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Abstract

The recent literature on Markov Regenerative Stochas-

tic Petri Nets (MRSPN) assumes that the random

�ring time associated to each transition is resampled

each time the transition �res or is disabled by the �ring

of a competitive transition. This modeling assumption

does not cover the case of preemption mechanisms of

repeat identical nature (pri). In this policy, an inter-

rupted job must be repeated with an identical require-

ment so that its associated random variable must not

be resampled. The paper investigates the implication

of a pri policy into a MRSPN and describes an ana-

lytical procedure for the derivation of expressions for

the transient probabilities.

Key words: Stochastic Petri Nets, Semi-Markov

Reward Models, Markov regenerative processes, pre-

emptive repeat identical policy.

1 Introduction

The analysis of stochastic systems with non-

exponential timing is of increasing interest in the liter-

ature and requires the development of suitable mod-

eling tools. Choi et al. have shown in [8] that the

marking process underlying a Stochastic Petri Net

(SPN), where at most one generally distributed transi-

tion is enabled in each marking, belongs to the class of

Markov Regenerative Stochastic Processes (MRGPs).

For this reason they referred to this new class of

Petri nets as Markov Regenerative Stochastic Petri

Net (MRSPN). Following the line opened in [8], di�er-

ent approaches have been proposed to deal with non-

exponential systems [11, 6, 14, 9].

The analysis technique proposed for this class of

models, consists in identifying a sequence of time

points at which it is possible to forget the past history

of the process. These points, indicated as regenera-

tion points, are such that the future evolution of the

stochastic process only depends on the state entered

when a regeneration time point occurs. Based on the

sequence of the regeneration time points, an analytical

formulation of the process is available [10, 8].

The models discussed in the previous references

require that the generally distributed (or determin-

istic) transitions are assigned a �ring policy of en-

abling memory type [1]. Bobbio and Telek [15] have

introduced the class of AgeMRSPN, in which a gen-

eral transition can be associated an age memory pol-

icy. The enabled/disabled status of the transition

is marked by a binary reward variable, so that the

process subordinated to two consecutive regeneration

points can be a semi-Markov reward process. AgeMR-

SPN have proved to be useful in representing situ-

ations in which an interrupted job is resumed with-

out loss of the previous work. In [16], a computa-

tionally e�ective approach to the steady state analysis

of AgeMRSPN with subordinated CTMC is proposed.
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The technique is applied to the steady-state solution

of a preemptive M/D/1/(n+m)/(n+m) queueing sys-

tem with two classes of customers.

In all the previous literature on MRSPN [9, 3],

based on the semantics exposed in [1], it has been

implicitly assumed that, for an enabling memory tran-

sition, the associated random �ring time is resampled

each time the transition �res or is disabled by the �r-

ing of a competitive transition. This assumption can-

not include the case of a pri policy [13] in which an

interrupted job must be repeated with an identical re-

quirement.

The paper is aimed at investigating the conditions

under which a pri policy can be modeled by means of

the class of MRSPN. Finally, an analytical procedure

for the derivation of expressions for the transient and

steady state probabilities are provided.

A pratical situation, in which a pri policy is of value

[7], arises in connection with the execution of jobs

whose duration is a random variable of known dis-

tribution. Selecting a job corresponds to picking up a

sample from the job duration distribution. If the ex-

ecution is suspended and restarted a processing time

identical to the one of the interrupted job is required.

The paper is organized as follows. Section 2 intro-

duces the concept of a pri policy in connection with

MRSPN. Section 3 characterizes the process subordi-

nated to a dominant pri transition. Section 4 presents

the transient solution of a preempitive M/G/1/2/2

queueing system with two classes of customers, one of

which behaves according to a pri mechanism.

2 pri memory policy

We adopt very standard notation. A marked Petri

Net is a tuple PN = (P; T

r

; I; O; H;M

0

), where: P is

the set of places, Tr the set of transitions, I, O and H

are the input, the output and the inhibitor functions,

respectively, andM

0

is the initial marking. The reach-

ability set RS(M

0

) is the set of all the markings that

can be generated from the initial marking M

0

. The

marking process M(t) denotes the marking occupied

by the PN at time t.

Proposition 1 A regeneration time point �

�

n

in the

marking process M(t) is the epoch of entrance in a

marking M

n

in which the Markov property holds.

