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Abstract

Markov Regenerative Stochastic Petri Nets (MRSPN) have been recently recognized as a

valuable tool to model systems with non-exponential timed activities. Some restrictive as-

sumptions should be speci�ed in order to arrive to analytically and numerically computable

models. The usual assumption is that at most a single non-exponential transition, with associ-

ated enabling memory policy, can be enabled in each marking. More recently, new preemption

policies have been studied, and closed-form solutions in the Laplace transform domain have

been provided. This paper illustrates how to activate di�erent preemption policies in MRSPN.

1 Introduction

There is an increasing interest in the implementation of tools for performance/dependability

analysis of computer and communication systems which incorporate the possibility of includ-

ing, to some extent, non-exponential timed activities. MRSPN's are a possible candidate to

provide a useful interface language between the modeler's representation and the analytical

representation. MRSPN's are de�ned as SPN's whose underlying marking process is a Markov

Regenerative Process (MRGP) [4, 8]. MRGP's are characterized by an embedded sequence of

regeneration time points, such that the future evolution of the stochastic process depends only

on the state entered when a regeneration time point occurs, and not on its past history. An

analytical expression for the transition probability matrix of the process can be formulated

[9, 11], based on the sequence of the embedded regeneration time points.

Choi et al. [7] recognized that the previous model referred to as DSPN (Deterministic and

Stochastic PN) [2] belonged to the class of MRSPN and provided closed-form expressions for

both the transient and the steady-state equations. The main restriction on which this model

is based is that at most a single non-exponential transition can be enabled in each marking,

and its memory policy is of enabling type (according to the taxonomy in [1]). Some structural

extensions [8] and improved numerical techniques [13, 10] where proposed based on the same

assumptions.
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Bobbio and Telek have recently discussed how to incorporate both preemptive resume (prs)

[5] and preemptive repeat identical (pri) [3] policies in a MRSPN and have provided Laplace

transform solutions. These new preemption policies are of crucial importance for modelling

fault-tolerant systems where an interrupted job must be resumed from the point of interruption

or restarted with an identical requirement.

2 Preemption mechanisms and memory policies

A marked Petri Net is a tuple PN = (P; T; I; O; H;M

0

), where: P is the set of places, T the

set of transitions, I, O andH are the input, the output and the inhibitor functions, respectively,

and M

0

is the initial marking. The reachability set R(M

0

) is the set of all the markings that

can be generated from the initial marking M

0

. The marking processM(t) denotes the marking

occupied by the PN at time t. The transitions can be distinguished into EXP and GEN. EXP

transitions have associated an exponentially distributed �ring time, while GEN transitions have

associated a generally distributed �ring time. A particular class of GEN transitions is the class

of the DET transitions for which the �ring time is assumed to be deterministic.

Since the considered PN's contain GEN transitions, the underlying marking process M(t)

is not memoryless. In order to completely specify the model at the PN level, a memory policy

needs to be superimposed to the basic PN. The memory policy is speci�ed by assigning to each

GEN transition a memory variable that accounts for the time the transition has been enabled

[1].

With reference to Figure 1a, t

g

is a generally distributed transition, 


g

the associated random

�ring delay, and a

g

the memory variable. According to the above notation, the �ring process of

t

g

is represented as in Figure 1b. Suppose E is the time at which t

g

becomes enabled: a clock

associated to the transition starts counting linearly from 0 and the memory variable is assigned

a value equal to the clock count. The transition �res as soon as a

g

reaches a value equal to 


g

for the �rst time. Therefore, 


g

acts as an absorbing barrier for the functional a

g

, and the �ring

process can be modeled as the �rst passage time of a

g

across an absorbing barrier of height




g

. The �ring time of a GEN transition is completely determined by the value of the memory

variable at time t and the value of the barrier height 


g

. In Figure 1c, several GEN transitions

are output transitions to the same place p

A

. Each transition has an independent �ring time and

an independent memory variable. When a token arrives for the �rst time in place p

A

, all the

transitions become enabled and their respective clocks start counting. When a transition �res

the memory variable associated to that particular transition is reset, while the clocks associated

to the other transitions are stopped. A clock can count (the memory variable increases) only

when the corresponding transition is enabled. If, eventually, a new token arrives in p

A

, the three

transitions become enabled and their clocks start counting again. In the new state, the values

of the memory variables and of the threshold levels must be reassigned . The memory variables

can retain the value previously reached or can restart from zero, and the barrier height can be

resampled or not. The way in which these two reassignments are combined gives rise to di�erent

execution policies. In [1], an extensive discussion of the semantics implied by the alternative

ways in which the memory variable can be reset or resumed has been reported. However in [1],

the barrier was implicitly assumed to be resampled each time the memory variable was reset.

