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Abstract

The non-Markovian Stochastic Petri Net (SPN)

models appeared so far in the literature, are based on

the assumption that the underlying marking process

can be speci�ed by assigning an individual memory

policy to each timed transition. The present paper

proposes to introduce interlaced, or state dependent,

memory policies, where the memory of a transition

can be modi�ed by the occurrence of some condition

on the net.

Adhering to the spirit of the graphical language

of the PN, we introduce new primitives in the form

of suitable arcs connecting places to transitions, and

whose e�ect is to modify the memory policy of the

transition.

Through a number of simple examples, we show how

the new primitives increase the modeling power of non-

Markovian SPN by allowing �ring mechanisms which

were not possible in the traditional models.

Numerical results on the steady state behavior of a

dependable processor system with two kinds of inter-

ruptions are also presented.

Key words: Non-Markovian Stochastic Petri Nets,

�ring mechanisms, Markov regenerative processes,

memory resetting arc.

1 Introduction

The semantics of PN with generally distributed �r-

ing times has been extensively considered in [1]. In

the above reference, in order to completely de�ne the

behavior of the marking process, each timed transition

was assigned an individual memory policy specifying

how the �ring of the transition was dependent on its

past history. The memory policy proposed in [1] was

an attribute attached to each individual transition so

that the memory of the overall marking process re-

sulted from the superposition of the memories of the

individual transitions.

Based on the concepts de�ned in [1], Ajmone and

Chiola [2] developed the Deterministic and Stochastic

PN (DSPN) model, where in each marking, a single

transition is allowed to have associated a determin-

sitic �ring time with enabling memory policy. Choi et

al. [6] have derived the transient solution of the same

model in terms of a Markov regenerative process, and

have subsequently extended the DSPN model by ac-

commodating at most a single transition with gener-

ally distributed �ring time [7] in each marking. They

have called this class of models Markov Regenera-

tive Stochastic PN (MRSPN). Further elaborations of

SPNmodels with non exponential distributions but re-

stricted to enabling memory policies, only, have been

presented in [9, 8, 12, 11, 17, 18].

Bobbio and Telek have enlarged the class of MR-

SPN by introducing the concept of marking processes

with non-overlapping memories. In this new frame-

work, they have accommodated into the model age

memory policies [5, 19, 20] and preemptive repeat

identical policies [3, 21].

The aim of this paper is to remove the restriction

that the memory policy is an attribute attached to

each single transition, by de�nig a new formalism for

specifying interlaced or state dependent memory poli-

cies. The need for interlaced memory policies arises

when the occurrence of an event (represented by a set

of markings in the PN) may modify the memory of a

transition in a way that is not possible to represent by

the existing memory policies and PN primitives.



Ciardo and Lindemann [9] and Ciardo et al. [8]

have attempted to introduce a formalism for the mu-

tual dependence of the memory of a given transition on

the �ring of another one. This formalism is vaguely

de�ned and does not seem to be practically imple-

mentable in a PN-based model. Adhering to the spirit

of the graphical language of the PN, the present pa-

per proposes to specify the interlaced memory policies

by de�ning new primitives. The new primitives are

in the form of suitable arcs connecting a source place

to a destination transition, and whose e�ect is to in-

hibit the destination transition when the source place

is marked but at the same time modifying the mem-

ory of the destination transition and consequently its

memory policy.

In particular, two kinds of arcs are introduced:

the memory resetting arc (mra) that resets the whole

memory of the destination transition when the source

place is marked and the age resetting arc (ara) that

resets only the age variable associated to the destina-

tion transition. This extension of Petri Net primitives

results in a wider class of Petri net models with respect

to those considered in [1] and in [21].

Some examples are reported in order to show the

meaning of the new primitives and how their use gen-

eralizes the memory mechanisms so far introduced.

We believe that the discussed approach provides a well

established and sound formalism also for the imple-

mentation of simulation tools.

The rest of the paper is organized as follows. In

Section 2, the individual memory model considered in

the previous literature is brie
y recalled, and in Sec-

tion 3 the new primitive arcs are de�ned. Section 4

is devoted to illustrate several examples of application

of the resetting arcs. Section 5 provides a formal ap-

proach to the analyis of non-Markovian Petri nets with

resetting arcs based on the state space partitioning of

the subordinanted process. Numerical results on the

steady state behavior of a dependable processor sys-

tem with two kinds of interruptions are presented in

Section 6.

