
WebSPN: Non-Markovian Stochastic

Petri Net Tool

A. Bobbio x, A. Pulia�to *, M. Scarpa x, M. Telek y

x Dipartimento di Informatica

Universit�a di Torino, 10149 Torino, Italy

* Istituto di Informatica e Telecomunicazioni

Universit�a di Catania, 95125 Catania, Italy

y Department of Telecommunications

Technical University of Budapest, 1521 Budapest, Hungary

x fbobbio,scarpag@di.unito.it; * ap@iit.unict.it; y telek@hit.bme.hu

Abstract

This paper describes a new modeling tool for the analysis of non-Markovian stochastic Petri

nets (SPN) that relax some of the restrictions present in currently available packages. This

tool, called WebSPN, provides a discrete time approximation of the stochastic behaviour of the

mrking process which results in the possibility to analyze a wider class of PN models with prd

and prs concurrently enabled generally distributed transitions. WebSPN makes wide use of Java

technology and it is easily accessible from any node connected with the Internet as long as it

possesses a Java-enabled Web browser.

Keywords: Non-Markovian SPN, transient analysis, Java technology, Word Wide Web.

1 Introduction

The analytical approach to the evaluation of systems is being increasingly viewed as an integral

part of the process of design, analysis and tuning of computer systems. Analytical models give

results whose accuracy depends on the designer's ability and on the level of detail of the model

employed. Furthermore, once the model has been developed, its solution is generally very quick, so

an accurate analysis of the system can be made with the variation of all the model parameters.

Special model speci�cation techniques are needed that help analysts to describe their systems

in such a way that the models can be understood at the level of the system designer, rather than

at the mathematical level. Software environments that support these speci�cation techniques for

analytical models are needed. Such environments (tools) should allow for the easy speci�cation and

e�cient solution of the models. Furthermore, they should allow for the control of the numerical

solution of the models as well as for a suitable presentation of the results.

Petri nets are commonly viewed as a valid tool for the qualitative and quantitative study of

systems. Many Petri nets modeling tools have been proposed or developed recently (e.g. ESP [10],

GSPN [5], SPNP [7], DSPNExpress [15], TimeNet [11], UltraSAN [9]).

1



Some of the above tools have also implemented the possibility of including some non-Markovian

feature. The main restrictions, in the already existing tools, are associated with generally dis-

tributed �ring time transition with prs preemption policy and with concurrently enabled general

transitions. The �rst restriction can be relaxed by the analytical results available for the analysis

of PN with non-overlapping prs general transitions [4], and there is an active research to �nd the

proper way to analyze PN with concurrently active general transitions [15, 2]. However, none of the

existing modeling tools incorporates the capability of analyzing these models automatically. The

only possible approach for the analysis of PN models, with prs and prd general transitions, is the

Phase type (PH) approximation. With this technique, the marking process of the non-Markovian

SPN is approximated byan expanded Markov chain. The main drawback of the PH approximation

consists in the very large state space of the expanded Markov chain, mainly if the random �ring

times have a low coe�cient of variation.

In this paper, we present a new modeling tool for the analysis of non-Markovian stochastic Petri

nets that relax some of the restrictions present in currently available modeling packages. This tool,

called WebSPN, provides a discrete time approximation of the stochastic behaviour of the marking

process which results in the possibility to analyze a wider class of Petri net models with prd and prs

concurrently enabled generally distributed transitions. WebSPN is completely developed in Java

and implements some powerful communicationmechanisms which allow a generic user connected to

the Internet to remotely access the tool regardless of the type of his/her hw/sw platform, which can

be Unix, Windows95, Mac etc... The only requirement is a Web browser which can execute code

written in Java. WebSPN also provides authentication services in order to allow only authorized

users to use the tool.

The rest of the paper is organized as follows: in Section 2 we will outline the features of Java

and its use on the Web; in Section 3 we will review the main concepts of non-Markovian stochastic

Petri nets while in Section 4 we brie
y outline the analytical approach adopted for the solution

of the model. Section 5 shows how it is possible to use the Java technology for the Web sharing

of WebSPN. Section 6 provides an application example, presents the graphical user interface of

WebSPN and reports some comparative numerical results. Conclusions are given in Section 7.

2 The Java approach

Java is an object-oriented, portable, interpreted, multithreaded programming language developed

by Sun [13]. Although it is a new language it is simple and familiar because a number of its con-

structs are taken from C++, eliminating some of the more complex aspects which are often source

of errors. This feature ensures high programmer productivity right from the start. Another funda-

mental characteristic is the security which a language designed for use in a network environment

has to guarantee. It also provides both compile-time and run-time checking mechanisms which

allow the development of reliable and robust applications.

