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Abstract

The paper discusses a class of Markov Regenera-
tive Stochastic Petri Nets (MRSPN) characterized by
the fact that the stochastic process subordinated to two
consecutive regeneration time points is a semi-Markov
reward process. This class of SPN’s can accommo-
date transitions with generally distributed firing time
and associated memory policy of both enabling and age
type, thus generalizing and encompassing all the previ-
ous definitions of MRSPN. An wunified analytical pro-
cedure is developed for the derivation of closed form
expressions for the transient and steady state proba-
bilities.
Key words:  Stochastic Petri Nets, semi-Markov
Reward Models, Markov regenerative processes.

1 Introduction

In the usual definition of Stochastic Petri Nets
(SPN) all the timed transitions have associated an
exponential random variable, so that their modeling
power is confined to Markovian systems. The analy-
sis of stochastic systems with non-exponential timing
is of increasing interest in the literature and requires
the development of suitable modeling tools. Recently,
some effort has been devoted to generalize the concept
of SPN, by allowing the firing times to be generally
distributed.

An extensive discussion of the semantics of SPN’s
with generally distributed firing times is in [1], where it
is shown that each non-exponential transition should
be assigned a memory policy chosen among three
proposed alternatives: resampling, enabling and age
memory. We refer to this model as Generally Dis-
tributed Transition_.SPN (GDT_SPN). In general, the
stochastic process underlying a GDT_SPN is too com-
plex to be analytically tractable, while a simulative
solution has been investigated in [16].

With the aim of providing a modeler’s represen-
tation able to automatically generate an analytical
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representation [17], various restrictions of the general
GDT_SPN model have been discussed in the litera-
ture [5]. A classification of SPN models, based on the
nature of the associated marking process, has been
proposed by Ciardo et al. [9].

A particular case of non-Markovian SPN, is the
class of Deterministic and SPN (DSPN) defined in
[3]. A DSPN is a non-Markovian SPN, where all the
transitions are exponential, but in each marking, at
most one transition is allowed to have associated a de-
terministic firing time with enabling memory policy.
Ounly the steady state analysis was elaborated in [3].
An improved steady state algorithm was presented in
[20], and some structural extensions were investigated
in [10]. Choi et al. [7] have recognized that the mark-
ing process underlying a DSPN is a Markov Regen-
erative Process [11] for which a closed form transient
solution is available. This observation has opened a
very fertile line of research aimed at the definition of
solvable classes of models whose underlying marking
process is a Markov Regenerative Process (MRP), and
therefore referred to as Markov Regenerative Stochas-
tic Petri Nets (MRSPN).

Following this line, Choi et al. [8] have investi-
gated a class of models in which one transition with a
generally distributed firing time and enabling memory
policy is allowed to be enabled in each marking. Ger-
man and Lindemann [15] have proposed a numerical
solution of the same model based on the method of
supplementary variables [12].

In the mentioned references, the generally dis-
tributed (or deterministic) transitions must be as-
signed a firing policy of enabling memory type . The
enabling memory policy means [1] that whenever the
transition becomes enabled anew, its firing distribu-

I The enabling memory assumption is relaxed in [10] for van-
ishing markings only. Since vanishing markings are transversed
in zero time, this assumption does not modify the behavior of
the marking process versus time



tion is resampled and the time eventually spent with-
out firing in prior enabling periods is lost. In the lan-
guage of queueing systems the above mechanism is
referred to as preemptive repeat different (prd) policy
[14, 19].

The possibility of incorporating non-exponential
transitions with associated age memory policy has
been first explored in [6]. The age memory is able
to capture preemptive mechanisms of resume (prs)
type, where an interrupted activity is recovered by
keeping memory of the work already performed, and
upon restart, only the residual service needs to be
completed. This modeling extension is crucial in con-
nection with fault tolerant and dependable computing
systems, where an interrupted task must be resumed
from the point it was interrupted.

The paper investigates the nature of GDT_SPN
with combined memory policies such that the underly-
ing marking process is a MRP. The timed transitions
of the GDT_SPN are partitioned into two subsets: the
EXP transitions have an exponentially distributed fir-
ing time, while for the GEN transitions the firing time
is any random variable (including the deterministic).
The activity cycle of a GEN transition is the interval of
time in which the transition has a non-null memory.
We study the case of MRSPN with non overlapping
activity cycles, such that the marking process subor-
dinated to two consecutive regeneration time points is
a semi-Markov reward process. The proposed model
generalizes and encompasses all the previous formula-
tions of MRSPN.