2 The individual memory model

A marked Petri Net is a tuple PN = (P; T; I; O;

H;M

0

), where: P is the set of places, T the set of

transitions, I , O and H are the input, the output and

the inhibitor functions, respectively, and M

0

is the

initial marking. The reachability set R(M

0

) is the

set of all the markings that can be generated from

the initial marking M

0

. The marking process M(t)

denotes the marking occupied by the PN at time t.

We de�ne a non-Markovian SPN as a stochastically

timed PN in which the time evolution of the marking

process can be more general than a Continuous Time

Markov Chain (CTMC). In the spirit of many mod-

eling formalisms [15], in which the complexity of the

solution must be hidden to the modeler, a complete

set of speci�cations must be given at the PN level,

in order to univocally de�ne the underlying marking

process. Therefore, the way in which the future evolu-

tion of the marking process depends on its past history

needs to be speci�ed at the PN level.

The most consistent way to introduce memory into

a SPN is provided in [1]. Each timed transition t

g

is

assigned a random �ring time 


g

with a general distri-

bution G

g

(t) with support on [0 ; 1). A clock, associ-

ated to each individual transition, counts the time in

which the transition has been enabled. An age variable

a

g

associated to the timed transition t

g

keeps track of

the clock count. A timed transition �res as soon as

the memory variable a

g

reaches the value of the �ring

time 


g

. A very similar formulation, in the simula-

tion setting, has been discussed by Haas and Shedler

[13, 14].

In the original view [1], two main �ring policies were

introduced:

� enabling memory if the age variable a

g

is reset

each time the corresponding transition t

g

is dis-

abled or �res;

� age memory if the age variable a

g

is reset only

when the corresponding transition t

g

�res.

We de�ne the activity period of a transition t

g

as the

interval of time during which the corresponding age

variable a

g

is di�erent from 0. In [1], the �ring time

was implicitly assumed to be resampled at the begin-

ning of any activity period of the transition.

However, in a more general view, the random �ring

time 


g

of a transition t

g

can be sampled in a time

instant antecedent to the beginning of an activity pe-

riod. To keep track of the resampling condition of the

random �ring time associated to a timed transition,

we assign to each timed transition t

g

a binary indica-

tor variable �

g

that is equal to 1 when the �ring time

is sampled and equal to 0 when the �ring time is not

sampled. We refer to �

g

as the resampling indicator

variable. When a transition enters an activity period,

if the resampling indicator variable �

g

is zero, the �r-

ing time is resampled and �

g

is switched to 1; whereas,

if �

g

is already equal to 1, the �ring time is not resam-

pled. We can, therefore, de�ne the resampling period

of a transition as the time interval during which the

indicator variable �

g

is equal to 1, i.e. the �ring time

of the transition maintains its constant value without

any intermediate resampling.



The resampling period forms a further element of

memory. Hence, in general, the memory of a transition

t

g

is captured by the tuple (a

g

; �

g

). At any time epoch

t, transition t

g

has memory (its �ring process depends

on the past) if either a

g

or �

g

are di�erent from zero.

Adopting the previous formalization of the memory

concept, the following individual memory policies have

been introduced in the past. A timed transition t

g

can

be:

� Preemptive resume (prs):

If the associated clock counts the time accord-

ing to an age memory policy and the �ring time

is resampled when the transition becomes active.

More formally, both the age variable a

g

and the

resampling indicator �

g

are reset only when t

g

�res.

� Preemptive repeat di�erent (prd):

If the associated clock counts the time according

to an enabling memory policy and the �ring time

is resampled when the transition becomes active.

More formally, both the age variable a

g

and the

resampling indicator �

g

are reset each time t

g

is

disabled or �res.

� Preemptive repeat identical (pri):

If the associated clock counts the time according

to an enabling memory policy but the �ring time

is resampled only when the transition �res. More

formally, the age variable a

g

is reset each time t

g

is disabled or �res but the resampling indicator

�

g

is reset only when t

g

�res.

In the described individual memory models, a prs

transition cannot be disabled and restarted before �r-

ing, and a pri transition cannot be resampled before

�ring. The next section introduces new primitives

aimed at removing these restrictions.

