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Abstrat

The paper disusses a lass of Markov Regenera-

tive Stohasti Petri Nets (MRSPN) haraterized by

the fat that the stohasti proess subordinated to two

onseutive regeneration time points is a semi-Markov

reward proess. This lass of SPN's an aommo-

date transitions with generally distributed �ring time

and assoiated memory poliy of both enabling and age

type, thus generalizing and enompassing all the previ-

ous de�nitions of MRSPN. An uni�ed analytial pro-

edure is developed for the derivation of losed form

expressions for the transient and steady state proba-

bilities.

Key words: Stohasti Petri Nets, semi-Markov

Reward Models, Markov regenerative proesses.

1 Introdution

In the usual de�nition of Stohasti Petri Nets

(SPN) all the timed transitions have assoiated an

exponential random variable, so that their modeling

power is on�ned to Markovian systems. The analy-

sis of stohasti systems with non-exponential timing

is of inreasing interest in the literature and requires

the development of suitable modeling tools. Reently,

some e�ort has been devoted to generalize the onept

of SPN, by allowing the �ring times to be generally

distributed.

An extensive disussion of the semantis of SPN's

with generally distributed �ring times is in [1℄, where it

is shown that eah non-exponential transition should

be assigned a memory poliy hosen among three

proposed alternatives: resampling, enabling and age

memory. We refer to this model as Generally Dis-

tributed Transition SPN (GDT SPN). In general, the

stohasti proess underlying a GDT SPN is too om-

plex to be analytially tratable, while a simulative

solution has been investigated in [16℄.

With the aim of providing a modeler's represen-

tation able to automatially generate an analytial

representation [17℄, various restritions of the general

GDT SPN model have been disussed in the litera-

ture [5℄. A lassi�ation of SPN models, based on the

nature of the assoiated marking proess, has been

proposed by Ciardo et al. [9℄.

A partiular ase of non-Markovian SPN, is the

lass of Deterministi and SPN (DSPN) de�ned in

[3℄. A DSPN is a non-Markovian SPN, where all the

transitions are exponential, but in eah marking, at

most one transition is allowed to have assoiated a de-

terministi �ring time with enabling memory poliy.

Only the steady state analysis was elaborated in [3℄.

An improved steady state algorithm was presented in

[20℄, and some strutural extensions were investigated

in [10℄. Choi et al. [7℄ have reognized that the mark-

ing proess underlying a DSPN is a Markov Regen-

erative Proess [11℄ for whih a losed form transient

solution is available. This observation has opened a

very fertile line of researh aimed at the de�nition of

solvable lasses of models whose underlying marking

proess is a Markov Regenerative Proess (MRP), and

therefore referred to as Markov Regenerative Stohas-

ti Petri Nets (MRSPN).

Following this line, Choi et al. [8℄ have investi-

gated a lass of models in whih one transition with a

generally distributed �ring time and enabling memory

poliy is allowed to be enabled in eah marking. Ger-

man and Lindemann [15℄ have proposed a numerial

solution of the same model based on the method of

supplementary variables [12℄.

In the mentioned referenes, the generally dis-

tributed (or deterministi) transitions must be as-

signed a �ring poliy of enabling memory type

1

. The

enabling memory poliy means [1℄ that whenever the

transition beomes enabled anew, its �ring distribu-

1

The enabling memory assumption is relaxed in [10℄ for van-

ishing markings only. Sine vanishing markings are transversed

in zero time, this assumption does not modify the behavior of

the marking proess versus time



tion is resampled and the time eventually spent with-

out �ring in prior enabling periods is lost. In the lan-

guage of queueing systems the above mehanism is

referred to as preemptive repeat di�erent (prd) poliy

[14, 19℄.

The possibility of inorporating non-exponential

transitions with assoiated age memory poliy has

been �rst explored in [6℄. The age memory is able

to apture preemptive mehanisms of resume (prs)

type, where an interrupted ativity is reovered by

keeping memory of the work already performed, and

upon restart, only the residual servie needs to be

ompleted. This modeling extension is ruial in on-

netion with fault tolerant and dependable omputing

systems, where an interrupted task must be resumed

from the point it was interrupted.

The paper investigates the nature of GDT SPN

with ombined memory poliies suh that the underly-

ing marking proess is a MRP. The timed transitions

of the GDT SPN are partitioned into two subsets: the

EXP transitions have an exponentially distributed �r-

ing time, while for the GEN transitions the �ring time

is any random variable (inluding the deterministi).

The ativity yle of a GEN transition is the interval of

time in whih the transition has a non-null memory.

We study the ase of MRSPN with non overlapping

ativity yles, suh that the marking proess subor-

dinated to two onseutive regeneration time points is

a semi-Markov reward proess. The proposed model

generalizes and enompasses all the previous formula-

tions of MRSPN.

In Setion 2, the onditions under whih the mark-

ing proess underlying a GDT SPN is a Markov Re-

generative proess are set in very general terms. In

Setion 3, the inuene of the memory poliy on the

ativity yle of a transition is disussed. In Setion

4, the subordinated proess in a MRSPN with non-

overlapping ativity yles is haraterized, and a uni-

�ed analytial solution for the transient and steady

state transition probability matrix is proposed in Se-

tion 5.

