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Abstract

The distribution of the completion time vs catastrophic failure time of a two state system
with a finite work requirement and with a down time constraint is derived in closed form in
the Laplace transform domain. Various combinations of preemption policies are examined,
and the numerical evaluation of the formulated problem is discussed

1 Introduction

A system alternates between an up state and a down state. The sojourn times in the up state
are ii.d. r.v. U; with distribution U(z) = Pr{U < z} and Laplace Stieltjes Transform (LST)
U~(s). Similarly, the sojourn times in the down state are i.i.d. r.v. D; with distribution
D(z) = Pr{D < z} and LST D™~(s). A task, with an assigned constant work requirement a, is
executed when the system is in the up state. The system reaches a catastrophic condition when
the downtime exceeds a critical constant threshold b [3]. Let us denote C(a,b) the completion
time, i.e. the r.v. representing the completion of the task (with work requirement a) before
the system reaches the catastrophic condition (with down time threshold b). Conversely, let
us denote F'(a,b) the catastrophic failure time, i.e the r.v. representing the attainment of the
catastrophic condition before the completion of the task.

In order to completely specify the problem, the accumulation process in both the up and
the down state should be defined. Two alternatives are examined:

e the time spent in the up (down) state, is accumulated at each visit. We refer to this
mechanism as preemptive-resume (prs) accumulation policy;

e the sojourn time accumulation starts from zero at each visit in the up (down) state,
and the time previoulsy spent in the same state is lost. We refer to this mechanism as
preemptive-repeat (prd) accumulation policy.

Accordingly, we can define 4 cases, namely UsDs, UsDd, UdDs and UdDd, where the capital
letter refers to the states (U - up state, D - down state) and the small case letter refers to the
accumulation policy (s - prs, d - prd). Limiting cases arise when the work requirement (a) or
the down time constrain (b) are considered infinity. In the first case, only catastrophic failure
is possible (cases Ds and Dd), and in the latter case only completion is possible (cases Us and
Ud).

Let C(t,a,b) and F(t,a,b) be the Cdf of C(a,b) and F(a,b), respectively:
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C(t,a,b) = Pr{C(a,b) <t}  and  F(t,a,b) = Pr{F(a,b) < t}
and let
C~(s,a,b) = /Ooo e~ dC(t,a,b) and  F™(s,a,b) = /OOO e st dF(t,a,b)
be the Laplace Stieltjes transforms (LST). Finally, define:
U (s) = /0 “eshir(h)  and  Dy(s) = /0 "= db(y)

If the system is Markovian (U and D are exponential r.v. of rates A and p, respectively), then
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Let u_1(¢) be the unit step function.

2 Transform domain analysis

The following analysis is mutuated from [3]. The LST expressions C™~(s,a,b) (or F~(s,a,b))
are derived by conditioning the initial up time to be U = h = const, and the subsequent down
time to be D = y = const, and then unconditioning w.r.t. U, D. Furthermore, the Laplace
transform (LT) of the resulting expression is evaluated w.r.t. the variable for which a prs
accumulation policy is assumed; hence in the UsD- cases we take the LT w.r.t. a (denoting the
transform variable by w), and in the U-Ds case we take the LT w.r.t. b (denoting the transform
variable by v). Therefore, in the UsDs case a triple transformation is needed.
Here we show in details the derivation of the UsDd case, only.

UsDd case

Time domain conditioned description:

u_1(t —a) h>a
C(tya,blU=h,D=y)=4¢ 0 h<a,y>b
Ct—(h+y),a—h,b) h<ay<b
LST domain conditioned description:
e 5@ h>a
C~(s,a,blU =h,D=y)=¢ 0 h<ay>b
e~ st C~(s,a — h,b) h<ay<b
Unconditioning on U results:
o e %1 — Ula)]
C b|D =y)= -
(s,a,b1D =) { e~V [ e=5hC™ (s, a — h, b)dU (h) y<b

Unconditioning on D results:

C™(s,a,b) = eI — U(a)] + /0 e=1dp(y) /0 " e (s,a — h, b)dU (h)
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Taking the Laplace transform with respect to a — w, we have:
1-U"~(s+ w)

C~*(s,w,b) = T w

Dy ($)U™ (s + w)C™*(s,w, b)

From the above expression we get:
1-U~(s+ w)
(s+w)[1 — Dy (s)U~(s + w)]
Under the Markovian assumption (U and D exponential):
1
s+w+X—ADy(s)

C~(s,w,b) =

C™*(s,w,b) =

Taking the inverse Laplace transform (w — a) of the above expression , we finally get:

CN(S, a, b) — efa(s+)\f)\Db~(s))

The evaluation of the other cases follows the same pattern. Table I contains the closed form
expressions for all the considered cases.

Case Completion time Catastrophic failure time
UsDA | O™ (s, 0,) == (ot P (s, ) = Gl
UdDs | (o) = pstiye oy P (5,0,0) = 2t o
UdDd C~(5,,) =1 pa ot F(s,.0) =gy
UsDs | 0™ (s,w,v) :v(s+w)[11—_UU-(giuu)))D~(s+u)] F(s,w,v) =w<£:>(ﬁf§>~“(s_fuj>(5f’(’3}+v>}

Us C~*(5,0) == D=0t F(s,w) =0
Ud C~(s,0) :% F~(s,a) =0
Ds O~ (s.) =0 P (s,0) = U1 =D (o)

(s+v)[1-U~(s)D~(s+v)]

Dd C~(s,b) =0 F(s,b) =PI

Table I - Transform domain description of the completion and catastrophic failure time

We can easily particularize the formulas of Table I in the Markovian case, when U and D
are exponential.