3 Interlaced memory model

The interlaced memory policy is represented by

means of suitable arcs connecting a source place with a

destination transition, and called resetting arcs. These

new PN primitives are a semantical extension of the

primitive inhibitor arc, in the sense that, when the

source place is marked, the destination transition is

inhibited (disabled) and its memory is partially, or to-

tally, reset.

The resetting arc responds to the motivation of

modeling situations in which an external event, repre-

sented by a given set of markings, can reset the mem-

ory of a transition.

Since the memory of a transition is composed by

two attributes (a

g

; �

g

), two kinds of resetting arcs are

introduced: the age resetting arc (ara) which inhibits

the destination transition and resets its age only, and

thememory resetting arc (mra) which inhibits the des-

tination transition and resets both its age variable and

its resampling indicator variable. A third case of re-

setting is theoretically possible and could be obtained

by resetting the resampling indicator only. But this

third case is of no pratical meaning and will not be

further considered.

3.1 The memory and age resetting arc

We propose, as a graphical symbol for the mra, an

arc from a place p

source

to a transiton t

dest

with a

�lled small circle on the destination transition t

dest

.

The construct of the mra is illustrated in Figure 1a).

When a token arrives in p

source

(for instance by �ring

t

r

), both the age variable a

dest

and the resampling

indicator variable �

dest

associated to t

dest

are reset,

independently of their previous value. Hence, in the

next marking in which t

dest

is enabled again, �

dest

is

switched to 1 so that the �ring time 


dest

is resampled

and a

dest

restarts counting from 0.

P1 Psource

t r

t dest

P1 Psource

t r

t dest

a) b)

<mra> <ara>

Figure 1: The Memory Resetting Arc

The concept of ara is similar to the concept of mra,

but the ara resets only the age variable a

dest

while it

has no e�ect on the resampling indicator variable �

dest

.

We propose, as a graphical symbol for the ara, an arc

from a source place p

source

to a destination transiton

t

dest

with a �lled small square on the destination tran-

sition.

The construct of the ara is illustrated in Figure 1b).

When a token arrives in p

source

(for instance by �ring

t

r

), the age variable associated to t

dest

is reset, but

�

dest

remains set to 1, so that the corresponding �r-

ing time is maintained. Hence, in the next marking

in which t

dest

is enabled again, a

dest

restarts count-

ing from 0 but the same �ring requirement should be

accomplished before �ring.

3.2 Combining resetting arcs with mem-

ory policies

The interaction and the e�ect of the resetting arcs

on the individual memory models de�ned in Section 2,

are illustrated by means of Figure 2, when the reset-

ting arc from p

source

to t

dest

is mra (as in the �gure)



or ara, and when t

dest

is assigned a prd or a prs or a

pri memory policy.

When p

source

is empty, the semantics of the model

follows the individual memory policy. When p

source

becomes marked (by �ring t

r

) the semantics depends

on the nature of the resetting arc and on the memory

policy of t

dest

. For the sake of clarity, and with refer-

ence to Figure 2, we brie
y examine all the possible

combinations of memory policies and resetting arcs,

when a token arrives in p

source

.

� The memory policy of t

dest

is prd and the reset-

ting arc is:

ara or mra - The ara or mra acts as an ordi-

nary inhibitor arc since, according to the prd

memory policy, both a

dest

and �

dest

are reset

as the transition is disabled.

� The memory policy of t

dest

is prs and the resetting

arc is:

ara - Only the age variable a

dest

is reset so that

the �ring time is not resampled. This combi-

nation of policies can be considered as a se-

mantical extension of the individual pri pol-

icy.

mra - Both a

dest

and �

dest

are reset; the conse-

quence is that when t

dest

becomes enabled

again (and no tokens are in p

source

), the age

variable is restarted from zero and the �ring

time resampled from the same distribution.

� The memory policy of t

dest

is pri and the resetting

arc is:

ara - The ara acts as an ordinary inhibitor arc

since both a

dest

and �

dest

are reset as the

transition is disabled.

mra - The complete memory is reset; in the new

enabling, the �ring time is resampled from

the same distribution.