In Section 2, the conditions under which the mark-
ing process underlying a GDT_SPN is a Markov Re-
generative process are set in very general terms. In
Section 3, the influence of the memory policy on the
activity cycle of a transition is discussed. In Section
4, the subordinated process in a MRSPN with non-
overlapping activity cycles is characterized, and a uni-
fied analytical solution for the transient and steady
state transition probability matrix is proposed in Sec-
tion 5.

2 Markov
Petri Nets
A marked Petri Net is a tuple PN = (P,T,1I,0,
H,M), where: P = {pi,p2,...,Pnp} is the set of
places, T' = {t1,ta,...,tnt} is the set of transitions and
I, O and H are the input, the output and the inhibitor
functions, respectively. M = {my,ma,...,mpy} is the
marking. The generic entry m; is the number of tokens
in place p;, in marking M.
Input and output arcs have an arrowhead on their
destination, inhibitor arcs have a small circle. A tran-
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sition is enabled in a marking if each of its ordinary
input places contains at least as many tokens as the
multiplicity of the input function I and each of its
inhibitor input places contains fewer tokens than the
multiplicity of the inhibitor function H. An enabled
transition fires by removing as many tokens as the
multiplicity of the input function I from each ordi-
nary input place, and adding as many tokens as the
multiplicity of the output function O to each output
place. The number of tokens in an inhibitor input
place is not affected.

A marking M’ is said to be immediately reachable
from M, when is generated from M by firing an en-
abled transition. The reachability set R(Mpy) is the set
of all the markings that can be generated from an ini-
tial marking M, by repeated application of the above
rules. If the set T' comprises both timed and imme-
diate transitions, R(M)) is partitioned into tangible
(no immediate transitions are enabled) and vanishing
markings. Since the effect of vanishing markings can
be incorporated into the tangible ones, according to
[2], we do not account in this paper for the presence
of immediate transitions. Let A/ be the cardinality of
the tangible subset of R(Mp).

Definition 1 - A stochastic GDT_-SPN is a marked
SPN in which [1]:

e To any timed transition tr, € T is associated a
random variable 7y, with cumulative distribution
function G (z), modeling the time needed by the
activity represented by t to complete, when con-
sidered in isolation.

e FEach timed transition tj is attached a memory
variable ap and a memory policy; the memory
policy specifies the functional dependence of the
memory variable on the past enabling time of the
transition.

o A initial probability is given on R(My).

The memory variable aj, associated to transition #y,
is a functional that depends on the time during which
tr, has been enabled. The memory variables together
with their memory policy univocally specify how the
underlying stochastic process is conditioned upon its
past history. The semantics of different memory poli-
cies has been discussed in [1] where three alternatives
have been proposed and examined.

e Resampling policy - The memory variable ay is
reset, to zero at any change of marking.

e Enabling memory policy - The memory variable
ar accounts for the elapsed time since the last



epoch in which ¢; has been enabled. When tran-
sition ty, is disabled (even without firing) the cor-
responding enabling memory variable is reset.

o Age memory policy - The memory variable ay
accounts for the elapsed time since the last epoch
in which #; has been enabled without firing. The
memory variable is reset only when ¢ fires (and
not when it is simply disabled).

At the entrance in a new tangible marking, the resid-
ual firing time is computed for each enabled timed
transition given its memory variable, so that the next
marking is determined by the minimal residual firing
time among the enabled transitions (race policy [1]).
Because of the memoryless property, the value of the
memory variable is irrelevant in determining the resid-
ual firing time for exponential transitions, so that the
three mentioned policies are completely equivalent in
this case. Hence, for an exponential transition ¢, we
assume, conventionally, that the corresponding mem-
ory variable is always identically zero. We can there-
fore partition the set of the transitions into EXP tran-
sitions with associated an exponential r.v. and identi-
cally zero memory variable, and GEN transition with
associated any r.v. (including the deterministic case)
and memory variable increasing in the enabling mark-
ings.

Definition 2 - The stochastic process underlying a
GDT_SPN is called the marking process M(z) (x >
0). M(zx) is the marking of the GDT-SPN at time x.

A single realization of the marking process M(zx) can
be written as:

R = {(10, Mo); (11, M1); ...; (7, My); ... }
where M;;1 is a marking immediately reachable from
M;, and 7,41 — 7; is the sojourn time in marking M;.
With the above notation, M(z) = M; for ; < 2 <
Tit1-

Assertion 1 - If at time 7,7 of entrance in a tan-
gible marking M; all the memory variables ap (k =
1,2,...,n:) are equal to zero, T; is a regeneration

time point for the marking process M(zx).

