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Abstrat

Analytial modeling plays a ruial role in the analysis and design of omputer

systems. Stohasti Petri Nets represent a powerful paradigm, widely used for suh

modeling in the ontext of dependability, performane and performability. Many stru-

tural and stohasti extensions have been proposed in reent years to inrease their

modeling power, or their apability to handle large systems. This paper reviews reent

developments by providing the theoretial bakground and the possible areas of appli-

ation. Markovian Petri nets are �rst onsidered together with very well established

extensions known as Generalized Stohasti Petri nets and Stohasti Reward Nets.

Key ideas for oping with large state spaes are then disussed. The hallenging area



of non-Markovian Petri nets is onsidered, and the related analysis tehniques are sur-

veyed together with the detailed elaboration of an example. Finally new models based

on Continuous or Fluid Stohasti Petri Nets are briey disussed.

1 Introdution

Analytial evaluation of omputer/ommuniation systems is inreasingly beoming an in-

tegral part of the whole design proess. Many diverse model spei�ation tehniques have

been proposed. Petri net models have gained a widespread aeptane [103, 100℄ sine they

provide a graphial language that an be rather onise in its spei�ation, provide a natural

way to represent omplex logial interations among parts or ativities in a system and are

loser to a designer's intuition about what a model should look like. Original Petri nets did

not arry any notion of time. In order to make the tehnique useful for quantitative analysis,

a variety of timing extensions have been proposed in the literature.

The distinguishing features of the timing extensions are whether the duration of the events

is modeled by deterministi or random variables, and whether the time is assoiated with

plaes, transitions or tokens. Petri nets (PN) in whih the timing is stohasti are referred

to as Stohasti PN (SPN), and the most ommon assumption is that time is assigned to the

duration of events represented by the transitions. The time evolution of a SPN is aptured

by a stohasti proess, referred to as its Marking Proess.

SPN an be used to automatially generate the underlying marking proess, whih an

then be analyzed to yield results in terms of the original Petri net model. This is a ase

where the user-level representation of a system is translated into an analyti representation

[72℄. The analyti representation is proessed and the results are ast bak to the user-

level representation. The most updated and valuable soure of referenes for the theoretial

developments and the possible appliation areas of models based on stohasti PN is the

series of international workshops known as Petri Nets and Performane Models - PNPM.

This series was initiated in Torino (Italy) in 1985, then moved to the USA, Japan, Australia

and Frane. The sevents edition was held in Saint-Malo (Frane) in 1997.

The most ommon assumption, in the literature, is to assign to the PN transitions an

exponentially distributed �ring time [94, 95, 101℄, so that the resulting marking proess is a

Continuous Time Markov Chain (CTMC). Almost all the PN-based tools are based on this

assumption.

In priniple, simple and tratable equations an be derived for both transient and steady-

state analysis of CTMCs. But pratial limitations arise from the fat that the ardinality of

the state spae grows muh faster than the number of omponents in the system being mod-

eled. One line of researh has been devoted to dealing with large system models resorting to

distributed algorithms, aggregation, hierarhial omposition or approximation tehniques.

The use of exponentially distributed �ring time has been regarded as a restrition in

the appliation of PN-based models. Indeed, there are many phenomena whose times to

ourrene are not exponentially distributed. The hypothesis of exponential distributions,

in those ases, allows the onstrution of models whih an give a more qualitative rather
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than quantitative analysis of real systems. The existene of deterministi or other non-

exponentially distributed events, suh as timer expiration, propagation delay, transmission

of �xed length pakets, hard deadlines in real-time systems et., give rise to stohasti models

that are non-Markovian in nature [92℄.

In reent years, a onsiderable e�ort has been devoted to enrih the PN formalism in order

to deal with generally distributed delays [42, 19℄. However, the inlusion of non-exponential

distributions destroys the memoryless property of the assoiated marking proess, and fur-

ther spei�ation is needed at the PN level in order to uniquely de�ne how the marking

proess is onditioned on the past history.

In this paper, we review the main strutural and stohasti extensions of PNs, by provid-

ing an updated treatment of the theoretial bakground and the possible areas of appliation.

The paper is organized as follows. Setion 2 de�nes the basi PN model, and introdues

the most ommon strutural extensions that are an integral part of the standard de�nition in

many software pakages. Setion 3 shows how a Petri net an be augmented with stohasti

timing assoiated with the transitions. When all the �ring times are exponentially distributed

the marking proess is a CTMC. This assumption is by far the most ommon in pratie and

is reviewed in Setion 4 together with a useful extension, known as GSPN [2℄, whih divides

the transitions into two lasses: exponentially timed and immediate. The measures that an

be obtained from a Markovian model are realled, and it is expliitly shown how they ast

into a PN model. Stohasti reward nets (SRN) are introdued in Setion 5, and it is shown

how useful measures at the SPN level an be ompatly obtained by a suitable de�nition

of the reward struture superimposed on the SPN. Some diretions of researh to deal with

very large Markovian models, generated by an SPN, are summarized in Setion 6. Non-

Markovian SPNs are dealt with in Setion 7. In partiular, three approahes are disussed:

the �rst one is based on the Markov regenerative theory, the seond one is based on the use

of supplementary variables, and the third one is based on state expansion tehniques. A fully

developed example is reported in Setion 8. A possible new diretion of researh is based

on SPNs that generate a partially disrete and partially ontinuous state spae [5℄. These

models are, sometimes, referred to as uid-SPNs and are onsidered in Setion 9. Setion 10

is the onluding setion.

2 De�nition of the basi Petri Net Model

Formally, a marked PN [103℄ is a tuple PN = (P; T; I; O;M); where:

� P = fp

1

; p

2

; : : : ; p

np

g is the set of plaes (drawn as irles);

� T = ft

1

; t

2

; : : : ; t

nt

g is the set of transitions (drawn as bars);

� I and O are the input and the output funtions, respetively. The input funtion

I provides the multipliities of the input ars from plaes to transitions; the output

funtion O provides the multipliities of the output ars from transitions to plaes.
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� M = fm

1

; m

2

; : : : ; m

np

g is the marking of the PN. The generi entry m

i

is the number

of tokens (drawn as blak dots) in plae p

i

, in marking M . The initial marking is M

0

.

Input and output ars have an arrowhead on their destination. A transition is enabled

in a marking if eah of its input plaes ontains at least as many tokens as the multipliity

of the input funtion I. An enabled transition �res by removing as many tokens as the

multipliity of the input funtion I from eah input plae, and adding as many tokens as the

multipliity of the output funtion O to eah output plae.

A marking M

0

is said to be diretly reahable from M , when it is generated from M by

�ring a single enabled transition t

k

. The reahability set R(M

0

) is the set of all the markings

that an be generated from an initial markingM

0

by repeated appliation of the above rule.

PNs an be used to apture the behavior of many real-world situations inluding sequen-

ing, synhronization, onurreny, and onit. The enabling of a transition orresponds to

the starting of an ativity, while the �ring orresponds to the ompletion of an ativity.

When the �ring of a transition auses a previously enabled transition to beome disabled, it

means that the orresponding ativity was interrupted before being ompleted.

2.1 Strutural Extensions

Various strutural extensions have been proposed in the past to inrease either the lass of

problems that an be represented or the ability and the ease with whih real systems an

be modeled. In [39℄, Ciardo de�nes the modeling power as the ability of a PN formalism to

represent lasses of problems. He also de�nes modeling onveniene as the pratial ability

to represent a given behavior in a simpler, more ompat or more natural way. Deision

power is de�ned to be the set of properties that an be analyzed. Inreasing the modeling

power dereases the deision power. Thus eah possible extension to the basi formalism

requires an in depth evaluation of its e�et upon modeling and deision power [103℄.

Extensions whih only a�et modeling onveniene an be removed by using basi on-

struts, so they an usually be adopted without introduing any further analytial om-

plexity. Some extensions have proven so e�etive that they are now onsidered part of the

standard PN de�nition. They are:

� inhibitor ars,

� transition priorities,

� marking-dependent ar multipliity.

Inhibitor ars onnet a plae to a transition and are drawn with a small irle on their

destination. An inhibitor ar from a plae p

i

to a transition t

k

disables t

k

when p

i

is

not empty. It is possible to use the ar multipliity extension together with inhibitor

ars. In this ase, a transition t

k

is disabled whenever plae p

i

ontains at least as many

tokens as the multipliity of the inhibitor ar. The number of tokens in an inhibitor

input plae is not a�eted by a �ring operation.
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Priorities are integer numbers assigned to the transitions. A transition is enabled in a

marking if and only if no higher priority transitions are enabled. If this extension is

introdued, some markings of the original PN may no longer be reahable.

