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Abstra
t

Analyti
al modeling plays a 
ru
ial role in the analysis and design of 
omputer

systems. Sto
hasti
 Petri Nets represent a powerful paradigm, widely used for su
h

modeling in the 
ontext of dependability, performan
e and performability. Many stru
-

tural and sto
hasti
 extensions have been proposed in re
ent years to in
rease their

modeling power, or their 
apability to handle large systems. This paper reviews re
ent

developments by providing the theoreti
al ba
kground and the possible areas of appli-


ation. Markovian Petri nets are �rst 
onsidered together with very well established

extensions known as Generalized Sto
hasti
 Petri nets and Sto
hasti
 Reward Nets.

Key ideas for 
oping with large state spa
es are then dis
ussed. The 
hallenging area



of non-Markovian Petri nets is 
onsidered, and the related analysis te
hniques are sur-

veyed together with the detailed elaboration of an example. Finally new models based

on Continuous or Fluid Sto
hasti
 Petri Nets are brie
y dis
ussed.

1 Introdu
tion

Analyti
al evaluation of 
omputer/
ommuni
ation systems is in
reasingly be
oming an in-

tegral part of the whole design pro
ess. Many diverse model spe
i�
ation te
hniques have

been proposed. Petri net models have gained a widespread a

eptan
e [103, 100℄ sin
e they

provide a graphi
al language that 
an be rather 
on
ise in its spe
i�
ation, provide a natural

way to represent 
omplex logi
al intera
tions among parts or a
tivities in a system and are


loser to a designer's intuition about what a model should look like. Original Petri nets did

not 
arry any notion of time. In order to make the te
hnique useful for quantitative analysis,

a variety of timing extensions have been proposed in the literature.

The distinguishing features of the timing extensions are whether the duration of the events

is modeled by deterministi
 or random variables, and whether the time is asso
iated with

pla
es, transitions or tokens. Petri nets (PN) in whi
h the timing is sto
hasti
 are referred

to as Sto
hasti
 PN (SPN), and the most 
ommon assumption is that time is assigned to the

duration of events represented by the transitions. The time evolution of a SPN is 
aptured

by a sto
hasti
 pro
ess, referred to as its Marking Pro
ess.

SPN 
an be used to automati
ally generate the underlying marking pro
ess, whi
h 
an

then be analyzed to yield results in terms of the original Petri net model. This is a 
ase

where the user-level representation of a system is translated into an analyti
 representation

[72℄. The analyti
 representation is pro
essed and the results are 
ast ba
k to the user-

level representation. The most updated and valuable sour
e of referen
es for the theoreti
al

developments and the possible appli
ation areas of models based on sto
hasti
 PN is the

series of international workshops known as Petri Nets and Performan
e Models - PNPM.

This series was initiated in Torino (Italy) in 1985, then moved to the USA, Japan, Australia

and Fran
e. The sevents edition was held in Saint-Malo (Fran
e) in 1997.

The most 
ommon assumption, in the literature, is to assign to the PN transitions an

exponentially distributed �ring time [94, 95, 101℄, so that the resulting marking pro
ess is a

Continuous Time Markov Chain (CTMC). Almost all the PN-based tools are based on this

assumption.

In prin
iple, simple and tra
table equations 
an be derived for both transient and steady-

state analysis of CTMCs. But pra
ti
al limitations arise from the fa
t that the 
ardinality of

the state spa
e grows mu
h faster than the number of 
omponents in the system being mod-

eled. One line of resear
h has been devoted to dealing with large system models resorting to

distributed algorithms, aggregation, hierar
hi
al 
omposition or approximation te
hniques.

The use of exponentially distributed �ring time has been regarded as a restri
tion in

the appli
ation of PN-based models. Indeed, there are many phenomena whose times to

o

urren
e are not exponentially distributed. The hypothesis of exponential distributions,

in those 
ases, allows the 
onstru
tion of models whi
h 
an give a more qualitative rather
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than quantitative analysis of real systems. The existen
e of deterministi
 or other non-

exponentially distributed events, su
h as timer expiration, propagation delay, transmission

of �xed length pa
kets, hard deadlines in real-time systems et
., give rise to sto
hasti
 models

that are non-Markovian in nature [92℄.

In re
ent years, a 
onsiderable e�ort has been devoted to enri
h the PN formalism in order

to deal with generally distributed delays [42, 19℄. However, the in
lusion of non-exponential

distributions destroys the memoryless property of the asso
iated marking pro
ess, and fur-

ther spe
i�
ation is needed at the PN level in order to uniquely de�ne how the marking

pro
ess is 
onditioned on the past history.

In this paper, we review the main stru
tural and sto
hasti
 extensions of PNs, by provid-

ing an updated treatment of the theoreti
al ba
kground and the possible areas of appli
ation.

The paper is organized as follows. Se
tion 2 de�nes the basi
 PN model, and introdu
es

the most 
ommon stru
tural extensions that are an integral part of the standard de�nition in

many software pa
kages. Se
tion 3 shows how a Petri net 
an be augmented with sto
hasti


timing asso
iated with the transitions. When all the �ring times are exponentially distributed

the marking pro
ess is a CTMC. This assumption is by far the most 
ommon in pra
ti
e and

is reviewed in Se
tion 4 together with a useful extension, known as GSPN [2℄, whi
h divides

the transitions into two 
lasses: exponentially timed and immediate. The measures that 
an

be obtained from a Markovian model are re
alled, and it is expli
itly shown how they 
ast

into a PN model. Sto
hasti
 reward nets (SRN) are introdu
ed in Se
tion 5, and it is shown

how useful measures at the SPN level 
an be 
ompa
tly obtained by a suitable de�nition

of the reward stru
ture superimposed on the SPN. Some dire
tions of resear
h to deal with

very large Markovian models, generated by an SPN, are summarized in Se
tion 6. Non-

Markovian SPNs are dealt with in Se
tion 7. In parti
ular, three approa
hes are dis
ussed:

the �rst one is based on the Markov regenerative theory, the se
ond one is based on the use

of supplementary variables, and the third one is based on state expansion te
hniques. A fully

developed example is reported in Se
tion 8. A possible new dire
tion of resear
h is based

on SPNs that generate a partially dis
rete and partially 
ontinuous state spa
e [5℄. These

models are, sometimes, referred to as 
uid-SPNs and are 
onsidered in Se
tion 9. Se
tion 10

is the 
on
luding se
tion.

2 De�nition of the basi
 Petri Net Model

Formally, a marked PN [103℄ is a tuple PN = (P; T; I; O;M); where:

� P = fp

1

; p

2

; : : : ; p

np

g is the set of pla
es (drawn as 
ir
les);

� T = ft

1

; t

2

; : : : ; t

nt

g is the set of transitions (drawn as bars);

� I and O are the input and the output fun
tions, respe
tively. The input fun
tion

I provides the multipli
ities of the input ar
s from pla
es to transitions; the output

fun
tion O provides the multipli
ities of the output ar
s from transitions to pla
es.
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� M = fm

1

; m

2

; : : : ; m

np

g is the marking of the PN. The generi
 entry m

i

is the number

of tokens (drawn as bla
k dots) in pla
e p

i

, in marking M . The initial marking is M

0

.

Input and output ar
s have an arrowhead on their destination. A transition is enabled

in a marking if ea
h of its input pla
es 
ontains at least as many tokens as the multipli
ity

of the input fun
tion I. An enabled transition �res by removing as many tokens as the

multipli
ity of the input fun
tion I from ea
h input pla
e, and adding as many tokens as the

multipli
ity of the output fun
tion O to ea
h output pla
e.

A marking M

0

is said to be dire
tly rea
hable from M , when it is generated from M by

�ring a single enabled transition t

k

. The rea
hability set R(M

0

) is the set of all the markings

that 
an be generated from an initial markingM

0

by repeated appli
ation of the above rule.

PNs 
an be used to 
apture the behavior of many real-world situations in
luding sequen
-

ing, syn
hronization, 
on
urren
y, and 
on
i
t. The enabling of a transition 
orresponds to

the starting of an a
tivity, while the �ring 
orresponds to the 
ompletion of an a
tivity.

When the �ring of a transition 
auses a previously enabled transition to be
ome disabled, it

means that the 
orresponding a
tivity was interrupted before being 
ompleted.

2.1 Stru
tural Extensions

Various stru
tural extensions have been proposed in the past to in
rease either the 
lass of

problems that 
an be represented or the ability and the ease with whi
h real systems 
an

be modeled. In [39℄, Ciardo de�nes the modeling power as the ability of a PN formalism to

represent 
lasses of problems. He also de�nes modeling 
onvenien
e as the pra
ti
al ability

to represent a given behavior in a simpler, more 
ompa
t or more natural way. De
ision

power is de�ned to be the set of properties that 
an be analyzed. In
reasing the modeling

power de
reases the de
ision power. Thus ea
h possible extension to the basi
 formalism

requires an in depth evaluation of its e�e
t upon modeling and de
ision power [103℄.

Extensions whi
h only a�e
t modeling 
onvenien
e 
an be removed by using basi
 
on-

stru
ts, so they 
an usually be adopted without introdu
ing any further analyti
al 
om-

plexity. Some extensions have proven so e�e
tive that they are now 
onsidered part of the

standard PN de�nition. They are:

� inhibitor ar
s,

� transition priorities,

� marking-dependent ar
 multipli
ity.

Inhibitor ar
s 
onne
t a pla
e to a transition and are drawn with a small 
ir
le on their

destination. An inhibitor ar
 from a pla
e p

i

to a transition t

k

disables t

k

when p

i

is

not empty. It is possible to use the ar
 multipli
ity extension together with inhibitor

ar
s. In this 
ase, a transition t

k

is disabled whenever pla
e p

i


ontains at least as many

tokens as the multipli
ity of the inhibitor ar
. The number of tokens in an inhibitor

input pla
e is not a�e
ted by a �ring operation.
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Priorities are integer numbers assigned to the transitions. A transition is enabled in a

marking if and only if no higher priority transitions are enabled. If this extension is

introdu
ed, some markings of the original PN may no longer be rea
hable.