2 Markov Regenerative Stohasti

Petri Nets

A marked Petri Net is a tuple PN = (P; T; I; O;

H;M); where: P = fp

1

; p

2

; : : : ; p

np

g is the set of

plaes, T = ft

1

; t

2

; : : : ; t

nt

g is the set of transitions and

I , O and H are the input, the output and the inhibitor

funtions, respetively. M = fm

1

;m

2

; : : : ;m

np

g is the

marking. The generi entrym

i

is the number of tokens

in plae p

i

, in marking M .

Input and output ars have an arrowhead on their

destination, inhibitor ars have a small irle. A tran-

sition is enabled in a marking if eah of its ordinary

input plaes ontains at least as many tokens as the

multipliity of the input funtion I and eah of its

inhibitor input plaes ontains fewer tokens than the

multipliity of the inhibitor funtion H . An enabled

transition �res by removing as many tokens as the

multipliity of the input funtion I from eah ordi-

nary input plae, and adding as many tokens as the

multipliity of the output funtion O to eah output

plae. The number of tokens in an inhibitor input

plae is not a�eted.

A marking M

0

is said to be immediately reahable

from M , when is generated from M by �ring an en-

abled transition. The reahability setR(M

0

) is the set

of all the markings that an be generated from an ini-

tial marking M

0

by repeated appliation of the above

rules. If the set T omprises both timed and imme-

diate transitions, R(M

0

) is partitioned into tangible

(no immediate transitions are enabled) and vanishing

markings. Sine the e�et of vanishing markings an

be inorporated into the tangible ones, aording to

[2℄, we do not aount in this paper for the presene

of immediate transitions. Let N be the ardinality of

the tangible subset of R(M

0

).

De�nition 1 - A stohasti GDT SPN is a marked

SPN in whih [1℄:

� To any timed transition t

k

2 T is assoiated a

random variable 

k

, with umulative distribution

funtion G

k

(x), modeling the time needed by the

ativity represented by t

k

to omplete, when on-

sidered in isolation.

� Eah timed transition t

k

is attahed a memory

variable a

k

and a memory poliy; the memory

poliy spei�es the funtional dependene of the

memory variable on the past enabling time of the

transition.

� A initial probability is given on R(M

0

).

The memory variable a

k

, assoiated to transition t

k

,

is a funtional that depends on the time during whih

t

k

has been enabled. The memory variables together

with their memory poliy univoally speify how the

underlying stohasti proess is onditioned upon its

past history. The semantis of di�erent memory poli-

ies has been disussed in [1℄ where three alternatives

have been proposed and examined.

� Resampling poliy - The memory variable a

k

is

reset to zero at any hange of marking.

� Enabling memory poliy - The memory variable

a

k

aounts for the elapsed time sine the last



epoh in whih t

k

has been enabled. When tran-

sition t

k

is disabled (even without �ring) the or-

responding enabling memory variable is reset.

� Age memory poliy - The memory variable a

k

aounts for the elapsed time sine the last epoh

in whih t

k

has been enabled without �ring. The

memory variable is reset only when t

k

�res (and

not when it is simply disabled).

At the entrane in a new tangible marking, the resid-

ual �ring time is omputed for eah enabled timed

transition given its memory variable, so that the next

marking is determined by the minimal residual �ring

time among the enabled transitions (rae poliy [1℄).

Beause of the memoryless property, the value of the

memory variable is irrelevant in determining the resid-

ual �ring time for exponential transitions, so that the

three mentioned poliies are ompletely equivalent in

this ase. Hene, for an exponential transition t

k

, we

assume, onventionally, that the orresponding mem-

ory variable is always identially zero. We an there-

fore partition the set of the transitions into EXP tran-

sitions with assoiated an exponential r.v. and identi-

ally zero memory variable, and GEN transition with

assoiated any r.v. (inluding the deterministi ase)

and memory variable inreasing in the enabling mark-

ings.

De�nition 2 - The stohasti proess underlying a

GDT SPN is alled the marking proess M(x) (x �

0). M(x) is the marking of the GDT SPN at time x.

A single realization of the marking proess M(x) an

be written as:

R = f(�

0

; M

0

); (�

1

; M

1

); : : : ; (�

i

; M

i

); : : : g

where M

i+1

is a marking immediately reahable from

M

i

, and �

i+1

� �

i

is the sojourn time in marking M

i

.

With the above notation, M(x) = M

i

for �

i

� x <

�

i+1

.

Assertion 1 - If at time �

+

i

of entrane in a tan-

gible marking M

i

all the memory variables a

k

(k =

1; 2; : : : ; n

t

) are equal to zero, �

i

is a regeneration

time point for the marking proess M(x).

In fat, if all the memory variables are equal to 0, the

future of the marking proess is not onditioned upon

the past and depends only on the present state; hene,

the Markov property holds.