Marking-dependent ar multipliity was introdued in [40, 41℄ with the intent to model sit-

uations in whih the number of tokens to be transferred along the ars (or to enable a

transition) depends upon the system state. Ars with marking dependent multipliity

are indiated by a 'Z' on the ar, and allow simpler and more ompat PNs than would

otherwise be possible without this onstrut. In many pratial problems, their use

an dramatially redue the omplexity of the PN model.

As an example of an eÆient and onvenient use of the above introdued strutural

extensions, onsider the PN model for an ISDN hannel shown in Figure 1 [110℄:

� Voie and data pakets arrivals are modeled through transitions Tarrival� voie and

Tarrival � data, respetively;

� Voie and data proessing times are modeled through transitions Tser � voie and

Tser � data;

� The transmitter ontains a bu�er (plae data) to store a maximum of k data pakets.

This is modeled by the inhibitor ar from plae data to transition Tarrival�data with

multipliity k. When k tokens are resident in plae data, transition Tarrival � data

is inhibited and annot �re.

� A voie paket an enter the hannel (plae voie) only if there are no pakets (voie or

data) waiting to be transmitted. This is modeled by the two inhibitor ars to transition

Tarrival � voie.

� If a voie transmission is in progress, data pakets annot be servied, but are bu�ered.

This priority mehanism is modeled by the inhibitor ar from plae voie to transition

Tser � data;

� The data bu�er an eventually be ushed, if some asynhronous event ours (transition

flush). This is modeled by the marking-dependent ar multipliity between plae data

and transition remove. The ar removes as many tokens as resident in plae data. This

ushing ation might be also obtained without resorting to the speial onstrut of the

marking-dependent ar multipliity, but at the ost of a muh more omplex PN.

Other extensions are possible to inrease the modeling onveniene. They are, usually,

in the form of guards or enabling funtions [44℄, where besides the standard enabling rules,

a transition is enabled if the value of a boolean funtion related to various onditions on the

PN evaluates to true.
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Tarrival-voice

Tser-dataTser-voice

Tarrival-data

flushdatavoice

remove

asynchronous

k

Figure 1: Using PN strutural extension to model an ISDN hannel

3 Stohasti Petri Nets

The most ommon way to inlude time into a PN, is to assoiate a duration with the

ativities that indue state hanges, hene with the transitions. The duration of eah

ativity is represented by a non-negative random variable with a known df. Let � =

(

1

; 

2

; : : : ; 

nt

) be the set of the n

t

random variables assoiated with the n

t

transitions,

and G = (G

1

(t); G

2

(t); : : : ; G

nt

(t)) be the set of their df's.

When a waiting time 

k

is assoiated with a transition t

k

, the transition beomes enabled

aording to the rules of the untimed PN, but it an �re only after a time equal to 

k

has

elapsed. The time between the enabling and the �ring is referred to as the �ring time. Let

fM(t); t � 0g be the marking proess, i.e.,M(t) represents the marking reahed by the PN

at time t.

In the following, we restrit our analysis to SPNs in whih the random �ring times have

ontinuous df with in�nite support (0;1℄. With this assumption, the marking proessM(t)

is a right-ontinuous, pieewise onstant, ontinuous-time, disrete-state stohasti proess

whose state spae is isomorphi to the reahability graph of the untimed PN. Intrigued

semanti interpretations related to the possibility of ontemporary �rings are avoided [96,

75, 41, 48℄.

Given a marking in whih more than one transition is enabled (with the same priority

level if priority is used), the �ring poliy determines the transition that will �re next. Two

possible alternatives have been disussed in [1℄:

i) Under the rae poliy, the transition whose �ring time elapses �rst is assumed to be

the one that will �re next,

ii) Under the preseletion poliy, the next transition to �re is hosen aording to an

externally spei�ed probability mass funtion independent of their �ring times.

By far the most ommon �ring poliy for timed transitions is the rae poliy. Preseletion

poliy is ommonly used for immediate transitions, introdued for the �rst time in Markovian

SPN in [2℄.
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One the �ring poliy is de�ned, the exeution poliy must be spei�ed. The exeution

poliy onsists of a set of spei�ations for uniquely de�ning the stohasti proess fM(t)g

underlying an SPN. Two elements haraterize the exeution poliy: a riterion to keep mem-

ory of the past history of the proess (the memory poliy), and an indiator of the resampling

status of the �ring time. The memory poliy de�nes how the proess is onditioned upon

the past. An age variable a

g

assoiated with the timed transition t

g

keeps trak of the time

for whih the transition has been enabled. A timed transition �res as soon as the memory

variable a

g

reahes the value of the �ring time 

g

. The ativity period of a transition is the

period of time during whih its age variable is not 0.

The random �ring time 

g

of a transition t

g

an be sampled at a time instant prior to the

beginning of an ativity period. To keep trak of the resampling ondition of the random

�ring time assoiated with a timed transition, we assign to eah timed transition t

g

a binary

indiator variable �

g

that is equal to 1 when the �ring time is to be sampled and equal to

0 when the �ring time is to be not sampled. We refer to �

g

as the resampling indiator

variable. Hene, in general, the (ontinuous) memory of a transition t

g

is aptured by the

tuple (a

g

; �

g

). At any time epoh t, transition t

g

has memory (its �ring proess depends on

the past) if either a

g

or �

g

is di�erent from zero.

At the entrane in a marking, the remaining �ring time (rft

g

= 

g

� a

g

) is omputed

for eah enabled transition given its urrently sampled �ring time 

g

and the age variable a

g

.

Aording to the rae poliy, the next marking is determined by the minimal of the rft's.

Now, the following di�erent exeution poliies are de�ned. A timed transition t

g

an be:

� Preemptive repeat di�erent (prd):

If both the age variable a

g

and the resampling indiator �

g

are reset eah time t

g

is

disabled or it �res.

� Preemptive resume (prs):

If both the age variable a

g

and the resampling indiator �

g

are reset only when t

g

�res.

� Preemptive repeat idential (pri):

If the age variable a

g

is reset eah time t

g

is disabled or �res but the resampling

indiator �

g

is reset only when t

g

�res.

Figure 2 gives a pitorial desription of these preemption poliies for a single transition

t

g

. In the �gure, the time instants marked with E, D and F indiate the enabling, disabling

and �ring time points of t

g

, respetively. Eah preemption poliy is illustrated via the

evolution of the age variable a

g

assoiated with the transition t

g

and of its remaining �ring

time (rft

g

= 

g

� a

g

). The horizontal lines below the diagrams indiate the periods of time

when �

g

= 1.

Transition t

g

is prd - Eah time a prd transition is disabled or it �res, its memory variable a

g

is reset and its indiator resampling variable �

g

is set to 0 (the �ring time must be resampled

from the same distribution when t

g

beomes reenabled). With referene to Figure 2a, t

g

is
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Figure 2: Pitorial representation of di�erent �ring time sampling poliies

enabled for the �rst time at t = 0: its memory variable a

g

starts inreasing linearly, �

g

is set

to 1 and the �ring time is sampled from its distribution to a value, say, 

1

. At time D, t

g

is

disabled and the memory is reset (a

g

= 0; �

g

= 0). At the next enabling time instant E, a

g

restarts from zero, �

g

is set to 1 and the �ring time is resampled from the same distribution

assuming a di�erent value, say 

2

. When t

g

�res (point F ) both a

g

and �

g

are reset. At

the suessive enabling point E, a

g

restarts and the �ring time is resampled (

3

). Thus, a

prd transition looses its memory at any D and F points. The memory of the transition is

on�ned to the periods of time in whih t

g

is ontinuously enabled.

Transition t

g

is prs - With referene to Figure 2b, when t

g

is disabled (at point D), its

assoiated age variable a

g

is not reset but maintains its onstant value until t

g

is reenabled

and �

g

= 1. At the suessive enabling point E, a

g

restarts from the previously retained

value. When t

g

�res, both a

g

and �

g

are reset so that the �ring time must be resampled at

the suessive enabling point (

2

). The memory of t

g

is reset only when the transition �res.

Transition t

g

is pri - Under this poliy (Figure 2), eah time t

g

is disabled, its age variable

is reset, but �

g

remains equal to 1, and the �ring time value 

1

remains ative, so that in
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the next enabling period an idential �ring will result. In Figure 2, the same value (

1

) is

maintained over di�erent enabling periods up to the �ring of t

g

. Only when t

g

�res both a

g

and �

g

are reset and the �ring time is resampled (

2

). Hene, also in this ase, the memory

is lost only upon �ring of t

g

.

