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Abstract

Analytical modeling plays a crucial role in the analysis and design of computer
systems. Stochastic Petri Nets represent a powerful paradigm, widely used for such
modeling in the context of dependability, performance and performability. Many struc-
tural and stochastic extensions have been proposed in recent years to increase their
modeling power, or their capability to handle large systems. This paper reviews recent
developments by providing the theoretical background and the possible areas of appli-
cation. Markovian Petri nets are first considered together with very well established
extensions known as Generalized Stochastic Petri nets and Stochastic Reward Nets.
Key ideas for coping with large state spaces are then discussed. The challenging area



of non-Markovian Petri nets is considered, and the related analysis techniques are sur-
veyed together with the detailed elaboration of an example. Finally new models based
on Continuous or Fluid Stochastic Petri Nets are briefly discussed.

1 Introduction

Analytical evaluation of computer/communication systems is increasingly becoming an in-
tegral part of the whole design process. Many diverse model specification techniques have
been proposed. Petri net models have gained a widespread acceptance [103, 100] since they
provide a graphical language that can be rather concise in its specification, provide a natural
way to represent complex logical interactions among parts or activities in a system and are
closer to a designer’s intuition about what a model should look like. Original Petri nets did
not carry any notion of time. In order to make the technique useful for quantitative analysis,
a variety of timing extensions have been proposed in the literature.

The distinguishing features of the timing extensions are whether the duration of the events
is modeled by deterministic or random variables, and whether the time is associated with
places, transitions or tokens. Petri nets (PN) in which the timing is stochastic are referred
to as Stochastic PN (SPN), and the most common assumption is that time is assigned to the
duration of events represented by the transitions. The time evolution of a SPN is captured
by a stochastic process, referred to as its Marking Process.

SPN can be used to automatically generate the underlying marking process, which can
then be analyzed to yield results in terms of the original Petri net model. This is a case
where the user-level representation of a system is translated into an analytic representation
[72]. The analytic representation is processed and the results are cast back to the user-
level representation. The most updated and valuable source of references for the theoretical
developments and the possible application areas of models based on stochastic PN is the
series of international workshops known as Petri Nets and Performance Models - PNPM.
This series was initiated in Torino (Italy) in 1985, then moved to the USA, Japan, Australia
and France. The sevents edition was held in Saint-Malo (France) in 1997.

The most common assumption, in the literature, is to assign to the PN transitions an
exponentially distributed firing time [94, 95, 101], so that the resulting marking process is a
Continuous Time Markov Chain (CTMC). Almost all the PN-based tools are based on this
assumption.

In principle, simple and tractable equations can be derived for both transient and steady-
state analysis of CTMCs. But practical limitations arise from the fact that the cardinality of
the state space grows much faster than the number of components in the system being mod-
eled. One line of research has been devoted to dealing with large system models resorting to
distributed algorithms, aggregation, hierarchical composition or approximation techniques.

The use of exponentially distributed firing time has been regarded as a restriction in
the application of PN-based models. Indeed, there are many phenomena whose times to
occurrence are not exponentially distributed. The hypothesis of exponential distributions,
in those cases, allows the construction of models which can give a more qualitative rather



than quantitative analysis of real systems. The existence of deterministic or other non-
exponentially distributed events, such as timer expiration, propagation delay, transmission
of fixed length packets, hard deadlines in real-time systems etc., give rise to stochastic models
that are non-Markovian in nature [92].

In recent years, a considerable effort has been devoted to enrich the PN formalism in order
to deal with generally distributed delays [42, 19]. However, the inclusion of non-exponential
distributions destroys the memoryless property of the associated marking process, and fur-
ther specification is needed at the PN level in order to uniquely define how the marking
process is conditioned on the past history.

In this paper, we review the main structural and stochastic extensions of PNs, by provid-
ing an updated treatment of the theoretical background and the possible areas of application.

The paper is organized as follows. Section 2 defines the basic PN model, and introduces
the most common structural extensions that are an integral part of the standard definition in
many software packages. Section 3 shows how a Petri net can be augmented with stochastic
timing associated with the transitions. When all the firing times are exponentially distributed
the marking process is a CTMC. This assumption is by far the most common in practice and
is reviewed in Section 4 together with a useful extension, known as GSPN [2], which divides
the transitions into two classes: exponentially timed and immediate. The measures that can
be obtained from a Markovian model are recalled, and it is explicitly shown how they cast
into a PN model. Stochastic reward nets (SRN) are introduced in Section 5, and it is shown
how useful measures at the SPN level can be compactly obtained by a suitable definition
of the reward structure superimposed on the SPN. Some directions of research to deal with
very large Markovian models, generated by an SPN, are summarized in Section 6. Non-
Markovian SPNs are dealt with in Section 7. In particular, three approaches are discussed:
the first one is based on the Markov regenerative theory, the second one is based on the use
of supplementary variables, and the third one is based on state expansion techniques. A fully
developed example is reported in Section 8. A possible new direction of research is based
on SPNs that generate a partially discrete and partially continuous state space [5]. These
models are, sometimes, referred to as fluid-SPNs and are considered in Section 9. Section 10
is the concluding section.

2 Definition of the basic Petri Net Model
Formally, a marked PN [103] is a tuple PN = (P, T,1,0, M), where:

e P={pi,pa...,Dnp} is the set of places (drawn as circles);
o T = {t,ty,...,ty} is the set of transitions (drawn as bars);

e [ and O are the input and the output functions, respectively. The input function
I provides the multiplicities of the input arcs from places to transitions; the output
function O provides the multiplicities of the output arcs from transitions to places.



o M = {my,my,...,mp,} is the marking of the PN. The generic entry m, is the number
of tokens (drawn as black dots) in place p;, in marking M. The initial marking is Mj.

Input and output arcs have an arrowhead on their destination. A transition is enabled
in a marking if each of its input places contains at least as many tokens as the multiplicity
of the input function I. An enabled transition fires by removing as many tokens as the
multiplicity of the input function I from each input place, and adding as many tokens as the
multiplicity of the output function O to each output place.

A marking M’ is said to be directly reachable from M, when it is generated from M by
firing a single enabled transition ¢;. The reachability set R(Mj) is the set of all the markings
that can be generated from an initial marking M, by repeated application of the above rule.

PNs can be used to capture the behavior of many real-world situations including sequenc-
ing, synchronization, concurrency, and conflict. The enabling of a transition corresponds to
the starting of an activity, while the firing corresponds to the completion of an activity.
When the firing of a transition causes a previously enabled transition to become disabled, it
means that the corresponding activity was interrupted before being completed.

2.1 Structural Extensions

Various structural extensions have been proposed in the past to increase either the class of
problems that can be represented or the ability and the ease with which real systems can
be modeled. In [39], Ciardo defines the modeling power as the ability of a PN formalism to
represent classes of problems. He also defines modeling convenience as the practical ability
to represent a given behavior in a simpler, more compact or more natural way. Decision
power is defined to be the set of properties that can be analyzed. Increasing the modeling
power decreases the decision power. Thus each possible extension to the basic formalism
requires an in depth evaluation of its effect upon modeling and decision power [103].

Extensions which only affect modeling convenience can be removed by using basic con-
structs, so they can usually be adopted without introducing any further analytical com-
plexity. Some extensions have proven so effective that they are now considered part of the
standard PN definition. They are:

e inhibitor arcs,
e transition priorities,
e marking-dependent arc multiplicity.