Marking-dependent ar
 multipli
ity was introdu
ed in [40, 41℄ with the intent to model sit-

uations in whi
h the number of tokens to be transferred along the ar
s (or to enable a

transition) depends upon the system state. Ar
s with marking dependent multipli
ity

are indi
ated by a 'Z' on the ar
, and allow simpler and more 
ompa
t PNs than would

otherwise be possible without this 
onstru
t. In many pra
ti
al problems, their use


an dramati
ally redu
e the 
omplexity of the PN model.

As an example of an eÆ
ient and 
onvenient use of the above introdu
ed stru
tural

extensions, 
onsider the PN model for an ISDN 
hannel shown in Figure 1 [110℄:

� Voi
e and data pa
kets arrivals are modeled through transitions Tarrival� voi
e and

Tarrival � data, respe
tively;

� Voi
e and data pro
essing times are modeled through transitions Tser � voi
e and

Tser � data;

� The transmitter 
ontains a bu�er (pla
e data) to store a maximum of k data pa
kets.

This is modeled by the inhibitor ar
 from pla
e data to transition Tarrival�data with

multipli
ity k. When k tokens are resident in pla
e data, transition Tarrival � data

is inhibited and 
annot �re.

� A voi
e pa
ket 
an enter the 
hannel (pla
e voi
e) only if there are no pa
kets (voi
e or

data) waiting to be transmitted. This is modeled by the two inhibitor ar
s to transition

Tarrival � voi
e.

� If a voi
e transmission is in progress, data pa
kets 
annot be servi
ed, but are bu�ered.

This priority me
hanism is modeled by the inhibitor ar
 from pla
e voi
e to transition

Tser � data;

� The data bu�er 
an eventually be 
ushed, if some asyn
hronous event o

urs (transition

flush). This is modeled by the marking-dependent ar
 multipli
ity between pla
e data

and transition remove. The ar
 removes as many tokens as resident in pla
e data. This


ushing a
tion might be also obtained without resorting to the spe
ial 
onstru
t of the

marking-dependent ar
 multipli
ity, but at the 
ost of a mu
h more 
omplex PN.

Other extensions are possible to in
rease the modeling 
onvenien
e. They are, usually,

in the form of guards or enabling fun
tions [44℄, where besides the standard enabling rules,

a transition is enabled if the value of a boolean fun
tion related to various 
onditions on the

PN evaluates to true.
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Tarrival-voice

Tser-dataTser-voice

Tarrival-data

flushdatavoice

remove

asynchronous

k

Figure 1: Using PN stru
tural extension to model an ISDN 
hannel

3 Sto
hasti
 Petri Nets

The most 
ommon way to in
lude time into a PN, is to asso
iate a duration with the

a
tivities that indu
e state 
hanges, hen
e with the transitions. The duration of ea
h

a
tivity is represented by a non-negative random variable with a known 
df. Let � =

(


1

; 


2

; : : : ; 


nt

) be the set of the n

t

random variables asso
iated with the n

t

transitions,

and G = (G

1

(t); G

2

(t); : : : ; G

nt

(t)) be the set of their 
df's.

When a waiting time 


k

is asso
iated with a transition t

k

, the transition be
omes enabled

a

ording to the rules of the untimed PN, but it 
an �re only after a time equal to 


k

has

elapsed. The time between the enabling and the �ring is referred to as the �ring time. Let

fM(t); t � 0g be the marking pro
ess, i.e.,M(t) represents the marking rea
hed by the PN

at time t.

In the following, we restri
t our analysis to SPNs in whi
h the random �ring times have


ontinuous 
df with in�nite support (0;1℄. With this assumption, the marking pro
essM(t)

is a right-
ontinuous, pie
ewise 
onstant, 
ontinuous-time, dis
rete-state sto
hasti
 pro
ess

whose state spa
e is isomorphi
 to the rea
hability graph of the untimed PN. Intrigued

semanti
 interpretations related to the possibility of 
ontemporary �rings are avoided [96,

75, 41, 48℄.

Given a marking in whi
h more than one transition is enabled (with the same priority

level if priority is used), the �ring poli
y determines the transition that will �re next. Two

possible alternatives have been dis
ussed in [1℄:

i) Under the ra
e poli
y, the transition whose �ring time elapses �rst is assumed to be

the one that will �re next,

ii) Under the presele
tion poli
y, the next transition to �re is 
hosen a

ording to an

externally spe
i�ed probability mass fun
tion independent of their �ring times.

By far the most 
ommon �ring poli
y for timed transitions is the ra
e poli
y. Presele
tion

poli
y is 
ommonly used for immediate transitions, introdu
ed for the �rst time in Markovian

SPN in [2℄.
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On
e the �ring poli
y is de�ned, the exe
ution poli
y must be spe
i�ed. The exe
ution

poli
y 
onsists of a set of spe
i�
ations for uniquely de�ning the sto
hasti
 pro
ess fM(t)g

underlying an SPN. Two elements 
hara
terize the exe
ution poli
y: a 
riterion to keep mem-

ory of the past history of the pro
ess (the memory poli
y), and an indi
ator of the resampling

status of the �ring time. The memory poli
y de�nes how the pro
ess is 
onditioned upon

the past. An age variable a

g

asso
iated with the timed transition t

g

keeps tra
k of the time

for whi
h the transition has been enabled. A timed transition �res as soon as the memory

variable a

g

rea
hes the value of the �ring time 


g

. The a
tivity period of a transition is the

period of time during whi
h its age variable is not 0.

The random �ring time 


g

of a transition t

g


an be sampled at a time instant prior to the

beginning of an a
tivity period. To keep tra
k of the resampling 
ondition of the random

�ring time asso
iated with a timed transition, we assign to ea
h timed transition t

g

a binary

indi
ator variable �

g

that is equal to 1 when the �ring time is to be sampled and equal to

0 when the �ring time is to be not sampled. We refer to �

g

as the resampling indi
ator

variable. Hen
e, in general, the (
ontinuous) memory of a transition t

g

is 
aptured by the

tuple (a

g

; �

g

). At any time epo
h t, transition t

g

has memory (its �ring pro
ess depends on

the past) if either a

g

or �

g

is di�erent from zero.

At the entran
e in a marking, the remaining �ring time (rft

g

= 


g

� a

g

) is 
omputed

for ea
h enabled transition given its 
urrently sampled �ring time 


g

and the age variable a

g

.

A

ording to the ra
e poli
y, the next marking is determined by the minimal of the rft's.

Now, the following di�erent exe
ution poli
ies are de�ned. A timed transition t

g


an be:

� Preemptive repeat di�erent (prd):

If both the age variable a

g

and the resampling indi
ator �

g

are reset ea
h time t

g

is

disabled or it �res.

� Preemptive resume (prs):

If both the age variable a

g

and the resampling indi
ator �

g

are reset only when t

g

�res.

� Preemptive repeat identi
al (pri):

If the age variable a

g

is reset ea
h time t

g

is disabled or �res but the resampling

indi
ator �

g

is reset only when t

g

�res.

Figure 2 gives a pi
torial des
ription of these preemption poli
ies for a single transition

t

g

. In the �gure, the time instants marked with E, D and F indi
ate the enabling, disabling

and �ring time points of t

g

, respe
tively. Ea
h preemption poli
y is illustrated via the

evolution of the age variable a

g

asso
iated with the transition t

g

and of its remaining �ring

time (rft

g

= 


g

� a

g

). The horizontal lines below the diagrams indi
ate the periods of time

when �

g

= 1.

Transition t

g

is prd - Ea
h time a prd transition is disabled or it �res, its memory variable a

g

is reset and its indi
ator resampling variable �

g

is set to 0 (the �ring time must be resampled

from the same distribution when t

g

be
omes reenabled). With referen
e to Figure 2a, t

g

is
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Figure 2: Pi
torial representation of di�erent �ring time sampling poli
ies

enabled for the �rst time at t = 0: its memory variable a

g

starts in
reasing linearly, �

g

is set

to 1 and the �ring time is sampled from its distribution to a value, say, 


1

. At time D, t

g

is

disabled and the memory is reset (a

g

= 0; �

g

= 0). At the next enabling time instant E, a

g

restarts from zero, �

g

is set to 1 and the �ring time is resampled from the same distribution

assuming a di�erent value, say 


2

. When t

g

�res (point F ) both a

g

and �

g

are reset. At

the su

essive enabling point E, a

g

restarts and the �ring time is resampled (


3

). Thus, a

prd transition looses its memory at any D and F points. The memory of the transition is


on�ned to the periods of time in whi
h t

g

is 
ontinuously enabled.

Transition t

g

is prs - With referen
e to Figure 2b, when t

g

is disabled (at point D), its

asso
iated age variable a

g

is not reset but maintains its 
onstant value until t

g

is reenabled

and �

g

= 1. At the su

essive enabling point E, a

g

restarts from the previously retained

value. When t

g

�res, both a

g

and �

g

are reset so that the �ring time must be resampled at

the su

essive enabling point (


2

). The memory of t

g

is reset only when the transition �res.

Transition t

g

is pri - Under this poli
y (Figure 2
), ea
h time t

g

is disabled, its age variable

is reset, but �

g

remains equal to 1, and the �ring time value 


1

remains a
tive, so that in
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the next enabling period an identi
al �ring will result. In Figure 2
, the same value (


1

) is

maintained over di�erent enabling periods up to the �ring of t

g

. Only when t

g

�res both a

g

and �

g

are reset and the �ring time is resampled (


2

). Hen
e, also in this 
ase, the memory

is lost only upon �ring of t

g

.

