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Abstrat

The distribution of the ompletion time vs atastrophi failure time of a two state system

with a �nite work requirement and with a down time onstraint is derived in losed form in

the Laplae transform domain. Various ombinations of preemption poliies are examined,

and the numerial evaluation of the formulated problem is disussed

1 Introdution

A system alternates between an up state and a down state. The sojourn times in the up state

are i.i.d. r.v. U

i

with distribution

^

U(x) = PrfU � xg and Laplae Stieltjes Transform (LST)

U

�

(s). Similarly, the sojourn times in the down state are i.i.d. r.v. D

i

with distribution

^

D(x) = PrfD � xg and LST D

�

(s). A task, with an assigned onstant work requirement a, is

exeuted when the system is in the up state. The system reahes a atastrophi ondition when

the downtime exeeds a ritial onstant threshold b [3℄. Let us denote C(a; b) the ompletion

time, i.e. the r.v. representing the ompletion of the task (with work requirement a) before

the system reahes the atastrophi ondition (with down time threshold b). Conversely, let

us denote F (a; b) the atastrophi failure time, i.e the r.v. representing the attainment of the

atastrophi ondition before the ompletion of the task.

In order to ompletely speify the problem, the aumulation proess in both the up and

the down state should be de�ned. Two alternatives are examined:

� the time spent in the up (down) state, is aumulated at eah visit. We refer to this

mehanism as preemptive-resume (prs) aumulation poliy;

� the sojourn time aumulation starts from zero at eah visit in the up (down) state,

and the time previoulsy spent in the same state is lost. We refer to this mehanism as

preemptive-repeat (prd) aumulation poliy.

Aordingly, we an de�ne 4 ases, namely UsDs, UsDd, UdDs and UdDd, where the apital

letter refers to the states (U - up state, D - down state) and the small ase letter refers to the

aumulation poliy (s - prs, d - prd). Limiting ases arise when the work requirement (a) or

the down time onstrain (b) are onsidered in�nity. In the �rst ase, only atastrophi failure

is possible (ases Ds and Dd), and in the latter ase only ompletion is possible (ases Us and

Ud).

Let

^

C(t; a; b) and

^

F (t; a; b) be the Cdf of C(a; b) and F (a; b), respetively:



^

C(t; a; b) = PrfC(a; b) � tg and

^

F (t; a; b) = PrfF (a; b) � tg

and let

C

�

(s; a; b) =

Z

1

0

e

�st

d

^

C(t; a; b) and F

�

(s; a; b) =

Z

1

0

e

�st

d

^

F (t; a; b)

be the Laplae Stieltjes transforms (LST). Finally, de�ne:

U

�

a

(s) =

Z

a

0

e

�sh

d

^

U(h) and D

�

b

(s) =

Z

b

0

e

�sy

d

^

D(y)

If the system is Markovian (U and D are exponential r.v. of rates � and �, respetively), then

^

U(x) = 1� e

��x

; U

�

(s) =

�

s+ �

; and U

�

a

(s) =

�

s+ �

[1� e

�(s+�)a

℄

^

D(x) = 1� e

��x

; D

�

(s) =

�

s+ �

; and D

�

b

(s) =

�

s+ �

[1� e

�(s+�)b

℄

Let u

�1

(t) be the unit step funtion.

2 Transform domain analysis

The following analysis is mutuated from [3℄. The LST expressions C

�

(s; a; b) (or F

�

(s; a; b))

are derived by onditioning the initial up time to be U = h = onst, and the subsequent down

time to be D = y = onst, and then unonditioning w.r.t. U , D. Furthermore, the Laplae

transform (LT) of the resulting expression is evaluated w.r.t. the variable for whih a prs

aumulation poliy is assumed; hene in the UsD� ases we take the LT w.r.t. a (denoting the

transform variable by w), and in the U�Ds ase we take the LT w.r.t. b (denoting the transform

variable by v). Therefore, in the UsDs ase a triple transformation is needed.

Here we show in details the derivation of the UsDd ase, only.

UsDd ase

Time domain onditioned desription:

^

C(t; a; bjU = h;D = y) =

8

>

<

>

:

u

�1

(t� a) h � a

0 h < a; y � b

^

C(t� (h+ y); a� h; b) h < a; y < b

LST domain onditioned desription:

C

�

(s; a; bjU = h;D = y) =

8

>

<

>

:

e

�sa

h � a

0 h < a; y � b

e

�s(h+y)

C

�

(s; a� h; b) h < a; y < b

Unonditioning on U results:

C

�

(s; a; bjD = y) =

(

e

�sa

[1�

^

U(a)℄

e

�sy

R

a

0

e

�sh

C

�

(s; a� h; b)d

^

U (h) y < b

Unonditioning on D results:

C

�

(s; a; b) = e

�sa

[1�

^

U(a)℄ +

Z

b

0

e

�sy

d

^

D(y)

Z

a

0

e

�sh

C

�

(s; a� h; b)d

^

U (h)
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Taking the Laplae transform with respet to a! w, we have:

C

�?