The Java multithreading capability provides the means to build applications with many concur-

rent threads of activity. Although recent operating systems provide libraries for multithreading,

their dependence on a particular architecture prevent them from being used by a large number of

programmers. Java, on the other hand, supports multithreading at the language level, providing

sophisticated synchronization primitives.

A feature that has permitted the language to spread is the possibility of inserting small Java

applications (applets) into a Web page. A Java-enabled Web browser recognises a particular tag on

2



a normal html page identifying the url of the applet; when it interprets this tag it sends a request to

the Web server from which it will receive the bytecode of the applet. Then the applet is executed

on the local client inside the browser itself.

A basic concept of the Java architecture is that of class loaders. The Java runtime system

is allowed to load classes without any knowledge of the underlying �le system. All Java Virtual

Machines include a default class loader which loads the classes of the local �le system, but Java

allows the user to de�ne his own class loader, thus overriding the behaviour of the default loader.

This makes it possible to load classes from various sources, as is done, for example, in applets,

which load classes from a Web server using the http protocol.

3 Non-Markovian stochastic Petri nets

We de�ne a non-Markovian SPN as a stochastically timed PN in which the time evolution of

the marking process cannot be mapped into a Continuous Time Markov Chain (CTMC). Recent

research on this subject is documented in [6, 12, 3, 8]. In the spirit of many modeling formalism, in

which the complexity of the solution must be hidden to the modeler, a complete set of speci�cations

must be given at the PN level, in order to univocally de�ne the underlying marking process.

Therefore, the way in which the future evolution of the marking process depends on its past history

needs to be speci�ed at the PN level.

A consistent way to introduce memory into a SPN is provided in [1] and extended in [4]. Each

timed transition t

g

is assigned a general random �ring time 


g

with a cumulative distribution

function G

g

(t). A clock, associated to each individual transition, counts the time in which the

transition has been enabled. An age variable a

g

associated to the timed transition t

g

keeps track

of the clock count. A timed transition �res as soon as the memory variable a

g

reaches the value of

the �ring time 


g

. In the original view [1], two main �ring policies were introduced:

� Preemptive resume (prs): the associated clock counts the time according to an age memory

policy: the age variable a

g

is reset only when t

g

�res.

� Preemptive repeat di�erent (prd): the associated clock counts the time according to an en-

abling memory policy: the age variable a

g

is reset each time t

g

is disabled or �res.

In the described individual memory models, a prs transition cannot be disabled and restarted

before �ring, while a prd transition is restarted each time the corresponding transition is disabled

or �res. It should be noted that the prd policy is the only considered in the available tools modeling

non-Markovian SPN [15, 11, 9].

4 Algorithm description

The algorithm developed to provide an approximation of the transient and steady state behaviour of

a non-Markovian SPN is based on a discretization of the time. The preemption policies considered

in WebSPN are prs and prd type as discussed above.

The approximation of the continuous time model at equispaced discrete time points involves the

analysis of the system behaviour over a time interval based on the system state at the beginning of

the interval and the past history of the system. The length of the constant discretization interval

must be chosen as a function of the random time variables of the model in such a way that the

3



piece-wise discretized functions provide a su�ciently accurate approximation of the corresponding

continuous functions. In the case of a prd or a prs general transition, the past history is condensed

into a single age variable, so that the remaining �ring time can be computed conditioned on the

time already spent in an enabling condition (represented by the age variable). In the developed

analytical approach the value of the continuous age variables are discretized as well.

Based on these considerations an elementary step of the approximation method is as follows:

� analysis of the behavior of the marking process inside a single time interval. This analysis is

based on the the associated age variables at the beginning of the interval and on the state

reached by the system at the end of the previous interval;

� evaluation of the values of the associated variables at the end of the current time interval.

� determination of the transition probabilities over the reachable states of the discretized state

space at a �xed time (the lenght of the discretization interval).

The system behaviour is approximated by a Discrete Time Markov Chain (DTMC) over an

expanded state space determined by the cross product of the system states (the markings of the

Petri net) and the discretized values of the associated age variables. This approach is very similar

to the PH expansion method [10] in several senses. The main di�erence is that, in this case, the

system behavior is approximated by an expanded DTMC while in the PH approximation case

an expanded CTMC is obtained. The present approach inherits some similarities also from the

supplementary variable approach [12], since the supplementary (age) variables are constrained to

assume values in a discretized set.