Let us denote by �

�

n

the sequene of the regenera-

tion time points embedded into a realization R. The

tangible marking M

(n)

entered at a regeneration time

point �

�

n

is alled a regeneration marking. The se-

quene (�

�

n

; M

(n)

) is a Markov renewal sequene and

the marking proess M(x) is a Markov regenerative

proess [11, 8, 9℄. From Assertion 1 follows that:

i) if all the transitions are EXP all the memory vari-

ables are identially zero so that any instant of

time is a regeneration time point, and the orre-

sponding proess is a CTMC;

ii) if at any �ring all the memory variables of the

GEN transitions are reset, the orresponding pro-

ess redues to a semi-Markov proess.

iii) only GEN transitions are relevant to determine

the ourrene of regeneration time points.

De�nition 3 - A GDT SPN, for whih an embedded

Markov renewal sequene (�

�

n

; M

(n)

) exists, is alled a

Markov Regenerative Stohasti Petri Net (MRSPN)

[8℄.

Sine (�

�

n

; M

(n)

) is a Markov renewal sequene, the

following equalities hold:

PrfM

(n+1)

= j; (�

�

n+1

� �

�

n

) � x j

M

(n)

= i; �

�

n

; M

(n�1)

; �

�

n�1

; : : : ; M

(0)

; �

�

0

g =

PrfM

(n+1)

= j; (�

�

n+1

� �

�

n

) � x jM

(n)

= i; �

�

n

g =

PrfM

(1)

= j; �

�

1

� x jM

(0)

= ig

(1)

The �rst equality expresses the Markov property (i.e.

in any regeneration time point the ondition on the

past is ondensed in the present state). The se-

ond equality expresses the time homogeneity (i.e. the

probability measures are independent of a translation

along the time axis). Aording to [8, 11℄, we de�ne

the following matrix valued funtions V(x) = [V

ij

(x)℄,

K(x) = [K

ij

(x)℄ and E(x) = [E

ij

(x)℄ (all of dimension

N �N ), suh that:

V

ij

(x) = PrfM(x) = j jM(�

�

0

) = ig

K

ij

(x) = PrfM

(1)

= j ; �

�

1

� xjM(�

�

0

) = ig

E

ij

(x) = PrfM(x) = j ; �

�

1

> xjM(�

�

0

) = ig

(2)

V(x) is the transition probability matrix and provides

the probability that the stohasti proessM(x) is in

marking j at time x given it was in i at x = 0. The

matrix K(x) is the global kernel of the MRP and pro-

vides the df of the event that the next regeneration



time point is �

�

1

and the next regeneration marking

is M

(1)

= j given marking i at �

�

0

= 0. Finally, the

matrix E(x) is the loal kernel sine desribes the be-

havior of the marking proessM(x) inside two onse-

utive regeneration time points. The generi element

E

ij

(x) provides the probability that the proess stays

in state j at time x starting from i at �

�

0

= 0 before

the next regeneration time point. From the above def-

initions:

X

j

[K

ij

(x) + E

ij

(x)℄ = 1

The transient behavior of the MRSPN an be evalu-

ated by solving the following generalized Markov re-

newal equation (in matrix form) [11, 8℄:

V(x) = E(x) + K � V(x) (3)

where K � V(x) is a onvolution matrix, whose (i; j)-

th entry is:

[K � V(x)℄

ij

=

X

k

Z

x

0

dK

ik

(y)V

kj

(x� y) (4)

By denoting the Laplae Stieltjes transform (LST) of

a funtion F (x) by F

�

(s) =

R

1

0

e

�sx

dF (x), Equation

(3) beomes in the LST domain:

V

�

(s) = E

�

(s) + K

�

(s) V

�

(s) (5)

whose solution is:

V

�

(s) = [I � K

�

(s)℄

�1

E

�

(s) (6)

If the steady state solution exists, it an be evaluated

as lim

s!0

V

�

(s).

As spei�ed by (2), K(x) and E(x) depend on the

evolution of the marking proess between two on-

seutive regeneration time points. By virtue of the

time homogeneity property (1), we an always de-

�ne the two suessive regeneration time points to be

x = �

�

0

= 0 and x = �

�

1

.

De�nition 4 - The stohasti proess subordinated

to state i (denoted by M

i

(x)) is the restrition of the

marking proess M(x) for x � �

�

1

given M(�

�

0

) = i:

M

i

(x) = [M(x) : x � �

�

1

; M(�

�

0

) = i℄

Aording to De�nition 4,M

i

(x) desribes the evolu-

tion of the PN starting at the regeneration time point

x = 0 in the regeneration marking i, up to the next re-

generation time point �

�

1

. Therefore, M

i

(x) inludes

all the markings that an be reahed from state i be-

fore the next regeneration time point. The entries of

the i-th row of the matries K(x) and E(x) are deter-

mined by M

i

(x).

3 Non-Overlapping Ativity Cyles

The analytial tratability of the marking proess

depends on the struture of the subordinated pro-

esses whih, in turns, is related to the topology of

the PN and to the memory poliies of the GEN tran-

sitions.

De�nition 5 - A GEN transition is dormant in those

markings in whih the orresponding memory variable

is equal to zero and is ative in those markings in

whih the memory variable is greater than zero. The

ativity yle of a GEN transition is the period of time

in whih a transition is ative between two dormant

periods.

Let us onsider a single generi GEN transition t

g

.

The ativity yle of t

g

is inuened by its memory

poliy, and an be haraterized in the following way.