If the �ring time is exponentially distributed both the prd and prs poliies behave in the

same way and an be omitted from spei�ation. However, the pri poliy does not enjoy the

memoryless property [15℄. Thus, the marking proess of an SPN with only exponentially

distributed �ring times is not a CTMC if at least a single non-exlusively enabled transition

exists with assigned pri poliy.

The preemption poliies of transitions that an not be preempted before �ring do not

a�et the stohasti behaviour of SPNs. There are sublasses of SPNs in whih none of

the transitions an be preempted before �ring, e.g. stohasti deision free Petri nets [11℄,

marked graphs [31℄, event graphs [8℄, free hoie nets [59℄.

If the �ring time is deterministi, both the prd and pri poliy behave in the same way

(indeed, resampling a deterministi variable provides always an idential value).

The memory of the global marking proess is onsidered as the superposition of the

individual memories of the transitions. In general, the marking proess fM(t)g underlying

a SPN is not analytially tratable unless some restritions are imposed [42, 19℄. Note that,

a simulation approah for the prd and the prs ases, based on assumptions very similar to

the one stated in the present setion, has been desribed in [65, 66℄.

In Figure 3, the orrespondene between the usual restritions of SPNs and the orre-

sponding lasses of analytially tratable stohasti proesses is reported. In the following

setions, the various entries in Figure 3 are haraterized and their solution tehniques are

briey summarized.

4 Markovian SPN

When all the random variables 

k

assoiated with the PN transitions are exponentially

distributed, and the exeution poliy is not pri, the dynami behavior of the PN is mapped

into a CTMC, with state spae isomorphi to the reahability graph of the untimed PN. This

restrition is the most popular in the literature [101, 94, 95, 60℄ and is usually referred to

simply as SPN. A number of tools are built on this assumption [33, 44, 51, 87℄. In order to

ompletely speify the model, the set � = (�

1

; �

2

; : : : ; �

nt

) of the n

t

�ring rates assigned

to the n

t

transitions should be given in addition. A usual onvention, in the graphial

representation, is to indiate transitions with exponentially distributed �ring times by means

of empty retangles, and transitions with non-exponentially distributed �ring times by means

of �lled retangles.

Modeling real systems often involves the presene of ativities or ations, whose duration

is short, or even negligible, with respet to the time sale of the problem [3℄. Hene, it is

desirable to assoiate an exponentially distributed �ring time only with those transitions
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Deterministic Stochastic Petri Nets

Semi-Markov Processes

Markov Regenerative Processes

Continuous-Time Markov Chains

Markov Reward ModelsStochastic Reward Nets

Generalized Stochastic Petri Nets

Fluid Stochastic Petri Nets Fluid-Flow Models

Diffusion Models
CONTINUOUS STATE SPACE

DISCRETE STATE SPACE

Markov Regenerative SPNs

Figure 3: Correspondene between SPN models and stohasti proesses.

whih are believed to have the largest impat on the system operation. The starting as-

sumption in the GSPN model [2℄ is that transitions are partitioned into two di�erent lasses:

immediate transitions and timed transitions. Immediate transitions �re in zero time one

they are enabled and have priority over timed transitions. Timed transitions �re after an

exponentially distributed �ring time (these will be alled EXP transitions below). In the

graphial representation of GSPN, immediate transitions are drawn as thin bars.

Markings enabling immediate transitions are passed through in zero time and are alled

vanishing states. Markings enabling no immediate transitions are alled tangible states.

Sine the proess spends zero time in the vanishing states, they do not ontribute to the

dynami behavior of the system so that a proedure an be envisaged to eliminate them

from the �nal Markov hain [2℄. With the partition of PN-transitions into a timed and an

immediate lass, a greater exibility at the modeling level is ahieved without inreasing the

dimensions of the �nal tangible state spae from whih the desired measures are omputed.

The Extended Reahability Graph (ERG) of a GSPN omprises both tangible and vanish-

ing states. Elimination of the vanishing states results in a redued reahability graph whih

is isomorphi to the CTMC.

Given a vanishing marking, m

b

(diretly reahable from a tangible marking m

a

), and

the set of tangible markings S, reahed from m

b

passing through a sequene of vanishing

markings only, it is possible to evaluate the probability of the next tangible marking after

m

b

over S. Note that m

a

may belong to S. For a disussion about the role of immediate

transitions in GSPN and the evaluation of this probability see [35℄.

The vanishing marking m

b

and the ones reahable from m

b

by the �ring of immediate
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Figure 4: GSPN model of a Client-Server system.

transitions an only be eliminated by introduing ars diretly onneting m

a

to m



2

S;m



6= m

a

, and by suitably modifying the �ring rate assoiated with the generi transition

t

k

enabled in m

a

[2℄. Let R

0

be the redued reahability graph of a Markovian SPN and

N its ardinality. The in�nitesimal generator of the underlying CTMC is a N � N matrix

Q = [Q

ij

℄.

In [2, 3℄ matrix equations are provided, for alulating the weights over all the sequenes

of immediate transitions and for aounting for these weights automatially into the tangible

restrition of the reahability graph.

As an example of the generation of the extended and redued reahability graph, onsider

a system based on a lient-server paradigm, whose PN model is shown in Figure 4 [105℄.

Transitions labeled te

k

or st

k

are EXP (empty retangles), and transitions labeled ti

k

are

immediate (thin bars). The system being examined is made up of a lient requesting a servie

(transition te

1

) whih an be supplied with probability (1� ) (transition ti

3

) by two servers

working in parallel, and with probability  (transition ti

1

) by aessing a resoure (plae p

12

)

shared by the two servers. In the ase of �ring of ti

3

, a request forwarded by the lient is split

(fork) into two subrequests eah addressed to a di�erent server (plaes p

5

and p

6

). The two

servers are haraterized by an exponentially distributed servie time modeled by transitions

st

1

and st

2

, respetively. It is assumed, in the de�nition of the model, that a generi I/O

request is onluded when all the servers have served the subrequests they are assigned

(fork-join synhronization). When a server has proessed its subrequest, it aesses the

shared resoure to reord its proessing results (transitions te

2

and te

3

). When both servers

have aessed the shared resoure and the information requested is thus reonstruted and

11



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

m1 � �

m2� � �

m3� � �

m4 �

m5 � � �

m6� � � �

m7� � � �

m8 � �

m9 � � �

m10 � �

m11� � � �

m12 � �

m13� � �

m14 � �

m15 � � �

m16� � � �

m17 � �

m18 � �

Table 1: Reahable markings for the GSPN of Figure 4

available, a join operation is performed and the proessed result is returned to the lient

(transition ti

6

). On the other hand, with probability  the information requested by the

lient is already available in the shared resoure, so that the request is met by aessing the

resoure, retrieving the data and ommuniating it to the lient (transitions ti

2

and te

4

).

The reahability graph, generated from the initial token distribution depited in Figure 4,

is represented in Figure 5. Table 1 reports the distribution of the tokens in the reahable

markings. It is easily heked from Table 1 that the markings m2, m3, m6, m7, m11, m13

and m16 are vanishing (they are shadowed in Figure 5) and an be eliminated. The redued

reahability graph, de�ned over the tangible markings only, is shown in Figure 6. One the

redued reahability graph is obtained, the generator matrix for the underlying CTMC an

be onstruted.

Let �(t) be the N -dimensional state probability vetor, whose generi entry �

i

(t) is the

probability of being in state i (i = 1; 2; :::; N) at time t in the assoiated CTMC. �(t) is the

solution of the standard linear di�erential equation:

d�(t)

d t

= �(t) Q (1)

with initial ondition �(0) = [1; 0; 0; :::; 0℄. If the steady-state probability vetor � =

lim

t!1

�(t) of the CTMC exists, it an be alulated from the equation:

12
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Figure 5: Reahability graph of Client Server system.
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st1 st2

te3 te2
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te2 st2
m17

st1te3

st1 te3

m15 m18

Figure 6: Redued reahability graph of Client Server system.
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�Q = 0 with

N

X

i=1

�

i

= 1 (2)

The numerial tehniques for the solution of Equations (1) and (2) are outside the sope

of this paper. Reommended referenes are [116, 108℄.

Sine some of the output measures depend on the integrals of the probabilities rather than

on the probabilities themselves [64℄, it is neessary to provide the appropriate omputation

of the integrals of the state probabilities. Let

L

i

(t) =

Z

t

0

�

i

(z)d z

be the expeted time that the CTMC stays in state i during the interval (0; t); let L(t)

denote the N -dimensional row vetor onsisting of the elements L

i

(t). Integrating both sides

of equation (1), the following relation is obtained:

dL(t)

dt

= L(t)Q +�(0) (3)

Solution of Equation (3) an be obtained utilizing the same tehniques available for

Equations (1) [108, 109℄ and with a very little additional overhead if the two set of equations

are suitably solved in parallel using the same data strutures.