The main steps of the implemented solution method are the following:

� generation of the reachability graph (with tangible and vanishing states), and reduction of

the reachability graph to tangible states, only;

� generation and analysis of the expanded DTMC;

� evaluation of the �nal measures at the net level, based on the solution of the expanded DTMC.

5 Design Issues

The use of Java technology allows to share the WebSPN tool through the Web. The tool can

be accessed from any node connected with the Internet, as long as it possesses a Java-enabled

Web browser. To make the tool available only to authorized users, adequate security mechanisms

based on public and private key algorithms are included, which provide authentication services and,

if required, encryption. In this way, only users with regular licences can access the applications

in question. The approach proposed was successfully used to port the Sharpe tool (Symbolic

Hierarchical Automated Reliability/Performance Evaluator) onto the Web [18, 17].

5.1 Communication Mechanisms

The approach we followed can be seen as an extension of the client/server programming paradigm.

The client, in fact, (1) processes locally the request to be sent to the server, who (2) executes it at

a di�erent time, at the end of which (3) it noti�es the client of the results of the calculation. Unlike

4



the classical approach, however, the client does not need to possess any speci�c software; through a

simple Web interface it loads the software using the mechanisms provided by Java. The immediate

advantage is the simplicity of access to the application and the total absence of a preliminary

phase to distribute and install the interface software. During connection with the server the client

loads the software required for the graphic interface, as well as the modules necessary for future

communication sessions. The application provider can then update the application, modifying

the interface as he likes, without having to provide potential clients with updated versions of the

software. The user, in turn, has the certainty of always using the latest version of the software,

and can also count on optimal installation and an execution speed that is not always possible

with his own computing resources. The immediate retrievability on the Web ensures the complete

availability of applications that otherwise would probably remain known only to a limited number

of potential users. In this sense, an immediate use for the design choice we propose is in teaching,

to allow students easy, economic access to the modeling tool.

The only requirement for the client is a Java-enabled Web browser, while the server needs the

following software modules:

� Web server;

� Java Virtual Machine;

� Application to be made available on the network;

� Java applet of the user interface;

� Software module to run the communication session with the client.

The last module, entirely developed in Java, comprises two submodules. One of these, in

particular, is transferred to the client when the latter forwards a request for access to the server and

provides the client with the mechanisms needed to run the communication sessions just started.

The second submodule, on the other hand, is always in execution on the server and deals with

accepting requests from various clients, robustly managing the various connections with clients,

and sending clients the results put out by the server. It also keeps a memory of the correspondence

between clients and the applications they use.

5.2 Security and Access Control

Network sharing of WebSPN requires the creation of suitable security mechanisms to regulate access,

reserving access to previously authorized users. It is therefore necessary to provide authentication

services and, if required, encryption. The techniques we will use are based on public and private

key algorithms [14, 19].

Below we will refer to a server S and a generic client C that wants to use the services provided

by S. In our structure the server S also represents the authority issuing certi�cates for the clients'

public keys. The communication protocol can be subdivided into the following 3 stages, shown in

Fig. 1: registration, initialization and data transfer.

Registration Stage: In this stage of the security protocol C and S agree on the type of services

o�ered/required and the access modes. C then generates two keys, a private one and a public one,

giving the latter to S through a safe channel (typically not through the same communication channel

5



that subsequent connections will use) and keeping the private one safely (the key is often encrypted

with an alphanumerical password and then memorized).

Initialization Stage: This stage starts when C decides to link up with S to use a certain

application. Neglecting the loading of the applet through Web, as any security mechanisms are

incorporated in the Web browser, this stage can be schematically represented as follows:

� C sends a connection request to S;

� S sends a signed message indicating that the request has been received;

� C replies sending a signed message containing the security services required (con�dentiality

and authentication or authentication alone), and a code identifying its public key;

� S checks C's signature on the message received and if it is recognized, sends C a signed ac-

knowledgement and starts to transfer the data; if the authentication stage fails the connection

is immediately interrupted.