If the �ring time is exponentially distributed both the prd and prs poli
ies behave in the

same way and 
an be omitted from spe
i�
ation. However, the pri poli
y does not enjoy the

memoryless property [15℄. Thus, the marking pro
ess of an SPN with only exponentially

distributed �ring times is not a CTMC if at least a single non-ex
lusively enabled transition

exists with assigned pri poli
y.

The preemption poli
ies of transitions that 
an not be preempted before �ring do not

a�e
t the sto
hasti
 behaviour of SPNs. There are sub
lasses of SPNs in whi
h none of

the transitions 
an be preempted before �ring, e.g. sto
hasti
 de
ision free Petri nets [11℄,

marked graphs [31℄, event graphs [8℄, free 
hoi
e nets [59℄.

If the �ring time is deterministi
, both the prd and pri poli
y behave in the same way

(indeed, resampling a deterministi
 variable provides always an identi
al value).

The memory of the global marking pro
ess is 
onsidered as the superposition of the

individual memories of the transitions. In general, the marking pro
ess fM(t)g underlying

a SPN is not analyti
ally tra
table unless some restri
tions are imposed [42, 19℄. Note that,

a simulation approa
h for the prd and the prs 
ases, based on assumptions very similar to

the one stated in the present se
tion, has been des
ribed in [65, 66℄.

In Figure 3, the 
orresponden
e between the usual restri
tions of SPNs and the 
orre-

sponding 
lasses of analyti
ally tra
table sto
hasti
 pro
esses is reported. In the following

se
tions, the various entries in Figure 3 are 
hara
terized and their solution te
hniques are

brie
y summarized.

4 Markovian SPN

When all the random variables 


k

asso
iated with the PN transitions are exponentially

distributed, and the exe
ution poli
y is not pri, the dynami
 behavior of the PN is mapped

into a CTMC, with state spa
e isomorphi
 to the rea
hability graph of the untimed PN. This

restri
tion is the most popular in the literature [101, 94, 95, 60℄ and is usually referred to

simply as SPN. A number of tools are built on this assumption [33, 44, 51, 87℄. In order to


ompletely spe
ify the model, the set � = (�

1

; �

2

; : : : ; �

nt

) of the n

t

�ring rates assigned

to the n

t

transitions should be given in addition. A usual 
onvention, in the graphi
al

representation, is to indi
ate transitions with exponentially distributed �ring times by means

of empty re
tangles, and transitions with non-exponentially distributed �ring times by means

of �lled re
tangles.

Modeling real systems often involves the presen
e of a
tivities or a
tions, whose duration

is short, or even negligible, with respe
t to the time s
ale of the problem [3℄. Hen
e, it is

desirable to asso
iate an exponentially distributed �ring time only with those transitions

9



Deterministic Stochastic Petri Nets

Semi-Markov Processes

Markov Regenerative Processes

Continuous-Time Markov Chains

Markov Reward ModelsStochastic Reward Nets

Generalized Stochastic Petri Nets

Fluid Stochastic Petri Nets Fluid-Flow Models

Diffusion Models
CONTINUOUS STATE SPACE

DISCRETE STATE SPACE

Markov Regenerative SPNs

Figure 3: Corresponden
e between SPN models and sto
hasti
 pro
esses.

whi
h are believed to have the largest impa
t on the system operation. The starting as-

sumption in the GSPN model [2℄ is that transitions are partitioned into two di�erent 
lasses:

immediate transitions and timed transitions. Immediate transitions �re in zero time on
e

they are enabled and have priority over timed transitions. Timed transitions �re after an

exponentially distributed �ring time (these will be 
alled EXP transitions below). In the

graphi
al representation of GSPN, immediate transitions are drawn as thin bars.

Markings enabling immediate transitions are passed through in zero time and are 
alled

vanishing states. Markings enabling no immediate transitions are 
alled tangible states.

Sin
e the pro
ess spends zero time in the vanishing states, they do not 
ontribute to the

dynami
 behavior of the system so that a pro
edure 
an be envisaged to eliminate them

from the �nal Markov 
hain [2℄. With the partition of PN-transitions into a timed and an

immediate 
lass, a greater 
exibility at the modeling level is a
hieved without in
reasing the

dimensions of the �nal tangible state spa
e from whi
h the desired measures are 
omputed.

The Extended Rea
hability Graph (ERG) of a GSPN 
omprises both tangible and vanish-

ing states. Elimination of the vanishing states results in a redu
ed rea
hability graph whi
h

is isomorphi
 to the CTMC.

Given a vanishing marking, m

b

(dire
tly rea
hable from a tangible marking m

a

), and

the set of tangible markings S, rea
hed from m

b

passing through a sequen
e of vanishing

markings only, it is possible to evaluate the probability of the next tangible marking after

m

b

over S. Note that m

a

may belong to S. For a dis
ussion about the role of immediate

transitions in GSPN and the evaluation of this probability see [35℄.

The vanishing marking m

b

and the ones rea
hable from m

b

by the �ring of immediate

10
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st1 st2

ti3
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te2 te3

(c) (1-c)

Figure 4: GSPN model of a Client-Server system.

transitions 
an only be eliminated by introdu
ing ar
s dire
tly 
onne
ting m

a

to m




2

S;m




6= m

a

, and by suitably modifying the �ring rate asso
iated with the generi
 transition

t

k

enabled in m

a

[2℄. Let R

0

be the redu
ed rea
hability graph of a Markovian SPN and

N its 
ardinality. The in�nitesimal generator of the underlying CTMC is a N � N matrix

Q = [Q

ij

℄.

In [2, 3℄ matrix equations are provided, for 
al
ulating the weights over all the sequen
es

of immediate transitions and for a

ounting for these weights automati
ally into the tangible

restri
tion of the rea
hability graph.

As an example of the generation of the extended and redu
ed rea
hability graph, 
onsider

a system based on a 
lient-server paradigm, whose PN model is shown in Figure 4 [105℄.

Transitions labeled te

k

or st

k

are EXP (empty re
tangles), and transitions labeled ti

k

are

immediate (thin bars). The system being examined is made up of a 
lient requesting a servi
e

(transition te

1

) whi
h 
an be supplied with probability (1� 
) (transition ti

3

) by two servers

working in parallel, and with probability 
 (transition ti

1

) by a

essing a resour
e (pla
e p

12

)

shared by the two servers. In the 
ase of �ring of ti

3

, a request forwarded by the 
lient is split

(fork) into two subrequests ea
h addressed to a di�erent server (pla
es p

5

and p

6

). The two

servers are 
hara
terized by an exponentially distributed servi
e time modeled by transitions

st

1

and st

2

, respe
tively. It is assumed, in the de�nition of the model, that a generi
 I/O

request is 
on
luded when all the servers have served the subrequests they are assigned

(fork-join syn
hronization). When a server has pro
essed its subrequest, it a

esses the

shared resour
e to re
ord its pro
essing results (transitions te

2

and te

3

). When both servers

have a

essed the shared resour
e and the information requested is thus re
onstru
ted and

11



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

m1 � �

m2� � �

m3� � �

m4 �

m5 � � �

m6� � � �

m7� � � �

m8 � �

m9 � � �

m10 � �

m11� � � �

m12 � �

m13� � �

m14 � �

m15 � � �

m16� � � �

m17 � �

m18 � �

Table 1: Rea
hable markings for the GSPN of Figure 4

available, a join operation is performed and the pro
essed result is returned to the 
lient

(transition ti

6

). On the other hand, with probability 
 the information requested by the


lient is already available in the shared resour
e, so that the request is met by a

essing the

resour
e, retrieving the data and 
ommuni
ating it to the 
lient (transitions ti

2

and te

4

).

The rea
hability graph, generated from the initial token distribution depi
ted in Figure 4,

is represented in Figure 5. Table 1 reports the distribution of the tokens in the rea
hable

markings. It is easily 
he
ked from Table 1 that the markings m2, m3, m6, m7, m11, m13

and m16 are vanishing (they are shadowed in Figure 5) and 
an be eliminated. The redu
ed

rea
hability graph, de�ned over the tangible markings only, is shown in Figure 6. On
e the

redu
ed rea
hability graph is obtained, the generator matrix for the underlying CTMC 
an

be 
onstru
ted.

Let �(t) be the N -dimensional state probability ve
tor, whose generi
 entry �

i

(t) is the

probability of being in state i (i = 1; 2; :::; N) at time t in the asso
iated CTMC. �(t) is the

solution of the standard linear di�erential equation:

d�(t)

d t

= �(t) Q (1)

with initial 
ondition �(0) = [1; 0; 0; :::; 0℄. If the steady-state probability ve
tor � =

lim

t!1

�(t) of the CTMC exists, it 
an be 
al
ulated from the equation:

12
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m5
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Figure 5: Rea
hability graph of Client Server system.

m1
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m8

m12
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te4

st1 st2

te3 te2

te1

m10 m9

te2st2

te2 st2
m17

st1te3

st1 te3

m15 m18

Figure 6: Redu
ed rea
hability graph of Client Server system.
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�Q = 0 with

N

X

i=1

�

i

= 1 (2)

The numeri
al te
hniques for the solution of Equations (1) and (2) are outside the s
ope

of this paper. Re
ommended referen
es are [116, 108℄.