In fact, if all the memory variables are equal to 0, the
future of the marking process is not conditioned upon
the past and depends only on the present state; hence,
the Markov property holds.

Let us denote by 7,; the sequence of the regenera-
tion time points embedded into a realization R. The

tangible marking M, entered at a regeneration time
point 7 is called a regeneration marking. The se-
quence (7,5, M(,)) is a Markov renewal sequence and
the marking process M(z) is a Markov regenerative
process [11, 8, 9]. From Assertion 1 follows that:

i) if all the transitions are EXP all the memory vari-
ables are identically zero so that any instant of
time is a regeneration time point, and the corre-
sponding process is a CTMC;

ii) if at any firing all the memory variables of the
GEN transitions are reset, the corresponding pro-
cess reduces to a semi-Markov process.

iii) only GEN transitions are relevant to determine
the occurrence of regeneration time points.

Definition 3 - A GDT_SPN, for which an embedded
Markov renewal sequence (7., M y)) exists, is called a
Markov Regenerative Stochastic Petri Net (MRSPN)

[8].

Since (7, M(y)) is a Markov renewal sequence, the

following equalities hold:

PT{M(n+1) =7 (T;H -1) <z
M(n) = ’i, T;, M(nfl)a Trtflv ey M(O), Tg}

PT{M(n+1) :ja (T;;—i-l _T';;) S w|M(n) = i: T;;} =

Pr{Mquy =j, i <z|Mq) =i}

(1)
The first equality expresses the Markov property (i.e.
in any regeneration time point the condition on the
past is condensed in the present state). The sec-
ond equality expresses the time homogeneity (i.e. the
probability measures are independent of a translation
along the time axis). According to [8, 11], we define
the following matrix valued functions V(z) = [V;;(z)],
K(z) = [K;j(z)] and E(z) = [E;;(z)] (all of dimension

N x N), such that:

Vij(z) = Pr{iM(z) = j | M(75) =i}
Kij(z) = Pr{iMyy =j, i <z M(15) =i} (2)
Eij(z) = PriM(z) = j, 77 > z| M(15) = i}

V(z) is the transition probability matrix and provides
the probability that the stochastic process M(z) is in
marking j at time z given it was in ¢ at z = 0. The
matrix K(z) is the global kernel of the MRP and pro-
vides the cdf of the event that the next regeneration



time point is 7 and the next regeneration marking
is M1y = j given marking i at 75 = 0. Finally, the
matrix E(z) is the local kernel since describes the be-
havior of the marking process M (z) inside two consec-
utive regeneration time points. The generic element
E;;(z) provides the probability that the process stays
in state j at time 2 starting from 4 at 7§ = 0 before
the next regeneration time point. From the above def-

initions:
Z[Kij(iv) + Eijj(z)] =1

The transient behavior of the MRSPN can be evalu-
ated by solving the following generalized Markov re-
newal equation (in matrix form) [11, 8]:

V(z) = E(z) + K % V(z) (3)

where K * V(z) is a convolution matrix, whose (i, j)-
th entry is:

K« V@l = Y / CKw) Vi@ —y) ()
k 0

By denoting the Laplace Stieltjes transform (LST) of
a function F(z) by F~(s) = [, e~** dF(z), Equation
(3) becomes in the LST domain:

V™(s) = E7(s) + K™(s) V7(s) (5)
whose solution is:
V™(s) = [T - K™(s)] " B™(s) (6)

If the steady state solution exists, it can be evaluated
as lims_,o V™~ (s).

As specified by (2), K(z) and E(z) depend on the
evolution of the marking process between two con-
secutive regeneration time points. By virtue of the
time homogeneity property (1), we can always de-
fine the two successive regeneration time points to be
r=15 =0and x =T17.

Definition 4 - The stochastic process subordinated
to state i (denoted by M'(x)) is the restriction of the
marking process M(zx) for x < 17 given M(1]) =i:

Mi(z) = M(2) : & <77, M(15) =]

According to Definition 4, M¥(z) describes the evolu-
tion of the PN starting at the regeneration time point
z = 0 in the regeneration marking ¢, up to the next re-
generation time point 7;'. Therefore, M%(x) includes
all the markings that can be reached from state i be-
fore the next regeneration time point. The entries of
the i-th row of the matrices K(z) and E(z) are deter-
mined by Mi(z).

3 Non-Overlapping Activity Cycles

The analytical tractability of the marking process
depends on the structure of the subordinated pro-
cesses which, in turns, is related to the topology of
the PN and to the memory policies of the GEN tran-
sitions.