To provide an analytical formulation of the stochastic

process underlying a MRSPN, the following matrix

valued functions (V(t) = [V

ij

(t)];K(t) = [K

ij

(t)] and

E(t) = [E

ij

(t)]) are de�ned on the reachability set

RS(M

0

) [10, 8]:

V

ij

(t) = PrfM(t) = j jM(�

�

0

) = ig (1)

K

ij

(t) = PrfM(�

�

1

) = j ; �

�

1

� tjM(�

�

0

) = ig

E

ij

(t) = PrfM(t) = j ; �

�

1

> tjM(�

�

0

) = ig

Matrix V(t) is the transition probability matrix and

provides the probability that the stochastic process

M(t) is in marking j at time t given it was in mark-

ing i at t = 0. The matrix K(t) is the global kernel

of the MRGP and provides the cdf of the event that

the next regeneration time point is �

�

1

and the next

regeneration marking is M

1

= j given marking i at

�

�

0

= 0. Finally, the matrix E(t) is the local kernel

since it describes the behavior of the marking pro-

cess M(t) between two consecutive regeneration time

points. The generic element E

ij

(t) provides the prob-

ability that the process is found in state j at time t

starting from i at �

�

0

= 0 before the next regeneration

time point.

The transient behavior of the MRSPN can be evalu-

ated by solving the following generalized Markov re-

newal equation (in matrix form) [10, 8]:

V(t) = E(t) + K � V(t) (2)

where K � V(t) is a matrix, whose (i; j)-th entry is:

[K � V(t)]

ij

=

X

k

Z

t

0

dK

ik

(y)V

kj

(t� y) (3)

Equation (2) implies that the analysis of the whole

process can be decomposed into the analysis of the

marking process between any two successive regener-

ation points. The restriction of M(t) between two

successive regeneration points is referred to as the sub-

ordinated process.

A transition tr

g

is associated with a memory vari-

able a

g

[1]. a

g

is a functional that depends on the time

during which tr

g

has been enabled and keeps track of

the amount of the elapsed time. The functional de-

pendence of the memory variable on the past enabling

time of the transition is named the memory policy.

The semantics of di�erent memory policies has been

discussed in [1] where three alternatives have been pro-

posed referred to respectively as Resampling memory,

Enabling memory and Age memory policy.

Resampling memory, and Enabling memory policies

can be classi�ed as repeat type policies since the age

variable is reset when the transition is disabled. On

the contrary, the Age memory policy is a resume type

policy since the memory variable is reset only when

the transition �res while its value is maintained if the

transition is disabled and then enabled again. In order

to track the enabling/disabling condition of a gener-

ally distributed transition tr

g

, in [5] a binary reward

variable was introduced according to the following val-

ues:

� r

g

k

= 1 if tr

g

is enabled in marking k;

� r

g

k

= 0 if tr

g

is not enabled in marking k.

In this setting, the value of the memory variable can

be computed as the accumulated reward and the �r-

ing of a transition can be formulated as a comple-

tion time problem [13, 2]. A transition �res when the

elapsed time accumulated in the corresponding mem-

ory variable reaches a threshold 

g

equal to the value

of the random �ring time initially sampled from its

cdf. Therefore, in order to completely de�ne the �ring

conditions of a transition tr

g

at a given time t, two

elements must be known: the value of the memory

variable a

g

at time t, and the value of the threshold



g

.
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Figure 1: Pictorial representation of di�erent �ring

time sampling policies

All the previous literature on MRSPN [9, 3], was

based on the semantics proposed in [1] where it

was implicitly assumed that in connection with both

repeat type policies (resampling and enabling), the

threshold 

g

is resampled each time the memory vari-

able is reset (either because the corresponding transi-

tion �res or is disabled). The resulting MRSPN model

cannot keep memory of the threshold value (�ring

time) of any transition beyond its current enabling pe-

riod. According to this semantics, the repeat memory

policies is suited to represent a preemptive repeat dif-

ferent (prd) execution mechanism in which the thresh-

old value is sampled each time the transition �res or

is disabled. The age memory policy is suited to repre-

sent a preemptive resume (prs) execution mechanism

where the threshold value is sampled only when the

transition �res, and, if the transition is disabled be-

fore the threshold is reached, then the value of the age

variable is maintained.

This modeling framework was, however, incon-

sistent with the pri preemption policy. If a pri

policy needs to be modeled, the threshold value

must be maintained identical across successive en-

abling/disabling cycles, until the transition �res.

Figure 1 gives a pictorial description of the intro-

duced �ring time sampling strategies. In the picture,

we indicate with E, D, F the enabling, disabling and

�ring time points of a transition, respectively. In the

prd and prs cases the memory variable and the mem-

ory policy completely de�ne the �ring process of the

transition. In the pri case, instead, the knowledge of

these quantities is not enough, because, the value of

the previously sampled threshold must be remembered

after the transition is disabled (time point D).