Inhibitor arcs connect a place to a transition and are drawn with a small circle on their
destination. An inhibitor arc from a place p; to a transition ¢, disables t; when p; is
not empty. It is possible to use the arc multiplicity extension together with inhibitor
arcs. In this case, a transition t; is disabled whenever place p; contains at least as many
tokens as the multiplicity of the inhibitor arc. The number of tokens in an inhibitor
input place is not affected by a firing operation.
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Priorities are integer numbers assigned to the transitions. A transition is enabled in a

marking if and only if no higher priority transitions are enabled. If this extension is
introduced, some markings of the original PN may no longer be reachable.

Marking-dependent arc multiplicity was introduced in [40, 41] with the intent to model sit-

uations in which the number of tokens to be transferred along the arcs (or to enable a
transition) depends upon the system state. Arcs with marking dependent multiplicity
are indicated by a ’Z’ on the arc, and allow simpler and more compact PNs than would
otherwise be possible without this construct. In many practical problems, their use
can dramatically reduce the complexity of the PN model.

As an example of an efficient and convenient use of the above introduced structural
extensions, consider the PN model for an ISDN channel shown in Figure 1 [110]:

Voice and data packets arrivals are modeled through transitions Tarrival — voice and
Tarrival — data, respectively;

Voice and data processing times are modeled through transitions T'ser — voice and
T'ser — data;

The transmitter contains a buffer (place data) to store a maximum of k data packets.
This is modeled by the inhibitor arc from place data to transition Tarrival — data with
multiplicity k. When k tokens are resident in place data, transition Tarrival — data
is inhibited and cannot fire.

A voice packet can enter the channel (place voice) only if there are no packets (voice or
data) waiting to be transmitted. This is modeled by the two inhibitor arcs to transition
Tarrival — voice.

If a voice transmission is in progress, data packets cannot be serviced, but are buffered.
This priority mechanism is modeled by the inhibitor arc from place voice to transition
Tser — data;

The data buffer can eventually be flushed, if some asynchronous event occurs (transition
flush). This is modeled by the marking-dependent arc multiplicity between place data
and transition remove. The arc removes as many tokens as resident in place data. This
flushing action might be also obtained without resorting to the special construct of the
marking-dependent arc multiplicity, but at the cost of a much more complex PN.

Other extensions are possible to increase the modeling convenience. They are, usually,
in the form of guards or enabling functions [44], where besides the standard enabling rules,
a transition is enabled if the value of a boolean function related to various conditions on the
PN evaluates to true.



Tarrival-voice Tarrival-data asynchronous

Tser-voice Tser-data remove

Figure 1: Using PN structural extension to model an ISDN channel

3 Stochastic Petri Nets

The most common way to include time into a PN, is to associate a duration with the
activities that induce state changes, hence with the transitions. The duration of each
activity is represented by a non-negative random variable with a known cdf. Let I' =
(715 Y2, -+, Ynt) be the set of the n; random variables associated with the n, transitions,
and G = (G4(t), Ga(t), ..., Gn(t)) be the set of their cdf’s.

When a waiting time 7y, is associated with a transition ¢, the transition becomes enabled
according to the rules of the untimed PN, but it can fire only after a time equal to 7, has
elapsed. The time between the enabling and the firing is referred to as the firing time. Let
{M(t), t > 0} be the marking process, i.e., M(t) represents the marking reached by the PN
at time t.

In the following, we restrict our analysis to SPNs in which the random firing times have
continuous cdf with infinite support (0, 0o]. With this assumption, the marking process M ()
is a right-continuous, piecewise constant, continuous-time, discrete-state stochastic process
whose state space is isomorphic to the reachability graph of the untimed PN. Intrigued
semantic interpretations related to the possibility of contemporary firings are avoided [96,
75, 41, 48].

Given a marking in which more than one transition is enabled (with the same priority
level if priority is used), the firing policy determines the transition that will fire next. Two
possible alternatives have been discussed in [1]:

i) Under the race policy, the transition whose firing time elapses first is assumed to be
the one that will fire next,

ii) Under the preselection policy, the next transition to fire is chosen according to an
externally specified probability mass function independent of their firing times.

By far the most common firing policy for timed transitions is the race policy. Preselection
policy is commonly used for immediate transitions, introduced for the first time in Markovian

SPN in [2].



Once the firing policy is defined, the execution policy must be specified. The execution
policy consists of a set of specifications for uniquely defining the stochastic process {M(t)}
underlying an SPN. Two elements characterize the execution policy: a criterion to keep mem-
ory of the past history of the process (the memory policy), and an indicator of the resampling
status of the firing time. The memory policy defines how the process is conditioned upon
the past. An age variable a, associated with the timed transition ¢, keeps track of the time
for which the transition has been enabled. A timed transition fires as soon as the memory
variable a, reaches the value of the firing time v,. The activity period of a transition is the
period of time during which its age variable is not 0.

The random firing time 7, of a transition ¢, can be sampled at a time instant prior to the
beginning of an activity period. To keep track of the resampling condition of the random
firing time associated with a timed transition, we assign to each timed transition ¢, a binary
indicator variable ¢, that is equal to 1 when the firing time is to be sampled and equal to
0 when the firing time is to be not sampled. We refer to ¢, as the resampling indicator
variable. Hence, in general, the (continuous) memory of a transition ¢, is captured by the
tuple (ag, t4). At any time epoch ¢, transition ¢, has memory (its firing process depends on
the past) if either a, or ¢, is different from zero.

At the entrance in a marking, the remaining firing time (rft, = v, — a,) is computed
for each enabled transition given its currently sampled firing time «y, and the age variable a,.
According to the race policy, the next marking is determined by the minimal of the r ft’s.

Now, the following different execution policies are defined. A timed transition ¢, can be:

e Preemptive repeat different (prd):
If both the age variable a, and the resampling indicator ¢, are reset each time %, is
disabled or it fires.

e Preemptive resume (prs):
If both the age variable a, and the resampling indicator ¢, are reset only when ¢, fires.

e Preemptive repeat identical (pri):
If the age variable a, is reset each time ¢, is disabled or fires but the resampling
indicator ¢, is reset only when %, fires.

Figure 2 gives a pictorial description of these preemption policies for a single transition
ty. In the figure, the time instants marked with E, D and F indicate the enabling, disabling
and firing time points of t,, respectively. Each preemption policy is illustrated via the
evolution of the age variable a, associated with the transition ¢, and of its remaining firing
time (rft, = 7, — a,4). The horizontal lines below the diagrams indicate the periods of time
when ¢, = 1.

Transition t, is prd - Each time a prd transition is disabled or it fires, its memory variable a,
is reset and its indicator resampling variable ¢, is set to 0 (the firing time must be resampled
from the same distribution when ¢, becomes reenabled). With reference to Figure 2a, t, is



Figure 2: Pictorial representation of different firing time sampling policies

enabled for the first time at ¢ = 0: its memory variable a, starts increasing linearly, ¢, is set
to 1 and the firing time is sampled from its distribution to a value, say, v;. At time D, t, is
disabled and the memory is reset (a, =0, ¢, = 0). At the next enabling time instant F, a,
restarts from zero, ¢, is set to 1 and the firing time is resampled from the same distribution
assuming a different value, say 72. When ¢, fires (point F') both a, and ¢, are reset. At
the successive enabling point E, a, restarts and the firing time is resampled (73). Thus, a
prd transition looses its memory at any D and F' points. The memory of the transition is
confined to the periods of time in which ¢, is continuously enabled.

Transition t, is prs - With reference to Figure 2b, when ¢, is disabled (at point D), its
associated age variable a4 is not reset but maintains its constant value until ¢, is reenabled
and ¢, = 1. At the successive enabling point E, a, restarts from the previously retained
value. When ¢, fires, both a, and ¢, are reset so that the firing time must be resampled at
the successive enabling point (v2). The memory of ¢, is reset only when the transition fires.