Definition 5 - A GEN transition is dormant in those
markings in which the corresponding memory variable
is equal to zero and is active in those markings in
which the memory variable is greater than zero. The
activity cycle of a GEN transition is the period of time
in which a transition is active between two dormant
periods.

Let us consider a single generic GEN transition ¢,.
The activity cycle of t, is influenced by its memory
policy, and can be characterized in the following way.
Resampling Memory - If ¢, is a resampling mem-
ory transition, its activity cycle starts as soon as t,
becomes enabled, and ends at the first subsequent fir-
ing of any transition (including ¢, itself). Therefore,
during the activity cycle of a resampling memory tran-
sition no change of marking is possible.

Enabling Memory - If ¢, is an enabling memory
transition its activity cycle starts as soon as t, be-
comes enabled when dormant, and ends either when
ty fires, or when it becomes disabled by the firing of a
competitive transition. During the activity cycle the
marking can change inside the enabling subset of %,
(where the enabling subset is defined as the subset
of connected markings in which ¢, is enabled). The
memory variable associated to t, grows continuously
during the activity cycle starting from 0. We associate
a reward variable equal to 1 to all the states in the en-
abling subset, so that the value of the memory variable
is represented by the total accumulated reward.

Age Memory - If ¢, is an age memory transition,
its activity cycle starts as soon as ¢, becomes enabled
when dormant, and ends only at the firing of ¢, itself.
During the activity cycle of an age memory transition
there is no restriction on the markings reachable by
the marking process. The age memory policy is the
only policy in which a transition can be active even in
markings in which it is not enabled. During the activ-
ity cycle, the memory variable is non-decreasing in the
sense that it increases continuously in those markings
in which ¢, is enabled and maintains its constant posi-
tive value in those markings in which #, is not enabled.
In order to track the enabling/disabling condition of
t, during its activity cycle, we introduce a reward (in-
dicator) variable which is equal to 1 in those markings
in which ¢, is enabled and equal to 0 in those mark-



Table I - Characterization of the activity cycle of a
GEN transition ¢,

Memory Resamp. Enabling Age
policy
start of ty t, enabled | t, enabled
activity enabled when when
cycle dormant dormant
end of firing firing or firing
activity of any disabling of
cycle transition of t, ty
reachable starting | markings in any
markings || marking enabling reachable
only subset marking
memory || increasing | increasing increasing
variable or constant

ings in which £, is not enabled. The memory variable
corresponds to the total accumulated reward.

The above features are summarized in Table 1. By
virtue of Assertion 1, a regeneration time point for
the marking process occurs when a firing causes all
the active GEN transitions to become dormant.

Definition 6 - A transition is dominant if its activ-
ity cycle strictly contains the activity cycles of all the
actiwe transitions.

Definition 7 - A MRSPN with non-overlapping ac-
tivity cycles is a MRSPN in which all the regeneration
periods are dominated by a single transition: any two
successive regeneration time points correspond to the
start and to the end of the active cycle of the dominant
transition.

Definition 7, includes the possibility that the active
cycles of GEN transitions are completely contained
into the active cycle of the dominant one, hence allow-
ing the simultaneous enabling of different GEN tran-
sitions inside the same subordinated process. In order

to make the whole process analytically solvable, we
further restrict the subordinated process inside any
non-overlapping activity cycle to be semi-Markov.

Assertion 2 - The subordinated process underlying
any non-overlapping activity cycle is semi-Markov if
at any firing inside the activity cycle of the dominant
transition all the memory variables of the GEN transi-
tion are reset. This fact happens if the transitions can
be partitioned into three classes (exclusive, competi-
tive and concurrent) and only exclusive or competitive
transitions are allowed to be GEN [13].

For a regeneration period without internal state tran-
sitions (Markovian or semi-Markovian regeneration
period) any of the enabled transitions can be chosen
to be the dominant one.

4 The Subordinated Process

At z = 7§ = 0 a dominant GEN transition ¢, (with
memory variable a, and firing time 7,) starts its ac-
tivity cycle in state i (a; = 0). The successive regen-
eration time point 77 is the end of the activity cycle
of t, according to the rules summarized in Table I.

Let Zi(z) (z > 0) be the process defined over the
states reachable from 4 during the activity cycle of
ty, and r’ the corresponding binary reward vector.
We assume in the following that Zi(z) is a semi-
Markov process according to Assertion 2. The sub-
ordinated process M(x) (Definition 4) coincides with
Z(z) when the initial state is state i with probability
1 (Pr{Z!(0) = i} = 1). The memory variable a, in-
creases at a rate r§ (which is either equal to 0 or to 1)
when Mi(z) = j.