A new modeling framework for accommodating pri policies has been devised in [3]. A pri

policy means that the interrupted job is restarted in the new state with an identical requirement.

Notice that the pri memory policy destroys the Markov property even if the corresponding �ring

time is EXP, since at any new enabling the old barrier level must be remembered. The memory
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Figure 1 - Firing process of GEN transitions.

of the global marking process is considered as the superposition of the memories of the individual

transitions. In general, the underlying marking process is not analytically tractable unless some

restrictions are speci�ed.

2.1 Closed form analysis of MRSPN

In this paper, we consider MRSPN, that can be formally de�ned as follows.

Proposition 1 A regeneration time point �

�

n

in the marking process M(t) of a SPN is the

epoch of entrance in a marking M

n

in which all the memory variables are zero and the barrier

levels are resampled.

De�nition 2 A stochastic PN, for which a sequence of regeneration time points satisfying the

condition of Proposition 1 exists, is a MRSPN.

The marking process generated by a PN satisfying De�nition 2 is, by de�nition, a MRGP.

The transient behavior of the MRSPN can be evaluated by solving the following generalized

Markov renewal equation (in matrix form) [9, 7]:

V(t) = E(t) + K � V(t) (1)

whereK �V(t) is a convolutionmatrix, and matricesV(t),K(t) and E(t) are de�ned as follows.

V(t) is the transition probability matrix and provides the probability that the stochastic process

M(t) is in marking j at time t given it was in marking i at t = 0. K(t) is the global kernel

and provides the cdf of the event that the next regeneration marking is M

1

= j given marking

i at �

�

0

= 0. Finally, the matrix E(t) is the local kernel since it describes the behavior of the

marking process M(t) between two consecutive regeneration time points.

Equation (1) implies that the analysis of the whole process can be decomposed into the

analysis of the marking process between any two successive regeneration points (called the

subordinated process). Equation (1) becomes in the Laplace-Stieltjes (LST) domain:



V

�

(s) = [I � K

�

(s)]

�1

E

�

(s) (2)

The steady-state solution can be evaluated as lim

s!0

V

�

(s). However, according to [2, 6, 14],

the steady-state probabilities can be derived directly from the the local and global kernels. Let

us de�ne:

�

ij

=

Z

1

t=0

E

ij

(t)dt ; �

i

=

X

j

�

ij

(3)

�

ij

is the expected time a subordinated process starting from state i spends in state j. �

i

is the

expected duration of the subordinated process starting from state i before the next regeneration

time point. The transition probability matrix of the DTMC embedded into the regeneration

time points is

� = f�

ij

g = lim

t!1

K(t) (4)

Let P = fp

i

g (row vector) be the unique solution of the set of equations:

P = P� ;

X

i

p

i

= 1 (5)

The steady-state probabilities of the MRGP can be evaluated based on �

ij

and p

i

(or �

ij

) as

follows [2, 11]:

v

ij

= lim

t!1

PrfM(t) = j jM(0) = ig =

X

k

p

k

�

kj

X

k

p

k

�

k

(6)

2.2 Preemption policies in MRSPN

The evaluation of the entries of the local and global kernels depends on the model structure

and speci�cation. In the present paper, we assume the modeling environment proposed in [5],

where non-overlapping dominant transitions have been de�ned. In this model, any two succes-

sive regeneration time points correspond to the �rst enabling and to the �ring or (disabling) of

a single GEN transition called the dominant transition. The regeneration periods dominated by

di�erent transitions cannot overlap. The entries of the i-th row of the kernel matrices K(t) and

E(t) can be evaluated by analysing in isolation the subordinated process starting from state i

and depend on the �ring process of the dominant transition.

In the past, three alternatives have been considered for taking into account how the memory

variable and the barrier height of the dominant transition are reassigned in case of disabling or

�ring.

Preemptive repeat di�erent (prd) policy - Each time a prd dominant transition is disabled

or �res, its memory variable is reset and its barrier level is resampled from the same distribution.