Resampling Memory - If t

g

is a resampling mem-

ory transition, its ativity yle starts as soon as t

g

beomes enabled, and ends at the �rst subsequent �r-

ing of any transition (inluding t

g

itself). Therefore,

during the ativity yle of a resampling memory tran-

sition no hange of marking is possible.

Enabling Memory - If t

g

is an enabling memory

transition its ativity yle starts as soon as t

g

be-

omes enabled when dormant, and ends either when

t

g

�res, or when it beomes disabled by the �ring of a

ompetitive transition. During the ativity yle the

marking an hange inside the enabling subset of t

g

(where the enabling subset is de�ned as the subset

of onneted markings in whih t

g

is enabled). The

memory variable assoiated to t

g

grows ontinuously

during the ativity yle starting from 0. We assoiate

a reward variable equal to 1 to all the states in the en-

abling subset, so that the value of the memory variable

is represented by the total aumulated reward.

Age Memory - If t

g

is an age memory transition,

its ativity yle starts as soon as t

g

beomes enabled

when dormant, and ends only at the �ring of t

g

itself.

During the ativity yle of an age memory transition

there is no restrition on the markings reahable by

the marking proess. The age memory poliy is the

only poliy in whih a transition an be ative even in

markings in whih it is not enabled. During the ativ-

ity yle, the memory variable is non-dereasing in the

sense that it inreases ontinuously in those markings

in whih t

g

is enabled and maintains its onstant posi-

tive value in those markings in whih t

g

is not enabled.

In order to trak the enabling/disabling ondition of

t

g

during its ativity yle, we introdue a reward (in-

diator) variable whih is equal to 1 in those markings

in whih t

g

is enabled and equal to 0 in those mark-



Table I - Charaterization of the ativity yle of a

GEN transition t

g

Memory Resamp. Enabling Age

poliy

start of t

g

t

g

enabled t

g

enabled

ativity enabled when when

yle dormant dormant

end of �ring �ring or �ring

ativity of any disabling of

yle transition of t

g

t

g

reahable starting markings in any

markings marking enabling reahable

only subset marking

memory inreasing inreasing inreasing

variable or onstant

ings in whih t

g

is not enabled. The memory variable

orresponds to the total aumulated reward.

The above features are summarized in Table 1. By

virtue of Assertion 1, a regeneration time point for

the marking proess ours when a �ring auses all

the ative GEN transitions to beome dormant.

De�nition 6 - A transition is dominant if its ativ-

ity yle stritly ontains the ativity yles of all the

ative transitions.

De�nition 7 - A MRSPN with non-overlapping a-

tivity yles is a MRSPN in whih all the regeneration

periods are dominated by a single transition: any two

suessive regeneration time points orrespond to the

start and to the end of the ative yle of the dominant

transition.

De�nition 7, inludes the possibility that the ative

yles of GEN transitions are ompletely ontained

into the ative yle of the dominant one, hene allow-

ing the simultaneous enabling of di�erent GEN tran-

sitions inside the same subordinated proess. In order

to make the whole proess analytially solvable, we

further restrit the subordinated proess inside any

non-overlapping ativity yle to be semi-Markov.

Assertion 2 - The subordinated proess underlying

any non-overlapping ativity yle is semi-Markov if

at any �ring inside the ativity yle of the dominant

transition all the memory variables of the GEN transi-

tion are reset. This fat happens if the transitions an

be partitioned into three lasses (exlusive, ompeti-

tive and onurrent) and only exlusive or ompetitive

transitions are allowed to be GEN [13℄.

For a regeneration period without internal state tran-

sitions (Markovian or semi-Markovian regeneration

period) any of the enabled transitions an be hosen

to be the dominant one.

4 The Subordinated Proess

At x = �

�

0

= 0 a dominant GEN transition t

g

(with

memory variable a

g

and �ring time 

g

) starts its a-

tivity yle in state i (a

g

= 0). The suessive regen-

eration time point �

�

1

is the end of the ativity yle

of t

g

aording to the rules summarized in Table I.

Let Z

i

(x) (x � 0) be the proess de�ned over the

states reahable from i during the ativity yle of

t

g

, and r

i

the orresponding binary reward vetor.

We assume in the following that Z

i

(x) is a semi-

Markov proess aording to Assertion 2. The sub-

ordinated proessM

i

(x) (De�nition 4) oinides with

Z

i

(x) when the initial state is state i with probability

1 (PrfZ

i

(0) = ig = 1). The memory variable a

g

in-

reases at a rate r

i

j

(whih is either equal to 0 or to 1)

when M

i

(x) = j.

We onsider separately the following ases depend-

ing whether the dominant transition t

g

is of enabling

or age memory type.

4.1 Enabling type dominant transition

The dominant GEN transition t

g

is of enabling

type. The state spae of the subordinated proess is

partitioned into two subsets: R

i

ontains the states

in whih t

g

is ontinuously enabled, and R

i

ontains

the states in whih t

g

beomes disabled by the �ring of

a ompetitive transition. The reward vetor is equal

to 1 for j 2 R

i

and 0 elsewhere. The next regener-

ation time point ours beause one of the following

two mutually exlusive events:

� t

g

�res: this event an be formulated as a om-

pletion time problem [4℄ when the aumulated

reward (memory variable) a

g

reahes an absorb-

ing barrier equal to the �ring requirement 

g

.