We consider separately the following cases depend-
ing whether the dominant transition ¢, is of enabling
or age memory type.

4.1 Enabling type dominant transition

The dominant GEN transition ¢, is of enabling
type. The state space of the subordinated process is
partitioned into two subsets: R’ contains the states
in which ¢, is continuously enabled, and R contains
the states in which ¢, becomes disabled by the firing of
a competitive transition. The reward vector is equal
to 1 for j € R* and 0 elsewhere. The next regener-
ation time point occurs because one of the following
two mutually exclusive events:

e t, fires: this event can be formulated as a com-
pletion time problem [4] when the accumulated
reward (memory variable) a, reaches an absorb-
ing barrier equal to the firing requirement .

e t, is disabled: this event can be formulated as a
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Figure 1 - a) PN of the periodically self tested M/M/1/k;
b) corresponding reachability graph.

first passage time in the subset R, and there-
fore R® is made absorbing in the subordinated
process.

We further particularize the following two cases:

CASE A - no other GEN transitions are activated
during the activity cycle of ty. The subordinated
process Z'(x) is a CTMC.

Case A is the one considered in the DSPN model
defined in [3, 7, 20], and in the successive exten-
sions to general distributions elaborated in [8, 15].
All the examples reported in the mentioned pa-
pers belong to this case.

CASE B - during the activity cycles of t,, Assertion 2
is satisfied and the subordinated process is a semi-
Markov process.

The Markovian (semi-Markovian) regeneration
period belongs to Case A (Case B), where R’
contains only the initial state. The steady state
analysis of a MRSPN with semi-Markovian sub-
ordinated process has been considered in [9].

Example 1 - A periodically self-tested system.

A gystem is executing tasks according to a
M/M/1/k queue (Figure 1la). Place p; represents user
thinking and p- is the queue including the task under
service. t; is the exponential submitting time with
marking dependent rate m A, and ¢, is the exponen-
tial service time with rate u. p3 represents the system
waiting for the test and py the system under test. t3
is the deterministic testing interval, and ¢4 the expo-
nentially distributed test duration with rate . When
t5 fires the execution of the M/M/1/k queue is frozen
until the test is completed (4 fires). The state space

Figure 2 - Preemptive M/G/1/2/2 queue with two classes
of customers.

of the PN of Figure la with k& = 2 customers is in
Figure 1b. All the states can be regeneration states,
but not all the transitions provide regeneration time
points. States sy, s5 and sg are always regeneration
states from which a single EXP transition is enabled
(Case A). States s; or se or s3 are regeneration states
only when entered by firing ¢4, i.e. when the activity
cycle of the dominant GEN transition 3 starts. Dur-
ing the activity cycle of t3, the subordinated process
can move among $1, Sp and sz which therefore form
the subordinated CTMC (Case A).

If transitions ¢; and t» are GEN with enabling mem-
ory policy, the features of states s4, s5 and sg do not
change, while the subordinated process during the ac-
tivity cycle of t3 becomes semi-Markovian thus repre-
senting a Case B example.

4.2 Age type dominant transition

The situation in which the dominant GEN transi-
tion t, is of age type has been addressed for the first
time in [6]. The state space of the subordinated pro-
cess R’ contains all the states reachable during the ac-
tivity cycle of t,, and the disabling subset R° is empty
(the only criterion for the termination of the activity
cycle is the firing of ¢;). The reward vector is equal to
1 for the states j € R’ in which ¢, is enabled and 0 for
the states j € R? in which ¢, is not enabled. The firing
of t, can be formulated as a completion time problem
[4] when the accumulated reward (memory variable)
a, reaches the firing requirement v,. We further par-
ticularize the following two cases:

CASE C - During the activity cycle of t, no other
GEN transitions are activated and the subordi-
nated process is a reward CTMC.



CASE D - during the activity cycles of t,, Assertion
2 is satisfied and the subordinated process is a Re-
ward semi-Markov process.