Transition t, is pri - Under this policy (Figure 2c), each time ¢, is disabled, its age variable
is reset, but ¢, remains equal to 1, and the firing time value v, remains active, so that in



the next enabling period an identical firing will result. In Figure 2c, the same value () is
maintained over different enabling periods up to the firing of ¢,. Only when ¢, fires both a,
and ¢, are reset and the firing time is resampled (72). Hence, also in this case, the memory
is lost only upon firing of .

If the firing time is exponentially distributed both the prd and prs policies behave in the
same way and can be omitted from specification. However, the pri policy does not enjoy the
memoryless property [15]. Thus, the marking process of an SPN with only exponentially
distributed firing times is not a CTMC'if at least a single non-exclusively enabled transition
exists with assigned pri policy.

The preemption policies of transitions that can not be preempted before firing do not
affect the stochastic behaviour of SPNs. There are subclasses of SPNs in which none of
the transitions can be preempted before firing, e.g. stochastic decision free Petri nets [11],
marked graphs [31], event graphs [8], free choice nets [59].

If the firing time is deterministic, both the prd and pr: policy behave in the same way
(indeed, resampling a deterministic variable provides always an identical value).

The memory of the global marking process is considered as the superposition of the
individual memories of the transitions. In general, the marking process {M|(t)} underlying
a SPN is not analytically tractable unless some restrictions are imposed [42, 19]. Note that,
a simulation approach for the prd and the prs cases, based on assumptions very similar to
the one stated in the present section, has been described in [65, 66].

In Figure 3, the correspondence between the usual restrictions of SPNs and the corre-
sponding classes of analytically tractable stochastic processes is reported. In the following
sections, the various entries in Figure 3 are characterized and their solution techniques are
briefly summarized.

4 Markovian SPN

When all the random variables v, associated with the PN transitions are exponentially
distributed, and the execution policy is not pri, the dynamic behavior of the PN is mapped
into a CTMC, with state space isomorphic to the reachability graph of the untimed PN. This
restriction is the most popular in the literature [101, 94, 95, 60] and is usually referred to
simply as SPN. A number of tools are built on this assumption [33, 44, 51, 87]. In order to
completely specify the model, the set A = (Ay, Ay, ..., \y) of the n; firing rates assigned
to the n, transitions should be given in addition. A usual convention, in the graphical
representation, is to indicate transitions with exponentially distributed firing times by means
of empty rectangles, and transitions with non-exponentially distributed firing times by means
of filled rectangles.

Modeling real systems often involves the presence of activities or actions, whose duration
is short, or even negligible, with respect to the time scale of the problem [3]. Hence, it is
desirable to associate an exponentially distributed firing time only with those transitions
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Figure 3: Correspondence between SPN models and stochastic processes.

which are believed to have the largest impact on the system operation. The starting as-
sumption in the GSPN model [2] is that transitions are partitioned into two different classes:
immediate transitions and timed transitions. Immediate transitions fire in zero time once
they are enabled and have priority over timed transitions. Timed transitions fire after an
exponentially distributed firing time (these will be called EXP transitions below). In the
graphical representation of GSPN, immediate transitions are drawn as thin bars.

Markings enabling immediate transitions are passed through in zero time and are called
vanishing states. Markings enabling no immediate transitions are called tangible states.
Since the process spends zero time in the vanishing states, they do not contribute to the
dynamic behavior of the system so that a procedure can be envisaged to eliminate them
from the final Markov chain [2]. With the partition of PN-transitions into a timed and an
immediate class, a greater flexibility at the modeling level is achieved without increasing the
dimensions of the final tangible state space from which the desired measures are computed.

The Eztended Reachability Graph (ERG) of a GSPN comprises both tangible and vanish-
ing states. Elimination of the vanishing states results in a reduced reachability graph which
is isomorphic to the CTMC.

Given a vanishing marking, m; (directly reachable from a tangible marking m,), and
the set of tangible markings S, reached from m,;, passing through a sequence of vanishing
markings only, it is possible to evaluate the probability of the next tangible marking after
my over S. Note that m, may belong to S. For a discussion about the role of immediate
transitions in GSPN and the evaluation of this probability see [35].

The vanishing marking m,; and the ones reachable from m; by the firing of immediate
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Figure 4: GSPN model of a Client-Server system.

transitions can only be eliminated by introducing arcs directly connecting m, to m, €
S, m. # my,, and by suitably modifying the firing rate associated with the generic transition
t; enabled in m, [2]. Let Ro be the reduced reachability graph of a Markovian SPN and
N its cardinality. The infinitesimal generator of the underlying CTMC is a N x N matrix
Q = Q4]

In [2, 3] matrix equations are provided, for calculating the weights over all the sequences
of immediate transitions and for accounting for these weights automatically into the tangible
restriction of the reachability graph.

As an example of the generation of the extended and reduced reachability graph, consider
a system based on a client-server paradigm, whose PN model is shown in Figure 4 [105].
Transitions labeled tey, or st are EXP (empty rectangles), and transitions labeled tij are
immediate (thin bars). The system being examined is made up of a client requesting a service
(transition te;) which can be supplied with probability (1 — ¢) (transition ti3) by two servers
working in parallel, and with probability ¢ (transition ¢i;) by accessing a resource (place pis)
shared by the two servers. In the case of firing of ti3, a request forwarded by the client is split
(fork) into two subrequests each addressed to a different server (places ps and pg). The two
servers are characterized by an exponentially distributed service time modeled by transitions
st; and sto, respectively. It is assumed, in the definition of the model, that a generic I/O
request is concluded when all the servers have served the subrequests they are assigned
(fork-join synchronization). When a server has processed its subrequest, it accesses the
shared resource to record its processing results (transitions te; and tez). When both servers
have accessed the shared resource and the information requested is thus reconstructed and
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Table 1: Reachable markings for the GSPN of Figure 4

available, a join operation is performed and the processed result is returned to the client
(transition tig). On the other hand, with probability ¢ the information requested by the
client is already available in the shared resource, so that the request is met by accessing the
resource, retrieving the data and communicating it to the client (transitions tiy and tey).

The reachability graph, generated from the initial token distribution depicted in Figure 4,
is represented in Figure 5. Table 1 reports the distribution of the tokens in the reachable
markings. It is easily checked from Table 1 that the markings m2, m3, m6, m7, m11, m13
and m16 are vanishing (they are shadowed in Figure 5) and can be eliminated. The reduced
reachability graph, defined over the tangible markings only, is shown in Figure 6. Once the
reduced reachability graph is obtained, the generator matrix for the underlying CTMC can
be constructed.

Let TI(t) be the N-dimensional state probability vector, whose generic entry ;(t) is the
probability of being in state i (i = 1,2,..., N) at time ¢ in the associated CTMC. TI(t) is the
solution of the standard linear differential equation:

dIl(t)
3 - I(t) Q (1)

with initial condition II1(0) = [1,0,0,...,0]. If the steady-state probability vector II =
limy_,, TI(¢) of the CTMC exists, it can be calculated from the equation:

12
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The numerical techniques for the solution of Equations (1) and (2) are outside the scope
of this paper. Recommended references are [116, 108].

Since some of the output measures depend on the integrals of the probabilities rather than
on the probabilities themselves [64], it is necessary to provide the appropriate computation
of the integrals of the state probabilities. Let

Li(t) = /Otm(z)dz

be the expected time that the CTMC stays in state i during the interval (0,%); let L(¢)
denote the N-dimensional row vector consisting of the elements L;(¢). Integrating both sides
of equation (1), the following relation is obtained:

dL(t)

Cdt

Solution of Equation (3) can be obtained utilizing the same techniques available for

Equations (1) [108, 109] and with a very little additional overhead if the two set of equations
are suitably solved in parallel using the same data structures.