� t

g

is disabled: this event an be formulated as a
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Figure 1 - a) PN of the periodially self tested M/M/1/k;

b) orresponding reahability graph.

�rst passage time in the subset R

i

, and there-

fore R

i

is made absorbing in the subordinated

proess.

We further partiularize the following two ases:

CASE A - no other GEN transitions are ativated

during the ativity yle of t

g

. The subordinated

proess Z

i

(x) is a CTMC.

Case A is the one onsidered in the DSPN model

de�ned in [3, 7, 20℄, and in the suessive exten-

sions to general distributions elaborated in [8, 15℄.

All the examples reported in the mentioned pa-

pers belong to this ase.

CASE B - during the ativity yles of t

g

, Assertion 2

is satis�ed and the subordinated proess is a semi-

Markov proess.

The Markovian (semi-Markovian) regeneration

period belongs to Case A (Case B), where R

i

ontains only the initial state. The steady state

analysis of a MRSPN with semi-Markovian sub-

ordinated proess has been onsidered in [9℄.

Example 1 - A periodially self-tested system.

A system is exeuting tasks aording to a

M/M/1/k queue (Figure 1a). Plae p

1

represents user

thinking and p

2

is the queue inluding the task under

servie. t

1

is the exponential submitting time with

marking dependent rate m

1

�, and t

2

is the exponen-

tial servie time with rate �. p

3

represents the system

waiting for the test and p

4

the system under test. t

3

is the deterministi testing interval, and t

4

the expo-

nentially distributed test duration with rate Æ. When

t

3

�res the exeution of the M/M/1/k queue is frozen

until the test is ompleted (t

4

�res). The state spae
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Figure 2 - Preemptive M/G/1/2/2 queue with two lasses

of ustomers.

of the PN of Figure 1a with k = 2 ustomers is in

Figure 1b. All the states an be regeneration states,

but not all the transitions provide regeneration time

points. States s

4

, s

5

and s

6

are always regeneration

states from whih a single EXP transition is enabled

(Case A). States s

1

or s

2

or s

3

are regeneration states

only when entered by �ring t

4

, i.e. when the ativity

yle of the dominant GEN transition t

3

starts. Dur-

ing the ativity yle of t

3

, the subordinated proess

an move among s

1

, s

2

and s

3

whih therefore form

the subordinated CTMC (Case A).

If transitions t

1

and t

2

are GEN with enabling mem-

ory poliy, the features of states s

4

, s

5

and s

6

do not

hange, while the subordinated proess during the a-

tivity yle of t

3

beomes semi-Markovian thus repre-

senting a Case B example.

4.2 Age type dominant transition

The situation in whih the dominant GEN transi-

tion t

g

is of age type has been addressed for the �rst

time in [6℄. The state spae of the subordinated pro-

ess R

i

ontains all the states reahable during the a-

tivity yle of t

g

, and the disabling subset R



is empty

(the only riterion for the termination of the ativity

yle is the �ring of t

g

). The reward vetor is equal to

1 for the states j 2 R

i

in whih t

g

is enabled and 0 for

the states j 2 R

i

in whih t

g

is not enabled. The �ring

of t

g

an be formulated as a ompletion time problem

[4℄ when the aumulated reward (memory variable)

a

g

reahes the �ring requirement 

g

. We further par-

tiularize the following two ases:

CASE C - During the ativity yle of t

g

no other

GEN transitions are ativated and the subordi-

nated proess is a reward CTMC.



CASE D - during the ativity yles of t

g

, Assertion

2 is satis�ed and the subordinated proess is a Re-

ward semi-Markov proess.

Example 2 - Preemptive M/G/1/2/2 with di�erent

ustomers

In this example, Cases C and D are mixed in a sin-

gle PN [5℄. The PN of Figure 2a models a M/G/1/2/2

queue in whih the jobs submitted by ustomer 2 have

higher priority and preempt the jobs submitted by us-

tomer 1. The server has a prs servie disipline. Plae

p

1

(p

3

) represents ustomer 1 (2) thinking, while plae

p

2

(p

4

) represent job 1 (2) under servie. Transitions

t

1

and t

3

are EXP and represent the submission of a

job of type 1 or 2, respetively. t

2

and t

4

are GEN

transitions, and represent the ompletion of servie of

a job of type 1 or 2, respetively. A prs servie disi-

pline is modeled by assigning to t

2

and t

4

an age mem-

ory poliy. The inhibitor ar from p

4

to t

2

models the

desribed preemption mehanism: as soon as a type 2

job joins the queue the type 1 job eventually under ser-

vie is interrupted. The reahability graph of the PN

of Figure 2a is in Figure 2b. Under a prs servie, after

ompletion of the type 2 job, the interrupted type 1 job

is resumed ontinuing the new servie period from the

point reahed just before the last interruption. From

Figure 2b, it is easily reognized that s

1

, s

2

and s

3

an all be regeneration states, while s

4

an never be a

regeneration state (in s

4

a type 2 job is always in ex-

eution so that its orresponding memory variable a

2

is never 0). Only exponential transitions are enabled

in s

1

and the next regeneration states an be either

s

2

or s

3

depending whether t

1

or t

3

�res �rst. From

state s

3

the next regeneration marking an be either

state s

1

or s

2

depending whether during the exeution

of the type 2 job a type 1 job does require servie (but

remains bloked until ompletion of the type 2 job) or

does not. The subordinated proess is a CTMC, and

belongs to Case C. From s

2

the next regeneration state

an be only s

1

, but multiple yles (s

2

- s

4

) an our

depending whether type 2 jobs arrive to interrupt the

exeution of the type 1 job. The subordinated proess

is a SMP (t

4

is GEN), and belongs to ase D.

