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Abstra
t

The distribution of the 
ompletion time vs 
atastrophi
 failure time of a two state system

with a �nite work requirement and with a down time 
onstraint is derived in 
losed form in

the Lapla
e transform domain. Various 
ombinations of preemption poli
ies are examined,

and the numeri
al evaluation of the formulated problem is dis
ussed

1 Introdu
tion

A system alternates between an up state and a down state. The sojourn times in the up state

are i.i.d. r.v. U

i

with distribution

^

U(x) = PrfU � xg and Lapla
e Stieltjes Transform (LST)

U

�

(s). Similarly, the sojourn times in the down state are i.i.d. r.v. D

i

with distribution

^

D(x) = PrfD � xg and LST D

�

(s). A task, with an assigned 
onstant work requirement a, is

exe
uted when the system is in the up state. The system rea
hes a 
atastrophi
 
ondition when

the downtime ex
eeds a 
riti
al 
onstant threshold b [3℄. Let us denote C(a; b) the 
ompletion

time, i.e. the r.v. representing the 
ompletion of the task (with work requirement a) before

the system rea
hes the 
atastrophi
 
ondition (with down time threshold b). Conversely, let

us denote F (a; b) the 
atastrophi
 failure time, i.e the r.v. representing the attainment of the


atastrophi
 
ondition before the 
ompletion of the task.

In order to 
ompletely spe
ify the problem, the a

umulation pro
ess in both the up and

the down state should be de�ned. Two alternatives are examined:

� the time spent in the up (down) state, is a

umulated at ea
h visit. We refer to this

me
hanism as preemptive-resume (prs) a

umulation poli
y;

� the sojourn time a

umulation starts from zero at ea
h visit in the up (down) state,

and the time previoulsy spent in the same state is lost. We refer to this me
hanism as

preemptive-repeat (prd) a

umulation poli
y.

A

ordingly, we 
an de�ne 4 
ases, namely UsDs, UsDd, UdDs and UdDd, where the 
apital

letter refers to the states (U - up state, D - down state) and the small 
ase letter refers to the

a

umulation poli
y (s - prs, d - prd). Limiting 
ases arise when the work requirement (a) or

the down time 
onstrain (b) are 
onsidered in�nity. In the �rst 
ase, only 
atastrophi
 failure

is possible (
ases Ds and Dd), and in the latter 
ase only 
ompletion is possible (
ases Us and

Ud).

Let

^

C(t; a; b) and

^

F (t; a; b) be the Cdf of C(a; b) and F (a; b), respe
tively:



^

C(t; a; b) = PrfC(a; b) � tg and

^

F (t; a; b) = PrfF (a; b) � tg

and let

C

�

(s; a; b) =

Z

1

0

e

�st

d

^

C(t; a; b) and F

�

(s; a; b) =

Z

1

0

e

�st

d

^

F (t; a; b)

be the Lapla
e Stieltjes transforms (LST). Finally, de�ne:

U

�

a

(s) =

Z

a

0

e

�sh

d

^

U(h) and D

�

b

(s) =

Z

b

0

e

�sy

d

^

D(y)

If the system is Markovian (U and D are exponential r.v. of rates � and �, respe
tively), then

^

U(x) = 1� e

��x

; U

�

(s) =

�

s+ �

; and U

�

a

(s) =

�

s+ �

[1� e

�(s+�)a

℄

^

D(x) = 1� e

��x

; D

�

(s) =

�

s+ �

; and D

�

b

(s) =

�

s+ �

[1� e

�(s+�)b

℄

Let u

�1

(t) be the unit step fun
tion.

2 Transform domain analysis

The following analysis is mutuated from [3℄. The LST expressions C

�

(s; a; b) (or F

�

(s; a; b))

are derived by 
onditioning the initial up time to be U = h = 
onst, and the subsequent down

time to be D = y = 
onst, and then un
onditioning w.r.t. U , D. Furthermore, the Lapla
e

transform (LT) of the resulting expression is evaluated w.r.t. the variable for whi
h a prs

a

umulation poli
y is assumed; hen
e in the UsD� 
ases we take the LT w.r.t. a (denoting the

transform variable by w), and in the U�Ds 
ase we take the LT w.r.t. b (denoting the transform

variable by v). Therefore, in the UsDs 
ase a triple transformation is needed.

Here we show in details the derivation of the UsDd 
ase, only.

UsDd 
ase

Time domain 
onditioned des
ription:

^

C(t; a; bjU = h;D = y) =

8

>

<

>

:

u

�1

(t� a) h � a

0 h < a; y � b

^

C(t� (h+ y); a� h; b) h < a; y < b

LST domain 
onditioned des
ription:

C

�

(s; a; bjU = h;D = y) =

8

>

<

>

:

e

�sa

h � a

0 h < a; y � b

e

�s(h+y)

C

�

(s; a� h; b) h < a; y < b

Un
onditioning on U results:

C

�

(s; a; bjD = y) =

(

e

�sa

[1�

^

U(a)℄

e

�sy

R

a

0

e

�sh

C

�

(s; a� h; b)d

^

U (h) y < b

Un
onditioning on D results:

C

�

(s; a; b) = e

�sa

[1�

^

U(a)℄ +

Z

b

0

e

�sy

d

^

D(y)

Z

a

0

e

�sh

C

�

(s; a� h; b)d

^

U (h)
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Taking the Lapla
e transform with respe
t to a! w, we have:

C

�?