Example 2 - Preemptive M/G/1/2/2 with different
customers

In this example, Cases C and D are mixed in a sin-
gle PN [5]. The PN of Figure 2a models a M/G/1/2/2
queue in which the jobs submitted by customer 2 have
higher priority and preempt the jobs submitted by cus-
tomer 1. The server has a prs service discipline. Place
p1 (p3) represents customer 1 (2) thinking, while place
p2 (p4) represent job 1 (2) under service. Transitions
t; and t3 are EXP and represent the submission of a
job of type 1 or 2, respectively. t» and ¢, are GEN
transitions, and represent the completion of service of
a job of type 1 or 2, respectively. A prs service disci-
pline is modeled by assigning to ¢» and #4 an age mem-
ory policy. The inhibitor arc from p4 to ¢ models the
described preemption mechanism: as soon as a type 2
job joins the queue the type 1 job eventually under ser-
vice is interrupted. The reachability graph of the PN
of Figure 2a is in Figure 2b. Under a prs service, after
completion of the type 2 job, the interrupted type 1 job
is resumed continuing the new service period from the
point reached just before the last interruption. From
Figure 2b, it is easily recognized that s;, s» and sj3
can all be regeneration states, while s4 can never be a
regeneration state (in s4 a type 2 job is always in ex-
ecution so that its corresponding memory variable as
is never 0). Only exponential transitions are enabled
in s; and the next regeneration states can be either
sy or s3 depending whether ¢; or t3 fires first. From
state s3 the next regeneration marking can be either
state s; or so depending whether during the execution
of the type 2 job a type 1 job does require service (but
remains blocked until completion of the type 2 job) or
does not. The subordinated process is a CTMC, and
belongs to Case C. From s, the next regeneration state
can be only s1, but multiple cycles (s - s4) can occur
depending whether type 2 jobs arrive to interrupt the
execution of the type 1 job. The subordinated process
is a SMP (t4 is GEN), and belongs to case D.

5 Unified Transient Analysis

The global and local kernels K(z) and E(z) can be
evaluated row by row. In this section, we provide an
unified analytical procedure for determining in closed
form the entries of a generic row %, given that ¢ is
a regeneration marking whose subordinated process
is a semi-Markov reward process as described in the
previous section.

Let Q'(z) = [Qi,(z)] be the kernel of the subor-
dinated semi-Markov process (Z¢(z)). Zi(x) starts in

marking M; (Z*(0) = i), so that the initial probability
vector is Vi = 1[0, 0, ..., 1;, ..., 0] (a vector with all
the entries equal to 0 but entry 7 equals to 1). For no-
tational convenience we do not renumber the states in
Z(x) so that all the subsequent matrix functions have
the dimensions (N x N) (cardinality of R(My)), but
with the significant entries located in position (k, £)
only, with k,¢ € R* U R°*. We denote by H the time
duration until the first embedded time point in Z%(z)
from time z = 0.

Let us fix the value of the firing requirement v, =

w, and let us define the following matrix functions
Pi(z,w), Fi(z,w), Di(z,w) and A®:

Pi,(z,w) = Pr{Z(z) =L € R', 11 > x|
ZH0) =k € R, vy, =w}

F,ié(af;,w) = Pr{Zi(r{ ")=(€e R, 1} <u, t, fires |
ZH0) =k € R, vy, =w}

Di,(z,w) = P?"{Zi(Tf) =Le Rt 1 <=
Z'0) =k e R, v, =w}

Ail, = Pr{next tangible marking is /|
current marking is k, ¢, fires }
NG
By the above definitions, the entries P},(z,w) and
F},(z,w) are significant only for k, { € R’ and are
0 otherwise; the entries Di,(x,w) are significant for
k € R* and ¢ € R, and are 0 otherwise.

e P},(z,w) is the probability of being in state ¢ €
R at time x before absorption either at the bar-
rier w or in the absorbing subset R°, starting in
state k € R® at 2 = 0.

e F},(z,w) is the probability that ¢, fires from state
¢ € R (hitting the absorbing barrier w in £) be-
fore z, starting in state k € R* at x = 0.

e Di,(z,w) is the probability of first passage from
a state k € R’ to a state £ € R°? before hitting
the barrier w, starting in state k € R’ at z = 0.

e A' is the branching probability matrix and rep-
resents the successor tangible marking ¢ that is
reached by firing ¢, in state k € R’ (the firing of
t, in the subordinated process M®(x), can only
occur in a state k in which i, = 1).

From (7), it follows for any x:

> [Piy(z,w) + Fiy(z,w) + Diy(z,w)] =1
(e R'UR®:



Given that G,4(w) is the cumulative distribution
function of the r.v. ~, associated to the transition
tq, the elements of the i-th row of matrices K(z) and
E(z) can be expressed as follows, as a function of the
matrices P¥(z, w), F(z,w) and D(z,w):

Kij(z) = / Z ir (2, w Ak]

=0 jeri

Dij(,w)|dG,(w) (g)

E;j(z) = /DO Piij(ac,w) dGy(w)

w=0

In order to avoid unnecessarily cumbersome nota-
tion in the following derivation, we neglect the ex-
plicit dependence on the particular subordinated pro-
cess Z'(z), by eliminating the superscript i. It is how-
ever tacitly intended, that all the quantities r, Q(z),
P(z,w), F(z,w), D(z,w), A, R and R refer to the
specific process subordinated to the regeneration pe-
riod starting from state i.