5 Uni�ed Transient Analysis

The global and loal kernels K(x) and E(x) an be

evaluated row by row. In this setion, we provide an

uni�ed analytial proedure for determining in losed

form the entries of a generi row i, given that i is

a regeneration marking whose subordinated proess

is a semi-Markov reward proess as desribed in the

previous setion.

Let Q

i

(x) = [Q

i

k`

(x)℄ be the kernel of the subor-

dinated semi-Markov proess (Z

i

(x)). Z

i

(x) starts in

markingM

i

(Z

i

(0) = i), so that the initial probability

vetor is V

i

0

= [0; 0; : : : ; 1

i

; : : : ; 0℄ (a vetor with all

the entries equal to 0 but entry i equals to 1). For no-

tational onveniene we do not renumber the states in

Z

i

(x) so that all the subsequent matrix funtions have

the dimensions (N �N ) (ardinality of R(M

0

)), but

with the signi�ant entries loated in position (k; `)

only, with k; ` 2 R

i

[ R

i

. We denote by H the time

duration until the �rst embedded time point in Z

i

(x)

from time x = 0.

Let us �x the value of the �ring requirement 

g

=

w, and let us de�ne the following matrix funtions

P

i

(x;w), F

i

(x;w), D

i

(x;w) and �

i

:

P

i

k`

(x;w) = PrfZ

i

(x) = ` 2 R

i

; �

�

1

> x j

Z

i

(0) = k 2 R

i

; 

g

= wg

F

i

k`

(x;w) = PrfZ

i

(�

� �

1

) = ` 2 R

i

; �

�

1

� x; t

g

�res j

Z

i

(0) = k 2 R

i

; 

g

= wg

D

i

k`

(x;w) = PrfZ

i

(�

�

1

) = ` 2 R

 i

; �

�

1

� x j

Z

i

(0) = k 2 R

i

; 

g

= wg

�

i

k`

= Prf next tangible marking is ` j

urrent marking is k; t

g

�res g

(7)

By the above de�nitions, the entries P

i

k`

(x;w) and

F

i

k`

(x;w) are signi�ant only for k; ` 2 R

i

and are

0 otherwise; the entries D

i

k`

(x;w) are signi�ant for

k 2 R

i

and ` 2 R

i

, and are 0 otherwise.

� P

i

k`

(x;w) is the probability of being in state ` 2

R

i

at time x before absorption either at the bar-

rier w or in the absorbing subset R

 i

, starting in

state k 2 R

i

at x = 0.

� F

i

k`

(x;w) is the probability that t

g

�res from state

` 2 R

i

(hitting the absorbing barrier w in `) be-

fore x, starting in state k 2 R

i

at x = 0.

� D

i

k`

(x;w) is the probability of �rst passage from

a state k 2 R

i

to a state ` 2 R

 i

before hitting

the barrier w, starting in state k 2 R

i

at x = 0.

� �

i

is the branhing probability matrix and rep-

resents the suessor tangible marking ` that is

reahed by �ring t

g

in state k 2 R

i

(the �ring of

t

g

in the subordinated proess M

i

(x), an only

our in a state k in whih r

i

k

= 1).

From (7), it follows for any x:

X

`2R

i

[R

i

[P

i

k`

(x;w) + F

i

k`

(x;w) + D

i

k`

(x;w) ℄ = 1



Given that G

g

(w) is the umulative distribution

funtion of the r.v. 

g

assoiated to the transition

t

g

, the elements of the i-th row of matries K(x) and

E(x) an be expressed as follows, as a funtion of the

matries P

i

(x;w), F

i

(x;w) and D

i

(x;w):

K

ij

(x) =

Z

1

w=0

[

X

k2R

i

F

i

ik

(x;w)�

i

kj

+

D

i

ij

(x;w) ℄ dG

g

(w)

E

ij

(x) =

Z

1

w=0

P

i

ij

(x;w) dG

g

(w)

(8)

In order to avoid unneessarily umbersome nota-

tion in the following derivation, we neglet the ex-

pliit dependene on the partiular subordinated pro-

ess Z

i

(x), by eliminating the supersript i. It is how-

ever taitly intended, that all the quantities r, Q(x),

P(x;w), F(x;w), D(x;w), �, R and R



refer to the

spei� proess subordinated to the regeneration pe-

riod starting from state i.

5.1 Derivation of P(x;w), F(x;w) and

D(x;w)

The derivation of these matrix funtions is de-

sribed in more detail in [21, 6℄ and follows the same

pattern of the ompletion time analysis presented in

[19, 4℄.