— L(1)Q +11(0) (3)

4.1 Measures at the net level

A noticeable property of the time dependent representation of the system behavior through
SPNs, is that they allow the user to define in a simple and natural way a large number of
different measures related to the performance and reliability of the system. In order to exploit
this property, the input language must be structured for providing a friendly environment
for the specification of the required output measures.

The stochastic behavior of a Markovian-SPN is determined by calculating the II(¢), II
and L(t) vectors over the reduced reachability set Ry. However, the final output measures
should be defined at the PN level as a function of its primitive elements. The following
subsections provide a practical outline as how to relate the computed probabilities at the
CTMC level with useful measures at the PN level.

4.1.1 Probability of a given condition on the SPN

By means of logical or algebraic functions of the number of tokens in the PN places, a
particular condition C' (e.g., no tokens in a given place) can be specified and the subset of
states S € Ry can be identified for which the condition is true. The output measure

Cs(t) = Prob {condition C is true at time t }

14



is given by:

Cs(t) = 3 m(t) (4)
s€S
where 74(t) is the probability of being in state s at time ¢. For instance, if S is the set of
operational states, C's(t) in (4) is the usual definition of availability.

A very useful case arises when the measure to calculate is the transient probability that
the condition is satisfied for the first time. By using a standard device in the analysis of
stochastic processes, the states s € S can be made absorbing, and the requested quantity is
evaluated from (4) by stopping the process when entering S. In this way the above equation
can be used to calculate the system reliability.

4.1.2 Time spent in a marking

Let S € Ry be the subset of markings in which a particular condition is fulfilled. The
expected time 1g(t) spent in the markings s € S during the interval (0,¢) is given by:

t
vst) = % [ m(e)dz = 5 Ly (5)
ses 70 seS
Moreover, it is well known from the theory of irreducible Markov chains that as ¢ ap-
proaches infinity the proportion of the time spent in states s € S equals the asymptotic
probability:

wS — Z T, = tll)r& ?bst(t) (6)

sES

s(t)/t can represent the utilization factor in the interval (0,t¢), and g is the expected
steady-state utilization factor. For example, if S is the set of states in which a server is idle,
s(t)/t is the fraction of idle time in (0,¢), and 1)g is the expected asymptotic idle time.

4.1.3 Mean first passage time

Given that Cs(t), as calculated in (4), is the probability of having entered subset S before t
for the first time, the mean first passage time g, can be calculated as:

ps = [T = Cs()]dz (7)

The above formula requires the transient analysis to be extended over long intervals. Of
course, in this case, other well known direct techniques for calculating mean first passage
times in a CTMC can be more effective [44].
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4.1.4 Distribution of tokens in a place

The cdf of the number of tokens in place p; of the SPN at time ¢ is a staircase function
in which the amplitude of the k-th step is obtained by summing up the probabilities of all
the states in R, containing k tokens (kK = 0,1,2,...) in p; at time ¢. The probability mass
function f;(k,t) is the amplitude of the k-th step. The expected value of the number of
tokens in place p; at time ¢ is:

I [my()] = i k Ak 1) (®)

As an example, if place p; represents identical units queueing up for a common resource the
above quantity gives the expected value of the number of units in the queue versus time. In
reliability analysis a very interesting case arises when the tokens in place p; represent the
number of failed components.

4.1.5 Expected number of firings of a PN-transition

Given an interval (0,%), the expected number of firings indicates how many times, on the
average, an event modeled by a PN transition has occurred in that interval. Let £, be a
generic PN transition, and let S be the subset of Ry which includes all the markings s € S
enabling ¢;. The expected number of firings of ¢, in (0,¢) is given by:

t
m(t) = X () [ m(z)dz = 5 Auls) Lu(1) (9)
ses 0 ses
where \;(s) is the firing rate of #; in marking s.
In steady-state, the expected number of firings per unit of time becomes:

M = D s Ai(s) (10)
seS
This quantity is very important since it represents the throughput associated with the given
transition. If transition t; represents the completion of a service in a queueing system, 7y ()
is the expected number of services completed in time (0, ¢) and 7y, is the expected steady-state
throughput.
If transition ¢, indicates failure (repair) of a component, 7, (¢) provides the mean number
of failures (repairs) of that component in (0, ).

5 Stochastic Reward Nets

Stochastic Reward Nets (SRN) introduce a new extension into Markovian-SPNs consisting in
the possibility of associating reward rates to the markings. The reward rates are specified at
the PN level as a function of its primitives (like the number of tokens in a place or the rate of
a transition). The underlying CTMC'is then transformed into a Markov reward model thus
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permitting the evaluation of performability measures [107]. The tools, which implements this
extension [45, 51], allow the reward structure superimposed on the reachability graph to be
generated automatically and easily provide dependability, performance and performability
measures.

The reward definition, used in the sequel, is called rate-based, to indicate that the system
produces reward at rate r(i) for all the time it remains in state i € Ro. Impulse-based reward
models [51] can also be implemented: a reward function r;; is associated to each transition
from state © € Ry to 7 € Ry. Each time a transition from ¢ to j occurs, the cumulative
reward of the system instantaneously increases by 7;;. In general, several combinations of
the different reward functions can be specified in the same model.

5.1 Measures at the net level

We assume time-independent rate-based reward models, and we show how all the PN-based
measures, introduced in Section 4.1, can be expressed in a very compact form, just properly
particularizing the various reward rates.

Let r; (i = 1,2, ..., N) be the reward rate of the process in state i and let TI(¢), IT and L(¢)
be the transient, the steady-state and the integral probability vectors calculated from the
underlying CTMC (Equations 1-3). Let X (¢) denote the instantaneous reward rate at time ¢
and Y'(¢) be the reward accumulated during (0,¢). The following measures are conveniently
defined.

5.1.1 Expected instantaneous reward rate

The expected instantaneous reward rate at time ¢ is computed as:

E[X ()] = ;rm(t) (11)
and in steady-state:

The complexity of solving Equations (11) and (12) is the same as that of solving the
standard Markov equations (1) and (2). It is easily recognized that Equation (4) can be
expressed in the form (11) if an appropriate binary reward rate is assigned to the state space
Ro. In particular a reward rate r, = 1 is assigned to states s € S and a reward rate r; = 0
otherwise.

Furthermore, Equation (8) can be derived directly from (11) by assigning to r; the value
of the number of tokens in place i, and the throughput Equation (10) by assigning to r; the
value of the firing rate of the transition of interest.

17



5.1.2 Expected accumulated reward

The expected accumulated reward at time ¢ is given by:

E[Y ()] = E M X(z)dz] - ér Li(t) (13)

A sometimes useful related measure is the time averaged accumulated reward IE[W (¢)] =
IE[Y (t)]/t, which can also be seen as the average rate according to which the reward is
accumulated from 0 to t.

It is easily recognized how Equations (5) and (9) can be expressed in the form (13) by a
suitable assignment of the reward rates.

5.1.3 Distribution of cumulative measures

Let F(t,y) = Prob{Y(t) < y} denote the cdf of the reward accumulated in (0,¢). The
expected value (13) may not give a sufficiently accurate indication about the probability of
occurrence of a single event. In [115], several examples are reported revealing a behavior
that is not deducible from the mere analysis of the average values. However, computation
of F(t,y) is a very complex task [115, 107, 58] and it is not usually available in standard
SPN-based tools.

6 Dealing with large state spaces

SPNs can provide a very compact representation of very large systems. This is reflected in
an exponential growth of the reachable markings as a function of the primitive elements in
the SPN (places and transitions), and as a function of the number of tokens in the initial
marking. This exponential growth of the state space has been often recognized [98] as a severe
limitation in the use of the SPN paradigm to deal with real life applications. Therefore, a
large effort has been devoted to overcome, or to alleviate this problem.