In order to cover this case, the rule by which the

threshold of a transition has to be sampled must be

speci�ed. The sampling policy is relevant only in con-

nection with repeat type policies, and we consider the

two classical alternatives [13]:

� prd sampling - the threshold (�ring time) is sam-

pled each time the age variable is reset;

� pri sampling - the threshold (�ring time) is sam-

pled only after the �ring of the transition.

The combination of the memory policy with the

sampling policy completely speci�es the execution of

the net. At the entrance in a new tangible mark-

ing, the completion time is computed for each enabled

transition, given the memory variable and the sampled

threshold. The transition with minimal completion

time is the one which �res.

De�nition 1 - A transition is dormant in those

markings in which the corresponding age variable is

equal to zero and is active in those markings in which

the age variable is greater than zero. The activity cy-

cle of a transition is the period of time in which a

transition is active between two dormant periods.

De�nition 2 - A transition is sampled if the thresh-

old value of its random �ring time has already been

set up. The sampled cycle of a transition is the pe-

riod of time during which the threshold value is not

resampled.

For a prd sampling policy, sampled and activity cy-

cles are coincident. For a pri sampling policy sampled

and activity cycles are di�erent: the sampled cycle is

the interval of time between the �rst time the transi-

tion is enabled after it was �red, and the time instant

in which it �res again. The sampled cycle strictly

contains the activity cycle. A transition can be dor-

mant but its threshold can be sampled, thus causing

a conditional dependence in the underlying marking

process.

In either cases, the de�nition of the sampling poli-

cies assures that at the time point in which a threshold

is resampled, the memory variable is zero. In the light

of the previous discussion, we can particularize Propo-

sition 1 by stating that a regeneration time point �

�

n

is the epoch of entrance in a markingM

n

in which all

the memory variables are zero and all the thresholds

are not sampled.

The prd sampling policy is the one implicitly as-

sumed in the previous literature and its behavior has

been completely characterized in [5]. The combi-

nation of the repeat type memory policies with the

pri sampling policy is described in the following:

� pri Resampling Memory - The activity cycle ends

at the �rst �ring of any transition (including tr

g

itself), while the sampled cycle ends only when tr

g

�res. Thus the same sampled value is maintained

identical over successive activity cycles.

� pri Enabling Memory - The activity cycle starts

as soon as tr

g

becomes enabled, and ends either

when tr

g

�res, or when it becomes disabled by the

�ring of a competitive transition. The sampled

cycles ends only when tr

g

�res.

The above features can be compared with prd and prs

policies in the following table:



Memory Resam. Enab. Age Resam. Enab.

policy prd prd (prs) pri pri

end act. every firing / firing every firing /

cycle firing disabl. tr

g

of tr

g

firing disabl. tr

g

sampled every firing / firing firing firing

cycle end firing disabl. tr

g

of tr

g

of tr

g

of tr

g

reach. init. reg. markings in any reach. any reach. any reach.

markings marking ena. subset marking marking marking

memory contin. contin. increas. / increas. increas.

variable increas. increas. constant & restart & restart

Table I - Characterization of the activity cycle of

transition tr

g

For a transition with exponentially distributed �r-

ing time the prd Resampling Mem-

ory, the prd Enabling Memory and the Age Memory

policies have the same e�ect, due to the memoryless

property. We denote these transitions as EXP tran-

sitions. Instead, even for exponential �ring times the

pri policies behave di�erently from the correspond-

ing prd ones. The pri Resampling Memory and the

pri Enabling Memory destroy the Markov property

(except at very special sampling points) due to the

further requirement that the threshold must be re-

membered. In the following we indicate as general

(GEN) transitions both the generally distributed tran-

sitions (including the deteministic ones) and the expo-

nentially distributed transitions of pri type.

3 Transient analysis of pri enabling

type transition

In order to deal with a class of solvable models,

we focus on MRSPN with non overlapping sampled

cycles.

De�nition 3 - Sampled cycles are non-overlapping if

there exists a dominant transition whose sampled cycle

strictly contains the sampled cycles of all the active

transitions.

De�nition 4 - A MRSPN with non-overlapping sam-

pled cycles is a MRSPN in which all the regeneration

periods are dominated by a single transition: any two

successive regeneration time points correspond to the

start and to the end of the sampled cycle of the domi-

nant transition.

De�nition 4, includes the possibility that the sam-

pled cycles of GEN transitions are completely con-

tained into the sampled cycle of the dominant one,

hence allowing the simultaneous enabling of di�erent

GEN transitions inside the same subordinated pro-

cess. However, an analytic derivation is possible if the

subordinated process is restricted to be a semi-Markov

reward process. Assuming that a dominant transition

exists, the prd enabling type and age type dominant

transition cases have been addressed for the �rst time

in [8, 5], respectively.

