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Abstract

Allmost all the available tools for the analysis of Stochastic Petri Nets (SPN)

assume that the stochastic nature of the problem is restricted to be a Continuous

Time Markov Chain (CTMC), but in reality, there are instances in which the

CTMC assumption is too weak. The evolution of the stochastic systems with non-

exponential timing becomes a stochastic process, for which in general, no analytical

solution is available.

In order to properly de�ne Non-Markovian Stochastic Petri Nets special speci-

�cations should be added at the PN level. These speci�cations are usually referred

to as the �ring policy. The semantics of di�erent �ring policies appeared in the

literature is discussed, together with their implication on the behavior of the asso-

ciated marking process.

Di�erent approaches and numerical techniques have been explored in the lit-

erature for dealing with non-Markovian SPNs: - techniques based on the theory

of Markov regenerative processes; - techniques based on the use of supplementary

variables; - techniques based on the approximation of the original non-Markovian

process by means of a Markov chain de�ned over an extended state space. The

paper explore the background of the above solution techniques with respect to

di�erent classes of models.

1 Introduction

The semantics of PN with generally distributed �ring times has been considered for a long

time. In [1], in order to completely de�ne the behaviour of the marking process, each

timed transition was assigned an individual memory policy specifying how the �ring

of the transition was dependent on its past history. The memory policy proposed in

[1] was an attribute attached to each individual transition so that the memory of the

�
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overall marking process resulted from the superposition of the memories of the individual

transitions.

Based on the concepts de�ned in [1], Ajmone and Chiola developed the Deterministic

and Stochastic PN (DSPN) model [2], where in each marking, a single transition is al-

lowed to have associated a determinsitic �ring time with enabling memory policy. Choi

et al. have derived the transient solution of the same model in terms of a Markov regen-

erative process, and have subsequently extended the DSPN model by accommodating at

most a single transition with generally distributed �ring time [6] in each marking. They

have called this class of models Markov Regenerative Stochastic PN (MRSPN). Further

elaborations of SPN models with non exponential distributions but restricted to enabling

memory policies only have been presented in [7, 10, 15].

Bobbio and Telek have enlarged the class of MRSPN by introducing the concept of

marking processes with non-overlapping memories. In this new framework, they have

accomodated into the model age memory policies [5, 17] and preemptive repeat identical

policies [3, 4].

This paper summarizes the model speci�cation and solution techniques of MRSPNs.

The rest of the paper is organized as follows. Section 2 discusses the memory model of

Petri net transitions and the considered �ring policies. Section 3 introduceses the analysis

techniques proposed for the numerical analysis of Markov Regenerative Stochastic Petri

Nets. An application example is evaluated in Section 4, and the paper is concluded in

Section 5.

2 The individual memory model

A marked Petri Net is a tuple PN = (P; T; I;O; H;M

0

), where: P is the set of places, T

the set of transitions, I, O and H are the input, the output and the inhibitor functions,

respectively, and M

0

is the initial marking. The reachability set R(M

0

) is the set of all

the markings that can be generated from the initial marking M

0

. The marking process

M(t) denotes the marking occupied by the PN at time t.

We de�ne a non-Markovian SPN as a stochastically timed PN in which the time

evolution of the marking process cannot be mapped into a Continuous Time Markov

Chain (CTMC). In the spirit of many modeling formalisms [13], in which the complexity

of the solution must be hidden to the modeler, a complete set of speci�cations must

be given at the PN level, in order to univocally de�ne the underlying marking process.

Therefore, the way in which the future evolution of the marking process depends on its

past history needs to be speci�ed at the PN level.

The most consistent way to introduce memory into a SPN is provided in [1]. Each

timed transition t

g

is assigned a random �ring time 


g

with a general distribution G

g

(t)

with support on [0 ; 1). A clock, associated to each individual transition, counts the

time in which the transition has been enabled. An age variable a

g

associated to the

timed transition t

g

keeps track of the clock count. A timed transition �res as soon as

the age variable a

g

reaches the value of the �ring time 


g

. A very similar formulation,

in the simulation setting, has been discussed by Haas and Shedler [12].

In the original view [1], two main �ring policies were introduced:

� enabling memory if the age variable a

g

is reset each time the corresponding tran-
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Figure 1: Pictorial representation of di�erent �ring policies.

sition t

g

is disabled or �res;

� age memory if the age variable a

g

is reset only when the corresponding transition

t

g

�res.