With reference to Figure 2a, let E, D, and F be enabling, disabling or �ring time instants,

respectively. The transition is enabled for the �rst time at t = 0, and its memory variable

starts increasing linearly. At point D, the transition is disabled and the memory is reset. At

the next enabling time instant E the memory is restarted from zero, and the barrier level is
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Figure 2 - Pictorial representation of di�erent �ring time sampling policies.

resampled from the same distribution assuming a di�erent value. When the transition �res the

memory variable is reset and the barrier resampled. According to Proposition 1, both D and

F are regeneration time points for the marking process. The memory of the process is con�ned

to the period of time in which the dominant GEN transition is continuously enabled.

The �rst model constructed on these assumptions is the DSPN proposed in [2]. Choi et al.

[6] have recognized that the marking process underlying a DSPN is a MRGP and have extended

the model by allowing a single GEN transition to be enabled in each marking [7]. Improved

numerical techniques have been presented in [13] and some structural extension in [8]. An

analysis technique, based on the use of supplementary variables, has been elaborated in [10].

Preemptive resume (prs) policy - The dominant transition is assigned a prs memory

policy. With reference to Figure 2b, when the dominant transition is disabled (in point D),

its associated clock is stopped but not reset; when the transition is enabled again, its memory

variable restarts from the previously retained value. When the transition �res, the memory

variable is reset and the barrier height resampled.

The regeneration period coincides with the �ring cycle of the dominant transition. The

states in which the dominant transition is enabled or disabled can be assigned a reward 1 or

0, respectively, so that the �ring time becomes the �rst passage time of the total accumulated

reward against the barrier level. In the context of MRSPN this model has been proposed for

the �rst time in [5, 14].

Preemptive repeat identical (pri) policy - The dominant transition is assigned a pri

memory policy. Under this policy (Figure 2c), each time a transition is disabled, the memory

variable is reset, but the barrier level remains active, so that in the next enabling period

an identical work requirement should be accomplished. Only when the transition �res the

barrier level is resampled and the memory variable is reset. Hence, also in this case, the next



regeneration time point can occur only upon �ring of the dominant transition. In the context

of MRSPN, this policy has been introduced in [3].

3 Analysis of a subordinated CTMC

Let us suppose that a regeneration period starts at time t = 0 from marking i and is

dominated by a GEN transition t

g

with memory variable a

g

and random �ring time 


g

. Let us

suppose that the process subordinated to the dominant transition is a CTMC with in�nitesimal

generator A

i

. The following analysis provides a mean to evaluate the i-th row of the global

and local kernels K(t) and E(t). The same analysis must be repeated for any state i 2 R(M

0

)

that can be a regeneration state. Let the state space R(M

0

) be partitioned into three subsets:

� E

i

: groups the state reachable from i in which t

g

is enabled. For any k 2 E

i

the reward

rate is equal to 1 and the memory variable is strictly increasing. Hence, the �ring of the

dominant transition can only occur from a state k 2 E

i

, and after �ring the process can

jump to any state ` according to a switching probability matrix �

i

.

� D

i

: groups the states reachable from i in which t

g

is not enabled. For any k 2 D

i

the

reward rate is equal to 0.

� F

i

: is the complementary set F

i

= R(M

0

)� E

i

� D

i

.

The di�erent preemption policies, introduced in the previous section, are characterized by the

following behaviour:

� prd: any transition out of E

i

provides the next regeneration time point. Subsets D

i

and

F

i

can be made absorbing.

� prs: states in E

i

and D

i

can be merged together: states in E

i

have an associated reward

rate equal to 1 and states in D

i

have an associated reward rate equal to 0. The �ring of

the dominant transition occurs from a state k 2 E

i

[5].

� pri: only transitions out of E

i

provide the next regeneration time point. The semantics of

this policy requires the evaluation of the �rst passage time matrix out of E

i

into D

i

and

out of D

i

into E

i

[3].

3.1 pri dominant transition

By a suitable reordering of the states, the in�nitesimal generator of the subordinated CTMC

starting from state i is partitioned in the following way:

A

i

=

B

E

B

ED

B

DE

B

D

(7)

The values of �

ij

and �

ij

are computed in the pri case as a limit of the transient solution

derived in [3].

�

i

ij

(w) = [I

1

+ L(w)B

ED

B

�1

D

B

DE

]

�1

[L(w) j �L(w)B

ED

B

�1

D

]

(8)

�

i

ij

(w) = [I

1

+ L(w)B

ED

B

�1

D

B

DE

]

�1

[e

B

E

w

j 0]

where L(w) =

R

w

0

e

B

E

w

dw.
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