Sin
e some of the output measures depend on the integrals of the probabilities rather than

on the probabilities themselves [64℄, it is ne
essary to provide the appropriate 
omputation

of the integrals of the state probabilities. Let

L

i

(t) =

Z

t

0

�

i

(z)d z

be the expe
ted time that the CTMC stays in state i during the interval (0; t); let L(t)

denote the N -dimensional row ve
tor 
onsisting of the elements L

i

(t). Integrating both sides

of equation (1), the following relation is obtained:

dL(t)

dt

= L(t)Q +�(0) (3)

Solution of Equation (3) 
an be obtained utilizing the same te
hniques available for

Equations (1) [108, 109℄ and with a very little additional overhead if the two set of equations

are suitably solved in parallel using the same data stru
tures.

4.1 Measures at the net level

A noti
eable property of the time dependent representation of the system behavior through

SPNs, is that they allow the user to de�ne in a simple and natural way a large number of

di�erent measures related to the performan
e and reliability of the system. In order to exploit

this property, the input language must be stru
tured for providing a friendly environment

for the spe
i�
ation of the required output measures.

The sto
hasti
 behavior of a Markovian-SPN is determined by 
al
ulating the �(t), �

and L(t) ve
tors over the redu
ed rea
hability set R

0

. However, the �nal output measures

should be de�ned at the PN level as a fun
tion of its primitive elements. The following

subse
tions provide a pra
ti
al outline as how to relate the 
omputed probabilities at the

CTMC level with useful measures at the PN level.

4.1.1 Probability of a given 
ondition on the SPN

By means of logi
al or algebrai
 fun
tions of the number of tokens in the PN pla
es, a

parti
ular 
ondition C (e.g., no tokens in a given pla
e) 
an be spe
i�ed and the subset of

states S 2 R

0


an be identi�ed for whi
h the 
ondition is true. The output measure

C

S

(t) = Prob f
ondition C is true at time t g
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is given by:

C

S

(t) =

X

s2S

�

s

(t) (4)

where �

s

(t) is the probability of being in state s at time t. For instan
e, if S is the set of

operational states, C

S

(t) in (4) is the usual de�nition of availability.

A very useful 
ase arises when the measure to 
al
ulate is the transient probability that

the 
ondition is satis�ed for the �rst time. By using a standard devi
e in the analysis of

sto
hasti
 pro
esses, the states s 2 S 
an be made absorbing, and the requested quantity is

evaluated from (4) by stopping the pro
ess when entering S. In this way the above equation


an be used to 
al
ulate the system reliability.

4.1.2 Time spent in a marking

Let S 2 R

0

be the subset of markings in whi
h a parti
ular 
ondition is ful�lled. The

expe
ted time  

S

(t) spent in the markings s 2 S during the interval (0; t) is given by:

 

S

(t) =

X

s2S

Z

t

0

�

s

(z) dz =

X

s2S

L

s

(t) (5)

Moreover, it is well known from the theory of irredu
ible Markov 
hains that as t ap-

proa
hes in�nity the proportion of the time spent in states s 2 S equals the asymptoti


probability:

 

S

=

X

s2S

�

s

= lim

t!1

 

S

(t)

t

(6)

 

S

(t)=t 
an represent the utilization fa
tor in the interval (0; t), and  

S

is the expe
ted

steady-state utilization fa
tor. For example, if S is the set of states in whi
h a server is idle,

 

S

(t)=t is the fra
tion of idle time in (0; t), and  

S

is the expe
ted asymptoti
 idle time.

4.1.3 Mean �rst passage time

Given that C

S

(t), as 
al
ulated in (4), is the probability of having entered subset S before t

for the �rst time, the mean �rst passage time �

S

, 
an be 
al
ulated as:

�

S

=

Z

1

0

[1 � C

S

(z)℄ dz (7)

The above formula requires the transient analysis to be extended over long intervals. Of


ourse, in this 
ase, other well known dire
t te
hniques for 
al
ulating mean �rst passage

times in a CTMC 
an be more e�e
tive [44℄.
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4.1.4 Distribution of tokens in a pla
e

The 
df of the number of tokens in pla
e p

i

of the SPN at time t is a stair
ase fun
tion

in whi
h the amplitude of the k-th step is obtained by summing up the probabilities of all

the states in R

0


ontaining k tokens (k = 0; 1; 2; : : :) in p

i

at time t. The probability mass

fun
tion f

i

(k; t) is the amplitude of the k-th step. The expe
ted value of the number of

tokens in pla
e p

i

at time t is:

IE [m

i

(t) ℄ =

1

X

k=0

k f

i

(k; t) (8)

As an example, if pla
e p

i

represents identi
al units queueing up for a 
ommon resour
e the

above quantity gives the expe
ted value of the number of units in the queue versus time. In

reliability analysis a very interesting 
ase arises when the tokens in pla
e p

i

represent the

number of failed 
omponents.

4.1.5 Expe
ted number of �rings of a PN-transition

Given an interval (0; t), the expe
ted number of �rings indi
ates how many times, on the

average, an event modeled by a PN transition has o

urred in that interval. Let t

k

be a

generi
 PN transition, and let S be the subset of R

0

whi
h in
ludes all the markings s 2 S

enabling t

k

. The expe
ted number of �rings of t

k

in (0; t) is given by:

�

k

(t) =

X

s2S

�

k

(s)

Z

t

0

�

s

(z) dz =

X

s2S

�

k

(s)L

s

(t) (9)

where �

k

(s) is the �ring rate of t

k

in marking s.

In steady-state, the expe
ted number of �rings per unit of time be
omes:

�

k

=

X

s2S

�

s

�

k

(s) (10)

This quantity is very important sin
e it represents the throughput asso
iated with the given

transition. If transition t

k

represents the 
ompletion of a servi
e in a queueing system, �

k

(t)

is the expe
ted number of servi
es 
ompleted in time (0; t) and �

k

is the expe
ted steady-state

throughput.

If transition t

k

indi
ates failure (repair) of a 
omponent, �

k

(t) provides the mean number

of failures (repairs) of that 
omponent in (0; t).

5 Sto
hasti
 Reward Nets

Sto
hasti
 Reward Nets (SRN) introdu
e a new extension into Markovian-SPNs 
onsisting in

the possibility of asso
iating reward rates to the markings. The reward rates are spe
i�ed at

the PN level as a fun
tion of its primitives (like the number of tokens in a pla
e or the rate of

a transition). The underlying CTMC is then transformed into a Markov reward model thus
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permitting the evaluation of performability measures [107℄. The tools, whi
h implements this

extension [45, 51℄, allow the reward stru
ture superimposed on the rea
hability graph to be

generated automati
ally and easily provide dependability, performan
e and performability

measures.

The reward de�nition, used in the sequel, is 
alled rate-based, to indi
ate that the system

produ
es reward at rate r(i) for all the time it remains in state i 2 R

0

. Impulse-based reward

models [51℄ 
an also be implemented: a reward fun
tion r

ij

is asso
iated to ea
h transition

from state i 2 R

0

to j 2 R

0

. Ea
h time a transition from i to j o

urs, the 
umulative

reward of the system instantaneously in
reases by r

ij

. In general, several 
ombinations of

the di�erent reward fun
tions 
an be spe
i�ed in the same model.

5.1 Measures at the net level

We assume time-independent rate-based reward models, and we show how all the PN-based

measures, introdu
ed in Se
tion 4.1, 
an be expressed in a very 
ompa
t form, just properly

parti
ularizing the various reward rates.

Let r

i

(i = 1; 2; :::; N) be the reward rate of the pro
ess in state i and let �(t), � and L(t)

be the transient, the steady-state and the integral probability ve
tors 
al
ulated from the

underlying CTMC (Equations 1-3). Let X(t) denote the instantaneous reward rate at time t

and Y (t) be the reward a

umulated during (0; t). The following measures are 
onveniently

de�ned.

5.1.1 Expe
ted instantaneous reward rate

The expe
ted instantaneous reward rate at time t is 
omputed as:

IE[X(t)℄ =

N

X

i=1

r

i

�

i

(t) (11)

and in steady-state:

IE[X℄ =

N

X

i=1

r

i

�

i

(12)

The 
omplexity of solving Equations (11) and (12) is the same as that of solving the

standard Markov equations (1) and (2). It is easily re
ognized that Equation (4) 
an be

expressed in the form (11) if an appropriate binary reward rate is assigned to the state spa
e

R

0

. In parti
ular a reward rate r

s

= 1 is assigned to states s 2 S and a reward rate r

i

= 0

otherwise.

Furthermore, Equation (8) 
an be derived dire
tly from (11) by assigning to r

i

the value

of the number of tokens in pla
e i, and the throughput Equation (10) by assigning to r

i

the

value of the �ring rate of the transition of interest.
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5.1.2 Expe
ted a

umulated reward

The expe
ted a

umulated reward at time t is given by:

IE[Y (t)℄ = IE

�

Z

t

0

X(z)d z

�

=

N

X

i=1

r

i

L

i

(t) (13)

A sometimes useful related measure is the time averaged a

umulated reward IE[W (t)℄ =

IE[Y (t)℄=t, whi
h 
an also be seen as the average rate a

ording to whi
h the reward is

a

umulated from 0 to t.

It is easily re
ognized how Equations (5) and (9) 
an be expressed in the form (13) by a

suitable assignment of the reward rates.

5.1.3 Distribution of 
umulative measures

Let F (t; y) = Prob fY (t) � yg denote the 
df of the reward a

umulated in (0; t). The

expe
ted value (13) may not give a suÆ
iently a

urate indi
ation about the probability of

o

urren
e of a single event. In [115℄, several examples are reported revealing a behavior

that is not dedu
ible from the mere analysis of the average values. However, 
omputation

of F (t; y) is a very 
omplex task [115, 107, 58℄ and it is not usually available in standard

SPN-based tools.