We de�ne the activity period of a transition t

g

as the interval of time during which the

corresponding age variable a

g

is di�erent from 0. In [1], the �ring time was implicitly

assumed to be resampled at the beginning of any activity period of the transition.

However, in a more general view, the random �ring time 


g

of a transition t

g

can be

sampled in a time instant antecedent to the beginning of an activity period. To keep track

of the resampling condition of the random �ring time associated to a timed transition,

we assign to each timed transition t

g

a binary indicator variable �

g

that is equal to 1

when the �ring time is sampled and equal to 0 when the �ring time is not sampled. We

refer to �

g

as the resampling indicator variable. When a transition enters an activity

period, if the resampling indicator variable �

g

is zero, the �ring time is resampled and �

g

is switched to 1; whereas, if �

g

is already equal to 1, the �ring time is not resampled. �

g

is reset to 0 at each �ring of t

g

. We de�ne the resampling period of a transition as the

time interval during which the indicator variable �

g

is equal to 1, i.e. the �ring time of

the transition maintains its constant value without any intermediate resampling.

The active period and the resampling period are elements of memory of the marking

process. Hence, in general, the memory of a transition t

g

is captured by the tuple (a

g

; �

g

).

At any time epoch t, transition t

g

has memory (its �ring process depends on the past)

if either a

g

or �

g

are di�erent from zero.

Adopting the previous formalization of the memory concept, the following individual

memory policies have been introduced in the past. A timed transition t

g

can be (Figure

1):

� Preemptive resume (prs):

If the associated clock counts the time according to an age memory policy and the

3



�ring time is resampled when the transition becomes active. More formally, both

the age variable a

g

and the resampling indicator �

g

are reset only when t

g

�res.

� Preemptive repeat di�erent (prd):

If the associated clock counts the time according to an enabling memory policy and

the �ring time is resampled when the transition becomes active. More formally,

both the age variable a

g

and the resampling indicator �

g

are reset each time t

g

is

disabled.

� Preemptive repeat identical (pri):

If the associated clock counts the time according to an enabling memory policy but

the �ring time can be resampled only after the transition �red. More formally, the

age variable a

g

is reset each time t

g

is disabled but the resampling indicator �

g

is

reset only when t

g

�res.

In the described individual memory models, a prs transition cannot be disabled and

restarted before �ring, and a pri transition cannot be resampled before �ring.

3 Markov Regenerative Stochastic Petri Nets

The �rst de�nition of the class of MRSPNs comes from Choi et al. [6]:

De�nition 1 A SPN is called a Markov Regenerative Stochastic Petri Net if its marking

process is a Markov regenerative process (MRGP).

MRGPs [14] are discrete state continuous time stochastic processes with embedded

Regenerative Time Points (RTP), at which the process enjoys the Markov Property.

Based on the concept of memory of the general transitions RTPs can be de�ned as

follows:

De�nition 2 A regeneration time point in the marking process is an instance of time

when all the active and sampled time interval of the general transitions are concluded.

The importance of these de�nitions comes from the fact thatMRSPNs can be studied

by the results available for MRGPs [14]. The analysis methods of MRSPNs published

in the literature so far are based on one of the following approaches: Markov Renewal

Theory [6, 5]; Method of Suplementary Variable [15, 10]; Approximate analysis by Phase

type expansion [9].

3.1 Analysis by Markov Renewal Theory

By the memoryless property of the MRGPs in the RTPs the analysis of a MRSPN can

be divided into independent subproblems which are the analysis of the stochastic (sub-

ordinated) processes between the consecutive RTPs, called regeneration periods. The

measures required for the transient analysis of MRSPNs based on the Markov regen-

erative theory are commonly refered to as global and local kernels. The global kernel

describes the occurence of the consecutive RTP:

K

ij

(t) = PrfM

(1)

= j ; �

�

1

� tjM(0) = ig
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where M(t) denotes the marking process �

�

1

is the next RTP and M

(1)

is the right

continuous state of the marking process at the next RTP. The local kernel describes the

state transitions probabilities up to the consecutive RTP:

E

ij

(t) = PrfM(t) = j ; �

�

1

> tjM(0) = ig

The analysis of this measures is a function of the memory policy of the general

transition dominates the regenerative period, i.e. the transition whose sampling period

coincidences with the tagged regenerative period. For a prd type general transition the

analysis is given in [6], for a prs type in [5] and for a pri type in [3].

