8

>

<

>

:

a

k`

�a

kk

(1� e

a

kk

x

) if : k 6= `

0 if : k = `

(16)

and in LST domain:

Q

�

k`

(s) =

8

>

<

>

:

a

k`

s � a

kk

if : k 6= `

0 if : k = `

(17)

with a

kk

= �

P

`2R

i

[R


i

; ` 6=k

a

k`

By substituting (17) into (11), (9) and (13), the


orollary is proved.2

Equations (15) 
an be rewritten in matrix form:

F

��

(s; v) = (sI+ vR�B)

�1

R

P

��

(s; v) =

s

v

(sI+ vR�B)

�1

D

��

(s; v) =

1

v

(sI+ vR�B)

�1

C

where I is the identity matrix and R is the diagonal

matrix of the reward rates (r

k

); the dimensions of I,

R, B, F and P are (m�m), and the dimensions of C

and D are (m� (n�m)).

6 Numeri
al Results

A numeri
al derivation of the transient state prob-

abilities of the M/D/1/2/2 system des
ribed in Ex-

ample 2 of Se
tion 4.2 is provided. We 
onsider in

details the parti
ular 
ase in whi
h the GEN transi-

tions t

2

and t

4

are assumed to be deterministi
 with

duration �, while t

1

and t

3

are EXP with parameter

� [6℄. The rea
hability graph in Figure 2b 
omprises

4 states. Let us build up the K

�

(s) and E

�

(s) ma-

tri
es row by row, taking into 
onsideration that state

s

4


an never be a regeneration marking sin
e a type 2

job with nonzero age memory is always a
tive.

i) - The starting regeneration state is s

1

- No deter-

ministi
 transitions are enabled: the state is Marko-

vian and the next regeneration state 
an be either

state s

2

or s

3

. The nonzero elements of the 1-st row

of matri
es K

�

(s) and E

�

(s) take the form:

K

�

12

(s) =

�

s + 2�

; K

�

13

(s) =

�

s + 2�

E

�

11

(s) =

s

s + 2�

;



ii) - The starting regeneration state is s

2

- Transition

t

2

is deterministi
 so that the next regeneration time

point is the epo
h of �ring of t

2

. The subordinated

pro
ess M

2

(x) 
omprises states s

2

and s

4

and is a

semi-Markov pro
ess (Case D) sin
e t

4

is determinis-

ti
. The kernel of the semi-Markov pro
ess is:

Q

�

(s) =

�

�

�

�

�

�

�

�

�

�

�

0 0 0 0

0 0 0

�

s + �

0 0 0 0

0 e

��s

0 0

�

�

�

�

�

�

�

�

�

�

�

The reward ve
tor is r

(2)

= [0; 1; 0; 0℄, and the only

nonzero entry of the bran
hing probability matrix is

�

(2)

21

= 1. Applying Equations (9) and (11) we obtain

the following results for the nonzero entries:

F

��

22

(s; w) =

1

s+ w + �� �e

�s�

P

��

22

(s; w) =

s=w

s+ w + �� �e

�s�

P

��

24

(s; w) =

�(1� e

�s�

)=w

s+ w + �� �e

�s�

Applying (8), and after inverting the LT transform

with respe
t to w, the LST matrix fun
tions K

�

(s)

and E

�

(s) be
ome:

K

�

21

(s) = e

��(s+ ���e

��s

)

E

�

22

(s) =

s[1� e

��(s+ ���e

��s

)

℄

s+ �� �e

��s

E

�

24

(s) =

�(1� e

��s

) [1� e

��(s+ ���e

��s

)

℄

s+ �� �e

��s

iii) - The starting regeneration state is s

3

- The sub-

ordinated pro
essM

3

(x) is a CTMC (Case C), hen
e

the results of Se
tion 5.2 apply. The in�nitesimal gen-

erator of the CTMC is:

A =

�

�

�

�

�

�

�

�

0 0 0 0

0 0 0 0

0 0 �� �

0 0 0 0

�

�

�

�

�

�

�

�

and the reward ve
tor is r

(3)

= [0; 0; 1; 1℄. The

bran
hing probabilities arising from the �ring of t

4

are �

(3)

31

= 1 and �

(3)

42

= 1. Applying the �rst and

se
ond equation in (15), the nonzero entries take the

form:

F

��

33

(s; w) =

1

s+ �+ w

F

��

34

(s; w) =

�

(s+ w)(s + �+ w)

P

��

33

(s; w) =

s

w(s + �+ w)

P

��

34

(s; w) =

�s

w(s + w)(s+ �+ w)

Inverting the above equations with respe
t to w,

taking into a

ount the bran
hing probabilities, yields:

K

�

31

(s) = e

��(s+�)

K

�

32

(s) = e

��s

(1� e

���

)

E

�

33

(s) =

s

s+ �

(1� e

��(s+�)

)

E

�

34

(s) =

�

s+ �

� (1�

s

s+ �

e

���

)e

��s

The time domain probabilities are 
al
ulated by

�rst deriving matrix V

�

(s) from (6) using a standard

pa
kage for symboli
 analysis (e.g. MATHEMAT-

ICA), and then numeri
ally inverting the resulting

LST expressions resorting to the Jagerman's method

[18℄. The plot of the state probabilities versus time for

states s

1

and s

4

is reported in Figure 3, for a deter-

ministi
 servi
e duration � = 1 and for two di�erent

values of the submitting rate � = 0:5 and � = 2.

7 Con
lusion

The GDT SPN model, whose semanti
s has been

dis
ussed in [1℄, provides a natural environment for the

de�nition of a 
lass of analyti
ally tra
tableMRSPN's.

The paper has 
onsidered the 
ase of GDT SPN with

non-overlapping a
tivity 
y
les, su
h that the mark-

ing pro
ess subordinated to the a
tivity 
y
le of the

dominant transition is a reward semi-Markov pro
ess.

The in
lusion of a reward variable in the des
ription of

the subordinated pro
ess has proven to be very e�e
-

tive te
hnique for extending the des
riptive power of

the model to age memory poli
ies, and for providing

a uni�ed pro
edure for the analyti
al solution.
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Figure 3 - Transient behavior of the state probabilities

for the preemptive M/D/1/2/2 system with di�erent 
us-

tomers.
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