4.1 Measures at the net level

A notieable property of the time dependent representation of the system behavior through

SPNs, is that they allow the user to de�ne in a simple and natural way a large number of

di�erent measures related to the performane and reliability of the system. In order to exploit

this property, the input language must be strutured for providing a friendly environment

for the spei�ation of the required output measures.

The stohasti behavior of a Markovian-SPN is determined by alulating the �(t), �

and L(t) vetors over the redued reahability set R

0

. However, the �nal output measures

should be de�ned at the PN level as a funtion of its primitive elements. The following

subsetions provide a pratial outline as how to relate the omputed probabilities at the

CTMC level with useful measures at the PN level.

4.1.1 Probability of a given ondition on the SPN

By means of logial or algebrai funtions of the number of tokens in the PN plaes, a

partiular ondition C (e.g., no tokens in a given plae) an be spei�ed and the subset of

states S 2 R

0

an be identi�ed for whih the ondition is true. The output measure

C

S

(t) = Prob fondition C is true at time t g
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is given by:

C

S

(t) =

X

s2S

�

s

(t) (4)

where �

s

(t) is the probability of being in state s at time t. For instane, if S is the set of

operational states, C

S

(t) in (4) is the usual de�nition of availability.

A very useful ase arises when the measure to alulate is the transient probability that

the ondition is satis�ed for the �rst time. By using a standard devie in the analysis of

stohasti proesses, the states s 2 S an be made absorbing, and the requested quantity is

evaluated from (4) by stopping the proess when entering S. In this way the above equation

an be used to alulate the system reliability.

4.1.2 Time spent in a marking

Let S 2 R

0

be the subset of markings in whih a partiular ondition is ful�lled. The

expeted time  

S

(t) spent in the markings s 2 S during the interval (0; t) is given by:

 

S

(t) =

X

s2S

Z

t

0

�

s

(z) dz =

X

s2S

L

s

(t) (5)

Moreover, it is well known from the theory of irreduible Markov hains that as t ap-

proahes in�nity the proportion of the time spent in states s 2 S equals the asymptoti

probability:

 

S

=

X

s2S

�

s

= lim

t!1

 

S

(t)

t

(6)

 

S

(t)=t an represent the utilization fator in the interval (0; t), and  

S

is the expeted

steady-state utilization fator. For example, if S is the set of states in whih a server is idle,

 

S

(t)=t is the fration of idle time in (0; t), and  

S

is the expeted asymptoti idle time.

4.1.3 Mean �rst passage time

Given that C

S

(t), as alulated in (4), is the probability of having entered subset S before t

for the �rst time, the mean �rst passage time �

S

, an be alulated as:

�

S

=

Z

1

0

[1 � C

S

(z)℄ dz (7)

The above formula requires the transient analysis to be extended over long intervals. Of

ourse, in this ase, other well known diret tehniques for alulating mean �rst passage

times in a CTMC an be more e�etive [44℄.

15



4.1.4 Distribution of tokens in a plae

The df of the number of tokens in plae p

i

of the SPN at time t is a stairase funtion

in whih the amplitude of the k-th step is obtained by summing up the probabilities of all

the states in R

0

ontaining k tokens (k = 0; 1; 2; : : :) in p

i

at time t. The probability mass

funtion f

i

(k; t) is the amplitude of the k-th step. The expeted value of the number of

tokens in plae p

i

at time t is:

IE [m

i

(t) ℄ =

1

X

k=0

k f

i

(k; t) (8)

As an example, if plae p

i

represents idential units queueing up for a ommon resoure the

above quantity gives the expeted value of the number of units in the queue versus time. In

reliability analysis a very interesting ase arises when the tokens in plae p

i

represent the

number of failed omponents.

4.1.5 Expeted number of �rings of a PN-transition

Given an interval (0; t), the expeted number of �rings indiates how many times, on the

average, an event modeled by a PN transition has ourred in that interval. Let t

k

be a

generi PN transition, and let S be the subset of R

0

whih inludes all the markings s 2 S

enabling t

k

. The expeted number of �rings of t

k

in (0; t) is given by:

�

k

(t) =

X

s2S

�

k

(s)

Z

t

0

�

s

(z) dz =

X

s2S

�

k

(s)L

s

(t) (9)

where �

k

(s) is the �ring rate of t

k

in marking s.

In steady-state, the expeted number of �rings per unit of time beomes:

�

k

=

X

s2S

�

s

�

k

(s) (10)

This quantity is very important sine it represents the throughput assoiated with the given

transition. If transition t

k

represents the ompletion of a servie in a queueing system, �

k

(t)

is the expeted number of servies ompleted in time (0; t) and �

k

is the expeted steady-state

throughput.

If transition t

k

indiates failure (repair) of a omponent, �

k

(t) provides the mean number

of failures (repairs) of that omponent in (0; t).

5 Stohasti Reward Nets

Stohasti Reward Nets (SRN) introdue a new extension into Markovian-SPNs onsisting in

the possibility of assoiating reward rates to the markings. The reward rates are spei�ed at

the PN level as a funtion of its primitives (like the number of tokens in a plae or the rate of

a transition). The underlying CTMC is then transformed into a Markov reward model thus
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permitting the evaluation of performability measures [107℄. The tools, whih implements this

extension [45, 51℄, allow the reward struture superimposed on the reahability graph to be

generated automatially and easily provide dependability, performane and performability

measures.

The reward de�nition, used in the sequel, is alled rate-based, to indiate that the system

produes reward at rate r(i) for all the time it remains in state i 2 R

0

. Impulse-based reward

models [51℄ an also be implemented: a reward funtion r

ij

is assoiated to eah transition

from state i 2 R

0

to j 2 R

0

. Eah time a transition from i to j ours, the umulative

reward of the system instantaneously inreases by r

ij

. In general, several ombinations of

the di�erent reward funtions an be spei�ed in the same model.

5.1 Measures at the net level

We assume time-independent rate-based reward models, and we show how all the PN-based

measures, introdued in Setion 4.1, an be expressed in a very ompat form, just properly

partiularizing the various reward rates.

Let r

i

(i = 1; 2; :::; N) be the reward rate of the proess in state i and let �(t), � and L(t)

be the transient, the steady-state and the integral probability vetors alulated from the

underlying CTMC (Equations 1-3). Let X(t) denote the instantaneous reward rate at time t

and Y (t) be the reward aumulated during (0; t). The following measures are onveniently

de�ned.

5.1.1 Expeted instantaneous reward rate

The expeted instantaneous reward rate at time t is omputed as:

IE[X(t)℄ =

N

X

i=1

r

i

�

i

(t) (11)

and in steady-state:

IE[X℄ =

N

X

i=1

r

i

�

i

(12)

The omplexity of solving Equations (11) and (12) is the same as that of solving the

standard Markov equations (1) and (2). It is easily reognized that Equation (4) an be

expressed in the form (11) if an appropriate binary reward rate is assigned to the state spae

R

0

. In partiular a reward rate r

s

= 1 is assigned to states s 2 S and a reward rate r

i

= 0

otherwise.

Furthermore, Equation (8) an be derived diretly from (11) by assigning to r

i

the value

of the number of tokens in plae i, and the throughput Equation (10) by assigning to r

i

the

value of the �ring rate of the transition of interest.
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5.1.2 Expeted aumulated reward

The expeted aumulated reward at time t is given by:

IE[Y (t)℄ = IE

�

Z

t

0

X(z)d z

�

=

N

X

i=1

r

i

L

i

(t) (13)

A sometimes useful related measure is the time averaged aumulated reward IE[W (t)℄ =

IE[Y (t)℄=t, whih an also be seen as the average rate aording to whih the reward is

aumulated from 0 to t.

It is easily reognized how Equations (5) and (9) an be expressed in the form (13) by a

suitable assignment of the reward rates.

5.1.3 Distribution of umulative measures

Let F (t; y) = Prob fY (t) � yg denote the df of the reward aumulated in (0; t). The

expeted value (13) may not give a suÆiently aurate indiation about the probability of

ourrene of a single event. In [115℄, several examples are reported revealing a behavior

that is not deduible from the mere analysis of the average values. However, omputation

of F (t; y) is a very omplex task [115, 107, 58℄ and it is not usually available in standard

SPN-based tools.

6 Dealing with large state spaes

SPNs an provide a very ompat representation of very large systems. This is reeted in

an exponential growth of the reahable markings as a funtion of the primitive elements in

the SPN (plaes and transitions), and as a funtion of the number of tokens in the initial

marking. This exponential growth of the state spae has been often reognized [98℄ as a severe

limitation in the use of the SPN paradigm to deal with real life appliations. Therefore, a

large e�ort has been devoted to overome, or to alleviate this problem.