Since Markovian-SPNs are based on the solution of a CTMC, all the techniques that have
been explored to handle very large Markov chains can profitably be utilized in connection
with SPNs. However, original lines of research have been particularly developed in the
context of SPNs. When dealing with large models, not only that the solution of the system
becomes difficult, but the model description and the computer representation also become
tedious.

Distributed algorithms - Distributed algorithms have been specifically developed for both
the generation of the reachability graph from an SPN and for the solution of the
underlying CTMC [32, 93, 6, 43]. Distributed approaches in the generation phase are
typically penalized by the irregularities in the required data structures. Nevertheless,
a distributed implementation may achieve a significant speed up in the computational
time and a considerable extension of the cardinality of the solvable models [93]. The
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distributed steady-state solution of the CTMC has proven to outperform standard
techniques [6] achieving higher rates of convergence especially when applied to large,
stiff problems.

Structured representation - An approach to increase the size of tractable CTMCs, is to rep-
resent, the generator matrix in a compact form as a combination of smaller component
matrices, and to exploit this representation in the solution algorithm. A compositional
technique based on Kronecker operators proposed in [104], was initially transferred to
the SPN framework in [54, 55]. Subsequently, efficient techniques have been published
for the reachability analysis [79, 80] and for the numerical solution [25, 26, 81] which
exploit the specific structure of the generator matrix. To use the structured analysis
technique, the SPN model has to be described appropriately by means of submod-
els interacting via synchronizing transitions. Structured schemes for asynchronously
interacting submodels have been presented in [24]. Since memory space is often the
bottleneck in dealing with large SPN models, the structured representation can be very
effective.

Hierarchical models including SPNs If an overall system model can be composed from
submodels then each submodel is solved separately and results passed to higher level
submodel. The hierarchy can be homogeneous where each submodel is of SPN-type
or heterogeneous. SHARPE sofware package allows models of seven different types
to be combined together [110] in such manner. Some of the model types included in
SHARPE are: GSPNs, product-form queueing networks, Markov chains, fault trees
and so on. language of SPNs. Other authors have also used such hierarchical models
where GSPN submodel results are supplied as parameters to a product-form queueing
network [12, 13]. A package supporting the view of replacing GSPN places by queueing
systems has been presented in [14]. Particular classes of SPNs, like those originating
queueing models with matrix-geometric structure [102], have been considered and a
tool has been built for their analysis [70, 71]

Product form SPN - Queueing networks with product-form equilibrium distribution are well
established and find application in a variety of fields. With the aim of overcoming the
state explosion problem, several proposals have been recently documented to import
the product-form concept into the SPN arena. In [86], a class of SPNs is identified for
which a product-form solution can be written from the knowledge of partial balance
equations. The generation of the reachability graph is needed to recognize this class
of SPNs. An extension of this work is presented in [88]. Henderson et al. [74] have
developed a product-form criterion based only on the structure of the SPN, without
the need to generate the reachability graph. A comparative analysis of these two types
of appraoches has been reported in [56]. This comparison showed for the first time
the possibility of recognizing whether an SPN has product-form solution using results
from the structural analysis. A complete characterization of this class of models is in
[21] and a necessary and sufficient condition for the existence of a positive solution for
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the traffic equation is in [22]. Specific algorithms for the computation of product-form
solution have been presented in [50, 113]. Mean value analysis for non-product-form
SPNs has been explored in [112].

PN-driven techniques - These techniques deal with the reduction of both memory require-
ments and time complexity of the solution algorithms of SPNs by using information
about the structure of the untimed PN models. High Level Stochastic Petri Nets, such
as for example Stochastic Well-formed Coloured Nets (SWN), often exhibit behavioral
symmetries that can be exploited to reduce the size of the state space, and of the corre-
sponding C'TMC, by grouping states into equivalence classes. The desirable properties
of techniques based on this idea are the possibility of automatically discovering the
symmetries using only the information contained in the model description at the PN
level, and the possibility of directly generating the reduced state space (and the lumped
Markov chain) without first building the complete reachability graph. A method for
the construction of a lumped CTMC from and SWN model has been presented in
[36, 37]. In [67, 68] it has been shown that in some cases it is possible to integrate this
method with the decomposition methods based on Kronecker Algebra. In [111], the
same idea has been exploited and a method for the construction of the lumped CTMC
starting from the high-level description is given.

Deterministically Synchronized Sequential Processes (DSSP) are a class of SPNs that
can be obtained by resorting to simple modular design principles, and for this class a
well-established theory exists for the analysis of their qualitative behavior [106, 114].
Net-driven techniques, developed for DSSPs, can recognize and extract from the origi-
nal model a set of simpler auxiliary submodels that are then analyzed through approx-
imate iterative techniques [29] as well as exact solution [30].

CTMC-driwve techniques - For a CTMC with a large number of states, only a few states will
likely carry most of the probability mass. If we can recognize the states with neglible
probability mass in advance of their generation, then such states need not be generated.
Such state truncation techniques have been successfully utilized in the context of SPN
reliability and availability models [78, 99]. Another technique for avoiding large state
spaces is to solve a set of CTMC (or SPN) submodels in isolation and pass necessary
information from their solution to other submodels. This may need fixed-point iteration
among submodels [47, 121]. A time scale decomposition approach (imported from
CTMC literature [20]) has been proposed in [77]. This approach requires that the
transitions of the PN can be classified into two classes: fast and slow transitions.

Performance Bounds - A complementary approach to the development of efficient solution
techniques for the computation of performance measures, is the search for bounds.
Bounds require less computational effort with respect to the cost of exact solution,
since they are estimated based on equations at the SPN level, and do not require the
generation of the reachability graph. Moreover, the evaluation of the bounds is usually
not restricted to Markovian nets. Effort on deriving performance bounds haven been
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afoot since the beginning of the research on SPN [97, 23]. The evaluation of bounds
for the subclass of marked graphs was presented in [27, 29], and in [28] for SPNs with
a unique consistent firing count vector. A general approach for the computation of
bounds has been formulated in [34], based on operational analysis techniques applied
at the SPN level, with very weak assumptions on their timing semantics. The bounds
can be obtained in polynomial time by solving suitable linear programming problems,
and depend only on the mean values of the firing times and are insensitive to their
distribution. In the case of Markovian SPNs, an improved solution technique, based
on the randomization algorithm, has been presented in [91].

7 Non-Markovian Stochastic Petri Nets

According to Section 2, in order to define a SPN with generally distributed transitions, the
following entities must be specified for each transition ¢, € T the cdf (G,(t)) of the random
firing time +,, and the execution policy for determining (a,, ¢4).

In recent years, several classes of SPN models have been developed which incorporate
some non-exponential characteristics in their definition, and which adhere to the individual
memory semantics discussed in [1]. With the aim of specifying non-Markovian SPN models
that are analytically tractable, three main lines of research can be envisaged [42, 19]:

e an approach based on Markov regenerative theory [49, 83];
e an approach based on the use of supplementary variables [52];

e an approach based on state space expansion [19].

The first line originated from a particular case of non-Markovian SPN, defined in [4],
where, in each marking, a single transition is allowed to have associated a deterministic firing
time with prd policy (Deterministic and SPN - DSPN). Choi et al. [37, 38] have observed
that the marking process underlying a DSPN is a Markov Regenerative Process (MRGP) for
which equations for the transition probability matrix in transient and in steady-state can be
derived.

A semantic generalization of the previous formulation, has been proposed in [18], by
including the possibility of modeling prs transitions and in [15] by including pri transitions.
The most general framework under which the Markov regenerative theory has been applied
is the one in which any regeneration time period is dominated by a single transition (non-
overlapping dominant transitions).