(s; w; b) =

1� U

�

(s+w)

s+ w

+D

�

b

(s)U

�

(s+ w)C

�?

(s; w; b)

From the above expression we get:

C

�?

(s; w; b) =

1� U

�

(s+ w)

(s+ w)[1 �D

�

b

(s)U

�

(s+ w)℄

Under the Markovian assumption (U and D exponential):

C

�?

(s; w; b) =

1

s+ w + �� �D

�

b

(s)

Taking the inverse Laplae transform (w ! a) of the above expression , we �nally get:

C

�

(s; a; b) = e

�a(s+���D

�

b

(s))

The evaluation of the other ases follows the same pattern. Table I ontains the losed form

expressions for all the onsidered ases.

Case Completion time Catastrophi failure time

UsDd C

�?

(s; w; b) =

1�U

�

(s+w)

(s+w)[1�D

�

b

(s)U

�

(s+w)℄

F

�?

(s; w; b) =

e

�sb

[1�

^

D(b)℄U

�

(s+w)

w[1�D

�

b

(s)U

�

(s+w)℄

UdDs C

�?

(s; a; v) =

e

�sa

[1�

^

U(a)℄

v[1�U

�

a

(s)D

�

(s+v)℄

F

�?

(s; a; v) =

U

�

a

(s)[1�D

�

(s+v)℄

(s+v)[1�U

�

a

(s)D

�

(s+v)℄

UdDd C

�

(s; a; b) =

e

�as

[1�

^

U(a)℄

1�D

�

b

(s)U

�

a

(s)

F

�

(s; a; b) =

e

�bs

[1�

^

D(b)℄U

�

a

(s)

1�D

�

b

(s)U

�

a

(s)

UsDs C

�??

(s; w; v) =

1�U

�

(s+w)

v(s+w)[1�U

�

(s+w)D

�

(s+v)℄

F

�??

(s; w; v) =

U

�

(s+w)[1�D

�

(s+v)℄

w(s+v)[1�U

�

(s+w)D

�

(s+v)℄

Us C

�?

(s; w) =

1�U

�

(s+w)

(s+w)[1�D

�

(s)U

�

(s+w)℄

F

�?

(s; w) =0

Ud C

�

(s; a) =

e

�as

[1�

^

U(a)℄

1�D

�

(s)U

�

a

(s)

F

�

(s; a) =0

Ds C

�?

(s; v) =0 F

�?

(s; v) =

U

�

(s)[1�D

�

(s+v)℄

(s+v)[1�U

�

(s)D

�

(s+v)℄

Dd C

�

(s; b) =0 F

�

(s; b) =

e

�bs

[1�

^

D(b)℄U

�

(s)

1�D

�

b

(s)U

�

(s)

Table I - Transform domain desription of the ompletion and atastrophi failure time

We an easily partiularize the formulas of Table I in the Markovian ase, when U and D

are exponential.

3 Considerations about the numerial solution

For the double LT expressions in Table I, a symbolial inversion is performed w.r.t. the LT

variable (either w or v), and then the time domain solution is evaluated by applying to the
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Figure 1 - Distribution of ompletion time for the UdDs system.

LST expression the Jagerman's inversion numerial tehnique [2℄.

For the UsDs ase, some further onsiderations are neessary to reah a single transform

desription. We observe that the UsDs system has a �nite proessing time, in the sense that

both the ompletion and the atastrophi failure time are upper bounded by (a + b). Let us

introdue:

W (t): the r.v. representing the aumulated time spent in the up state during (0; t), and

V (t): the r.v. representing the aumulated time spent in the down state during (0; t).

W (t) + V (t) = t by de�nition and, if t < a+ b and W (t) � a, then V (t) < b.

For t < a+ b, the following holds:

^

C

UsDs

(t; a; b) = PrfC

UsDs

(a; b) � tg = PrfW (t) � a; V (t) < bg = PrfW (t) � ag

= PrfC

Us

(a) � tg =

^

C

Us

(t; a) :

Similarly

^

F

UsDs

(t; a; b) = PrfF

UsDs

(a; b) � tg = PrfV (t) � b;W (t) < ag = PrfV (t) � bg

= PrfF

Ds

(b) � tg =

^

F

Ds

(t; b) :

Hene, for t < a+b, the numerial evaluation of the UsDs system is redued to the evaluation

of either the Us or Ds system, for whih a single transform desription is available in Table I.