6 Dealing with large state spa
es

SPNs 
an provide a very 
ompa
t representation of very large systems. This is re
e
ted in

an exponential growth of the rea
hable markings as a fun
tion of the primitive elements in

the SPN (pla
es and transitions), and as a fun
tion of the number of tokens in the initial

marking. This exponential growth of the state spa
e has been often re
ognized [98℄ as a severe

limitation in the use of the SPN paradigm to deal with real life appli
ations. Therefore, a

large e�ort has been devoted to over
ome, or to alleviate this problem.

Sin
e Markovian-SPNs are based on the solution of a CTMC, all the te
hniques that have

been explored to handle very large Markov 
hains 
an pro�tably be utilized in 
onne
tion

with SPNs. However, original lines of resear
h have been parti
ularly developed in the


ontext of SPNs. When dealing with large models, not only that the solution of the system

be
omes diÆ
ult, but the model des
ription and the 
omputer representation also be
ome

tedious.

Distributed algorithms - Distributed algorithms have been spe
i�
ally developed for both

the generation of the rea
hability graph from an SPN and for the solution of the

underlying CTMC [32, 93, 6, 43℄. Distributed approa
hes in the generation phase are

typi
ally penalized by the irregularities in the required data stru
tures. Nevertheless,

a distributed implementation may a
hieve a signi�
ant speed up in the 
omputational

time and a 
onsiderable extension of the 
ardinality of the solvable models [93℄. The
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distributed steady-state solution of the CTMC has proven to outperform standard

te
hniques [6℄ a
hieving higher rates of 
onvergen
e espe
ially when applied to large,

sti� problems.

Stru
tured representation - An approa
h to in
rease the size of tra
table CTMCs, is to rep-

resent the generator matrix in a 
ompa
t form as a 
ombination of smaller 
omponent

matri
es, and to exploit this representation in the solution algorithm. A 
ompositional

te
hnique based on Krone
ker operators proposed in [104℄, was initially transferred to

the SPN framework in [54, 55℄. Subsequently, eÆ
ient te
hniques have been published

for the rea
hability analysis [79, 80℄ and for the numeri
al solution [25, 26, 81℄ whi
h

exploit the spe
i�
 stru
ture of the generator matrix. To use the stru
tured analysis

te
hnique, the SPN model has to be des
ribed appropriately by means of submod-

els intera
ting via syn
hronizing transitions. Stru
tured s
hemes for asyn
hronously

intera
ting submodels have been presented in [24℄. Sin
e memory spa
e is often the

bottlene
k in dealing with large SPN models, the stru
tured representation 
an be very

e�e
tive.

Hierar
hi
al models in
luding SPNs If an overall system model 
an be 
omposed from

submodels then ea
h submodel is solved separately and results passed to higher level

submodel. The hierar
hy 
an be homogeneous where ea
h submodel is of SPN-type

or heterogeneous. SHARPE sofware pa
kage allows models of seven di�erent types

to be 
ombined together [110℄ in su
h manner. Some of the model types in
luded in

SHARPE are: GSPNs, produ
t-form queueing networks, Markov 
hains, fault trees

and so on. language of SPNs. Other authors have also used su
h hierar
hi
al models

where GSPN submodel results are supplied as parameters to a produ
t-form queueing

network [12, 13℄. A pa
kage supporting the view of repla
ing GSPN pla
es by queueing

systems has been presented in [14℄. Parti
ular 
lasses of SPNs, like those originating

queueing models with matrix-geometri
 stru
ture [102℄, have been 
onsidered and a

tool has been built for their analysis [70, 71℄

Produ
t form SPN - Queueing networks with produ
t-form equilibrium distribution are well

established and �nd appli
ation in a variety of �elds. With the aim of over
oming the

state explosion problem, several proposals have been re
ently do
umented to import

the produ
t-form 
on
ept into the SPN arena. In [86℄, a 
lass of SPNs is identi�ed for

whi
h a produ
t-form solution 
an be written from the knowledge of partial balan
e

equations. The generation of the rea
hability graph is needed to re
ognize this 
lass

of SPNs. An extension of this work is presented in [88℄. Henderson et al. [74℄ have

developed a produ
t-form 
riterion based only on the stru
ture of the SPN, without

the need to generate the rea
hability graph. A 
omparative analysis of these two types

of apprao
hes has been reported in [56℄. This 
omparison showed for the �rst time

the possibility of re
ognizing whether an SPN has produ
t-form solution using results

from the stru
tural analysis. A 
omplete 
hara
terization of this 
lass of models is in

[21℄ and a ne
essary and suÆ
ient 
ondition for the existen
e of a positive solution for
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the traÆ
 equation is in [22℄. Spe
i�
 algorithms for the 
omputation of produ
t-form

solution have been presented in [50, 113℄. Mean value analysis for non-produ
t-form

SPNs has been explored in [112℄.

PN-driven te
hniques - These te
hniques deal with the redu
tion of both memory require-

ments and time 
omplexity of the solution algorithms of SPNs by using information

about the stru
ture of the untimed PN models. High Level Sto
hasti
 Petri Nets, su
h

as for example Sto
hasti
 Well-formed Coloured Nets (SWN), often exhibit behavioral

symmetries that 
an be exploited to redu
e the size of the state spa
e, and of the 
orre-

sponding CTMC, by grouping states into equivalen
e 
lasses. The desirable properties

of te
hniques based on this idea are the possibility of automati
ally dis
overing the

symmetries using only the information 
ontained in the model des
ription at the PN

level, and the possibility of dire
tly generating the redu
ed state spa
e (and the lumped

Markov 
hain) without �rst building the 
omplete rea
hability graph. A method for

the 
onstru
tion of a lumped CTMC from and SWN model has been presented in

[36, 37℄. In [67, 68℄ it has been shown that in some 
ases it is possible to integrate this

method with the de
omposition methods based on Krone
ker Algebra. In [111℄, the

same idea has been exploited and a method for the 
onstru
tion of the lumped CTMC

starting from the high-level des
ription is given.

Deterministi
ally Syn
hronized Sequential Pro
esses (DSSP) are a 
lass of SPNs that


an be obtained by resorting to simple modular design prin
iples, and for this 
lass a

well-established theory exists for the analysis of their qualitative behavior [106, 114℄.

Net-driven te
hniques, developed for DSSPs, 
an re
ognize and extra
t from the origi-

nal model a set of simpler auxiliary submodels that are then analyzed through approx-

imate iterative te
hniques [29℄ as well as exa
t solution [30℄.

CTMC-drive te
hniques - For a CTMC with a large number of states, only a few states will

likely 
arry most of the probability mass. If we 
an re
ognize the states with neglible

probability mass in advan
e of their generation, then su
h states need not be generated.

Su
h state trun
ation te
hniques have been su

essfully utilized in the 
ontext of SPN

reliability and availability models [78, 99℄. Another te
hnique for avoiding large state

spa
es is to solve a set of CTMC (or SPN) submodels in isolation and pass ne
essary

information from their solution to other submodels. This may need �xed-point iteration

among submodels [47, 121℄. A time s
ale de
omposition approa
h (imported from

CTMC literature [20℄) has been proposed in [77℄. This approa
h requires that the

transitions of the PN 
an be 
lassi�ed into two 
lasses: fast and slow transitions.

Performan
e Bounds - A 
omplementary approa
h to the development of eÆ
ient solution

te
hniques for the 
omputation of performan
e measures, is the sear
h for bounds.

Bounds require less 
omputational e�ort with respe
t to the 
ost of exa
t solution,

sin
e they are estimated based on equations at the SPN level, and do not require the

generation of the rea
hability graph. Moreover, the evaluation of the bounds is usually

not restri
ted to Markovian nets. E�ort on deriving performan
e bounds haven been
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afoot sin
e the beginning of the resear
h on SPN [97, 23℄. The evaluation of bounds

for the sub
lass of marked graphs was presented in [27, 29℄, and in [28℄ for SPNs with

a unique 
onsistent �ring 
ount ve
tor. A general approa
h for the 
omputation of

bounds has been formulated in [34℄, based on operational analysis te
hniques applied

at the SPN level, with very weak assumptions on their timing semanti
s. The bounds


an be obtained in polynomial time by solving suitable linear programming problems,

and depend only on the mean values of the �ring times and are insensitive to their

distribution. In the 
ase of Markovian SPNs, an improved solution te
hnique, based

on the randomization algorithm, has been presented in [91℄.

7 Non-Markovian Sto
hasti
 Petri Nets

A

ording to Se
tion 2, in order to de�ne a SPN with generally distributed transitions, the

following entities must be spe
i�ed for ea
h transition t

g

2 T : the 
df (G

g

(t)) of the random

�ring time 


g

, and the exe
ution poli
y for determining (a

g

; �

g

).

In re
ent years, several 
lasses of SPN models have been developed whi
h in
orporate

some non-exponential 
hara
teristi
s in their de�nition, and whi
h adhere to the individual

memory semanti
s dis
ussed in [1℄. With the aim of spe
ifying non-Markovian SPN models

that are analyti
ally tra
table, three main lines of resear
h 
an be envisaged [42, 19℄:

� an approa
h based on Markov regenerative theory [49, 83℄;

� an approa
h based on the use of supplementary variables [52℄;

� an approa
h based on state spa
e expansion [19℄.

The �rst line originated from a parti
ular 
ase of non-Markovian SPN, de�ned in [4℄,

where, in ea
h marking, a single transition is allowed to have asso
iated a deterministi
 �ring

time with prd poli
y (Deterministi
 and SPN - DSPN). Choi et al. [37, 38℄ have observed

that the marking pro
ess underlying a DSPN is a Markov Regenerative Pro
ess (MRGP) for

whi
h equations for the transition probability matrix in transient and in steady-state 
an be

derived.

A semanti
 generalization of the previous formulation, has been proposed in [18℄, by

in
luding the possibility of modeling prs transitions and in [15℄ by in
luding pri transitions.