The second line resorts to the use of supplementary variables [52]. The method has
been, up to now, applied to prd execution policies only and with mutually exclusive general
transitions. The steady-state solution has been proposed by German and Lindemann in
[62, 89, 90], while the possibility of applying the methodology to the transient analysis has
been explored in [61, 73].
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A comparison of numerical methods for the transient analysis of MRGPs applying the
Markov regenerative theory and the method of the supplementary variables has been pre-
sented in [63].

The third line of research, aimed at affording the solution of non-Markovian SPN, is
based on the expansion of the reachability graph of the basic PN. In this approach, the
original non-Markovian marking process is approximated by means of a CTMC defined over
an augmented state space. According to the definitions given in Section 2, the expansion
technique can be realized by assigning to each transition a continuous Phase-type (PH)
distributed random variable [102, 16].

The merit of this approach is the flexibility in modeling any combination of prd and
prs memory policies and any number of concurrent or conflicting transitions with generally
distributed firing times. Moreover, the expansion technique can be easily implemented by
a computer program, starting from the basic specification at the PN level, so that all the
solution steps can be hidden from the modeler [53]. The drawback of this approach is,
of course, the explosion of the state space that can be alleviated by resorting to the use
Kronecker operators for matrices [69].

A very recent and interesting modification of the expansion technique, resorts to the
use of discrete PH-type random variables [41, 48], so that the continuous-time marking
process is approximated by an expanded discrete-time Markov chain (DTMC). However,
discrete random variables are not covered by the assumptions stated in Section 2, and their
consideration is outside the scope of the present review.

The subclasses of SPNs in which none of the transitions can be preempted before firing
allow effectiv analysis and simulation methods even with non-exponentially distributed firing
times [10, 9].

7.1 Markov Regenerative Stochastic Petri Nets

The formalization of a class of Markov Regenerative Stochastic Petri Nets (MRSPN) has
been presented in [37]:

Definition 1 A SPN is called a Markov Regenerative Stochastic Petri Net (MRSPN) if its
marking process is a Markov Regenerative Process (MRGP)'.

MRGPs [83] (or Semi Regenerative Processes [49]) are discrete-state continuous-time
stochastic processes with an embedded sequence of Regenerative Time Points (RTP) [120],
at which the process enjoys the Markov property. The relevance of Definition 1 comes from
the fact that MRSPNs can be studied by resorting to the techniques available for MRGPs
[49, 83]. Based on the concept of memory in a SPN, RTPs can be defined as follows:

Definition 2 A regenerative time point (RTP) in the marking process {M(t)} underlying
an SPN is an instant of time where all the transitions do not have memory; i.e. all the

LMRSPNs are referred to as Semi Regenerative SPNs in [47].
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memory variables ay and the resampling indicator variables vy (k =1, 2, ..., n;) are equal
to zero.

EXP transitions with either prd or prs policy do not have memory, and they do not affect
the search for RTPs. Only generally distributed transitions, or EXP transitions with pri
policy have to be checked to fulfill the requirements of Definition 2. The framework in which
an SPN, with mixed preemption policies [119], generates a MRGP marking process is based
on the notion of non-overlapping dominant transition [18].

Definition 3 A transition, for which the beginning and the end of its memory cycle corre-
spond to the initial and final RTPs of a regeneration interval, is said to be dominant over
the considered regeneration interval. An SPN with non-overlapping dominant transitions is

a MRSPN.

The evolution of the marking process {M(¢)} during a regeneration period between two
consecutive RTP’s is called the process subordinated to the dominant transition. The subor-
dinated process can contain any number of EXT transition firings, but Definition 3, includes
the possibility that the memory cycle of one transition is completely contained within the
memory cycle of the dominant one, hence allowing simultaneous enabling of different general
transitions inside the same subordinated process. However, an analytic derivation is possible
if the subordinated processes are restricted to be a CTMC or a semi-Markov process (SMP).

If the general transitions are prd, a more complex situation has been examined in [105],
in which more than one general transition can be enabled at the same time. An example
with mixed preemption policies can be found in [119], while an example with simultaneously
enabled prd transitions is completely developed in Section 8.

7.1.1 Analysis by Markov Regenerative Theory

By the memoryless property of the MRGP at the RTPs, the analysis of an MRSPN can
be split into independent subproblems given by the subordinated processes between any
two consecutive RTPs. The probability functions that must be evaluated for the transient
analysis of a MRSPN are commonly referred to as global and local kernels [49, 83]. The
global kernel K(¢) = [K;;(t)] describes the occurrence of the next RTP:

Kij(t) = PTOb{M(l) = j, 7'1* S t| M(O) = Z}

where M(0) = 7 indicates the initial condition for the marking process, 77 is the next RTP
and M is the right continuous state hit by the marking process at the next RTP. The
local kernel E(t) = [E;;(t)] describes the state transition probabilities inside a regeneration
period, before the next RTP occurs:

E;;(t) = Prob{M(t) = j, 7} > t| M(0) =i}

In the special case where the marking process is a semi-Markov process, all the reachable
states must be RTPs and the local kernel E(t) is a diagonal matrix. The conditions under
which an SPN generates a marking process that is an SMP have been studied in [57].
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The kernel entries are a function of the execution policy of the single transition dominat-
ing the considered regenerative period. For a prd dominant transition the analysis is given
in [38], for a prs dominant transition in [18, 117] and for a pri dominant transition in [15].

Let V(t) = [V;;(t)] denote the transition probability over (0,1), i.e.:

Vii(t) = Prob{M(t) = j | M(0) = i}

Based on the global and the local kernels the transient analysis can be carried out in the
time domain by solving the following generalized Markov renewal equation:

Valt) = By() + 3 [ dKaly) Vit — ) (1)

or in the transform domain:
V™(s) =1 — K™(s)] ' E7(s) (15)

where the superscript ~ indicates the Laplace-Stieltjes transform and s is the variable cor-
responding to the time variable ¢.

A time domain solution for the transition probability matrix V() can be obtained by
numerically integrating Equation (14). Alternatively, starting from the Laplace transform
Equation (15), a combination of symbolic and numeric computation is needed to obtain
measures in the time domain [19]. In both cases, the complexity of the solution limits the
applicability of the procedure to an MRGP with a small number of states.

For the purpose of the steady-state analysis of an MRSPN, the following measures of the
subordinated processes are needed:

Qi = / Eij (t) dt
0
(16)
¢y = Prob{Mu) =7 | M(0) =i}
«;j is the expected time the subordinated process starting from state 7 spends in state j,
and ¢;; is the probability that the subordinated process starting from state 7 is followed by
a subordinated process starting from state j. Indeed the matrix ® = [¢;;] is the transition

probability matrix of the DTMC embedded at the RTPs. The measures in Equation (16) can
be obtained from the global and local kernels either in the time or in the transform domain:

i = /0 Ey(t) dt = lim E75(s) /s (17)
¢y = lim K;;(t) = lim KG(s) (18)

The evaluation of the measures in (16) is also dependent on the nature of the execution
policy associated with the transition dominating the subordinated processes (as it is indicated
by Equations (17) and (18)). For a prd dominant transition the analysis is given in [4], for
a prs dominant transition in [118] and for a pri dominant transition in [17].

The steady-state analysis of a MRSPN requires three steps:
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Step 1: Evaluate the a = [a;;] and ® = [¢;;] matrices based on [4, 118, 17].

Step 2: Evaluate the vector D = [D;], whose elements are the steady state probabilities
of the DTMC embedded at the RTPs. D is the unique solution of:

D=D®; S D=1

Step 3: The steady-state probabilities of the MRGP are given by:

> Dyay;
k

An example of solution of a MRSPN with prs dominant transitions using Equation (19)
has been reported in [118], while in [119] an example with mixed preemption policies has
been considered.