In the following we concentrate on the pri Enabling

Memory type dominant transition case and provide

the transient analysis solution, assuming a subordi-

nated semi-Markov reward process. The described

method includes the analysis of the pri Resampling

Memory dominant transition as a special case.

Let us suppose that a regeneration period starts at

time t = 0 frommarking i and is dominated by a tran-

sition tr

g

with memory variable a

g

and random �ring

time 

g

. Transition tr

g

is pri Enabling memory, so

that the next regeneration point is the �ring time of

tr

g

itself. The process subordinated to the dominant

transition is a semi-Markov process. Since the global

and local kernels K(t) and E(t) can be evaluated row

by row, given the above assumptions, we provide an

analytical procedure for determining the non-zero en-

tries of the i-th row.

To better understand the developed mathematical

formalism, we summarize the notation:

� 
: reachability set RS(M

0

);

� n: cardinality of the reachability set;

� r

i

: vector grouping the reward rates associated to

tr

g

during its sampled cycle;

� R

i

: subset of 
 grouping the states reachable

from state i inside the sampled cycle of tr

g

in

which tr

g

is enabled: for any k 2 R

i

, the reward

rate is equal to 1 and a

g

is stricly increasing;

� h: cardinality of R

i

;

� R

ci

: subset of 
 in which tr

g

is not enabled, but

still sampled: for any k 2 R

ci

, the reward rate is

equal to 0 and a

g

is not increasing;

� m: cardinality of R

ci

;

� R

si

: subset of 
 in which tr

g

is not enabled and

not sampled: 
 = R

i

+R

ci

+R

si

;

� Z

i

(t): right-continuous subordinated semi-

Markov process de�ned over R

i

+ R

ci

;

� Q

i

(t) = [q

i

k`

(t)]: kernel of the subordinated semi-

Markov process;

� w: threshold value sampled from the �ring time

r.v. 

g

associated with transition tr

g

.

Z

i

(t) starts at time t = 0 in marking M

i

with

probability 1, so that the initial probability vector is

V

i

0

= [0; 0; : : : ; 1

i

; : : : ; 0] (a vector with all the en-

tries equal to 0 except entry i, which equals 1).

For notational convenience we renumber the states

in 
 so that the states numbered 1; 2; : : :; h belong

to the subset R

i

, in which the dominant pri GEN

transition tr

g

is enabled and the states numbered

h + 1; h + 2; : : : ;m + h belong to R

ci

in which tr

g

is disabled. By this ordering of states Q

i

(t) can be

partitioned into the following submatrices Q

i

(t) =

Q

1

(t) Q

2

(t)

Q

3

(t) Q

4

(t)

where Q

1

(t) describes the tran-

sitions inside R

i

, Q

2

(t) from R

i

to R

ci

, Q

3

(t) from

R

ci

to R

i

and Q

4

(t) inside R

ci

. We denote by H the



time duration until the �rst embedded time point in

Z

i

(t) starting from state k at time t = 0, and by Q

i

k

(t)

the cdf of H (Q

i

k

(t) =

P

h+m

j=1

Q

i

kj

(t)).

Let us �x the value of the �ring requirement 

g

=

w, and let us de�ne the following matrix functions

P

i

(t; w), F

i

(t; w) and �

i

of dimension n� n:

P

i

k`

(t; w) = PrfZ

i

(t) = ` ; �

�

1

> t (4)

jZ

i

(0) = k ; 

g

= wg

F

i

k`

(t; w) = PrfZ

i

(�

��

1

) = ` ; �

�

1

� t; tr

g

�res(5)

jZ

i

(0) = k ; 

g

= wg

�

i

k`

= Prf next tangible marking is ` (6)

j current marking is k; tr

g

�res g

By the above de�nitions

� P

i

k`

(t; w) is the probability of being in state ` at

time t before absorption at the barrier w, starting

in state k at t = 0.

� F

i

k`

(t; w) is the probability that tr

g

�res from

state ` (hitting the absorbing barrier w in `) be-

fore t, starting in state k at t = 0. For ` 2 R

ci

,

F

i

k`

(t; w) = 0.

� �

i

is the branching probability matrix and rep-

resents the successor tangible marking ` that is

reached by �ring tr

g

in state k 2 R

i

(the �ring of

tr

g

in the subordinated process M

i

(t), can only

occur in a state k in which r

i

k

= 1).