Data Transfer Stage: during this stage each message sent is treated according to the security

services requested. If con�dentiality and authentication have been requested the message will be

composed of two �elds, one in which the data is encrypted and another containing the sender's

signature.

the client generates
a couple of public
and private keys the server certifies

C public key with
its private key

ack
(signed by S)

ack
(signed by S)

verifies signature and
decrypts message

verifies signature and
decrypts message

verifies signature and
decrypts message

CLIENT SERVER

(secure channel)

C public key

certificate of C public key

+ S public key

(signed by C)
services requested

re
gi

st
ra

tio
n

in
iti

al
iz

at
io

n
da

ta
 tr

an
sf

er messages with
authentication

(and encryption)

connection request

Figure 1: Security protocol

6



6 Application example

A simple application example is completely developed to illustrate the use of the graphical user

interface and to show the numerical capabilities of the implemented discrete time approximation

method in the presence of both prd and prs memory policies.

6.1 The Graphical User Interface

To load the graphical user interface of WebSPN it is necessary to link up with the Web page con-

taining the link for the applet and click on the relative icon: the subsequent loading and execution

of the interface onto the local machine is quite transparent to the user.

Figure 2: Main display of WebSPN

The main WebSPN display, shown in Fig. 2, has the following four zones: a) Menu panel; b)

Control panel; c) Design area; d) Status panel.

The Menu Panel o�ers the usual choices. Besides the submenus File and Edit there is also the

Draw submenu with items which allow the user to select the graphic primitives to be used in

the speci�cation phase. More immediate use of the graphic functions is provided by a series

of push buttons on the left hand side of the display.

The Control Panel can be used to activate a series of functions to create, load and save a model

(there are also the classical cut, copy and paste functions) and others to activate the solution

of the model and to add some text.

The Design Area is where the user is allowed to draw his model. Signi�cant graphic symbols and

the associated dialogue boxes are enabled.

The Status Panel gives run-time indications regarding the status of the interface, signalling the

occurrence of any event that may be of interest to the user.

7



With a double click on a generic primitive, the user gains access to a dialogue box with which

it is possible to specify the properties of the primitive. In the case the primitive is a place, a name

can be assigned as well as the initial number of tokens. If a transition is selected, then a dialog box

will appear which o�ers the possibility to change its default name and orientation and to specify

its timing (immediate, exponential or general). If the transition is de�ned as generally distributed,

then the following choices are available: deterministic, uniform and Weibull (only the deterministic

case is implemented in the current version of the tool). Moreover, for any general transition a

memory policy (among prd and prs) must be assigned.

Once the speci�cation stage is completed, the user passes to the analysis stage simply by pressing

the Analyze key which opens a dialogue box in which the user speci�es the evaluation indices he

wants.

Pressing the Ok button the graphic representation is converted into text format using an internal

speci�cation syntax. The ASCII �le thus created is then transferred to the server where the

managementmodule begins execution of a newWebSPN instance. Once the processing is completed

the results are transmitted back to the client.

Another possibility o�ered by WebSPN is saving the graphic description of a model in the X�g

format. X�g is a public domain tool for vector graphics on Unix, frequently used in academic

environments. The picture in this format can be easily manipulated on di�erent platforms and

converted into one of the many available graphic formats (e.g., PostScript).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.3

0.4

0.5

0.6 PH-100
Inv.Transform
DTMC-0.01

Figure 3: Transient probability of State 1 with prd preemption policy

6.2 Numerical Results

The Petri net considered in this example is shown in Figure 2. This PN models an M/D/1/2/2

queue with preemptive LILO service policy. The preemption policy can be either prd or prs. A

detailed description of the model is in [3]. Transitions t

1

and t

3

represent the job submitting time

and are assumed to be exponential with rate � = 0:5. Transitions t

2

and t

4

model the service

8



duration and are assumed to be deterministic with duration d = 1, and with associated prd or prs

memory policy. The example was already evaluated with the PH expansion method and with the

numerical inverse transformation method for the prd policy in [3], and with the numerical inverse

transformation method for the prs policy in [4].

The calculated measure is the probability versus time of the initial marking (state 1) which

represents the server in the empty state and both the customers in the thinking phase. On Figure

3 and 4, the results of the transient analysis of the three methods, the numerical inversion, the

PH approximation and the discretization, are reported with prd and with prs preemption policy,

respectively.

As can be observed, the di�erent numerical approaches result in di�erent numerical properties of

the evaluated measure. Among the three analyzed numerical methods, the DTMC approximation,

implemented in WebSPN, better captures the sharp changes in the transient behaviour, for both

the considered preemption policies.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.3

0.4

0.5

0.6 PH-100
Inv.Transform
DTMC-0.01

Figure 4: Transient probability of State 1 with prs preemption policy

7 Conclusion

A new modeling tool, called WebSPN, for speci�cation and automatic solution of non-Markovian

SPN has been described. The tool implements a time-discretization approach and allows concurrent

enabling of generally distributed transitions with prd and prs preemption policies. Due to the use

of the Java programming language, WebSPN is easily accessible from any node connected with the

Internet as long as it possesses a Java-enabled Web browser. The tool was developed using the

Java Development Kit version 1.0.2. The tool was implemented mostly on Windows95 PC and

Sun/Solaris systems. The server functions were performed by a Sun SparcStation20 on which a

Web Server (NCSA HTTPd 1.5.2) and the WebSPN modeling tool were installed.