7.1.2 Method of Supplementary Variables

The method of supplementary variable has been applied to MRSPNs in which, in each (tan-
gible) marking, at most a single enabled transition can have a non-exponential distribution
with prd policy, with all the other enabled transitions EXP. Let a(t) be the age at time ¢ of
the only enabled non-exponential transition, if any. Since only one transition can be enabled
at any time, a(t) is the age of the whole model at time t. Under these restrictions, the
marking process M (t) together with the supplementary variable a(t) (i.e., (M(t), a(t))) is a
Markov process over the state space Ry x IR [52], where R, is the set of reachable tangible
markings and IR is the set of non-negative real numbers. The joint process can be analyzed
by the method of supplementary variables [52] as shown in [62, 61, 73]. Following the concept
and the notations of [61] the solution approach is briefly summarized.

Let TY be the set of non-exponential timed transitions. The tangible state space R,
is partitioned into #7T¢ + 1 disjoint subsets. RE is the set of states in which no general
transition is enabled (a(t) = 0 when M(t) € RY), and R, g € T are the sets of states in
which the general transition ¢, (the dominant one) is enabled. The superscript ¥ refers to
the states in REY and the superscript 9 (or ¢) refers to the states in R§. The probability of
being in state i at time ¢ is m;(t) = Prob{M(t) = i}. Given that in state ¢ at time ¢ the
single dominant transition ¢, € T is enabled, with age a,(t) and cdf G,(z), the so called,
age rate h;(t,x) describes the conditional firing rate of ¢, in i:

_ Prob{M(t) =i, x < ay(t) <z +dx} 1
B dx 1 —Gy(x)

The effect of the firing of a general transition ¢, is stored in a branching probability
matrix A = A;; whose generic entry has the following meaning [2, 38]:

A;; = Prob{next marking is j | current marking is ¢ and transition ¢, fires}
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With the above assumptions and definitions, the age rate vector h(t,z) = [h;(t, z)] with
i € Ry is described by the following partial differential equation:

0 0
2 ni(t Z hI(t,z) = hi(t,z) Q’ 2
O wiita) + L) = W0 Q (20)
The transient state probability vector I1(¢), can be calculated in partitioned form: TI(¢) =
[TIE(t), T19(¢), IT¢(t), . . .]. The process evolution in R¥ is described by the following ordinary

differential equation:

SUE) = TE()QF+
gEZTG /Ooo h!(t,z) dG ,(7) A®F+ (21)
> () Qr”
geTs

In (21), the state probabilities inside RY can change: i) - by the firing of an EXP
transition which results in a new marking in RY (1st term); i) - by the firing of a general
transition when the reached state is in RY (2nd term); iii) - by the disabling of a general
transition when the reached state is in RY (3rd term).

The boundary condition for Equation (20) is given by:

h9(t,0) = HE(t)cgoE’ng
ZEZT:G/O (t, ) dGi(z) A%+ (22)
> T(HQY

LeTY b#g

In (22), a general transition ¢, can be activated: i) - by the firing of an EXP transition
in RY leading to a state in which ¢, is enabled (1st term); i) - by the firing of a general
transition ¢, when in the reached state t, is enabled (or reenabled if t, = ¢;,) (2nd term);
iii) - by the firing of an EXP transition which disables the active general transition ¢, and
in the reached marking the general transition ¢, is enabled (3rd term).

Once h?(t,z) is computed from (20), the transient state probability vector in R{ can be

calculated from: ~
T9(t) = /0 h(t,2) (1 — G,(x)) de (23)

The initial conditions are IT”(0) and h?(0,z) = T19(0) §(x), where &(x) is the Dirac delta
function.

An iterative algorithm for solving the above equations, based on a fixed size discretization
interval (d) for the continuous variables has been proposed in [63]. The steps of the algorithm
are the following:

1. Compute the age rates in the next time instant

hg(Zd,]d) = h.‘]((Z _ l)d, (] . l)d)ngd
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and set h9(id,0) =0

2. Given the age rates h(id, jd), j = 0,1,..., compute the state probabilities T19(id)
from (23)

3. Compute the state probabilities IT”(id) from the ordinary differential Equation (21)

4. Compute the activation rate of the general transitions h9(id,0) from the boundary
conditions (22)

5. Check the convergence and go back to step 2 or start with the next time instant (i+1)d

An improved numerical procedure, based on the same equations, but with an adaptively
varying discretization interval in the integration procedure has been recently described in
[73]. The steady-state behavior of the considered class of MRSPN can be easily obtained,
in the supplementary variable setting, by making the time derivatives equal to 0 in the
above set of equations. Lindemann proposed an effective numerical method to evaluate the
steady-state probabilities based on this approach [89, 90].

7.2 State space expansion

The technique based on the state space expansion is not restricted to MRSPN schemes, but
any combination of prd and prs transition is, in principle, acceptable. The technique consists
in approximating the firing times with PH-distributed [102] random variables and generating
the expanded CTMC obtained by combining the reachable states with all the phases of the
PH-distributions associated with the enabled transitions. An overview of the methods and
tools available to estimate the parameters of a PH-distribution from a given cdf can be found
in [16].

The expansion algorithm can be performed automatically by a computer program, and
is driven by the execution policy associated with different transitions [53]. The result of the
expansion algorithm is that each marking of the original PN is blown into a macrostate in
the new state space. When the firing times of the original PN are already PH-distributed,
this approach provides exact results. Otherwise, a preliminary step is needed in order to
approximate the given distributions by means of a suitable PH [16].

The analysis method consists of the following steps:

Step 1: Approximate the firing time distributions by means of PH cdf’s.

Step 2: Based on the PN description, the PH distributions assigned to each transition,
and their execution policy (among prd and prs, only) generate the expanded state space
and the infinitesimal generator of the expanded CTMC.

Step 3: Analyze the expanded CTMC by standard techniques (Section 4) and evalu-
ate the final results at the PN level by keeping the correspondence between original
markings and the macrostates in the expanded state space.
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Figure 7: MRSPN model for a preventive maintenance system

Cumani [53] has developed a package, called ESP, which automatically performs Step 2
- 3. A recent attempt to save storage space by algorithmically describing the infinitesimal
generator of the expanded CTMC by means of Kronecker operators has been documented
in [69].

8 Example: a preventive maintenance system

A quantitative example of a preventive maintenance system is developed. Preventive main-
tenance is considered as one of the key factors to increase system productivity and to reduce
production costs. The growing importance of maintenance in industrial applications has led
an increased sophistication in the mathematical models required to analyze its impact on
the system behavior [122, 85].

The system starts in a working state, but it ages with time and it eventually fails if
no preventive maintenance action is done. Once it crashes, a random amount of time is
required to bring the system back up and to restart it. Preventive maintenance is performed
at fixed intervals from the start (or the last restart) of the system in the working state.
The preventive maintenance activity takes an exponentially distributed amount of time and
completely regenerates (renews) the system.

Let d be the constant inspection interval. d is a critical design parameter: if d approaches
zero, the system is always under maintenance and its availability drops to zero. On the other
hand if d becomes too large the beneficial effect of the preventive maintenance action becomes
negligible.

The aim of this example is to elaborate a closed-form analytical expression for the steady-
state behavior of the system, and to evaluate the optimal value of the maintenance interval
that maximizes system availability.

8.1 Petri Net Model

Figure 7 shows the MRSPN representation of the system described in the previous paragraph.
The working state is modeled by place p,,. The generally distributed transition ¢; models
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the failure distribution whose firing leads the system to place pgown. Upon system failure, the
preventive maintenance activity is suspended: the inhibitor arc from place pgowrn to transition
teock 18 used to model this fact.