Sine Markovian-SPNs are based on the solution of a CTMC, all the tehniques that have

been explored to handle very large Markov hains an pro�tably be utilized in onnetion

with SPNs. However, original lines of researh have been partiularly developed in the

ontext of SPNs. When dealing with large models, not only that the solution of the system

beomes diÆult, but the model desription and the omputer representation also beome

tedious.

Distributed algorithms - Distributed algorithms have been spei�ally developed for both

the generation of the reahability graph from an SPN and for the solution of the

underlying CTMC [32, 93, 6, 43℄. Distributed approahes in the generation phase are

typially penalized by the irregularities in the required data strutures. Nevertheless,

a distributed implementation may ahieve a signi�ant speed up in the omputational

time and a onsiderable extension of the ardinality of the solvable models [93℄. The
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distributed steady-state solution of the CTMC has proven to outperform standard

tehniques [6℄ ahieving higher rates of onvergene espeially when applied to large,

sti� problems.

Strutured representation - An approah to inrease the size of tratable CTMCs, is to rep-

resent the generator matrix in a ompat form as a ombination of smaller omponent

matries, and to exploit this representation in the solution algorithm. A ompositional

tehnique based on Kroneker operators proposed in [104℄, was initially transferred to

the SPN framework in [54, 55℄. Subsequently, eÆient tehniques have been published

for the reahability analysis [79, 80℄ and for the numerial solution [25, 26, 81℄ whih

exploit the spei� struture of the generator matrix. To use the strutured analysis

tehnique, the SPN model has to be desribed appropriately by means of submod-

els interating via synhronizing transitions. Strutured shemes for asynhronously

interating submodels have been presented in [24℄. Sine memory spae is often the

bottlenek in dealing with large SPN models, the strutured representation an be very

e�etive.

Hierarhial models inluding SPNs If an overall system model an be omposed from

submodels then eah submodel is solved separately and results passed to higher level

submodel. The hierarhy an be homogeneous where eah submodel is of SPN-type

or heterogeneous. SHARPE sofware pakage allows models of seven di�erent types

to be ombined together [110℄ in suh manner. Some of the model types inluded in

SHARPE are: GSPNs, produt-form queueing networks, Markov hains, fault trees

and so on. language of SPNs. Other authors have also used suh hierarhial models

where GSPN submodel results are supplied as parameters to a produt-form queueing

network [12, 13℄. A pakage supporting the view of replaing GSPN plaes by queueing

systems has been presented in [14℄. Partiular lasses of SPNs, like those originating

queueing models with matrix-geometri struture [102℄, have been onsidered and a

tool has been built for their analysis [70, 71℄

Produt form SPN - Queueing networks with produt-form equilibrium distribution are well

established and �nd appliation in a variety of �elds. With the aim of overoming the

state explosion problem, several proposals have been reently doumented to import

the produt-form onept into the SPN arena. In [86℄, a lass of SPNs is identi�ed for

whih a produt-form solution an be written from the knowledge of partial balane

equations. The generation of the reahability graph is needed to reognize this lass

of SPNs. An extension of this work is presented in [88℄. Henderson et al. [74℄ have

developed a produt-form riterion based only on the struture of the SPN, without

the need to generate the reahability graph. A omparative analysis of these two types

of appraohes has been reported in [56℄. This omparison showed for the �rst time

the possibility of reognizing whether an SPN has produt-form solution using results

from the strutural analysis. A omplete haraterization of this lass of models is in

[21℄ and a neessary and suÆient ondition for the existene of a positive solution for

19



the traÆ equation is in [22℄. Spei� algorithms for the omputation of produt-form

solution have been presented in [50, 113℄. Mean value analysis for non-produt-form

SPNs has been explored in [112℄.

PN-driven tehniques - These tehniques deal with the redution of both memory require-

ments and time omplexity of the solution algorithms of SPNs by using information

about the struture of the untimed PN models. High Level Stohasti Petri Nets, suh

as for example Stohasti Well-formed Coloured Nets (SWN), often exhibit behavioral

symmetries that an be exploited to redue the size of the state spae, and of the orre-

sponding CTMC, by grouping states into equivalene lasses. The desirable properties

of tehniques based on this idea are the possibility of automatially disovering the

symmetries using only the information ontained in the model desription at the PN

level, and the possibility of diretly generating the redued state spae (and the lumped

Markov hain) without �rst building the omplete reahability graph. A method for

the onstrution of a lumped CTMC from and SWN model has been presented in

[36, 37℄. In [67, 68℄ it has been shown that in some ases it is possible to integrate this

method with the deomposition methods based on Kroneker Algebra. In [111℄, the

same idea has been exploited and a method for the onstrution of the lumped CTMC

starting from the high-level desription is given.

Deterministially Synhronized Sequential Proesses (DSSP) are a lass of SPNs that

an be obtained by resorting to simple modular design priniples, and for this lass a

well-established theory exists for the analysis of their qualitative behavior [106, 114℄.

Net-driven tehniques, developed for DSSPs, an reognize and extrat from the origi-

nal model a set of simpler auxiliary submodels that are then analyzed through approx-

imate iterative tehniques [29℄ as well as exat solution [30℄.

CTMC-drive tehniques - For a CTMC with a large number of states, only a few states will

likely arry most of the probability mass. If we an reognize the states with neglible

probability mass in advane of their generation, then suh states need not be generated.

Suh state trunation tehniques have been suessfully utilized in the ontext of SPN

reliability and availability models [78, 99℄. Another tehnique for avoiding large state

spaes is to solve a set of CTMC (or SPN) submodels in isolation and pass neessary

information from their solution to other submodels. This may need �xed-point iteration

among submodels [47, 121℄. A time sale deomposition approah (imported from

CTMC literature [20℄) has been proposed in [77℄. This approah requires that the

transitions of the PN an be lassi�ed into two lasses: fast and slow transitions.

Performane Bounds - A omplementary approah to the development of eÆient solution

tehniques for the omputation of performane measures, is the searh for bounds.

Bounds require less omputational e�ort with respet to the ost of exat solution,

sine they are estimated based on equations at the SPN level, and do not require the

generation of the reahability graph. Moreover, the evaluation of the bounds is usually

not restrited to Markovian nets. E�ort on deriving performane bounds haven been
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afoot sine the beginning of the researh on SPN [97, 23℄. The evaluation of bounds

for the sublass of marked graphs was presented in [27, 29℄, and in [28℄ for SPNs with

a unique onsistent �ring ount vetor. A general approah for the omputation of

bounds has been formulated in [34℄, based on operational analysis tehniques applied

at the SPN level, with very weak assumptions on their timing semantis. The bounds

an be obtained in polynomial time by solving suitable linear programming problems,

and depend only on the mean values of the �ring times and are insensitive to their

distribution. In the ase of Markovian SPNs, an improved solution tehnique, based

on the randomization algorithm, has been presented in [91℄.

7 Non-Markovian Stohasti Petri Nets

Aording to Setion 2, in order to de�ne a SPN with generally distributed transitions, the

following entities must be spei�ed for eah transition t

g

2 T : the df (G

g

(t)) of the random

�ring time 

g

, and the exeution poliy for determining (a

g

; �

g

).

In reent years, several lasses of SPN models have been developed whih inorporate

some non-exponential harateristis in their de�nition, and whih adhere to the individual

memory semantis disussed in [1℄. With the aim of speifying non-Markovian SPN models

that are analytially tratable, three main lines of researh an be envisaged [42, 19℄:

� an approah based on Markov regenerative theory [49, 83℄;

� an approah based on the use of supplementary variables [52℄;

� an approah based on state spae expansion [19℄.

The �rst line originated from a partiular ase of non-Markovian SPN, de�ned in [4℄,

where, in eah marking, a single transition is allowed to have assoiated a deterministi �ring

time with prd poliy (Deterministi and SPN - DSPN). Choi et al. [37, 38℄ have observed

that the marking proess underlying a DSPN is a Markov Regenerative Proess (MRGP) for

whih equations for the transition probability matrix in transient and in steady-state an be

derived.

A semanti generalization of the previous formulation, has been proposed in [18℄, by

inluding the possibility of modeling prs transitions and in [15℄ by inluding pri transitions.

The most general framework under whih the Markov regenerative theory has been applied

is the one in whih any regeneration time period is dominated by a single transition (non-

overlapping dominant transitions).

The seond line resorts to the use of supplementary variables [52℄. The method has

been, up to now, applied to prd exeution poliies only and with mutually exlusive general

transitions. The steady-state solution has been proposed by German and Lindemann in

[62, 89, 90℄, while the possibility of applying the methodology to the transient analysis has

been explored in [61, 73℄.
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A omparison of numerial methods for the transient analysis of MRGPs applying the

Markov regenerative theory and the method of the supplementary variables has been pre-

sented in [63℄.