The most general framework under whi
h the Markov regenerative theory has been applied

is the one in whi
h any regeneration time period is dominated by a single transition (non-

overlapping dominant transitions).

The se
ond line resorts to the use of supplementary variables [52℄. The method has

been, up to now, applied to prd exe
ution poli
ies only and with mutually ex
lusive general

transitions. The steady-state solution has been proposed by German and Lindemann in

[62, 89, 90℄, while the possibility of applying the methodology to the transient analysis has

been explored in [61, 73℄.
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A 
omparison of numeri
al methods for the transient analysis of MRGPs applying the

Markov regenerative theory and the method of the supplementary variables has been pre-

sented in [63℄.

The third line of resear
h, aimed at a�ording the solution of non-Markovian SPN, is

based on the expansion of the rea
hability graph of the basi
 PN. In this approa
h, the

original non-Markovian marking pro
ess is approximated by means of a CTMC de�ned over

an augmented state spa
e. A

ording to the de�nitions given in Se
tion 2, the expansion

te
hnique 
an be realized by assigning to ea
h transition a 
ontinuous Phase-type (PH)

distributed random variable [102, 16℄.

The merit of this approa
h is the 
exibility in modeling any 
ombination of prd and

prs memory poli
ies and any number of 
on
urrent or 
on
i
ting transitions with generally

distributed �ring times. Moreover, the expansion te
hnique 
an be easily implemented by

a 
omputer program, starting from the basi
 spe
i�
ation at the PN level, so that all the

solution steps 
an be hidden from the modeler [53℄. The drawba
k of this approa
h is,

of 
ourse, the explosion of the state spa
e that 
an be alleviated by resorting to the use

Krone
ker operators for matri
es [69℄.

A very re
ent and interesting modi�
ation of the expansion te
hnique, resorts to the

use of dis
rete PH-type random variables [41, 48℄, so that the 
ontinuous-time marking

pro
ess is approximated by an expanded dis
rete-time Markov 
hain (DTMC). However,

dis
rete random variables are not 
overed by the assumptions stated in Se
tion 2, and their


onsideration is outside the s
ope of the present review.

The sub
lasses of SPNs in whi
h none of the transitions 
an be preempted before �ring

allow e�e
tiv analysis and simulation methods even with non-exponentially distributed �ring

times [10, 9℄.

7.1 Markov Regenerative Sto
hasti
 Petri Nets

The formalization of a 
lass of Markov Regenerative Sto
hasti
 Petri Nets (MRSPN) has

been presented in [37℄:

De�nition 1 A SPN is 
alled a Markov Regenerative Sto
hasti
 Petri Net (MRSPN) if its

marking pro
ess is a Markov Regenerative Pro
ess (MRGP)

1

.

MRGPs [83℄ (or Semi Regenerative Pro
esses [49℄) are dis
rete-state 
ontinuous-time

sto
hasti
 pro
esses with an embedded sequen
e of Regenerative Time Points (RTP) [120℄,

at whi
h the pro
ess enjoys the Markov property. The relevan
e of De�nition 1 
omes from

the fa
t that MRSPNs 
an be studied by resorting to the te
hniques available for MRGPs

[49, 83℄. Based on the 
on
ept of memory in a SPN, RTPs 
an be de�ned as follows:

De�nition 2 A regenerative time point (RTP) in the marking pro
ess fM(t)g underlying

an SPN is an instant of time where all the transitions do not have memory; i.e. all the

1

MRSPNs are referred to as Semi Regenerative SPNs in [47℄.
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memory variables a

k

and the resampling indi
ator variables �

k

(k = 1; 2; : : : ; n

t

) are equal

to zero.

EXP transitions with either prd or prs poli
y do not have memory, and they do not a�e
t

the sear
h for RTPs. Only generally distributed transitions, or EXP transitions with pri

poli
y have to be 
he
ked to ful�ll the requirements of De�nition 2. The framework in whi
h

an SPN, with mixed preemption poli
ies [119℄, generates a MRGP marking pro
ess is based

on the notion of non-overlapping dominant transition [18℄.

De�nition 3 A transition, for whi
h the beginning and the end of its memory 
y
le 
orre-

spond to the initial and �nal RTPs of a regeneration interval, is said to be dominant over

the 
onsidered regeneration interval. An SPN with non-overlapping dominant transitions is

a MRSPN.

The evolution of the marking pro
ess fM(t)g during a regeneration period between two


onse
utive RTP's is 
alled the pro
ess subordinated to the dominant transition. The subor-

dinated pro
ess 
an 
ontain any number of EXT transition �rings, but De�nition 3, in
ludes

the possibility that the memory 
y
le of one transition is 
ompletely 
ontained within the

memory 
y
le of the dominant one, hen
e allowing simultaneous enabling of di�erent general

transitions inside the same subordinated pro
ess. However, an analyti
 derivation is possible

if the subordinated pro
esses are restri
ted to be a CTMC or a semi-Markov pro
ess (SMP).

If the general transitions are prd, a more 
omplex situation has been examined in [105℄,

in whi
h more than one general transition 
an be enabled at the same time. An example

with mixed preemption poli
ies 
an be found in [119℄, while an example with simultaneously

enabled prd transitions is 
ompletely developed in Se
tion 8.

7.1.1 Analysis by Markov Regenerative Theory

By the memoryless property of the MRGP at the RTPs, the analysis of an MRSPN 
an

be split into independent subproblems given by the subordinated pro
esses between any

two 
onse
utive RTPs. The probability fun
tions that must be evaluated for the transient

analysis of a MRSPN are 
ommonly referred to as global and lo
al kernels [49, 83℄. The

global kernel K(t) = [K

ij

(t)℄ des
ribes the o

urren
e of the next RTP:

K

ij

(t) = Prob fM

(1)

= j ; �

�

1

� tjM(0) = ig

where M(0) = i indi
ates the initial 
ondition for the marking pro
ess, �

�

1

is the next RTP

and M

(1)

is the right 
ontinuous state hit by the marking pro
ess at the next RTP. The

lo
al kernel E(t) = [E

ij

(t)℄ des
ribes the state transition probabilities inside a regeneration

period, before the next RTP o

urs:

E

ij

(t) = Prob fM(t) = j ; �

�

1

> tjM(0) = ig

In the spe
ial 
ase where the marking pro
ess is a semi-Markov pro
ess, all the rea
hable

states must be RTPs and the lo
al kernel E(t) is a diagonal matrix. The 
onditions under

whi
h an SPN generates a marking pro
ess that is an SMP have been studied in [57℄.
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The kernel entries are a fun
tion of the exe
ution poli
y of the single transition dominat-

ing the 
onsidered regenerative period. For a prd dominant transition the analysis is given

in [38℄, for a prs dominant transition in [18, 117℄ and for a pri dominant transition in [15℄.

Let V(t) = [V

ij

(t)℄ denote the transition probability over (0; t), i.e.:

V

ij

(t) = Prob fM(t) = j jM(0) = ig

Based on the global and the lo
al kernels the transient analysis 
an be 
arried out in the

time domain by solving the following generalized Markov renewal equation:

V

ij

(t) = E

ij

(t) +

X

k

Z

t

0

dK

ik

(y) V

kj

(t� y) (14)

or in the transform domain:

V

�

(s) = [I � K

�

(s)℄

�1

E

�

(s) (15)

where the supers
ript

�

indi
ates the Lapla
e-Stieltjes transform and s is the variable 
or-

responding to the time variable t.

A time domain solution for the transition probability matrix V(t) 
an be obtained by

numeri
ally integrating Equation (14). Alternatively, starting from the Lapla
e transform

Equation (15), a 
ombination of symboli
 and numeri
 
omputation is needed to obtain

measures in the time domain [19℄. In both 
ases, the 
omplexity of the solution limits the

appli
ability of the pro
edure to an MRGP with a small number of states.

For the purpose of the steady-state analysis of an MRSPN, the following measures of the

subordinated pro
esses are needed:

�

ij

=

Z

1

0

E

ij

(t) dt

(16)

�

ij

= Prob fM

(1)

= j j M(0) = ig

�

ij

is the expe
ted time the subordinated pro
ess starting from state i spends in state j,

and �

ij

is the probability that the subordinated pro
ess starting from state i is followed by

a subordinated pro
ess starting from state j. Indeed the matrix � = [�

ij

℄ is the transition

probability matrix of the DTMC embedded at the RTPs. The measures in Equation (16) 
an

be obtained from the global and lo
al kernels either in the time or in the transform domain:

�

ij

=

Z

1

0

E

ij

(t) dt = lim

s!0

E

�

ij

(s)=s (17)

�

ij

= lim

t!1

K

ij

(t) = lim

s!0

K

�

ij

(s) (18)

The evaluation of the measures in (16) is also dependent on the nature of the exe
ution

poli
y asso
iated with the transition dominating the subordinated pro
esses (as it is indi
ated

by Equations (17) and (18)). For a prd dominant transition the analysis is given in [4℄, for

a prs dominant transition in [118℄ and for a pri dominant transition in [17℄.

The steady-state analysis of a MRSPN requires three steps:
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Step 1: Evaluate the � = [�

ij

℄ and � = [�

ij

℄ matri
es based on [4, 118, 17℄.

Step 2: Evaluate the ve
tor D = [D

i

℄, whose elements are the steady state probabilities

of the DTMC embedded at the RTPs. D is the unique solution of:

D = D� ;

X

i

D

i

= 1

Step 3: The steady-state probabilities of the MRGP are given by:

v

j

= lim

t!1

Prob fM(t) = jg =

X

k

D

k

�

kj

X

k

D

k

�

k

(19)

An example of solution of a MRSPN with prs dominant transitions using Equation (19)

has been reported in [118℄, while in [119℄ an example with mixed preemption poli
ies has

been 
onsidered.