9



Acknowledgements

This work has been partially supported by Italian CNR under Grant No. 96.01939.CT12 and

Hungarian OTKA under Grant No. T-16637.

References

[1] M. Ajmone Marsan, G. Balbo, A. Bobbio, G. Chiola, G. Conte, and A. Cumani. The e�ect of

execution policies on the semantics and analysis of stochastic Petri nets. IEEE Transactions

on Software Engineering, SE-15:832{846, 1989.

[2] A. Bobbio and L. Roberti. Distribution of the minimal completion time of parallel tasks in

multi-reward semi-Markov models. Performance Evaluation, 14:239{256, 1992.

[3] A. Bobbio and M. Telek. Computational restrictions for SPN with generally distributed tran-

sition times. In D. Hammer K. Echtle and D. Powell, editors, First European Dependable

Computing Conference (EDCC-1), Lecture Notes in Computer Science, volume 852, pages

131{148. Springer Verlag, 1994.

[4] A. Bobbio and M. Telek. Markov regenerative SPN with non-overlapping activity cycles. In

International Computer Performance and Dependability Symposium - IPDS95, pages 124{133.

IEEE CS Press, 1995.

[5] G. Chiola. GreatSPN 1.5 Software architecture. In G. Balbo and G. Serazzi, editors, Computer

Performance Evaluation, pages 121{136. Elsevier Science Publishers, 1992.

[6] Hoon Choi, V.G. Kulkarni, and K. Trivedi. Markov regenerative stochastic Petri nets. Per-

formance Evaluation, 20:337{357, 1994.

[7] G. Ciardo, J. Muppala, and K.S. Trivedi. SPNP: stochastic Petri net package. In Proceedings

International Workshop on Petri Nets and Performance Models - PNPM89, pages 142{151.

IEEE Computer Society, 1989.

[8] G. Ciardo, R. German and C. Lindemann. A characterization of the stochastic process under-

lying a stochastic Petri net. IEEE Transactions on Software Engineering, 20:506{515, 1994.

[9] J.A. Couvillon, R. Freire, R. Johnson, W.D. Obal, M.A. Qureshi, M. Rai, W. Sanders, and

J.E. Tvedt. Performability modeling with UltrasSAN. IEEE Software, 8:69{80, September

1991.

[10] A. Cumani. Esp - A package for the evaluation of stochastic Petri nets with phase-type

distributed transition times. In Proceedings International Workshop Timed Petri Nets, pages

144{151, Torino (Italy), 1985. IEEE Computer Society Press no. 674.

[11] R. German, C. Kelling, A. Zimmermann, and G. Hommel. TimeNET - A toolkit for evaluating

non-markovian stochastic Petri nets. Report No. 19 - Technische Universit�at Berlin, 1994.

[12] R. German. New results for the analysis of deterministic and stochastic Petri nets. In Interna-

tional Computer Performance and Dependability Symposium - IPDS95, pages 114{123. IEEE

CS Press, 1995.

10



[13] Arnold Gosling. The Java Programming Language. Addison Wesley - The Java Series, 1996.

[14] L. Hughes. Actually Useful Internet Security Techniques. New Riders Publishing, 1995.

[15] C. Lindemann. DSPNexpress: a software package for the e�cient solution of deterministic and

stochastic Petri nets. Performance Evaluation, 22:3{21, 1995.

[16] M.K. Molloy. Performance analysis using stochastic Petri nets. IEEE Transactions on Com-

puters, C-31:913{917, 1982.

[17] A. Pulia�to, O. Tomarchio, and L. Vita. Porting sharpe on the web: Design and implemen-

tation of a network computing platform using JAVA. In Proceedings TOOL'97, Saint Malo,

(France), June 1997.

[18] R. A. Sahner, K. S. Trivedi, and A. Pulia�to. Performance and Reliability Analysis of Com-

puter Systems. Kluwer Academic Publishers, November 1995.

[19] W. Stalling. Network and Internetwork Security Principles and Practice. Prentice Hall, 1995.

11