3 Considerations about the numerical solution

For the double LT expressions in Table I, a symbolical inversion is performed w.r.t. the LT
variable (either w or v), and then the time domain solution is evaluated by applying to the
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Figure 1 - Distribution of completion time for the UdDs system.

LST expression the Jagerman’s inversion numerical technique [2].

For the UsDs case, some further considerations are necessary to reach a single transform
description. We observe that the UsDs system has a finite processing time, in the sense that
both the completion and the catastrophic failure time are upper bounded by (a + b). Let us
introduce:

W (t): the r.v. representing the accumulated time spent in the up state during (0,¢), and
V(t): the r.v. representing the accumulated time spent in the down state during (0, ?).
W (t) + V(t) =t by definition and, if t < a + b and W (¢) > a, then V() < b.
For t < a + b, the following holds:

éUst(t,a,b) = Pr{Cysps(a,b) <t} = Pr{W(t) > a,V(t) < b} = Pr{W(t) > a}
= Pr{Cps(a) < t} = Cpys(t,a).

Similarly

Fyops(t,a,b) = Pr{Fysps(a,b) <t} = Pr{V(t) >bW(t) < a} = Pr{V(t) > b}
= Pr{Fp,(b) <t} = Fp,(t,b).

Hence, for t < a+b, the numerical evaluation of the UsDs system is reduced to the evaluation
of either the Us or Ds system, for which a single transform description is available in Table I.

The accuracy of the Jagerman’s method is a function of the number of iterations, but its
efficiency is reduced if the function to be transformed has a very steep behavior or presents
discontinuities (steps).

If U has infinite positive distribution and 0 < a,b < oo then C‘(t, a,b) =0 for any ¢t < a and
C(a,a,b) > 0. Hence, C(t,a,b) is not continuous in ¢ = a but it has a step. On the other hand,
ﬁ'(t, a,b) = 0 for any ¢t < b but also ﬁ'(b, a,b) = 0, and the function is continuous in ¢ = b. Due
to these properties (common to all the cases), the Jagerman’s method provides better results if
applied to the shifted functions C, (¢, a,b) = C(t — a,a,b) and Fy(t,a,b) = F(t — b, a,b) rather
than for C(t,a,b) and F(t,a,b). In LST domain:
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Figure 2 - Distribution of completion time for the UsDd system.

C~(s,a,b) = e *C; (s,a,b) and F~(s,a,b) = e " Fy"(s,a,b).
For the case of the UsDd Markovian system, the shifted functions become:

e br

__—a(s+tA=AD;(s))
s-l-A—ADbN(s)[l ¢ et

C (s, a,b) = e MAADT()) and FE;(s,a,b) =

The gain of numerically solving C;’(s,a,b) depends on the step of the function at ¢ = a (i. e.

C(a,a,b)) and the rate of the transient time compared to a. The gain in the calculation of
Fy (s, a,b) depends only on the relation of the transient time to b.

4 Numerical examples

We compare three computational methods: namely, the numerical inverse transformation
of C~(s,.) (F~(s,.) (IT), the numerical inverse transformation of the shifted function C}’(s,.)
(Fy~(s,.) (ITSF), and the PH approximation technique [1] (PH). In the latter case we approxi-
mate the constant work reqirement a and the downtime constraint b by an Erlang distribution
of assigned order and with the same expected value (a or b, respectively).

Figure 1 depicts the defective distribution of the completion time for the UdDs system,
where the up (down) time is exponentially distributed with paramater A = 102 (1 = 0.1) and
the up (down) time constraint is a = 1000 (b = 30). The solid line is obtained by the ITSF of
order 50 while the dashed lines comes from the IT of order 10 (rear one) and order 50 (dense
one). The dotted lines are obtained by the PH method of order 2 x 2 (rear dotted curve),
10 x 10 (middle dense dotted curve), and order 100 x 100 (dense dotted curve). Here the first
(second) value is the order of the Erlang approximating the deterministic work requirement
(down time constraint).

In this example, the distribution of the completion time shows a step at ¢ = a equal to
e~ (i.e. the probability, that the system never fails before completing the work requirement).
The only method which is able to capture the discontinuity is the ITSF. Both the IT and
the PH methods provide continuous functions closer and closer to the exact one by increasing
the order. However, we can recognize two main differences between them. The IT method
provides an overshot and undershot around the discontinuity (which can produce values under
0, and occasionally above 1 as well), but reaches always the correct steady state result. The
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Figure 3 - Distribution of catastrophic failure time for the Dd system.

PH method provides always a correct Cdf function, but the steady state value depends on the
order of the approximation.

Figure 2 shows the result of the UsDd case with the same parameter values. The prs
accumulation of the useful work when the system stays in the up state increases the probability
of completion and decreases the probability of the catastrophic failure before completion. At
time ¢ = a, the ditribution has the same step (e~®*), but after the discontinuity the system
reaches the steady state very sharply. In Figure 2, the solid and the dashed lines represent the
results of the ITSF and IT numerical method, respectively, of the same order as in Figure 1.
The dotted lines are obtained by the PH method of order 10 x 10 (rear dotted curve), 100 x 100
(middle dens dotted curve), and order 1000 x 10 (dense dotted curve). Due to the sharp change
of the function beyond ¢ = a the approximations of the same order as before provides less
accurate results. The curve PH (1000 x 10) provides the closest approximation around ¢ = a,
but its steady state value is less accurate than the PH (100 x 100).

Figure 3 introduces a case (Dd) in which the catastrophic failure time distribution has no
dicontinuities, and the behavior of the function is rather regular; hence, both the IT and the
PH methods give quite accurate results.
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