7.1.2 Method of Supplementary Variables

The method of supplementary variable has been applied to MRSPNs in whi
h, in ea
h (tan-

gible) marking, at most a single enabled transition 
an have a non-exponential distribution

with prd poli
y, with all the other enabled transitions EXP. Let a(t) be the age at time t of

the only enabled non-exponential transition, if any. Sin
e only one transition 
an be enabled

at any time, a(t) is the age of the whole model at time t. Under these restri
tions, the

marking pro
essM(t) together with the supplementary variable a(t) (i.e., (M(t); a(t))) is a

Markov pro
ess over the state spa
e R

0

� IR [52℄, where R

0

is the set of rea
hable tangible

markings and IR is the set of non-negative real numbers. The joint pro
ess 
an be analyzed

by the method of supplementary variables [52℄ as shown in [62, 61, 73℄. Following the 
on
ept

and the notations of [61℄ the solution approa
h is brie
y summarized.

Let T

G

be the set of non-exponential timed transitions. The tangible state spa
e R

0

is partitioned into #T

G

+ 1 disjoint subsets. R

E

0

is the set of states in whi
h no general

transition is enabled (a(t) = 0 when M(t) 2 R

E

0

), and R

g

0

; g 2 T

G

are the sets of states in

whi
h the general transition t

g

(the dominant one) is enabled. The supers
ript

E

refers to

the states in R

E

0

and the supers
ript

g

(or

`

) refers to the states in R

g

0

. The probability of

being in state i at time t is �

i

(t) = Prob fM(t) = ig. Given that in state i at time t the

single dominant transition t

g

2 T

G

is enabled, with age a

g

(t) and 
df G

g

(x), the so 
alled,

age rate h

i

(t; x) des
ribes the 
onditional �ring rate of t

g

in i:

h

i

(t; x) =

Prob fM(t) = i; x < a

g

(t) � x + dxg

dx

�

1

1�G

g

(x)

The e�e
t of the �ring of a general transition t

g

is stored in a bran
hing probability

matrix � = �

ij

whose generi
 entry has the following meaning [2, 38℄:

�

ij

= Probfnext marking is j j 
urrent marking is i and transition t

g

�resg
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With the above assumptions and de�nitions, the age rate ve
tor h(t; x) = [h

i

(t; x)℄ with

i 2 R

g

0

is des
ribed by the following partial di�erential equation:

�

�t

h

g

(t; x) +

�

�x

h

g

(t; x) = h

g

(t; x)Q

g

(20)

The transient state probability ve
tor �(t), 
an be 
al
ulated in partitioned form: �(t) =

[�

E

(t); �

g

(t);�

`

(t); : : :℄. The pro
ess evolution in R

E

0

is des
ribed by the following ordinary

di�erential equation:

d

dt

�

E

(t) = �

E

(t)Q

E

+

X

g2T

G

Z

1

0

h

g

(t; x) dG

g

(x)�

g;E

+

X

g2T

G

�

g

(t)Q

g;E

(21)

In (21), the state probabilities inside R

E

0


an 
hange: i) - by the �ring of an EXP

transition whi
h results in a new marking in R

E

0

(1st term); ii) - by the �ring of a general

transition when the rea
hed state is in R

E

0

(2nd term); iii) - by the disabling of a general

transition when the rea
hed state is in R

E

0

(3rd term).

The boundary 
ondition for Equation (20) is given by:

h

g

(t; 0) = �

E

(t)Q

E;g

+

X

`2T

G

Z

1

0

h

`

(t; x) dG

`

(x)�

`;g

+

X

`2T

G

;` 6=g

�

`

(t)Q

`;g

(22)

In (22), a general transition t

g


an be a
tivated: i) - by the �ring of an EXP transition

in R

E

0

leading to a state in whi
h t

g

is enabled (1st term); ii) - by the �ring of a general

transition t

`

when in the rea
hed state t

g

is enabled (or reenabled if t

g

= t

`

) (2nd term);

iii) - by the �ring of an EXP transition whi
h disables the a
tive general transition t

`

and

in the rea
hed marking the general transition t

g

is enabled (3rd term).

On
e h

g

(t; x) is 
omputed from (20), the transient state probability ve
tor in R

g

0


an be


al
ulated from:

�

g

(t) =

Z

1

0

h

g

(t; x) (1�G

g

(x)) dx (23)

The initial 
onditions are �

E

(0) and h

g

(0; x) = �

g

(0) Æ(x), where Æ(x) is the Dira
 delta

fun
tion.

An iterative algorithm for solving the above equations, based on a �xed size dis
retization

interval (d) for the 
ontinuous variables has been proposed in [63℄. The steps of the algorithm

are the following:

1. Compute the age rates in the next time instant

h

g

(id; jd) = h

g

((i� 1)d; (j � 1)d)e

Q

g

d
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and set h

g

(id; 0) = 0

2. Given the age rates h

g

(id; jd); j = 0; 1; : : :, 
ompute the state probabilities �

g

(id)

from (23)

3. Compute the state probabilities �

E

(id) from the ordinary di�erential Equation (21)

4. Compute the a
tivation rate of the general transitions h

g

(id; 0) from the boundary


onditions (22)

5. Che
k the 
onvergen
e and go ba
k to step 2 or start with the next time instant (i+1)d

An improved numeri
al pro
edure, based on the same equations, but with an adaptively

varying dis
retization interval in the integration pro
edure has been re
ently des
ribed in

[73℄. The steady-state behavior of the 
onsidered 
lass of MRSPN 
an be easily obtained,

in the supplementary variable setting, by making the time derivatives equal to 0 in the

above set of equations. Lindemann proposed an e�e
tive numeri
al method to evaluate the

steady-state probabilities based on this approa
h [89, 90℄.

7.2 State spa
e expansion

The te
hnique based on the state spa
e expansion is not restri
ted to MRSPN s
hemes, but

any 
ombination of prd and prs transition is, in prin
iple, a

eptable. The te
hnique 
onsists

in approximating the �ring times with PH-distributed [102℄ random variables and generating

the expanded CTMC obtained by 
ombining the rea
hable states with all the phases of the

PH-distributions asso
iated with the enabled transitions. An overview of the methods and

tools available to estimate the parameters of a PH-distribution from a given 
df 
an be found

in [16℄.

The expansion algorithm 
an be performed automati
ally by a 
omputer program, and

is driven by the exe
ution poli
y asso
iated with di�erent transitions [53℄. The result of the

expansion algorithm is that ea
h marking of the original PN is blown into a ma
rostate in

the new state spa
e. When the �ring times of the original PN are already PH-distributed,

this approa
h provides exa
t results. Otherwise, a preliminary step is needed in order to

approximate the given distributions by means of a suitable PH [16℄.

The analysis method 
onsists of the following steps:

Step 1: Approximate the �ring time distributions by means of PH 
df's.

Step 2: Based on the PN des
ription, the PH distributions assigned to ea
h transition,

and their exe
ution poli
y (among prd and prs, only) generate the expanded state spa
e

and the in�nitesimal generator of the expanded CTMC.

Step 3: Analyze the expanded CTMC by standard te
hniques (Se
tion 4) and evalu-

ate the �nal results at the PN level by keeping the 
orresponden
e between original

markings and the ma
rostates in the expanded state spa
e.
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Figure 7: MRSPN model for a preventive maintenan
e system

Cumani [53℄ has developed a pa
kage, 
alled ESP, whi
h automati
ally performs Step 2

- 3. A re
ent attempt to save storage spa
e by algorithmi
ally des
ribing the in�nitesimal

generator of the expanded CTMC by means of Krone
ker operators has been do
umented

in [69℄.

8 Example: a preventive maintenan
e system

A quantitative example of a preventive maintenan
e system is developed. Preventive main-

tenan
e is 
onsidered as one of the key fa
tors to in
rease system produ
tivity and to redu
e

produ
tion 
osts. The growing importan
e of maintenan
e in industrial appli
ations has led

an in
reased sophisti
ation in the mathemati
al models required to analyze its impa
t on

the system behavior [122, 85℄.

The system starts in a working state, but it ages with time and it eventually fails if

no preventive maintenan
e a
tion is done. On
e it 
rashes, a random amount of time is

required to bring the system ba
k up and to restart it. Preventive maintenan
e is performed

at �xed intervals from the start (or the last restart) of the system in the working state.

The preventive maintenan
e a
tivity takes an exponentially distributed amount of time and


ompletely regenerates (renews) the system.

Let d be the 
onstant inspe
tion interval. d is a 
riti
al design parameter: if d approa
hes

zero, the system is always under maintenan
e and its availability drops to zero. On the other

hand if d be
omes too large the bene�
ial e�e
t of the preventive maintenan
e a
tion be
omes

negligible.

The aim of this example is to elaborate a 
losed-form analyti
al expression for the steady-

state behavior of the system, and to evaluate the optimal value of the maintenan
e interval

that maximizes system availability.

8.1 Petri Net Model

Figure 7 shows theMRSPN representation of the system des
ribed in the previous paragraph.

The working state is modeled by pla
e p

up

. The generally distributed transition t

f

models
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the failure distribution whose �ring leads the system to pla
e p

down

. Upon system failure, the

preventive maintenan
e a
tivity is suspended: the inhibitor ar
 from pla
e p

down

to transition

t


lo
k

is used to model this fa
t.

The deterministi
 transition t


lo
k

models the 
onstant inspe
tion interval. It is 
ompet-

itively enabled with t

f

so that the one that �res �rst disables the other one. On
e t


lo
k

�res, a token moves in pla
e p

mai

and the a
tivity related with the preventive maintenan
e

(transition t

mai

) starts.