Theorem 1 - For the �ring probability F

k`

(x;w) the

following double transform equation holds:

F

��

k`

(s; v) = Æ

k`

r

k

[1 � Q

�

k

(s + v r

k

) ℄

s + v r

k

+

X

u2R

Q

�

ku

(s + v r

k

)F

��

u`

(s; v)

(9)

Proof - Conditioning on H = h and 

g

= w, let us

de�ne:

F

k`

(x;w jH = h) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Æ

k`

U

�

x �

w

r

k

�

if : h r

k

� w

X

u2R

dQ

ku

(h)

dQ

k

(h)

� F

u`

(x� h;w � hr

k

)

if : h r

k

< w

(10)

In (10), two mutually exlusive events are identi-

�ed. If r

k

6= 0 and h r

k

� w, a sojourn time equals to

w is aumulated before leaving state k, so that the �r-

ing time (next regeneration time point) is �

�

1

= w=r

k

.

If h r

k

< w then a transition ours to state u with

probability dQ

ku

(h)=dQ

k

(h) and the residual servie

(w � hr

k

) should be aomplished starting from state

u at time (x � h). Taking the LST transform with re-

spet to x (denoting the transform variable by s), the

LT transform with respet to w (denoting the trans-

form variable by v) of (10) and unonditioning with

respet to H , (10) beomes (9). 2

Theorem 2 - The state probability P

k`

(x;w) satis�es

the following double transform equation:

P

��

k`

(s; v) = Æ

k`

s [1 � Q

�

k

(s + v r

k

) ℄

v(s + v r

k

)

+

X

u2R

Q

�

ku

(s + v r

k

)P

��

u`

(s; v)

(11)

Proof - Conditioning on H = h , and 

g

= w let us

de�ne:

P

k`

(x;w jH = h) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

Æ

k`

�

U(x) � U

�

x �

w

r

k

��

if : h r

k

� w

Æ

k`

[U(x)� U(x� h)℄ +

X

u2R

dQ

ku

(h)

dQ

k

(h)

P

u`

(x � h;w � hr

k

)

if : h r

k

< w

(12)

The derivation of the matrix funtion P(x;w) based

on (12) follows the same pattern as for the funtion

F(x;w) [21℄. 2

Theorem 3 - The probability D

k`

(x;w) of �rst pas-

sage into R



satis�es the following double transform

equation:

D

��

k`

(s; v) =

1

v

Q

�

kl

(s + v r

k

) +

X

u2R

Q

�

ku

(s + v r

k

)D

��

u`

(s; v)

(13)

Proof - Conditioning on H = h , and 

g

= w let us

de�ne:



D

k`

(x;w jH = h) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

0 if : h r

k

� w

dQ

k`

(h)

dQ

k

(h)

U(x� h)+

X

u2R

dQ

ku

(h)

dQ

k

(h)

D

u`

(x� h;w � hr

k

)

if : h r

k

< w

(14)

The derivation of the matrix funtion D(x;w)

based on (14) follows the same pattern as for the fun-

tion F(x;w) [21℄. 2

5.2 The subordinated proess is a Reward

CTMC

Let us onsider the partiular ase in whih the

subordinated proess Z(x) is a reward CTMC with

in�nitesimal generator A = fa

k`

g. Let us suppose

that the states numbered 1; 2; : : : ;m belong to R

(1; 2; : : : ;m 2 R) and the states numbered m+1;m+

2; : : : ; n belong to R



(m + 1;m+ 2; : : : ; n 2 R



). By

this ordering of states A an be partitioned into the

following submatriesA =

B C

U

1

U

2

whereB on-

tains the intensity of the transitions inside R, and C

ontains the intensity of the transitions from R to R



.

U

1

and U

2

refer to the portion of the state spae not

involved in the urrent subordinated marking proess,

and are, thus, not inuential for the problem at hand.

For this reason, their entries an be assumed equal to

zero.

Corollary 4 - The entries of the matrix funtions

P

k`

(x;w), F

k`

(x;w) and D

k`

(x;w), in double trans-

form domain, take the following expression:

(s+ vr

k

)F

��

k`

(s; v) = Æ

k`

r

k

+

X

u2R

a

ku

F

��

u`

(s; v)

(s+ vr

k

)P

��

k`

(s; v) = Æ

k`

s

v

+

X

u2R

a

ku

P

��

u`

(s; v)

(s+ vr

k

)D

��

k`

(s; v) =

a

k`

v

+

X

u2R

a

ku

D

��

u`

(s; v)

(15)

Proof - The kernel (transition probability matrix) of

the given CTMC an be written as:

Q

k`

(x) =

8

>

<

>

:

a

k`

�a

kk

(1� e

a

kk

x

) if : k 6= `

0 if : k = `

(16)

and in LST domain:

Q

�

k`

(s) =

8

>

<

>

:

a

k`

s � a

kk

if : k 6= `

0 if : k = `

(17)

with a

kk

= �

P

`2R

i

[R

i

; ` 6=k

a

k`

By substituting (17) into (11), (9) and (13), the

orollary is proved.2

Equations (15) an be rewritten in matrix form:

F

��

(s; v) = (sI+ vR�B)

�1

R

P

��

(s; v) =

s

v

(sI+ vR�B)

�1

D

��

(s; v) =

1

v

(sI+ vR�B)

�1

C

where I is the identity matrix and R is the diagonal

matrix of the reward rates (r

k

); the dimensions of I,

R, B, F and P are (m�m), and the dimensions of C

and D are (m� (n�m)).