From (5) and (6), it follows that for any t:

X

`2R

i

[P

i

k`

(t; w) + F

i

k`

(t; w) ] = 1

Given that G

g

(w) is the cumulative distribution

function of the �ring time r.v. 

g

associated with tr

g

,

the elements of the i-th row of matricesK(t) and E(t)

can be expressed as follows, as a function of the ma-

trices P

i

(t; w) and F

i

(t; w):

K

(ij)

(t) =

Z

1

w=0

X

k2R

i

F

i

ik

(t; w)�

i

kj

dG

g

(w)

(7)

E

(ij)

(t) =

Z

1

w=0

P

i

ij

(t; w) dG

g

(w)

where the notation K

(ij)

(t) and E

(ij)

(t) refers to the

modi�ed numbering of the states.

E F

E: enabling point
D: disabling point
F: firing point

E D E D
time

P21 P21

P1 P1 P2 P1 F1

P12P12 P12

P2

w

Figure 2: A sampled path of the subordinated process

Z(t)

In order to avoid unnecessarily cumbersome nota-

tion in the following derivation, we neglect the ex-

plicit dependence on the particular subordinated pro-

cess Z

i

(t), by eliminating the superscript i. It is how-

ever tacitly intended, that all the quantities r, Q(t),

P(t; w), F(t; w),�, R and R

c

refer to the speci�c pro-

cess subordinated to the regeneration period starting

from state i.

3.1 Derivation of P(t; w) and F(t; w)

A regeneration period of a pri Enabling Memory

type transition (tr

g

) starts from a state (k) in which

tr

g

is enabled (k 2 R) and completes when tr

g

�res.

The reward rate is equal to 1 for all the states inside

R and the age variable a

g

is continuously increasing.

a

g

is reset to 0 when Z(t) exits R to enter R

c

.

The subordinated process consists of a random

number of unsuccessful activity cycles inside R, each

one followed by period inside R

c

in which tr

g

is dis-

abled, �nally concluded by a successful activity cycle,

at the end of which tr

g

�res. A subordinated process of

this kind can be considered as aMRSPN with a domi-

nant deterministic transition of prd Enabling Memory

type whose �ring time equals the sampled work re-

quirement of tr

g

.

Figure 2 shows a possible realization of Z(t), as-

suming that the sampled period starts at time t = 0

and tr

g

is enabled. The following cases can occur:

� the process is inside an active cycle R;

� tr

g

has already �red;

� tr

g

is disabled and Z(t) enters R

c

;

� Z(t) is in R

c

;

� Z(t) leaves R

c

and enters R (tr

g

is enabled again).

The subordinated MRGP can thus be described by

the following matrix functions, where T

1

denotes the

time point until Z(t) visits R and T

2

denotes the time

point until Z(t) visits R

c

.

P1

k`

(t; w) = PrfZ(t) = ` 2 R ; �

�

1

> t ; T

1

> t

jZ(0) = k 2 R ; 

g

= wg (8)

F1

k`

(t; w) = PrfZ(�

�

1

�

) = ` 2 R ; �

�

1

� t ; T

1

> �

�

1

jZ(0) = k 2 R ; 

g

= wg (9)



P12

k`

(t; w) = PrfZ(T

1

) = ` 2 R

c

; �

�

1

> T

1

; T

1

< t

jZ(0) = k 2 R ; 

g

= wg (10)

P2

k`

(t) = PrfZ(t) = ` 2 R

c

; T

2

> t jZ(0) = k 2 R

c

g

(11)

P21

k`

(t) = PrfZ(T

2

) = ` 2 R; T

2

< t jZ(0) = k 2 R

c

g

(12)

By the above de�nitions it follows that:

� P1

k`

(t; w) is the probability of being in state ` 2

R at time t before absorption at the barrier w or

leaving R, starting in state k 2 R at t = 0.

� F1

k`

(t; w) is the probability that tr

g

�res from

state ` 2 R before t, suppose that the subordi-

nated process never left R up to t, starting in

state k 2 R at t = 0.

� P12

k`

(t; w) is the probability that the subordi-

nated process left R before time t and before ab-

sorption at the barrier w to reach state ` 2 R

c

(i.e. ` is the �rst visited state once entered R

c

),

assuming to start in state k 2 R at t = 0.

� P2

k`

(t) is the probability of being in state ` 2 R

c

at time t before leaving R

c

, starting in state k 2

R

c

at t = 0.

� P21

k`

(t) is the probability that the subordinated

process left R

c

before time t and ` is the �rst

visited state in R, starting in state k 2 R

c

at

t = 0.

According to the previous de�nitions, the following

equalities hold:

P1

k`

(t; w) + P12

k`

(t; w) + F1

k`

(t; w) = 1

P2

k`

(t) + P21

k`

(t) = 1

Theorem 1 - The LST transform of the matrix func-

tion P(t; w) satis�es the following equation:

P

�

(s; w) = [I � P12

�

(s; w) P21

�

(s)]

�1

(13)

[P1

�

(s; w) +P12

�

(s; w) P2

�

(s)]

where the matrix functions in the r.h.s are derived in

the following lemmas.