4 Examples of interlaced memory poli-

cies

In order to illustrate the meaning of the new de�ned

primitives, we develop two simple examples. The �rst

one considers the execution of a job in a multiuser

dependable systems, while the second one the trans-

mission of a message in a shared medium with a hard

deadline.

Psource

t dest

t r
P1

P2
t 1

t 2 t s

Figure 2: The Age Resetting Arc

P1

t 2

P2 P4

t 4

t 3t 1

P3

Figure 3: Petri net model of the processor system

4.1 Example 1: Job execution in a pro-

cessor system

Consider a processor system with two terminals A

and B, submitting jobs for execution. Jobs from termi-

nal A require a generally distributed processing time,

while jobs from terminal B experience an exponen-

tially distributed processing time. Further, terminal

B generates higher priority jobs, which preempt jobs

coming from terminal A. Place p

1

in Figure 3 repre-

sents the terminal A in the thinking phase and tran-

sition t

1

models the exponentially distributed submis-

sion time. Place p

2

indicates that job A is being ex-

ecuted, and transition t

2

represents the random exe-

cution time. In a similar fashion, transition t

3

models

the generation of higher priority jobs from terminal B

(place p

3

). A token in place p

4

represents a type B

job being processed. Transition t

4

is the processing

time of jobs submitted by terminal B. Since type B

jobs have higher priority over type A jobs, we intro-



duce an inhibitor arc from place p

4

to transition t

2

which interrupts the execution of any type A job until

the execution of the type B job is completed. Transi-

tions t

1

, t

3

and t

4

are assumed to be exponentially dis-

tributed, while the service time modeled by transition

t

2

is assumed to be generally distributed. The service

policy of type A jobs is assumed of preemptive resume

type, which means that its execution is resumed from

the point of interruption. This behavior is modeled

by associating t

2

a prs memory policy. Note that the

preemption policy assumed for t

4

is completely inin-


uent for the overall behavior of the system as t

4

will

always complete its activity once enabled.

4.1.1 Job execution in a dependable processor

system

P1

t 3

t 2

P2 P4

t 4

t 1

P3

t

P6

P5

t 6 t 5

Figure 4: Petri net model of the dependable processor

system

In this section, we extend the previous example by

including the possibility that the processor can expe-

rience failures and repairs (Figure 4). Places p

1

, p

2

,

p

3

, p

4

and transitions t

1

, t

2

, t

3

, t

4

play the same role.

Place p

5

represents the processor up, while place p

6

represents the processor down. Transition t

5

mod-

els the exponentially distributed failure time, while

transition t

6

models the exponentially distributed re-

pair time. We assume that, when the processor fails,

the job under execution (either A or B) is lost and

the system restarts from the job submitting phase as

the processor is up again. The next job after proces-

sor failure will have a di�erent processing requirement

completely independent from the one before the fail-

ure. The PN model has to enforce the memory reset

of transitions t

2

and t

4

in case of processor failure, be-

cause, otherwise, the last part of the uncompleted job

would be completed after the processor recovers. This

is why we introduce two mra arcs from p

6

to t

2

and t

4

which reset both the corresponding age and inidicator

resampling variables. The variable multiplicity arcs

(indicated by a 'Z' on the arcs) from places p

2

and p

4

to places p

1

and p

3

allow to bring the system to the

original starting state. Note that if in Figure 4 we sub-

stitute the mra arcs with ara arcs, a repeat identical

type interruption is implemented.

4.1.2 Job execution with di�erent interrup-

tions in a dependable processor system

In this example, we extend the previous model to

include two di�erent failure modes of the processor

(Figure 5). With probability c the failed processor

remembers which job was under execution and the

same job (i.e. a job with an identical requirement) is

re-executed upon repair (pri-like interruption), while

with probability 1-c a new job is re-executed (prd-like

interruption).

A token in place p

5

indicates that the processor is

up. A failure can occur with an exponentially dis-

tributed failure time modeled by transition t

5

. Im-

mediate transitions t

8

and t

9

model the two di�erent

failure modes. With probability c a pri-like interrup-

tion occurs: two ara arcs connect the source place p

6

to the destination transitions t

2

and t

4

so that, when

p

6

is marked, their age variables are reset while keep-

ing the same value for the �ring requirement. With

probability 1 � c a prd-like interruption occurs: two

mra arcs connect place p

7

to transitions t

2

and t

4

so

that, when p

7

is marked, both their age variables and

resampling indicator variables are reset. Transitions

t

6

and t

7

model the processor repair time which is

assumed to be exponentially distributed.