6 Numerial Results

A numerial derivation of the transient state prob-

abilities of the M/D/1/2/2 system desribed in Ex-

ample 2 of Setion 4.2 is provided. We onsider in

details the partiular ase in whih the GEN transi-

tions t

2

and t

4

are assumed to be deterministi with

duration �, while t

1

and t

3

are EXP with parameter

� [6℄. The reahability graph in Figure 2b omprises

4 states. Let us build up the K

�

(s) and E

�

(s) ma-

tries row by row, taking into onsideration that state

s

4

an never be a regeneration marking sine a type 2

job with nonzero age memory is always ative.

i) - The starting regeneration state is s

1

- No deter-

ministi transitions are enabled: the state is Marko-

vian and the next regeneration state an be either

state s

2

or s

3

. The nonzero elements of the 1-st row

of matries K

�

(s) and E

�

(s) take the form:

K

�

12

(s) =

�

s + 2�

; K

�

13

(s) =

�

s + 2�

E

�

11

(s) =

s

s + 2�

;



ii) - The starting regeneration state is s

2

- Transition

t

2

is deterministi so that the next regeneration time

point is the epoh of �ring of t

2

. The subordinated

proess M

2

(x) omprises states s

2

and s

4

and is a

semi-Markov proess (Case D) sine t

4

is determinis-

ti. The kernel of the semi-Markov proess is:

Q

�

(s) =

�

�

�

�

�

�

�

�

�

�

�

0 0 0 0

0 0 0

�

s + �

0 0 0 0

0 e

��s

0 0

�

�

�

�

�

�

�

�

�

�

�

The reward vetor is r

(2)

= [0; 1; 0; 0℄, and the only

nonzero entry of the branhing probability matrix is

�

(2)

21

= 1. Applying Equations (9) and (11) we obtain

the following results for the nonzero entries:

F

��

22

(s; w) =

1

s+ w + �� �e

�s�

P

��

22

(s; w) =

s=w

s+ w + �� �e

�s�

P

��

24

(s; w) =

�(1� e

�s�

)=w

s+ w + �� �e

�s�

Applying (8), and after inverting the LT transform

with respet to w, the LST matrix funtions K

�

(s)

and E

�

(s) beome:

K

�

21

(s) = e

��(s+ ���e

��s

)

E

�

22

(s) =

s[1� e

��(s+ ���e

��s

)

℄

s+ �� �e

��s

E

�

24

(s) =

�(1� e

��s

) [1� e

��(s+ ���e

��s

)

℄

s+ �� �e

��s

iii) - The starting regeneration state is s

3

- The sub-

ordinated proessM

3

(x) is a CTMC (Case C), hene

the results of Setion 5.2 apply. The in�nitesimal gen-

erator of the CTMC is:

A =

�

�

�

�

�

�

�

�

0 0 0 0

0 0 0 0

0 0 �� �

0 0 0 0

�

�

�

�

�

�

�

�

and the reward vetor is r

(3)

= [0; 0; 1; 1℄. The

branhing probabilities arising from the �ring of t

4

are �

(3)

31

= 1 and �

(3)

42

= 1. Applying the �rst and

seond equation in (15), the nonzero entries take the

form:

F

��

33

(s; w) =

1

s+ �+ w

F

��

34

(s; w) =

�

(s+ w)(s + �+ w)

P

��

33

(s; w) =

s

w(s + �+ w)

P

��

34

(s; w) =

�s

w(s + w)(s+ �+ w)

Inverting the above equations with respet to w,

taking into aount the branhing probabilities, yields:

K

�

31

(s) = e

��(s+�)

K

�

32

(s) = e

��s

(1� e

���

)

E

�

33

(s) =

s

s+ �

(1� e

��(s+�)

)

E

�

34

(s) =

�

s+ �

� (1�

s

s+ �

e

���

)e

��s

The time domain probabilities are alulated by

�rst deriving matrix V

�

(s) from (6) using a standard

pakage for symboli analysis (e.g. MATHEMAT-

ICA), and then numerially inverting the resulting

LST expressions resorting to the Jagerman's method

[18℄. The plot of the state probabilities versus time for

states s

1

and s

4

is reported in Figure 3, for a deter-

ministi servie duration � = 1 and for two di�erent

values of the submitting rate � = 0:5 and � = 2.

7 Conlusion

The GDT SPN model, whose semantis has been

disussed in [1℄, provides a natural environment for the

de�nition of a lass of analytially tratableMRSPN's.

The paper has onsidered the ase of GDT SPN with

non-overlapping ativity yles, suh that the mark-

ing proess subordinated to the ativity yle of the

dominant transition is a reward semi-Markov proess.

The inlusion of a reward variable in the desription of

the subordinated proess has proven to be very e�e-

tive tehnique for extending the desriptive power of

the model to age memory poliies, and for providing

a uni�ed proedure for the analytial solution.
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Figure 3 - Transient behavior of the state probabilities

for the preemptive M/D/1/2/2 system with di�erent us-

tomers.
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