The third line of researh, aimed at a�ording the solution of non-Markovian SPN, is

based on the expansion of the reahability graph of the basi PN. In this approah, the

original non-Markovian marking proess is approximated by means of a CTMC de�ned over

an augmented state spae. Aording to the de�nitions given in Setion 2, the expansion

tehnique an be realized by assigning to eah transition a ontinuous Phase-type (PH)

distributed random variable [102, 16℄.

The merit of this approah is the exibility in modeling any ombination of prd and

prs memory poliies and any number of onurrent or oniting transitions with generally

distributed �ring times. Moreover, the expansion tehnique an be easily implemented by

a omputer program, starting from the basi spei�ation at the PN level, so that all the

solution steps an be hidden from the modeler [53℄. The drawbak of this approah is,

of ourse, the explosion of the state spae that an be alleviated by resorting to the use

Kroneker operators for matries [69℄.

A very reent and interesting modi�ation of the expansion tehnique, resorts to the

use of disrete PH-type random variables [41, 48℄, so that the ontinuous-time marking

proess is approximated by an expanded disrete-time Markov hain (DTMC). However,

disrete random variables are not overed by the assumptions stated in Setion 2, and their

onsideration is outside the sope of the present review.

The sublasses of SPNs in whih none of the transitions an be preempted before �ring

allow e�etiv analysis and simulation methods even with non-exponentially distributed �ring

times [10, 9℄.

7.1 Markov Regenerative Stohasti Petri Nets

The formalization of a lass of Markov Regenerative Stohasti Petri Nets (MRSPN) has

been presented in [37℄:

De�nition 1 A SPN is alled a Markov Regenerative Stohasti Petri Net (MRSPN) if its

marking proess is a Markov Regenerative Proess (MRGP)

1

.

MRGPs [83℄ (or Semi Regenerative Proesses [49℄) are disrete-state ontinuous-time

stohasti proesses with an embedded sequene of Regenerative Time Points (RTP) [120℄,

at whih the proess enjoys the Markov property. The relevane of De�nition 1 omes from

the fat that MRSPNs an be studied by resorting to the tehniques available for MRGPs

[49, 83℄. Based on the onept of memory in a SPN, RTPs an be de�ned as follows:

De�nition 2 A regenerative time point (RTP) in the marking proess fM(t)g underlying

an SPN is an instant of time where all the transitions do not have memory; i.e. all the

1

MRSPNs are referred to as Semi Regenerative SPNs in [47℄.
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memory variables a

k

and the resampling indiator variables �

k

(k = 1; 2; : : : ; n

t

) are equal

to zero.

EXP transitions with either prd or prs poliy do not have memory, and they do not a�et

the searh for RTPs. Only generally distributed transitions, or EXP transitions with pri

poliy have to be heked to ful�ll the requirements of De�nition 2. The framework in whih

an SPN, with mixed preemption poliies [119℄, generates a MRGP marking proess is based

on the notion of non-overlapping dominant transition [18℄.

De�nition 3 A transition, for whih the beginning and the end of its memory yle orre-

spond to the initial and �nal RTPs of a regeneration interval, is said to be dominant over

the onsidered regeneration interval. An SPN with non-overlapping dominant transitions is

a MRSPN.

The evolution of the marking proess fM(t)g during a regeneration period between two

onseutive RTP's is alled the proess subordinated to the dominant transition. The subor-

dinated proess an ontain any number of EXT transition �rings, but De�nition 3, inludes

the possibility that the memory yle of one transition is ompletely ontained within the

memory yle of the dominant one, hene allowing simultaneous enabling of di�erent general

transitions inside the same subordinated proess. However, an analyti derivation is possible

if the subordinated proesses are restrited to be a CTMC or a semi-Markov proess (SMP).

If the general transitions are prd, a more omplex situation has been examined in [105℄,

in whih more than one general transition an be enabled at the same time. An example

with mixed preemption poliies an be found in [119℄, while an example with simultaneously

enabled prd transitions is ompletely developed in Setion 8.

7.1.1 Analysis by Markov Regenerative Theory

By the memoryless property of the MRGP at the RTPs, the analysis of an MRSPN an

be split into independent subproblems given by the subordinated proesses between any

two onseutive RTPs. The probability funtions that must be evaluated for the transient

analysis of a MRSPN are ommonly referred to as global and loal kernels [49, 83℄. The

global kernel K(t) = [K

ij

(t)℄ desribes the ourrene of the next RTP:

K

ij

(t) = Prob fM

(1)

= j ; �

�

1

� tjM(0) = ig

where M(0) = i indiates the initial ondition for the marking proess, �

�

1

is the next RTP

and M

(1)

is the right ontinuous state hit by the marking proess at the next RTP. The

loal kernel E(t) = [E

ij

(t)℄ desribes the state transition probabilities inside a regeneration

period, before the next RTP ours:

E

ij

(t) = Prob fM(t) = j ; �

�

1

> tjM(0) = ig

In the speial ase where the marking proess is a semi-Markov proess, all the reahable

states must be RTPs and the loal kernel E(t) is a diagonal matrix. The onditions under

whih an SPN generates a marking proess that is an SMP have been studied in [57℄.

23



The kernel entries are a funtion of the exeution poliy of the single transition dominat-

ing the onsidered regenerative period. For a prd dominant transition the analysis is given

in [38℄, for a prs dominant transition in [18, 117℄ and for a pri dominant transition in [15℄.

Let V(t) = [V

ij

(t)℄ denote the transition probability over (0; t), i.e.:

V

ij

(t) = Prob fM(t) = j jM(0) = ig

Based on the global and the loal kernels the transient analysis an be arried out in the

time domain by solving the following generalized Markov renewal equation:

V

ij

(t) = E

ij

(t) +

X

k

Z

t

0

dK

ik

(y) V

kj

(t� y) (14)

or in the transform domain:

V

�

(s) = [I � K

�

(s)℄

�1

E

�

(s) (15)

where the supersript

�

indiates the Laplae-Stieltjes transform and s is the variable or-

responding to the time variable t.

A time domain solution for the transition probability matrix V(t) an be obtained by

numerially integrating Equation (14). Alternatively, starting from the Laplae transform

Equation (15), a ombination of symboli and numeri omputation is needed to obtain

measures in the time domain [19℄. In both ases, the omplexity of the solution limits the

appliability of the proedure to an MRGP with a small number of states.

For the purpose of the steady-state analysis of an MRSPN, the following measures of the

subordinated proesses are needed:

�

ij

=

Z

1

0

E

ij

(t) dt

(16)

�

ij

= Prob fM

(1)

= j j M(0) = ig

�

ij

is the expeted time the subordinated proess starting from state i spends in state j,

and �

ij

is the probability that the subordinated proess starting from state i is followed by

a subordinated proess starting from state j. Indeed the matrix � = [�

ij

℄ is the transition

probability matrix of the DTMC embedded at the RTPs. The measures in Equation (16) an

be obtained from the global and loal kernels either in the time or in the transform domain:

�

ij

=

Z

1

0

E

ij

(t) dt = lim

s!0

E

�

ij

(s)=s (17)

�

ij

= lim

t!1

K

ij

(t) = lim

s!0

K

�

ij

(s) (18)

The evaluation of the measures in (16) is also dependent on the nature of the exeution

poliy assoiated with the transition dominating the subordinated proesses (as it is indiated

by Equations (17) and (18)). For a prd dominant transition the analysis is given in [4℄, for

a prs dominant transition in [118℄ and for a pri dominant transition in [17℄.

The steady-state analysis of a MRSPN requires three steps:
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Step 1: Evaluate the � = [�

ij

℄ and � = [�

ij

℄ matries based on [4, 118, 17℄.

Step 2: Evaluate the vetor D = [D

i

℄, whose elements are the steady state probabilities

of the DTMC embedded at the RTPs. D is the unique solution of:

D = D� ;

X

i

D

i

= 1

Step 3: The steady-state probabilities of the MRGP are given by:

v

j

= lim

t!1

Prob fM(t) = jg =

X

k

D

k

�

kj

X

k

D

k

�

k

(19)

An example of solution of a MRSPN with prs dominant transitions using Equation (19)

has been reported in [118℄, while in [119℄ an example with mixed preemption poliies has

been onsidered.