4.2 Example 2: Message transmission

through a transmission line

Ciardo et al. [8] proposed the following example.

A real time system is sending messages according to

a given distribution. Each message must be transmit-

ted inside a hard deadline, otherwise the whole mes-

sage must be repeated. The PN model and associated



P1

t 3

P8

5P

t 5

t 9 t 8

t

2

P2 P4

t 4

t 1

P3

t

P7 P6

1-c c

t 7 t 6

t

Figure 5: Petri net model of the dependable processor

system with 2 kinds of interrupts

reachability graph are reported in Figure 6.

Place p

0

represents a station sending messages after

a generally distributed preparation time modeled by

t

0

. p

1

is the message ready to be transmitted; t

1

is the

deterministic hard deadline. p

2

is the message waiting

for accessing the medium and t

2

is the exponentially

distributed time to acquire the medium. p

3

models

the message in the transmission phase, and t

3

is the

transmission time. In [8], t

3

was deterministic, thus

hiding the choice between a prd or pri behavior [3]. We

remove this restriction by allowing t

3

to have assigned

a generally distributed �ring time.

If the timeout elapses before the message is trans-

mitted (transition t

1

�res before t

3

), the transmission

is interrupted and the whole message needs to be re-

submitted after a preparation time. The marking de-

pendent arcs from p

2

and p

3

to t

1

have the function of

removing the token from p

2

or p

3

to p

0

when t

1

�res.
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Figure 6: Petri net model of the transmission line

4.2.1 Message transmission through a shared

transmission line

Suppose now that the trasmission medium is shared

by other resources. We model the medium as a two

state PN (see Figure 7) where place p

w

indicates that

the medium is available for transmitting the message

under consideration, and place p

n

indicates that the

medium is not available. The inhibitor arc from p

n

to t

3

prevents the transmission of the tagged message

when the line is not available. The low level protocol

is designed to work on a conservative way, i.e. the

interrupted message is resumed from the point it was

preempted by the �ring of t

w

. This physical behavior

is modeled by assigning to t

3

an age memory policy.

In the case of a timeout the memory of t

3

has to

be reset. For this reason we include in the model a

resetting arc from p

0

to t

3

. Each time the station

is requested to send a message (token in p

0

) all the

memory in the system is cleared.

If the resetting arc is mra (as in Figure 7), also the

�ring requirement is reset and a new message taken

from the same distribution is transmitted. If the re-

setting arc is of type ara, only the age associated to

the stopped message is reset and a new message with

identical requirement is retransmitted.

5 MRSPN with resetting arcs

Let the memory cycle of a transition t

g

be the time

interval in which either the corresponding age variable

a

g

is not 0 or the resampling indicator variable �

g

is

equal to 1. Extending the de�nition in [5], we consider

MRSPN in which the memory cycles of the di�erent

transitions do not overlap. Hence, any regeneration

period in the marking process M(t) is dominated by

a single transition.

The restriction of the marking processM(t) during

the memory cycle of the dominant transition is called

the subordinated process. According to the theory of

Markov Regenerative Processes (MRGP) [10, 16], the
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Figure 7: Petri net model of the shared transmission

line

analysis of the whole process can be obtained from

the analysis of the subordinated processes considered

in isolation.

Hence, the behavior of a generic subordinated pro-

cess dominated by a transition t

g

, is considered in de-

tails. Extending and adapting a methodology already

presented in [21], the state space of the subordinated

process can be partitioned into the subsets E, D1, D2

and C, as in Figure 8.

- In the states of subset E (enabling) t

g

is enabled;

its age variable (a

g

) is continuously increasing and

�

g

= 1.

- In the states of subset D1 (disabling) t

g

is dis-

abled, but a

g

is unchanged (a

g

> 0) and �

g

= 1.

- In the states of subset D2 (disabling) t

g

is dis-

abled, the age variable a

g

is reset to 0 and �

g

= 1.

- When a state of the subset C is reached the re-

generation period is over. Thus, a

g

is reset and

�

g

is set to 0.