Based on the global and the local kernels the transient analysis can be carried out in

time

V

ij

(t) = E

ij

(t) +

X

k

Z

t

0

dK

ik

(y) V

kj

(t� y)

or in transform domain

V

�

(s) = [I � K

�

(s)]

�1

E

�

(s)

where V

ij

(t) denotes the state transition probability over (0; t), i.e.: V

ij

(t) = PrfM(t) =

j jM(0) = ig and V

�

(s) is the Laplace-Stieltjes transform of the transition probability

matrix.

For the purpose of the steady state analysis an MRSPN the following measures of

the subordinated processes should be known:

�

ij

= E [

Z

1

0

I

M

(i)

(t)=j

dt] ; �

ij

= PrfM

(1)

= j j M(0) = ig

�

ij

is the expected time a subordinated process starting from state i spends in state j,

and �

ij

is the probability that the subordinated process starting from state i is followed

by a subordineted process starting from state j. Indeed the matrix � = f�

ij

g is the

transition probability matrix of the discrete time Markov chain embedded into the RTPs.

The analysis of these measures are also conditional to the type of the dominant

transition of the subordinated processes. For a prd type general transition the analysis

is given in [2], for a prs type in [17] and for a pri type in [4]. These measures can also

be obtained from the global and local kernels eighter in time and transform domain:

�

ij

=

Z

1

t=0

E

ij

(t)dt = lim

s!0

E

�

ij

(s)=s ; �

ij

= lim

t!1

K

ij

(t) = lim

s!0

K

�

ij

(s)

The steady state analysis of an MRSPN based on these measures is a 2-step method:

Step 1: Evaluate P = fp

i

g the unique solution of:

P = P� ;

X

i

p

i

= 1

Step 2: The steady-state probabilities of the MRGP become:

v

j

= lim

t!1

PrfM(t) = jg =

X

k

p

k

�

kj

X

k

p

k

�

k

5



3.2 Analysis by the Method of Suplementary Variable

The marking process (M(t)) together with the age variable (a) of the dominant transition

of an MRSPN

1

with at most one active prd type general transition is a Markov process

over the state space S � R, where S is the set of reachable tangible markings and R is

the (sub)set positive real numbers.

The joint process can be analyzed by the method of supplementary variable [8] as

shown in [10]. Following the concept and the notations of [11] we brea
y summarize the

approach.

Let T

G

the set of general transitions. The state space is devided into #T

G

+1 parts.

S

E

is the set of states in which no general transition is active (a

:

= 0), and S

g

; g 2 T

G

is the set of states in which the general transition t

g

is active. The superscript

E

refers

to the states in S

E

and the superscript

g

(or

h

) refers to the states in S

g

(or S

h

). The

probability of being in state n at time t is �

n

(t) = Pr[M(t) = n]. The, so called, age

rate describes the state together with the age of the process at time t:

p

n

(t; x) =

Pr[M(t) = n; x < a � x+ dx]

dx

�

1

1 � F

g

(x)

The �ring time distribution of transition t

g

is F

g

(x). And the matrix, refered to as

branching probability matrix, describes the state transition due to the �ring of a general

transition is denoted by �

g;h

i;j

.

With the use of proper vectors and matrices a system with prd transitions is charac-

terized as follow.

Partial di�erential equation describes the process evolution in S

g

:

@

@t

p

g

(t; x) +

@

@x

p

g

(t; x) = p

g

(t; x)Q

g

The age increases as fast as the time when general transition t

g

is enabled.

Ordinary di�erential equation describes the process evolution in S

E

:

d

dt

�

E

(t) = �

E

(t)Q

E;E

+

X

g

�

g

(t)Q

g;E

+

X

g

Z

1

0

p

g

(t; x)dF

g

(x)�

g;E

State probabilities in S

E

can change by the �ring of an exponential transition (1st term),

by disabling a general transition after which only exponential transitions are enebled (2nd

term), or by �ring of a general transition after which only exponential transitions are

enebled (3rd term).

Boundary condition is given by:

p

g

(t; 0) = �

E

(t)Q

E;g

+

X

h

�

h

(t)Q

h;g

+

X

h

Z

1

0

p

h

(t; x)dF

h

(x)�

h;g

1

when t

g

is the dominant transition a = a

g

6



General transition t

g

can be activated by the �ring of an exponential transtion in S

E

(1st

term), by disablig the active general transtion (2nd term), or by the �ring of a general

transition (3rd term).

The probability of states in which t

g

is active are given by:

�

g

(t) =

Z

1

0

p

g

(t; x)(1� F

g

(x))dx

Finally the initial conditions are �

E

(0) and p

g

(0; x) = �

g

(0)�(x).