The deterministic transition ., models the constant inspection interval. It is compet-
itively enabled with ¢; so that the one that fires first disables the other one. Once t.ock
fires, a token moves in place p,,,; and the activity related with the preventive maintenance
(transition t,,q;) starts.

During the preventive maintenance phase, the system is switched off and cannot fail
(inhibitor arc from place pp,; to transition ¢;). The completion of the maintenance (firing
of t4i) re-initializes the system in an as good as new condition; hence ¢, is assigned a prd
policy. Since upon failure and repair a complete d interval must elapse before the successive
preventive maintenance takes place, t.,.x also must be assigned a prd policy.

As can be observed from Figure 7, t; and . are conflicting prd general transitions that
fit into the framework elaborated in [105].

8.2 Model solution

Since there are no immediate transitions in the PN, all the markings are tangible. Starting
from the initial marking m; represented in Figure 7 , the token distribution in the reachable
markings (assuming the following order for the places: pup, Detocks Pdowns Pmai) 1S given by :

my = (1,1,0,0), ms=(0,1,1,0), ms=(1,0,0,1)

From marking m,; both #; and .. may fire leading to my and msg, respectively. From my
only t4oun can fire leading to m; and, finally, from mj3 only t,,,; can fire leading to m;. As a
consequence, the kernel matrices K(t) and E(t) have the following structure:

Eu(t) 0 0
E(t) = 0 Exn(t) 0
0 0 Es(t)
0  Ki(t) Kus(t)
K{t)=| Kut) 0 0
Ksu(t) 0 0

Since E(t) is a diagonal matrix, the marking process is anSMP. Let G(t) be the cdf of the
firing time associated with transition ¢¢, and d be the deterministic maintenance interval as-
sociated with t.,.x. Furthermore, let A\; and A, be the firing rates associated with transitions
tdown and t,,.i, respectively. The non-zero kernel entries are:

Git) 0<t<d
G(d) t>d
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0 0<t<d
1-Gyld) t>d
K21 (t) =1- 6_/\1t : K31 (t) =1- B_Azt (26)
1-Gp(t) 0<t<d
0 t>d
Egg(t) = 6_/\1t : E33(t) = 6_/\2t (28)

To obtain the steady-state solution, we follow the procedure described in Section 7.1.1.

Step 1:

an = [JH 1 — Gy(t)) dt 0 0
o = 0 Qg9 = )\—11 0
0 0 sz = 3
0 Gy(d) 1—Gy(d)
=11 0 0
1 0 0
Step 2:
D _ 1, 1 , 1
20 2G(d)” 2(1 = Gy(d))
Step 3:
1 1 1 (20
U7 Q201 A2a,G(d)° A20(1 — Gy(d))

_ 1 1 !
where A = e T 2022G (d) + 2033 (1-G(d))

8.3 Results

The steady-state availability is given by the probability of being in state m; (entry vy in 29).
The effect of the length of the preventive maintenance interval d on the system availability

can now be examined.
The numerical computations are performed assuming the following values:
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Figure 8: steady-state availability versus maintenance interval

i) - Transition ¢; is distributed according to a Weibull c¢df G;(t) = 1 — e " where 3 is
the shape parameter and c is the scale parameter, respectively. We assume g = 2.0

(increasing failure rate) and ¢ = 2-10~7. With the above value for ¢ the expected value
of the Weibull cdf is IE (v;) = 1981.66 h.

i) - A = 0.1 h¥" and Ny = 1 h~! for the firing rates of transitions tgpw, and tm,a,
respectively.

iii) - The preventive maintenance interval d varying from 0 to 5000 h.

Figure 8 plots the system availability v; versus the maintenance interval d. If d = 0,
the system is always under maintenance, and is completely unavailable. As d increases, the
steady-state availability increases as well. However, for large d the effect of the preventive
maintenance is overshadowed by the downtime due to failure, and in the limit d — oo, the
availability approaches the value when there is no preventive maintenance. The optimal
maintenance interval is d = 752 h, at which the availability achieves its maximum value
vy = 0.999727.

9 Fluid Stochastic Petri Nets

Recognizing the increasing use of stochastic fluid flow models in performance analysis, Trivedi
and Kulkarni introduced the class of Fluid Stochastic Petri Nets (FSPN) [82]. This class
extends the traditional integer token concept by introducing the possibility for the tokens
to be real (positive) entities assigned to special continuous places. For a discussion about
continuous and hybrid PN models see also [5].

The places are partitioned into a set of discrete places P, containing an integer number
of tokens and a set of fluid (or continuous) places P, containing a real fluid level. The state
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space of an FSPN is partially discrete and partially continuous. The discrete part is an
integer vector accounting for the number of tokens in the discrete places. The continuous
part is a vector of real numbers accounting for the fluid levels in the continuous places.

In [82], the continuous part of a marking does not affect the discrete-state stochastic
process defined over the discrete places (which is a homogeneous CTMC). Let S be the set
of reachable discrete markings and Q be the infinitesimal generator of the underlying CTMC.
The evolution of the continuous part of the marking is governed by flow rate functions which
depend only on the discrete part. Let r;(n) be the flow rate out of a fluid place i € P, given
that n € S is the current discrete state. The fluid level X;(¢) of the continuous place i € P,
given n € S and t is characterized by the following equation:

(30)

dt max{r;(n),0} if  X;(t)=0

Define the row vector H(t,#) = [H,(t, )] whose entries H,(t,#) (with n € S) are the
transient distribution functions:

H,(t,%) = Prob{X;(t) < x;,i € P.,,n € S}
In accordance with the result of stochastic fluid models [7] H (t, &) satisfies [82)]:

+2

iEpc

OH (t,7)
ot

H(t, & .
. a(j’.x)Ri —A(t,HQ, T>0 (31)

with the boundary condition H,(¢,Z) = 0 if z; = 0 and r;(n) > 0. In the above expression
R; = diag(ri(n)).

The steady-state behavior of an FSPN is obtained by eliminating the time dependent
derivative from (31). The analytical evaluation of the transient as well as the steady-state
behavior of an FSPN with multiple fluid places is very hard. Numerical techniques are
being explored. An FSPN with a single fluid place results in a traditional stochastic fluid
flow model for which the steady-state analysis has been investigated in [7, 84], based on the
spectral decomposition of Q.

An extension of the original FSPN model was investigated by Horton at al. [76]. In
the extended FSPN class, mutual interactions of the continuous over the discrete part and
viceversa are allowed. Considerations on the numerical analysis of this class of FISPNs with
a single fluid place can be found in [76]. A discrete event simulation method has been
investigated in [46].

10 Conclusions

Markovian-SPNs and their most popular variant, the GSPNs, have become a well known
modeling technique in industrial and academic environments. The availability of well estab-
lished and user-friendly tools based on this paradigm has largely contributed to the success
of PNs as a general purpose, flexible and effective modeling and analysis language.
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The research lines devoted to exploit specific properties and structures either at the PN
or at the reachability graph level, are rapidly increasing the size of problems that can be
effectively handled. Moving the frontiers of PN-based models to deal with very large state
spaces has attracted a relevant efforts in the PN community as evidenced by the number of
papers dealing with these topics, and is still an open research area.

New challenging and promising results have been recently obtained in the attempt to
overcome the exponential assumption. Combination of deterministic and stochastic timings
in the same model represents a realistic goal at the present state of the art, particularly for
what concerns the steady-state analysis. Numerical techniques in the transient domain are
still in the infant stage but a variety of methods and algorithms have been developed.

Fluid models are of extreme interest per se, and as a continuous approximation to situa-
tions where an enormous number of discrete objects has to be considered. The preliminary
results are encouraging but it is hard to forecast the success that these models will encounter
in applications.
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