7.1.2 Method of Supplementary Variables

The method of supplementary variable has been applied to MRSPNs in whih, in eah (tan-

gible) marking, at most a single enabled transition an have a non-exponential distribution

with prd poliy, with all the other enabled transitions EXP. Let a(t) be the age at time t of

the only enabled non-exponential transition, if any. Sine only one transition an be enabled

at any time, a(t) is the age of the whole model at time t. Under these restritions, the

marking proessM(t) together with the supplementary variable a(t) (i.e., (M(t); a(t))) is a

Markov proess over the state spae R

0

� IR [52℄, where R

0

is the set of reahable tangible

markings and IR is the set of non-negative real numbers. The joint proess an be analyzed

by the method of supplementary variables [52℄ as shown in [62, 61, 73℄. Following the onept

and the notations of [61℄ the solution approah is briey summarized.

Let T

G

be the set of non-exponential timed transitions. The tangible state spae R

0

is partitioned into #T

G

+ 1 disjoint subsets. R

E

0

is the set of states in whih no general

transition is enabled (a(t) = 0 when M(t) 2 R

E

0

), and R

g

0

; g 2 T

G

are the sets of states in

whih the general transition t

g

(the dominant one) is enabled. The supersript

E

refers to

the states in R

E

0

and the supersript

g

(or

`

) refers to the states in R

g

0

. The probability of

being in state i at time t is �

i

(t) = Prob fM(t) = ig. Given that in state i at time t the

single dominant transition t

g

2 T

G

is enabled, with age a

g

(t) and df G

g

(x), the so alled,

age rate h

i

(t; x) desribes the onditional �ring rate of t

g

in i:

h

i

(t; x) =

Prob fM(t) = i; x < a

g

(t) � x + dxg

dx

�

1

1�G

g

(x)

The e�et of the �ring of a general transition t

g

is stored in a branhing probability

matrix � = �

ij

whose generi entry has the following meaning [2, 38℄:

�

ij

= Probfnext marking is j j urrent marking is i and transition t

g

�resg
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With the above assumptions and de�nitions, the age rate vetor h(t; x) = [h

i

(t; x)℄ with

i 2 R

g

0

is desribed by the following partial di�erential equation:

�

�t

h

g

(t; x) +

�

�x

h

g

(t; x) = h

g

(t; x)Q

g

(20)

The transient state probability vetor �(t), an be alulated in partitioned form: �(t) =

[�

E

(t); �

g

(t);�

`

(t); : : :℄. The proess evolution in R

E

0

is desribed by the following ordinary

di�erential equation:

d

dt

�

E

(t) = �

E

(t)Q

E

+

X

g2T

G

Z

1

0

h

g

(t; x) dG

g

(x)�

g;E

+

X

g2T

G

�

g

(t)Q

g;E

(21)

In (21), the state probabilities inside R

E

0

an hange: i) - by the �ring of an EXP

transition whih results in a new marking in R

E

0

(1st term); ii) - by the �ring of a general

transition when the reahed state is in R

E

0

(2nd term); iii) - by the disabling of a general

transition when the reahed state is in R

E

0

(3rd term).

The boundary ondition for Equation (20) is given by:

h

g

(t; 0) = �

E

(t)Q

E;g

+

X

`2T

G

Z

1

0

h

`

(t; x) dG

`

(x)�

`;g

+

X

`2T

G

;` 6=g

�

`

(t)Q

`;g

(22)

In (22), a general transition t

g

an be ativated: i) - by the �ring of an EXP transition

in R

E

0

leading to a state in whih t

g

is enabled (1st term); ii) - by the �ring of a general

transition t

`

when in the reahed state t

g

is enabled (or reenabled if t

g

= t

`

) (2nd term);

iii) - by the �ring of an EXP transition whih disables the ative general transition t

`

and

in the reahed marking the general transition t

g

is enabled (3rd term).

One h

g

(t; x) is omputed from (20), the transient state probability vetor in R

g

0

an be

alulated from:

�

g

(t) =

Z

1

0

h

g

(t; x) (1�G

g

(x)) dx (23)

The initial onditions are �

E

(0) and h

g

(0; x) = �

g

(0) Æ(x), where Æ(x) is the Dira delta

funtion.

An iterative algorithm for solving the above equations, based on a �xed size disretization

interval (d) for the ontinuous variables has been proposed in [63℄. The steps of the algorithm

are the following:

1. Compute the age rates in the next time instant

h

g

(id; jd) = h

g

((i� 1)d; (j � 1)d)e

Q

g

d
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and set h

g

(id; 0) = 0

2. Given the age rates h

g

(id; jd); j = 0; 1; : : :, ompute the state probabilities �

g

(id)

from (23)

3. Compute the state probabilities �

E

(id) from the ordinary di�erential Equation (21)

4. Compute the ativation rate of the general transitions h

g

(id; 0) from the boundary

onditions (22)

5. Chek the onvergene and go bak to step 2 or start with the next time instant (i+1)d

An improved numerial proedure, based on the same equations, but with an adaptively

varying disretization interval in the integration proedure has been reently desribed in

[73℄. The steady-state behavior of the onsidered lass of MRSPN an be easily obtained,

in the supplementary variable setting, by making the time derivatives equal to 0 in the

above set of equations. Lindemann proposed an e�etive numerial method to evaluate the

steady-state probabilities based on this approah [89, 90℄.

7.2 State spae expansion

The tehnique based on the state spae expansion is not restrited to MRSPN shemes, but

any ombination of prd and prs transition is, in priniple, aeptable. The tehnique onsists

in approximating the �ring times with PH-distributed [102℄ random variables and generating

the expanded CTMC obtained by ombining the reahable states with all the phases of the

PH-distributions assoiated with the enabled transitions. An overview of the methods and

tools available to estimate the parameters of a PH-distribution from a given df an be found

in [16℄.

The expansion algorithm an be performed automatially by a omputer program, and

is driven by the exeution poliy assoiated with di�erent transitions [53℄. The result of the

expansion algorithm is that eah marking of the original PN is blown into a marostate in

the new state spae. When the �ring times of the original PN are already PH-distributed,

this approah provides exat results. Otherwise, a preliminary step is needed in order to

approximate the given distributions by means of a suitable PH [16℄.

The analysis method onsists of the following steps:

Step 1: Approximate the �ring time distributions by means of PH df's.

Step 2: Based on the PN desription, the PH distributions assigned to eah transition,

and their exeution poliy (among prd and prs, only) generate the expanded state spae

and the in�nitesimal generator of the expanded CTMC.

Step 3: Analyze the expanded CTMC by standard tehniques (Setion 4) and evalu-

ate the �nal results at the PN level by keeping the orrespondene between original

markings and the marostates in the expanded state spae.
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Figure 7: MRSPN model for a preventive maintenane system

Cumani [53℄ has developed a pakage, alled ESP, whih automatially performs Step 2

- 3. A reent attempt to save storage spae by algorithmially desribing the in�nitesimal

generator of the expanded CTMC by means of Kroneker operators has been doumented

in [69℄.

8 Example: a preventive maintenane system

A quantitative example of a preventive maintenane system is developed. Preventive main-

tenane is onsidered as one of the key fators to inrease system produtivity and to redue

prodution osts. The growing importane of maintenane in industrial appliations has led

an inreased sophistiation in the mathematial models required to analyze its impat on

the system behavior [122, 85℄.

The system starts in a working state, but it ages with time and it eventually fails if

no preventive maintenane ation is done. One it rashes, a random amount of time is

required to bring the system bak up and to restart it. Preventive maintenane is performed

at �xed intervals from the start (or the last restart) of the system in the working state.

The preventive maintenane ativity takes an exponentially distributed amount of time and

ompletely regenerates (renews) the system.

Let d be the onstant inspetion interval. d is a ritial design parameter: if d approahes

zero, the system is always under maintenane and its availability drops to zero. On the other

hand if d beomes too large the bene�ial e�et of the preventive maintenane ation beomes

negligible.

The aim of this example is to elaborate a losed-form analytial expression for the steady-

state behavior of the system, and to evaluate the optimal value of the maintenane interval

that maximizes system availability.

8.1 Petri Net Model

Figure 7 shows theMRSPN representation of the system desribed in the previous paragraph.

The working state is modeled by plae p

up

. The generally distributed transition t

f

models
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the failure distribution whose �ring leads the system to plae p

down

. Upon system failure, the

preventive maintenane ativity is suspended: the inhibitor ar from plae p

down

to transition

t

lok

is used to model this fat.

The deterministi transition t

lok

models the onstant inspetion interval. It is ompet-

itively enabled with t

f

so that the one that �res �rst disables the other one. One t

lok

�res, a token moves in plae p

mai

and the ativity related with the preventive maintenane

(transition t

mai

) starts.