These subsets derive directly from a careful analysis

of the evolution of the subordinated process and, de-

pending on the structure of the model, might also be

empty. The classi�cation provided in Figure 8, how-

ever, includes all the cases that can arise by combining
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?

�ring

end of memory

D1

D2

C

age & �ring time reset

end of memory

age reset �ring time maintained

age & �ring time maintained

enabling

concluding

disabling 2

disabling 1

Figure 8: Structure of the state space of the stochastic

process underlying the memory period of t

g

with mra

and/or ara

the non-Markovian PN already analyzed in the litera-

ture, with the new primitives proposed in this paper.

It is worthnoting to observe, that once a dominant

transition is enabled, the end of the regeneration pe-

riod can occurs as a consequence of two events only:

i) the �ring of the dominant transition (from a state

in subset E),or, ii) the passage into one state of subset

C.

According to Section 2, it is possible to identify the

causes that determine the passage from one subset to

another one among those de�ned in Figure 8.

� E!D1

{ t

g

with age memory becomes disabled

� E!D2

{ t

g

with pri enabling memory becomes dis-

abled

{ t

g

with age memory becomes disabled by an

ara

� E!C

{ t

g

with prd enabling memory becomes dis-

abled

{ t

g

with pri enabling memory becomes dis-

abled by a mra

{ t

g

with age memory becomes disabled by an

ara

� D1!D2

{ (the disabled) t

g

with age memory is reset

by a ara

� D1!C

{ (the disabled) t

g

with age memory is reset

by a mra



transition state space

prd no transition to D1 and D2

pri no transition to D1 and C

prs no transition to D2 and C

pri & mra no transition to D1

prs & ara no transition to C

prs & mra no transition to D2

prs & mra & ara any subset is reachable

Table 1: Allowed transitions between the subsets of

states

� D2!C

{ (the disabled) t

g

with pri enabling memory

is reset by a mra

{ (the disabled, and ara reset) t

g

with age

memory is reset by a mra

Once these subsets have been identi�ed, for each sub-

ordinated process, the probability measures of the

marking process can be obtained from the evaluation

of the �rst passage time probabilities among the non-

empty subsets of Figure 8. The evaluation of the �rst

passage time probabilities follows the same pattern al-

ready described in [21].

To better clarify the previous concepts, and to sim-

plify the identi�cation of these subsets, Table 1 shows

the allowed connections of the di�erent subsets for any

possible comibination of preemption policy with mra

and ara arcs.

6 Case study

In this section, we provide a fully developed nu-

merical study for the example of the processor system

with two di�erent failure modes considered in Subsec-

tion 4.1.2 (see Figure 5). Details on the analytical

solution method can be found in [4].

Table 2, reports the reachability set for theMRSPN

of Figure 5, together with useful information for the

analysis of the model. The state space is made of 12

tangible states. The �rst column provides a state num-

bering starting from the initial marking, while column

2 gives the marking. The third column indicates if in

the given state only exponentially distributed transi-

tions are enabled (exp) or if a generally distributed

transition is enabled (�). The states marked with an

� represent regeneration states whose regeneration pe-

riod allows internal state transitions. Column 4 indi-

cates the states that can be reached inside a regener-

ation period, i.e. the states that can be reached dur-

ing the subordinated process starting from the given

marking (note that for all the exp states, the subordi-

nated process is composed by a single marking).

In order to completely specify the process, the in-

formation about which state initiates the subsequent

regeneration period is needed, and the kind of event

that determines the starting of the subsequent regen-

eration period. This information is provided in col-

umn 5, by two attributes state(event). For the states

indicated as exp the attribute state indicates the num-

ber of the states that are immediately reachable and

the attribute event indicates the transition whose �r-

ing leads the process into the corresponding state. For

the states marked with an (�), the state indicates the

number of the states that can initiate the subsequent

regeneration period, and the event indicates the reason

which forces the process to enter a new regeneration

period. Considering state 2 (0110100), it can be no-

ticed that the corresponding subordinated process is

dominated by transition t

2

with generally distributed

�ring time.

The subsequent regeration period can start from

states 1, 10 or 12, and the entering in one of these

states is due to some event that makes transition t

2

to loose its memory. In particular, as indicated in

Table 2, state 1 is reached when transition t

2

�res

(from a state in the subset E). States 10 and 12 form

the subset C, and are reached as a consequence of a

failure of the processor (token in place p

7

) which reset

the memory of t

2

by means of a mra.