Lemma 1 - The double LST-LT transform of the

probability function P1

k`

(t; w) satis�es the following

equation:

P1

��

k`

(s; v) = �

k`

s [1 � Q

�

k

(s + v) ]

v(s + v)

+ (14)

X

u2R

Q

�

ku

(s + v)P1

��

u`

(s; v)

Proof of Lemma 1 - The proof of the lemma follows

the same procedural line developed in [13, 2] for the

analysis of the distribution of the completion time in

a semi-Markov reward process. Conditioning on H =

h , and 

g

= w let us de�ne:

P1

k`

(t; w jH = h =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

�

k`

[U (t) � U (t� w)]

if : h � w

�

k`

[U (t) � U (t� h)] +

X

u2R

dQ

ku

(h)

dQ

k

(h)

P1

u`

(t� h;w � h)

if : h < w

(15)

where U (t) denotes the unit step function.

If h < w then a transition occurs to state u with

probability dQ

ku

(h)=dQ

k

(h) and the residual �ring

time (w � h) should be accomplished starting from

state u at time (t � h). Taking the LST transform

with respect to t (denoting the transform variable by

s), the LT transform with respect to w (denoting the

transform variable by v) of (15) and unconditioning

with respect to H, (15) becomes (15). 2

Lemma 2 - The double LST-LT transform of the

probability function P12

k`

(t; w) satis�es the following

equation:

P12

��

k`

(s; v) =

1

v

Q

�

k`

(s+ v) +

X

u2R

Q

�

ku

(s+ v)P12

��

u`

(s; v)

(16)

Proof of Lemma 2 - Conditioning on H = h , and



g

= w let us de�ne:

P12

k`

(t; w jH = h) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0 if : h � w

dQ

k`

(h)

dQ

k

(h)

U (t� h)+

X

u2R

dQ

ku

(h)

dQ

k

(h)

P12

u`

(t� h;w� h)

if : h < w

(17)

The derivation of P12(t; w) based on (17) follows the

same pattern [17] as for P1(t; w) in Lemma 1. 2

Lemma 3 - The LST transform of the probability

function P2

k`

(t) satis�es the following equation:

P2

�

k`

(s) = �

k`

[1�Q

�

k

(s)] +

X

u2R

c

P2

�

u`

(s) Q

�

ku

(s)

(18)

Proof of Lemma 3 - Lemma 3 can be directly derived

from Lemma 1, by substituting subset R with R

c

and

assuming a threshold w equal to in�nity. 2

Lemma 4 - The LST transform of the probability

function P21

k`

(t) satis�es the following equation:



P21

�

k`

(s) = Q

�

k`

(s) +

X

u2R

c

Q

�

ku

(s)P21

�

u`

(s) (19)

Proof of Lemma 4 - Lemma 4 can be directly derived

from Lemma 2, by substituting subset R with R

c

and

assuming a threshold w equal to in�nity. 2

Proof of Theorem 1 - The event that the process is

resident in R at time t before �ring of tr

g

can be de-

composed into the mutually exclusive events that the

process is resident in R continuously from t = 0 or

after 1; 2; : : : passages through R

c

(see Figure 2);

hence,

P

�

(s; w) = P1

�

(s; w) +P12

�

(s; w) P2

�

(s) +

P12

�

(s; w) P21

�

(s) �

[P1

�

(s; w) + P12

�

(s; w) P2

�

(s)] +

[P12

�

(s; w) P21

�

(s)]

2

�

[P1

�

(s; w) + P12

�

(s; w) P2

�

(s)]

+ : : :

(20)

=

1

X

u=0

[P12

�

(s; w) P21

�

(s)]

u

�

[P1

�

(s; w) + P12

�

(s; w) P2

�

(s)](21)

The expression (21) is obtained by applying

P

1

i=0

M

i

= [I�M]

�1

. 2

Since only the pri Resapmling and pri Enabling

transitions can have more than one activity cycle in

their sampled cycles, their analysis is more compli-

cated than the analysis of all the other cases, because

the arbitrary number of sampled cycles up to the �r-

ing of the transition has to be considered. Instead

the analysis of the other general transitions requires

only the evaluation of one sampled cycle, and only the

matrix functions like P1(t; w) and F1(t; w) has to be

evaluated.