The auray of the Jagerman's method is a funtion of the number of iterations, but its

eÆieny is redued if the funtion to be transformed has a very steep behavior or presents

disontinuities (steps).

If U has in�nite positive distribution and 0 < a; b <1 then

^

C(t; a; b) = 0 for any t < a and

^

C(a; a; b) > 0. Hene,

^

C(t; a; b) is not ontinuous in t = a but it has a step. On the other hand,

^

F (t; a; b) = 0 for any t < b but also

^

F (b; a; b) = 0, and the funtion is ontinuous in t = b. Due

to these properties (ommon to all the ases), the Jagerman's method provides better results if

applied to the shifted funtions

^

C

a

(t; a; b) =

^

C(t� a; a; b) and

^

F

b

(t; a; b) =

^

F (t� b; a; b) rather

than for

^

C(t; a; b) and

^

F (t; a; b). In LST domain:
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Figure 2 - Distribution of ompletion time for the UsDd system.

C

�

(s; a; b) = e

�as

C

�

a

(s; a; b) and F

�

(s; a; b) = e

�bs

F

�

b

(s; a; b) :

For the ase of the UsDd Markovian system, the shifted funtions beome:

C

�

a

(s; a; b) = e

�a(���D

�

b

(s))

and F

�

b

(s; a; b) =

�e

�b�

s+ �� �D

�

b

(s)

[1� e

�a(s+���D

�

b

(s))

℄ :

The gain of numerially solving C

�

a

(s; a; b) depends on the step of the funtion at t = a (i. e.

^

C(a; a; b)) and the rate of the transient time ompared to a. The gain in the alulation of

F

�

b

(s; a; b) depends only on the relation of the transient time to b.

4 Numerial examples

We ompare three omputational methods: namely, the numerial inverse transformation

of C

�

(s; :) (F

�

(s; :) (IT), the numerial inverse transformation of the shifted funtion C

�

a

(s; :)

(F

�

b

(s; :) (ITSF), and the PH approximation tehnique [1℄ (PH). In the latter ase we approxi-

mate the onstant work reqirement a and the downtime onstraint b by an Erlang distribution

of assigned order and with the same expeted value (a or b, respetively).

Figure 1 depits the defetive distribution of the ompletion time for the UdDs system,

where the up (down) time is exponentially distributed with paramater � = 10

�3

(� = 0:1) and

the up (down) time onstraint is a = 1000 (b = 30). The solid line is obtained by the ITSF of

order 50 while the dashed lines omes from the IT of order 10 (rear one) and order 50 (dense

one). The dotted lines are obtained by the PH method of order 2 � 2 (rear dotted urve),

10� 10 (middle dense dotted urve), and order 100 � 100 (dense dotted urve). Here the �rst

(seond) value is the order of the Erlang approximating the deterministi work requirement

(down time onstraint).

In this example, the distribution of the ompletion time shows a step at t = a equal to

e

�a�

(i.e. the probability, that the system never fails before ompleting the work requirement).

The only method whih is able to apture the disontinuity is the ITSF. Both the IT and

the PH methods provide ontinuous funtions loser and loser to the exat one by inreasing

the order. However, we an reognize two main di�erenes between them. The IT method

provides an overshot and undershot around the disontinuity (whih an produe values under

0, and oasionally above 1 as well), but reahes always the orret steady state result. The
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Figure 3 - Distribution of atastrophi failure time for the Dd system.

PH method provides always a orret Cdf funtion, but the steady state value depends on the

order of the approximation.

Figure 2 shows the result of the UsDd ase with the same parameter values. The prs

aumulation of the useful work when the system stays in the up state inreases the probability

of ompletion and dereases the probability of the atastrophi failure before ompletion. At

time t = a, the ditribution has the same step (e

�a�

), but after the disontinuity the system

reahes the steady state very sharply. In Figure 2, the solid and the dashed lines represent the

results of the ITSF and IT numerial method, respetively, of the same order as in Figure 1.

The dotted lines are obtained by the PH method of order 10�10 (rear dotted urve), 100�100

(middle dens dotted urve), and order 1000�10 (dense dotted urve). Due to the sharp hange

of the funtion beyond t = a the approximations of the same order as before provides less

aurate results. The urve PH (1000 � 10) provides the losest approximation around t = a,

but its steady state value is less aurate than the PH (100 � 100).

Figure 3 introdues a ase (Dd) in whih the atastrophi failure time distribution has no

diontinuities, and the behavior of the funtion is rather regular; hene, both the IT and the

PH methods give quite aurate results.
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