(s; w; b) =

1� U

�

(s+w)

s+ w

+D

�

b

(s)U

�

(s+ w)C

�?

(s; w; b)

From the above expression we get:

C

�?

(s; w; b) =

1� U

�

(s+ w)

(s+ w)[1 �D

�

b

(s)U

�

(s+ w)℄

Under the Markovian assumption (U and D exponential):

C

�?

(s; w; b) =

1

s+ w + �� �D

�

b

(s)

Taking the inverse Lapla
e transform (w ! a) of the above expression , we �nally get:

C

�

(s; a; b) = e

�a(s+���D

�

b

(s))

The evaluation of the other 
ases follows the same pattern. Table I 
ontains the 
losed form

expressions for all the 
onsidered 
ases.

Case Completion time Catastrophi
 failure time

UsDd C

�?

(s; w; b) =

1�U

�

(s+w)

(s+w)[1�D

�

b

(s)U

�

(s+w)℄

F

�?

(s; w; b) =

e

�sb

[1�

^

D(b)℄U

�

(s+w)

w[1�D

�

b

(s)U

�

(s+w)℄

UdDs C

�?

(s; a; v) =

e

�sa

[1�

^

U(a)℄

v[1�U

�

a

(s)D

�

(s+v)℄

F

�?

(s; a; v) =

U

�

a

(s)[1�D

�

(s+v)℄

(s+v)[1�U

�

a

(s)D

�

(s+v)℄

UdDd C

�

(s; a; b) =

e

�as

[1�

^

U(a)℄

1�D

�

b

(s)U

�

a

(s)

F

�

(s; a; b) =

e

�bs

[1�

^

D(b)℄U

�

a

(s)

1�D

�

b

(s)U

�

a

(s)

UsDs C

�??

(s; w; v) =

1�U

�

(s+w)

v(s+w)[1�U

�

(s+w)D

�

(s+v)℄

F

�??

(s; w; v) =

U

�

(s+w)[1�D

�

(s+v)℄

w(s+v)[1�U

�

(s+w)D

�

(s+v)℄

Us C

�?

(s; w) =

1�U

�

(s+w)

(s+w)[1�D

�

(s)U

�

(s+w)℄

F

�?

(s; w) =0

Ud C

�

(s; a) =

e

�as

[1�

^

U(a)℄

1�D

�

(s)U

�

a

(s)

F

�

(s; a) =0

Ds C

�?

(s; v) =0 F

�?

(s; v) =

U

�

(s)[1�D

�

(s+v)℄

(s+v)[1�U

�

(s)D

�

(s+v)℄

Dd C

�

(s; b) =0 F

�

(s; b) =

e

�bs

[1�

^

D(b)℄U

�

(s)

1�D

�

b

(s)U

�

(s)

Table I - Transform domain des
ription of the 
ompletion and 
atastrophi
 failure time

We 
an easily parti
ularize the formulas of Table I in the Markovian 
ase, when U and D

are exponential.

3 Considerations about the numeri
al solution

For the double LT expressions in Table I, a symboli
al inversion is performed w.r.t. the LT

variable (either w or v), and then the time domain solution is evaluated by applying to the
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Figure 1 - Distribution of 
ompletion time for the UdDs system.

LST expression the Jagerman's inversion numeri
al te
hnique [2℄.

For the UsDs 
ase, some further 
onsiderations are ne
essary to rea
h a single transform

des
ription. We observe that the UsDs system has a �nite pro
essing time, in the sense that

both the 
ompletion and the 
atastrophi
 failure time are upper bounded by (a + b). Let us

introdu
e:

W (t): the r.v. representing the a

umulated time spent in the up state during (0; t), and

V (t): the r.v. representing the a

umulated time spent in the down state during (0; t).

W (t) + V (t) = t by de�nition and, if t < a+ b and W (t) � a, then V (t) < b.

For t < a+ b, the following holds:

^

C

UsDs

(t; a; b) = PrfC

UsDs

(a; b) � tg = PrfW (t) � a; V (t) < bg = PrfW (t) � ag

= PrfC

Us

(a) � tg =

^

C

Us

(t; a) :

Similarly

^

F

UsDs

(t; a; b) = PrfF

UsDs

(a; b) � tg = PrfV (t) � b;W (t) < ag = PrfV (t) � bg

= PrfF

Ds

(b) � tg =

^

F

Ds

(t; b) :

Hen
e, for t < a+b, the numeri
al evaluation of the UsDs system is redu
ed to the evaluation

of either the Us or Ds system, for whi
h a single transform des
ription is available in Table I.