Theorem 2 - The LST transform of the �ring prob-

ability matrix F(t; w) satis�es the following equation:

F

�

(s; w) = [I � P12

�

(s; w) P21

�

(s)]

�1

F1

�

(s; w)

(22)

Where F1(t; w) is derived in Lemma 5.

Lemma 5 - The double LST-LT transform of the �r-

ing probability F1

k`

(t; w) satis�es the following equa-

tion:

F1

��

k`

(s; v) = �

k`

1 � Q

�

k

(s + v)

s + v

+

X

u2R

Q

�

ku

(s + v)F1

��

u`

(s; v) (23)

Proof of Lemma 5 - Conditioning on H = h and



g

= w, let us de�ne:
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Figure 3: Preemptive M/G/1/2/2 queue with two

classes of customers.

F1

k`

(t; w jH = h) =

8

>

>

>

<

>

>

>

:

�

k`

U (t � w) if : h � w

X

u2R

dQ

ku

(h)

dQ

k

(h)

�

F1

u`

(t� h;w� h) if : h < w

(24)

The derivation of the matrix function F1(t; w) based

on (15) follows the same pattern mentioned for the

function P1(t; w) in Lemma 1[17]. 2

Proof of Theorem 2 - The event that tr

g

�res in R

at time t can be decomposed into the mutually exclu-

sive events that tr

g

�res during the �rst sojourn in R

starting at t = 0 or after 1; 2; : : : passages through

R

c

(see Figure 2); hence,

F

�

(s; w) = F1

�

(s; w) + P12

�

(s; w) P21

�

(s)F1

�

(s; w) +

[P12

�

(s; w) P21

�

(s)]

2

F1

�

(s; w) + : : :

=

1

X

u=0

[P12

�

(s; w) P21

�

(s)]

u

F1

�

(s; w)

From which the theorem comes.2

4 Preemptive M/G/1/2/2 queue with

di�erent customers

The PN of Figure 3a models a M/G/1/2/2 queue in

which the jobs submitted by customer 2 have higher

priority and preempts the jobs submitted by customer

1. The server has a pri Enabling Memory service dis-

cipline, which means, that the service of a preempted

lower priority job starts from the begining, when the

server becomes available. Place p

1

(p

3

) represents cus-

tomer 1 (2) thinking, while place p

2

(p

4

) represent job

1 (2) under service. Transitions tr

1

and tr

3

are EXP

and represent the submission of a job of type 1 or 2,

respectively. tr

2

and tr

4

are GEN transitions, and rep-

resent the completion of service of a job of type 1 or

2, respectively. A pri service discipline is modeled by



assigning to tr

2

an pri Enabling Memory type. The

inhibitor arc from p

4

to tr

2

models the described pre-

emption mechanism: as soon as a type 2 job joins the

queue the type 1 job under service (if any) is inter-

rupted. The reachability graph of the PN of Figure 3a

is in Figure 3b. Under a pri service, after completion

of the type 2 job, the service of the interrupted type

1 job is restarted, and the same job (with an iden-

tical work requirement) has to be completed. From

Figure 3b, it is easily recognized that s

1

, s

2

and s

3

can all be regeneration states, while s

4

can never be a

regeneration state.

Only EXP transitions are enabled in s

1

and the

next regeneration states can be either s

2

or s

3

de-

pending whether tr

1

or tr

3

�res �rst. From s

2

the next

regeneration state can be only s

1

, but multiple cycles

(s

2

- s

4

) can occur depending whether type 2 jobs ar-

rive to interrupt the execution of the type 1 job. The

dominant transition is tr

2

with pri Enabling Memory

and the subordinated process is a reward SMP (tr

4

is

GEN); hence the results of the previous section can be

applied for the evaluation of the relevant row of the

E(t) and K(t) matrices.

>From state s

3

the next regeneration marking can

be either state s

1

or s

2

depending whether during the

execution of the type 2 job a type 1 job does require

service (but remains blocked until completion of the

type 2 job) or does not. The subordinated process is

a CTMC.

In order to evaluate V(t) we need to compute the

matrices E(t) and K(t). The i-th row of these matri-

ces describes the behavior of the process subordinated

to a regeneration period starting from state i (if state

i can never be a regeneration state, the correspond-

ing row is zero). Their entries corresponding to s

1

and s

3

have already been derived in [5], and we refer

to that paper for a comprehensive description of the

computational procedure. In the following we provide

a detailed description of the new features introduced

in this paper: i.e. how to evaluate the elements ofE(t)

andK(t), when s

2

is as a regeneration state dominated

by a pri transition.

We denote the cumulative distribution function of

the GEN transitions tr

2

and tr

4

by G

2

(t) and G

4

(t),

respectively (and their Laplace-Stieltjes transform by

G

�

2

(s) and G

�

4

(s)), while tr

1

and tr

3

are EXP with

parameter � [4].

tr

2

is of pri Enabling Memory type so that the next

regeneration time point is the epoch of �ring of tr

2

.