The analysis of the transient behaviour by the Suplemantary Variable Approach is

based on a numerical evaluation of the above system of equations. An iterative algoritm

based on the �x size (h) discretization of the continuous variables proposed by German

et al. [11] consists of the following steps:

1. compute age rates in the next time instant

p

g

(ih; jh) = p

g

((i� 1)h; (j � 1)h)e

Q

g

h

and set p

g

(ih; 0) = 0

2. compute the state probabilities �

g

(ih) by p

g

(ih; jh); j = 0; 1; : : :

3. compute the state probabilities �

E

(ih) by the ordinary di�erential equation

4. compute the activation rate of general transitions p

g

(ih; 0) by the boundary con-

ditions

5. check the convergence and go back to step 2 or start with the next time instant

(i+ 1)h

The transient behaviour of an MRSPN by the Suplemantary Variable Approach can

be easily obtained by vanishing the derivatives according to the time in the above set of

equations. Lindemann proposed an e�ective numerical method to evaluate the steady

state probabilities based on this approach [15].

3.3 Approximate analysis by Phase type expansion

The set on non-Markovian Stochastic Petri Nets with prs or prd type transitions can be

approximatelly analyzed by the method of Phase type expansion. When the �ring times

are all Phase type distributed [16], this approach gives the exact solution.

The analysis method is composed by the following steps:

Step 1: Approximate the �ring time distribution of all the timed transition by a

Phase type distribution.

Step 2: Based on the net description, the Phase type model and the memory policy

of the transitions compose the expanded state model of the stochastic process which

is a CTMC over the state space S � T

1

� : : :� T

n

, where S is the set of reachable

tangible markings and T

g

is the set of the phases of the Phase type model of

transition t

g

.
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Ĵ

J

J

J]

J

J

J

Ĵ
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Figure 2: Petri net model of the processor system

Step 3: Analyze the expanded CTMC.

Step 4: Evaluate the marking probabilities and the other required Petri net mea-

sures.

Cumani has realized a package, called ESP, which automatically performes Step 2 to

4 [9].

4 Job execution in a processor system

A real life example is described and analyzed by a MRSPN in this section. Consider a

processor system with two terminals, indicated as A and B, submitting jobs for execution.

Jobs from terminal A require a generally distributed processing time, while jobs from

terminal B experience an exponentially distributed processing time. Further, terminal

B generates higher priority jobs, which preempt jobs coming from terminal A. Place p

1

in Figure 2a represents the terminal A in the thinking phase and transition t

1

models

the exponentially distributed submission time. Place p

2

indicates that job A is being

executed, and transition t

2

represents the random execution time. In a similar fashion,

transition t

3

models the generation of higher priority jobs from terminal B (place p

3

). A

token in place p

4

represents a type B job being processed. Transition t

4

is the processing

time of jobs submitted by terminal B. To capture the fact that type B jobs have higher

priority than type A jobs, we introduce an inhibitor arc from place p

4

to transition t

2

which interrupts the execution of any type A job until the execution of the type B job is

completed. The �ring time of transitions t

1

, t

3

and t

4

are assumed to be exponentially

distributed, while the service time modeled by transition t

2

is assumed to be generally

distributed. The service policy of type A jobs is preemptive resume which means that

an interrupted job is resumed from the point it was interrupted when the processor

completes the higher priority job. To capture this behaviour t

2

has an associated age (prs)

memory policy. Note that the preemption policy assumed for transition t

4

is completely

inin
uent for the overall behaviour of the system as t

4

will complete its activity once

enabled.

This model was solved by the method based on the Markov Regenerative Theory [5]

by assuming the following values. The �ring time of transition t

1

and t

3

are exponentially

8
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Figure 3: Transient behavior of state probabilities of the processor system

distributed with parameter �

1

= �

3

= 0:5. The �ring time of transition t

2

is assumed

to be uniformly distributed between 0:5 and 1:5 with a prs service discipline. The �ring

time of transition t

4

is exponentially distributed with parameter �

4

= 1. The associated

reachability graph is shown in Figure 2b.

5 Conclusion

The paper has surveyed the speci�cation and analysis of stochastic models with non-

exponential timing through Stochastic Petri Nets. Di�erent analysis approaches pro-

posed in the literature for the numerical evaluation of MRSPN models are summarized.

An application example, the performance analysis of a complex processor system, is

discussed.
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