The a

ura
y of the Jagerman's method is a fun
tion of the number of iterations, but its

eÆ
ien
y is redu
ed if the fun
tion to be transformed has a very steep behavior or presents

dis
ontinuities (steps).

If U has in�nite positive distribution and 0 < a; b <1 then

^

C(t; a; b) = 0 for any t < a and

^

C(a; a; b) > 0. Hen
e,

^

C(t; a; b) is not 
ontinuous in t = a but it has a step. On the other hand,

^

F (t; a; b) = 0 for any t < b but also

^

F (b; a; b) = 0, and the fun
tion is 
ontinuous in t = b. Due

to these properties (
ommon to all the 
ases), the Jagerman's method provides better results if

applied to the shifted fun
tions

^

C

a

(t; a; b) =

^

C(t� a; a; b) and

^

F

b

(t; a; b) =

^

F (t� b; a; b) rather

than for

^

C(t; a; b) and

^

F (t; a; b). In LST domain:

4
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Figure 2 - Distribution of 
ompletion time for the UsDd system.

C

�

(s; a; b) = e

�as

C

�

a

(s; a; b) and F

�

(s; a; b) = e

�bs

F

�

b

(s; a; b) :

For the 
ase of the UsDd Markovian system, the shifted fun
tions be
ome:

C

�

a

(s; a; b) = e

�a(���D

�

b

(s))

and F

�

b

(s; a; b) =

�e

�b�

s+ �� �D

�

b

(s)

[1� e

�a(s+���D

�

b

(s))

℄ :

The gain of numeri
ally solving C

�

a

(s; a; b) depends on the step of the fun
tion at t = a (i. e.

^

C(a; a; b)) and the rate of the transient time 
ompared to a. The gain in the 
al
ulation of

F

�

b

(s; a; b) depends only on the relation of the transient time to b.

4 Numeri
al examples

We 
ompare three 
omputational methods: namely, the numeri
al inverse transformation

of C

�

(s; :) (F

�

(s; :) (IT), the numeri
al inverse transformation of the shifted fun
tion C

�

a

(s; :)

(F

�

b

(s; :) (ITSF), and the PH approximation te
hnique [1℄ (PH). In the latter 
ase we approxi-

mate the 
onstant work reqirement a and the downtime 
onstraint b by an Erlang distribution

of assigned order and with the same expe
ted value (a or b, respe
tively).

Figure 1 depi
ts the defe
tive distribution of the 
ompletion time for the UdDs system,

where the up (down) time is exponentially distributed with paramater � = 10

�3

(� = 0:1) and

the up (down) time 
onstraint is a = 1000 (b = 30). The solid line is obtained by the ITSF of

order 50 while the dashed lines 
omes from the IT of order 10 (rear one) and order 50 (dense

one). The dotted lines are obtained by the PH method of order 2 � 2 (rear dotted 
urve),

10� 10 (middle dense dotted 
urve), and order 100 � 100 (dense dotted 
urve). Here the �rst

(se
ond) value is the order of the Erlang approximating the deterministi
 work requirement

(down time 
onstraint).

In this example, the distribution of the 
ompletion time shows a step at t = a equal to

e

�a�

(i.e. the probability, that the system never fails before 
ompleting the work requirement).

The only method whi
h is able to 
apture the dis
ontinuity is the ITSF. Both the IT and

the PH methods provide 
ontinuous fun
tions 
loser and 
loser to the exa
t one by in
reasing

the order. However, we 
an re
ognize two main di�eren
es between them. The IT method

provides an overshot and undershot around the dis
ontinuity (whi
h 
an produ
e values under

0, and o

asionally above 1 as well), but rea
hes always the 
orre
t steady state result. The
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Figure 3 - Distribution of 
atastrophi
 failure time for the Dd system.

PH method provides always a 
orre
t Cdf fun
tion, but the steady state value depends on the

order of the approximation.

Figure 2 shows the result of the UsDd 
ase with the same parameter values. The prs

a

umulation of the useful work when the system stays in the up state in
reases the probability

of 
ompletion and de
reases the probability of the 
atastrophi
 failure before 
ompletion. At

time t = a, the ditribution has the same step (e

�a�

), but after the dis
ontinuity the system

rea
hes the steady state very sharply. In Figure 2, the solid and the dashed lines represent the

results of the ITSF and IT numeri
al method, respe
tively, of the same order as in Figure 1.

The dotted lines are obtained by the PH method of order 10�10 (rear dotted 
urve), 100�100

(middle dens dotted 
urve), and order 1000�10 (dense dotted 
urve). Due to the sharp 
hange

of the fun
tion beyond t = a the approximations of the same order as before provides less

a

urate results. The 
urve PH (1000 � 10) provides the 
losest approximation around t = a,

but its steady state value is less a

urate than the PH (100 � 100).

Figure 3 introdu
es a 
ase (Dd) in whi
h the 
atastrophi
 failure time distribution has no

di
ontinuities, and the behavior of the fun
tion is rather regular; hen
e, both the IT and the

PH methods give quite a

urate results.
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