Figure 9 depicts the reachability graph of the subor-

dinated process starting from state 2. Similar graphs

can be drawn for all the states that can initiate a re-

generation period. We concentrate our analysis on

the subordinated process depicted in Figure 9, since

it contains states in all the partitions classi�ed in Fig-

ure 8. State 2(0110100) belongs to subset E. In this

state the age variable a

2

of the dominant transition is

greater than zero and increasing, and �

2

= 1. Three

di�erent states can be immediately reached from state

2. State 4(0101100), that belongs to subset D1, and

is reached by the the �ring of transition t

3

. State

6(0110010) that belongs to subset D2, and is reached

by the �ring of transitions t

5

+ t

8

, in sequence. State

10(0110001) that belongs to subset C, and is reached

by the �ring of transitions t

5

+ t

9

, in sequence.

The steady state probabilities of the marking pro-

cess M(t) of the PN of Figure 5, can be obtained by

solving all the possible subordinated processes as the

one reported in Figure 9.



No. Marking Type Sub. Proc. Subsequent reg. states

1 1010100 exp 1 2(t

1

), 3(t

3

), 5(c�), 9 ((1� c)�)

2 0110100 * 2,4,6,8 1(firing), 10(conc), 12(conc)

3 1001100 * 3,4,7,8 1(firing), 2(firing), 11(conc), 12(conc)

4 0101100 * 4,8 1(firing), 12(conc)

5 1010010 exp 5 1(t

6

), 6(t

1

), 7(t

3

)

6 0110010 exp 6 2(t

6

), 8(t

3

)

7 1001010 exp 7 3(t

6

), 8(t

3

)

8 0101010 exp 8 4(t

6

)

9 1010001 exp 9 1(t

7

), 10(t

1

), 11(t

3

)

10 0110001 exp 10 1(t

7

), 12(t

3

)

11 1001001 exp 11 1(t

7

), 12(t

3

)

12 0101001 exp 12 1(t

7

)

Table 2: The state space of the underlying MRGP

0101010

0101100 0110010

C

D2

D1

ε

t5 + t9

t5 + t9

t6

t4

t3

t6 t3

t4
t5 + t8

t5 + t8

0110001

0110001 0110100

Figure 9: Subordinated process starting from state

2(0110100)

We have concentrated our analysis on the evalua-

tion of a performance index which provides the loss

probability for type A and type B jobs. The expla-

nation which follows focusses on type A jobs, but a

similar approach can be followed for type B jobs. The

throughput (Th1) of transition t

1

is equal to the num-

ber of type A jobs entering the system per unit time

in steady state. However, these jobs will not neces-

sarily be completed due to the possible preemption

and restart caused by a processor failure with prd pre-

emption. Indeed, each time the �ring sequence t

5

+ t

9

occurs, a token reaches p

7

and, by the e�ect of the

mra pointing to t

2

, the job in execution is stopped

and discarded. If we look at the throughput (Th2) of

transition t

5

� (1 � c) conditioned on the presence of

a token in p

2

we get the number of type A jobs dis-

carded per unit time. The steady state loss probability

of type A jobs can thus be evaluated by:

P

loss

A

=

Th2

Th1 + Th2

:

Figure 10 plots the loss probability of type A and

type B jobs when the switching parameter c ranges

from 0 to 1. The greatest loss arises when c = 0, which

means that each processor fault results in discarding

the job. A loss equal to zero occurs if c = 1 because,

in this case, even if the processor fails the job is not

lost, but reprocessed again from the beginning. The

upper (lower) curve refers to P

loss

of type A (type B)

job.

0.2 0.4 0.6 0.8 1
c0

0.05

0.1

0.15

0.2

loss prob.

type A

type B

Figure 10: Loss probabilities of type A and type B

jobs versus c



7 Conclusions

In this paper, practical examples are discussed

whose stochastic behavior can not be captured by the

traditional PN models. New primitives have been in-

troduced which allow to deal with interlaced memory

policies. The importance of extending the semantics

of individual memory policy is highlighted through the

examples described in the paper. Numerical results on

the steady state behavior of a dependable processor

system with two kinds of interruptions are presented.
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