5.1 Derivation of P(z,w),
D(z,w)

The derivation of these matrix functions is de-

scribed in more detail in [21, 6] and follows the same

pattern of the completion time analysis presented in
[19, 4].

F(z,w) and

Theorem 1 - For the firing probability Fye(x,w) the
following double transform equation holds:

1-Qy(s +
Fpi*(s,v) = ke i | SQf 5;87« ore)] +
K 9)

Z Qru(s + vry) E (s, v)

ueER

Proof - Conditioning on H = h and 7, = w, let us
define:

Fy(z,w|H =h) =

6MU<$—B> if:hr, >w
" (10)
Z kou Fye(x — hyw — hry,)
uER ko
if:hr, <w

n (10), two mutually exclusive events are identi-
fied. If i # 0 and hry > w, a sojourn time equals to

w is accumulated before leaving state k, so that the fir-
ing time (next regeneration time point) is 71 = w/ry, .
If hr;, < w then a transition occurs to state u with
probability dQp,(h)/dQr(h) and the residual service
(w — hry) should be accomplished starting from state
u at time (z — h). Taking the LST transform with re-
spect to = (denoting the transform variable by s), the
LT transform with respect to w (denoting the trans-
form variable by v) of (10) and unconditioning with
respect to H, (10) becomes (9). O

Theorem 2 - The state probability Py¢(x,w) satisfies
the following double transform equation:

s[1—Qy(s+uvrg)] .
v(s + vry) (11)
Z Qr, (s + vrg) P (s,v)

ueER

P]:E*(Sav) = Ope

Proof - Conditioning on H = h , and vy, = w let us
define:

Pyy(z,w|H=h) =

( Oke {U(x) - U <x - :)—k>]
if:hr, > w
oke [U ()d ((h h)] +
ku
UGZR A0k (h) P,(x — hyw — hry)
L if:hr, < w
(12)

The derivation of the matrix function P(z,w) based
n (12) follows the same pattern as for the function
F(z,w) [21]. O
Theorem 3 - The probability Dy(xz,w) of first pas-
sage into RS satisfies the following double transform
equation:

Dij(s,v) = leNl(s + vrg) +
Z Qrn(s + vr) D5 (s,v)

uER

(13)

Proof - Conditioning on H = h , and vy, = w let us
define:



Dyy(z,w|H =h) =

(0 if:hry, > w
dQre(h) 0
) Qi )5@(‘” (hh”
Z ko: D we(z — h,w — hry)
L if:hrp < w
(14)

The derivation of the matrix function D(z,w)
based on (14) follows the same pattern as for the func-
tion F(z,w) [21]. O

5.2 The subordinated process is a Reward
CTMC

Let us consider the particular case in which the
subordinated process Z(z) is a reward CTMC with
infinitesimal generator A = {ax/}. Let us suppose
that the states numbered 1,2,...,m belong to R
(1,2,...,m € R) and the states numbered m + 1, m +
2,...,n belong to R°* (m+1,m+2,...,n € R°). By
this ordering of states A can be partitioned into the
B | C
U; | U,
tains the intensity of the transitions inside R, and C
contains the intensity of the transitions from R to R°.
U; and U, refer to the portion of the state space not
involved in the current subordinated marking process,
and are, thus, not influential for the problem at hand.
For this reason, their entries can be assumed equal to
7€ro.

following submatrices A = where B con-

Corollary 4 - The entries of the matriz functions
Pyy(z,w), Fre(z,w) and Dye(z,w), in double trans-
form domain, take the following expression:

(s +org) Fry*(s,v) = ke e + Z aru Frg* (5,0)

(s +vrg) P (s,v) = ke % + Z aru Py (s, v)

uER
~ % ~k
(s +vrg) Dij(s,v) = V + Z agy D3 (s,0)
uER
(15)

Proof - The kernel (transition probability matrix) of
the given CTMC can be written as:

AR (1 — em®y  if k£ ¢
—Qa
Qre(z) = H (16)
0 if:k =1/
and in LST domain:
_ Gkt ifik £ ¢
- s —a
Qke(s) = H (17)
0 if:k =14
with ark = = e pinper g, Okt

By substituting (17) into (11), (9) and (13), the
corollary is proved.O
Equations (15) can be rewritten in matrix form:

F~*(s,v) = (sI+vR-B)™'R
P~ (s,v) = s (sI+vR —-B)™!
v
~%k 1 —1
D~ (s,v) = = (sI+vR-B) 'C
v

where I is the identity matrix and R is the diagonal
matrix of the reward rates (ry); the dimensions of I,
R, B, F and P are (m x m), and the dimensions of C
and D are (m x (n —m)).