During the preventive maintenane phase, the system is swithed o� and annot fail

(inhibitor ar from plae p

mai

to transition t

f

). The ompletion of the maintenane (�ring

of t

mai

) re-initializes the system in an as good as new ondition; hene t

f

is assigned a prd

poliy. Sine upon failure and repair a omplete d interval must elapse before the suessive

preventive maintenane takes plae, t

lok

also must be assigned a prd poliy.

As an be observed from Figure 7, t

f

and t

lok

are oniting prd general transitions that

�t into the framework elaborated in [105℄.

8.2 Model solution

Sine there are no immediate transitions in the PN, all the markings are tangible. Starting

from the initial marking m

1

represented in Figure 7 , the token distribution in the reahable

markings (assuming the following order for the plaes: p

up

; p

lok

; p

down

; p

mai

) is given by :

m

1

= (1; 1; 0; 0) ; m

2

= (0; 1; 1; 0) ; m

3

= (1; 0; 0; 1)

From marking m

1

both t

f

and t

lok

may �re leading to m

2

and m

3

, respetively. From m

2

only t

down

an �re leading to m

1

and, �nally, from m

3

only t

mai

an �re leading to m

1

. As a

onsequene, the kernel matries K(t) and E(t) have the following struture:

E(t) =

0

B

�

E

11

(t) 0 0

0 E

22

(t) 0

0 0 E

33

(t)

1

C

A

K(t) =

0

B

�

0 K

12

(t) K

13

(t)

K

21

(t) 0 0

K

31

(t) 0 0

1

C

A

Sine E(t) is a diagonal matrix, the marking proess is anSMP. Let G

f

(t) be the df of the

�ring time assoiated with transition t

f

, and d be the deterministi maintenane interval as-

soiated with t

lok

. Furthermore, let �

1

and �

2

be the �ring rates assoiated with transitions

t

down

and t

mai

, respetively. The non-zero kernel entries are:

K

12

(t) =

8

>

<

>

:

G

f

(t) 0 � t < d

G

f

(d) t � d

(24)
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K

13

(t) =

8

>

<

>

:

0 0 � t < d

1�G

f

(d) t � d

(25)

K

21

(t) = 1� e

��

1

t

; K

31

(t) = 1� e

��

2

t

(26)

E

11

(t) =

8

>

<

>

:

1�G

f

(t) 0 � t < d

0 t � d

(27)

E

22

(t) = e

��

1

t

; E

33

(t) = e

��

2

t

(28)

To obtain the steady-state solution, we follow the proedure desribed in Setion 7.1.1.

Step 1:

� =

0

B

�

�

11

=

R

d

0

[1�G

f

(t)℄ dt 0 0

0 �

22

=

1

�

1

0

0 0 �

33

=

1

�

2

1

C

A

� =

0

B

�

0 G

f

(d) 1�G

f

(d)

1 0 0

1 0 0

1

C

A

Step 2:

D =

"

1

2

;

1

2G

f

(d)

;

1

2 (1�G

f

(d))

#

Step 3:

v =

"

1

A2�

11

;

1

A2�

22

G

f

(d)

;

1

A2�

33

(1�G

f

(d))

#

(29)

where A =

1

2�

11

+

1

2�

22

G

f

(d)

+

1

2�

33

(1�G

f

(d))

.

8.3 Results

The steady-state availability is given by the probability of being in state m

1

(entry v

1

in 29).

The e�et of the length of the preventive maintenane interval d on the system availability

an now be examined.

The numerial omputations are performed assuming the following values:
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Figure 8: steady-state availability versus maintenane interval

i) - Transition t

f

is distributed aording to a Weibull df G

f

(t) = 1 � e

�t

�

, where � is

the shape parameter and  is the sale parameter, respetively. We assume � = 2:0

(inreasing failure rate) and  = 2 �10

�7

. With the above value for  the expeted value

of the Weibull df is IE (

f

) = 1981:66 h.

ii) - �

1

= 0:1 h

�1

and �

2

= 1 h

�1

for the �ring rates of transitions t

down

and t

mai

,

respetively.

iii) - The preventive maintenane interval d varying from 0 to 5000 h.

Figure 8 plots the system availability v

1

versus the maintenane interval d. If d = 0,

the system is always under maintenane, and is ompletely unavailable. As d inreases, the

steady-state availability inreases as well. However, for large d the e�et of the preventive

maintenane is overshadowed by the downtime due to failure, and in the limit d ! 1, the

availability approahes the value when there is no preventive maintenane. The optimal

maintenane interval is d = 752 h, at whih the availability ahieves its maximum value

v

1

= 0:999727.

9 Fluid Stohasti Petri Nets

Reognizing the inreasing use of stohasti uid ow models in performane analysis, Trivedi

and Kulkarni introdued the lass of Fluid Stohasti Petri Nets (FSPN) [82℄. This lass

extends the traditional integer token onept by introduing the possibility for the tokens

to be real (positive) entities assigned to speial ontinuous plaes. For a disussion about

ontinuous and hybrid PN models see also [5℄.

The plaes are partitioned into a set of disrete plaes P

d

ontaining an integer number

of tokens and a set of uid (or ontinuous) plaes P



ontaining a real uid level. The state
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spae of an FSPN is partially disrete and partially ontinuous. The disrete part is an

integer vetor aounting for the number of tokens in the disrete plaes. The ontinuous

part is a vetor of real numbers aounting for the uid levels in the ontinuous plaes.

In [82℄, the ontinuous part of a marking does not a�et the disrete-state stohasti

proess de�ned over the disrete plaes (whih is a homogeneous CTMC). Let S be the set

of reahable disrete markings andQ be the in�nitesimal generator of the underlying CTMC.

The evolution of the ontinuous part of the marking is governed by ow rate funtions whih

depend only on the disrete part. Let r

i

(n) be the ow rate out of a uid plae i 2 P



given

that n 2 S is the urrent disrete state. The uid level X

i

(t) of the ontinuous plae i 2 P



given n 2 S and t is haraterized by the following equation:

dX

i

(t)

dt

=

(

r

i

(n) if X

i

(t) > 0

maxfr

i

(n); 0g if X

i

(t) = 0

(30)

De�ne the row vetor

~

H(t; ~x) = [H

n

(t; ~x)℄ whose entries H

n

(t; ~x) (with n 2 S) are the

transient distribution funtions:

H

n

(t; ~x) = Prob fX

i

(t) � x

i

; i 2 P



; n 2 Sg

In aordane with the result of stohasti uid models [7℄

~

H(t; ~x) satis�es [82℄:

�

~

H(t; ~x)

�t

+

X

i2p



�

~

H(t; ~x)

�x

i

R

i

=

~

H(t; ~x)Q; ~x > 0 (31)

with the boundary ondition H

n

(t; ~x) = 0 if x

i

= 0 and r

i

(n) > 0. In the above expression

R

i

= diag(r

i

(n)).

The steady-state behavior of an FSPN is obtained by eliminating the time dependent

derivative from (31). The analytial evaluation of the transient as well as the steady-state

behavior of an FSPN with multiple uid plaes is very hard. Numerial tehniques are

being explored. An FSPN with a single uid plae results in a traditional stohasti uid

ow model for whih the steady-state analysis has been investigated in [7, 84℄, based on the

spetral deomposition of Q.

An extension of the original FSPN model was investigated by Horton at al. [76℄. In

the extended FSPN lass, mutual interations of the ontinuous over the disrete part and

vieversa are allowed. Considerations on the numerial analysis of this lass of FSPNs with

a single uid plae an be found in [76℄. A disrete event simulation method has been

investigated in [46℄.

10 Conlusions

Markovian-SPNs and their most popular variant, the GSPNs, have beome a well known

modeling tehnique in industrial and aademi environments. The availability of well estab-

lished and user-friendly tools based on this paradigm has largely ontributed to the suess

of PNs as a general purpose, exible and e�etive modeling and analysis language.
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The researh lines devoted to exploit spei� properties and strutures either at the PN

or at the reahability graph level, are rapidly inreasing the size of problems that an be

e�etively handled. Moving the frontiers of PN-based models to deal with very large state

spaes has attrated a relevant e�orts in the PN ommunity as evidened by the number of

papers dealing with these topis, and is still an open researh area.

New hallenging and promising results have been reently obtained in the attempt to

overome the exponential assumption. Combination of deterministi and stohasti timings

in the same model represents a realisti goal at the present state of the art, partiularly for

what onerns the steady-state analysis. Numerial tehniques in the transient domain are

still in the infant stage but a variety of methods and algorithms have been developed.

Fluid models are of extreme interest per se, and as a ontinuous approximation to situa-

tions where an enormous number of disrete objets has to be onsidered. The preliminary

results are enouraging but it is hard to foreast the suess that these models will enounter

in appliations.
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