During the preventive maintenan
e phase, the system is swit
hed o� and 
annot fail

(inhibitor ar
 from pla
e p

mai

to transition t

f

). The 
ompletion of the maintenan
e (�ring

of t

mai

) re-initializes the system in an as good as new 
ondition; hen
e t

f

is assigned a prd

poli
y. Sin
e upon failure and repair a 
omplete d interval must elapse before the su

essive

preventive maintenan
e takes pla
e, t


lo
k

also must be assigned a prd poli
y.

As 
an be observed from Figure 7, t

f

and t


lo
k

are 
on
i
ting prd general transitions that

�t into the framework elaborated in [105℄.

8.2 Model solution

Sin
e there are no immediate transitions in the PN, all the markings are tangible. Starting

from the initial marking m

1

represented in Figure 7 , the token distribution in the rea
hable

markings (assuming the following order for the pla
es: p

up

; p


lo
k

; p

down

; p

mai

) is given by :

m

1

= (1; 1; 0; 0) ; m

2

= (0; 1; 1; 0) ; m

3

= (1; 0; 0; 1)

From marking m

1

both t

f

and t


lo
k

may �re leading to m

2

and m

3

, respe
tively. From m

2

only t

down


an �re leading to m

1

and, �nally, from m

3

only t

mai


an �re leading to m

1

. As a


onsequen
e, the kernel matri
es K(t) and E(t) have the following stru
ture:

E(t) =

0

B

�

E

11

(t) 0 0

0 E

22

(t) 0

0 0 E

33

(t)

1

C

A

K(t) =

0

B

�

0 K

12

(t) K

13

(t)

K

21

(t) 0 0

K

31

(t) 0 0

1

C

A

Sin
e E(t) is a diagonal matrix, the marking pro
ess is anSMP. Let G

f

(t) be the 
df of the

�ring time asso
iated with transition t

f

, and d be the deterministi
 maintenan
e interval as-

so
iated with t


lo
k

. Furthermore, let �

1

and �

2

be the �ring rates asso
iated with transitions

t

down

and t

mai

, respe
tively. The non-zero kernel entries are:

K

12

(t) =

8

>

<

>

:

G

f

(t) 0 � t < d

G

f

(d) t � d

(24)
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K

13

(t) =

8

>

<

>

:

0 0 � t < d

1�G

f

(d) t � d

(25)

K

21

(t) = 1� e

��

1

t

; K

31

(t) = 1� e

��

2

t

(26)

E

11

(t) =

8

>

<

>

:

1�G

f

(t) 0 � t < d

0 t � d

(27)

E

22

(t) = e

��

1

t

; E

33

(t) = e

��

2

t

(28)

To obtain the steady-state solution, we follow the pro
edure des
ribed in Se
tion 7.1.1.

Step 1:

� =

0

B

�

�

11

=

R

d

0

[1�G

f

(t)℄ dt 0 0

0 �

22

=

1

�

1

0

0 0 �

33

=

1

�

2

1

C

A

� =

0

B

�

0 G

f

(d) 1�G

f

(d)

1 0 0

1 0 0

1

C

A

Step 2:

D =

"

1

2

;

1

2G

f

(d)

;

1

2 (1�G

f

(d))

#

Step 3:

v =

"

1

A2�

11

;

1

A2�

22

G

f

(d)

;

1

A2�

33

(1�G

f

(d))

#

(29)

where A =

1

2�

11

+

1

2�

22

G

f

(d)

+

1

2�

33

(1�G

f

(d))

.

8.3 Results

The steady-state availability is given by the probability of being in state m

1

(entry v

1

in 29).

The e�e
t of the length of the preventive maintenan
e interval d on the system availability


an now be examined.

The numeri
al 
omputations are performed assuming the following values:
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0 1000 2000 3000 4000 5000
0.9992
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0.9994

0.9995

0.9996

0.9997

0.9998

Figure 8: steady-state availability versus maintenan
e interval

i) - Transition t

f

is distributed a

ording to a Weibull 
df G

f

(t) = 1 � e

�
t

�

, where � is

the shape parameter and 
 is the s
ale parameter, respe
tively. We assume � = 2:0

(in
reasing failure rate) and 
 = 2 �10

�7

. With the above value for 
 the expe
ted value

of the Weibull 
df is IE (


f

) = 1981:66 h.

ii) - �

1

= 0:1 h

�1

and �

2

= 1 h

�1

for the �ring rates of transitions t

down

and t

mai

,

respe
tively.

iii) - The preventive maintenan
e interval d varying from 0 to 5000 h.

Figure 8 plots the system availability v

1

versus the maintenan
e interval d. If d = 0,

the system is always under maintenan
e, and is 
ompletely unavailable. As d in
reases, the

steady-state availability in
reases as well. However, for large d the e�e
t of the preventive

maintenan
e is overshadowed by the downtime due to failure, and in the limit d ! 1, the

availability approa
hes the value when there is no preventive maintenan
e. The optimal

maintenan
e interval is d = 752 h, at whi
h the availability a
hieves its maximum value

v

1

= 0:999727.

9 Fluid Sto
hasti
 Petri Nets

Re
ognizing the in
reasing use of sto
hasti
 
uid 
ow models in performan
e analysis, Trivedi

and Kulkarni introdu
ed the 
lass of Fluid Sto
hasti
 Petri Nets (FSPN) [82℄. This 
lass

extends the traditional integer token 
on
ept by introdu
ing the possibility for the tokens

to be real (positive) entities assigned to spe
ial 
ontinuous pla
es. For a dis
ussion about


ontinuous and hybrid PN models see also [5℄.

The pla
es are partitioned into a set of dis
rete pla
es P

d


ontaining an integer number

of tokens and a set of 
uid (or 
ontinuous) pla
es P





ontaining a real 
uid level. The state
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spa
e of an FSPN is partially dis
rete and partially 
ontinuous. The dis
rete part is an

integer ve
tor a

ounting for the number of tokens in the dis
rete pla
es. The 
ontinuous

part is a ve
tor of real numbers a

ounting for the 
uid levels in the 
ontinuous pla
es.

In [82℄, the 
ontinuous part of a marking does not a�e
t the dis
rete-state sto
hasti


pro
ess de�ned over the dis
rete pla
es (whi
h is a homogeneous CTMC). Let S be the set

of rea
hable dis
rete markings andQ be the in�nitesimal generator of the underlying CTMC.

The evolution of the 
ontinuous part of the marking is governed by 
ow rate fun
tions whi
h

depend only on the dis
rete part. Let r

i

(n) be the 
ow rate out of a 
uid pla
e i 2 P




given

that n 2 S is the 
urrent dis
rete state. The 
uid level X

i

(t) of the 
ontinuous pla
e i 2 P




given n 2 S and t is 
hara
terized by the following equation:

dX

i

(t)

dt

=

(

r

i

(n) if X

i

(t) > 0

maxfr

i

(n); 0g if X

i

(t) = 0

(30)

De�ne the row ve
tor

~

H(t; ~x) = [H

n

(t; ~x)℄ whose entries H

n

(t; ~x) (with n 2 S) are the

transient distribution fun
tions:

H

n

(t; ~x) = Prob fX

i

(t) � x

i

; i 2 P




; n 2 Sg

In a

ordan
e with the result of sto
hasti
 
uid models [7℄

~

H(t; ~x) satis�es [82℄:

�

~

H(t; ~x)

�t

+

X

i2p




�

~

H(t; ~x)

�x

i

R

i

=

~

H(t; ~x)Q; ~x > 0 (31)

with the boundary 
ondition H

n

(t; ~x) = 0 if x

i

= 0 and r

i

(n) > 0. In the above expression

R

i

= diag(r

i

(n)).

The steady-state behavior of an FSPN is obtained by eliminating the time dependent

derivative from (31). The analyti
al evaluation of the transient as well as the steady-state

behavior of an FSPN with multiple 
uid pla
es is very hard. Numeri
al te
hniques are

being explored. An FSPN with a single 
uid pla
e results in a traditional sto
hasti
 
uid


ow model for whi
h the steady-state analysis has been investigated in [7, 84℄, based on the

spe
tral de
omposition of Q.

An extension of the original FSPN model was investigated by Horton at al. [76℄. In

the extended FSPN 
lass, mutual intera
tions of the 
ontinuous over the dis
rete part and

vi
eversa are allowed. Considerations on the numeri
al analysis of this 
lass of FSPNs with

a single 
uid pla
e 
an be found in [76℄. A dis
rete event simulation method has been

investigated in [46℄.

10 Con
lusions

Markovian-SPNs and their most popular variant, the GSPNs, have be
ome a well known

modeling te
hnique in industrial and a
ademi
 environments. The availability of well estab-

lished and user-friendly tools based on this paradigm has largely 
ontributed to the su

ess

of PNs as a general purpose, 
exible and e�e
tive modeling and analysis language.
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The resear
h lines devoted to exploit spe
i�
 properties and stru
tures either at the PN

or at the rea
hability graph level, are rapidly in
reasing the size of problems that 
an be

e�e
tively handled. Moving the frontiers of PN-based models to deal with very large state

spa
es has attra
ted a relevant e�orts in the PN 
ommunity as eviden
ed by the number of

papers dealing with these topi
s, and is still an open resear
h area.

New 
hallenging and promising results have been re
ently obtained in the attempt to

over
ome the exponential assumption. Combination of deterministi
 and sto
hasti
 timings

in the same model represents a realisti
 goal at the present state of the art, parti
ularly for

what 
on
erns the steady-state analysis. Numeri
al te
hniques in the transient domain are

still in the infant stage but a variety of methods and algorithms have been developed.

Fluid models are of extreme interest per se, and as a 
ontinuous approximation to situa-

tions where an enormous number of dis
rete obje
ts has to be 
onsidered. The preliminary

results are en
ouraging but it is hard to fore
ast the su

ess that these models will en
ounter

in appli
ations.
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