6 Numerical Results

A numerical derivation of the transient state prob-
abilities of the M/D/1/2/2 system described in Ex-
ample 2 of Section 4.2 is provided. We consider in
details the particular case in which the GEN transi-
tions t» and t4 are assumed to be deterministic with
duration «, while ¢; and t3 are EXP with parameter
A [6]. The reachability graph in Figure 2b comprises
4 states. Let us build up the K™~(s) and E™~(s) ma-
trices row by row, taking into consideration that state
s4 can never be a regeneration marking since a type 2
job with nonzero age memory is always active.
i) - The starting regeneration state is s1 - No deter-
ministic transitions are enabled: the state is Marko-
vian and the next regeneration state can be either
state ss or s3. The nonzero elements of the 1-st row
of matrices K™~ (s) and E™~(s) take the form:

A A
B = s Kb = o
S
Eri(s) =



ii) - The starting regeneration state is so - Transition
t, is deterministic so that the next regeneration time
point is the epoch of firing of ¢5. The subordinated
process M?(z) comprises states sy and s4 and is a
semi-Markov process (Case D) since t4 is determinis-
tic. The kernel of the semi-Markov process is:

o 0 0 0

o

0 0
Q~(s) = s +
0 0 0

0 e 0 0

A

o

The reward vector is (2 = [0, 1, 0, 0], and the only
nonzero entry of the branching probability matrix is
Ag) = 1. Applying Equations (9) and (11) we obtain
the following results for the nonzero entries:

~ % 1
Fgg™(s,w) = S+w+X— e 5@

. s/w
Pgg™(s,w) = S+w+X— e 5@

o A1 — e 3% /w
Pit(s,w) = /

s+w+ A— e 5™

Applying (8), and after inverting the LT transform
with respect to w, the LST matrix functions K~ (s)
and E~(s) become:

K(s) = entea-ae™)
8[1 _ e—a(s—i-)\— )\37‘15)]
ES =
23(5) S+ X— e s
N /\(1 _ e—as) [1 _ e—a(s—i—)\— )\37“5)]
E5i(s) =

s+ X—de—as

iii) - The starting regeneration state is s3 - The sub-
ordinated process M?(z) is a CTMC (Case C), hence
the results of Section 5.2 apply. The infinitesimal gen-
erator of the CTMC is:

00 0 O
00 0 O
A= 0 0 =X A
00 0 O
and the reward vector is r® = [0,0,1,1]. The

branching probabilities arising from the firing of ¢4

are Ag) =1 and Ag) = 1. Applying the first and
second equation in (15), the nonzero entries take the
form:

o 1
F'low) = Sxve
A
o =
34 (S,’U}) (s+w)(s+)\+w)
s
Py - 5
33 (%) w(s + A+ w)
s s
P34 (S,UJ) =

w(s +w)(s + A+ w)

Inverting the above equations with respect to w,
taking into account the branching probabilities, yields:

Ki(s) = e o+

Kp(s) = e®(1—eo)

Eg3(s) - f_ (1 - el

Bifs) = oy == e e

The time domain probabilities are calculated by
first deriving matrix V™~ (s) from (6) using a standard
package for symbolic analysis (e.g. MATHEMAT-
ICA), and then numerically inverting the resulting
LST expressions resorting to the Jagerman’s method
[18]. The plot of the state probabilities versus time for
states s; and s4 is reported in Figure 3, for a deter-
ministic service duration a = 1 and for two different
values of the submitting rate A = 0.5 and A = 2.

7 Conclusion

The GDT_SPN model, whose semantics has been
discussed in [1], provides a natural environment for the
definition of a class of analytically tractable MRSPN’s.
The paper has considered the case of GDT_SPN with
non-overlapping activity cycles, such that the mark-
ing process subordinated to the activity cycle of the
dominant transition is a reward semi-Markov process.
The inclusion of a reward variable in the description of
the subordinated process has proven to be very effec-
tive technique for extending the descriptive power of
the model to age memory policies, and for providing
a unified procedure for the analytical solution.
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Figure 3 - Transient behavior of the state probabilities
for the preemptive M/D/1/2/2 system with different cus-
tomers.
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