The subordinated process comprises states s

2

and s

4

and is a semi-Markov process since tr

4

is GEN. For

the sake of simplicity we restrict the following anal-

ysis only to states s

2

and s

4

reachable during the

considered subordinated process, an we renumber the

states according to the previous section. In the fol-

lowing, state s

2

is mapped into state 1 and state s

4

into state 2. With this renumbering, the kernel of the

semi-Markov process becomes:

Q

�

(s) =

�

�

�

�

�

�

0

�

s + �

G

�

4

(s) 0

�

�

�

�

�

�

The reward vector is r = [1; 0], and the �ring of tr

2

leads to s

1

with probability 1. Applying Lemma 1

and 5 we obtain the following results for the nonzero

entries in the double transform domain:

P1

��

11

(s; v) =

s

v(s + v + �)

; F1

��

11

(s; v) =

1

s+ v + �

(25)

after inverse Laplace transforming with respect to v

we have:

P1

�

11

(s; w) =

s a

s+ �

; F1

�

11

(s; w) = 1� a (26)

where a = 1� e

�(s+�)w

. Applying Lemma 2:

P12

��

12

(s; v) =

�

v(s + v + �)

; P12

�

12

(s; w) =

� a

s + �

(27)

Let us de�ne the matrix functions to describe the sub-

ordinated process.

P1

�

(s; w) =

�

�

�

�

�

sa

s + �

0

0 0

�

�

�

�

�

P12

�

(s; w) =

�

�

�

�

�

�

0

�s

s + �

0 0

�

�

�

�

�

�

P2

�

(s) =

�

�

�

�

�

0 0

0 1�G

�

4

(s)

�

�

�

�

�

P21

�

(s) =

�

�

�

�

�

0 0

G

�

4

(s) 0

�

�

�

�

�

F1

�

(s; w) =

�

�

�

�

�

1� a 0

0 0

�

�

�

�

�

Due to Theorems 1 and 2, the relevant entries (1st

row) of the P

�

(s; w) and the F

�

(s; w) matrices are

given by:

P

�

11

(s; w) =

s a

s+ �

1�G

�

4

(s)

� a

s + �

P

�

12

(s; w) =

(1�G

�

4

(s))

� a

s + �

1�G

�

4

(s)

� a

s + �

F

�

11

(s; w) =

1� a

1�G

�

4

(s)

� a

s + �

(28)

With respect to the original state space number-

ing, the nonzero entries in the 2nd row of the LST



matrix functions K

�

(s) and E

�

(s) have the following

expression:

E

�

s

2

s

2

(s) =

Z

1

w=0

P

�

11

(s; w) dG

2

(w)

E

�

s

2

s

4

(s) =

Z

1

w=0

P

�

12

(s; w) dG

2

(w)

K

�

s

2

s

1

(s) =

Z

1

w=0

F

�

11

(s; w) dG

2

(w)

(29)

The time domain probabilities are calculated by

�rst derivingV

�

(s) from (2) using a standard package

for symbolic analysis (e.g. MATHEMATICA), and

then numerically inverting the resulting LST expres-

sions resorting to the Jagerman's method [12]. The

plot of the state probabilities versus time together

with the steady state results (dotted line) is reported

in Figure 4, for the following set of numerical param-

eters:

� submitting rate � = 0:5;

� higher priority customer (transition tr

4

) with an

exponentially distributed service time with pa-

rameter � = 1 (G

�

4

(s) =

�

s+�

);

� lower priority customer (transition tr

2

) with a ser-

vice time uniformly distributed between � = 0:5

and � = 1:5 (G

2

(t) =

1

���

(U (t��)�U (t� �))).

1

5 Conclusion

The semantics of the SPNmodel with generally dis-

tributed transitions discussed in [1], provides a natural

environment for the de�nition of a class of analitycally

tractable MRSPN's. However, the proposed seman-

tics, for repeat type memory policies, assumes a co-

incidence between the action of resetting the memory

variable of a transition and the action of resampling

its �ring time threshold. Therefore, only prd policies

can be modeled. This paper has shown that a pri

policy can be considered if the instant at which the

�ring time is resampled is evaluated separately from

the instant in which the memory variable is reset. The

sampled period of a pri transition may contain several

activity periods, and is the crucial factor in determin-

ing the sequence of the regeneration time points in the

marking process. An analytical solution is given when

the dominant transition is classi�ed as pri Enabling

Memry type with subordinated reward semi-Markov

process.
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