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Abstra
t

The analysis of sto
hasti
 systems with non-exponential timing requires the

development of suitable modeling tools. Re
ently, some e�ort has been devoted

to generalize the 
on
ept of Sto
hasti
 Petri nets, by allowing the �ring times to

be generally distributed. The evolution of the PN in time be
omes a sto
hasti


pro
ess, for whi
h in general, no analyti
al solution is available. The paper surveys

suitable restri
tions of the PN model with generally distributed transition times,

that have appeared in the literature, and 
ompares these models from the point of

view of the modeling power and the numeri
al 
omplexity.
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1 Introdu
tion

The usual de�nition of Sto
hasti
 Petri Net (SPN) implies that all the timed a
tivities

asso
iated to the transitions are represented by exponential random variables, so that

the evolution of the net in time is mapped into a 
ontinuous time Markov 
hain (CTMC).

There are, however, pra
ti
al situations that are not 
overed by these models. In fa
t,

many a
tivities in 
omputer, 
ommuni
ation and manufa
turing systems are more likely

represented by random variables with low variability (or even deterministi
). Moreover,

some signi�
ant measures, introdu
ed to 
hara
terize a sto
hasti
 system over an interval

rather then at a time instant (like the distribution fun
tion of 
umulative measures),

�

A preliminary version of this paper has been presented at the First European Conferen
e on De-

pendable Computing EDCC-1, Berlin, O
tober 1994 [9℄
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annot be evaluated by solving a set of linear �rst order di�erential equations typi
al of

Markovian systems [40, 6℄ and require a more 
omplex sto
hasti
 formulation.

In re
ent years, several 
lasses of (SPN) models have been elaborated whi
h in
or-

porate some non-exponential 
hara
teristi
s in their de�nition. The semanti
s of SPN's

with generally distributed transition times has been dis
ussed in [1℄. We refer to this

model as Generally Distributed Transition SPN (GDT SPN). In order to properly de�ne

a marking pro
ess asso
iated to a GDT SPN, ea
h timed transition should be assigned

a memory poli
y 
hosen among three possible alternatives: resampling, enabling and age

memory. The resampling poli
y is mapped into a semi-markov marking pro
ess. The

enabling memory poli
y is suited to realize an exe
ution me
hanism that in queueing

theory is 
alled preemptive repeat di�erent (prd) poli
y. Whenever the task in servi
e

is preempted its servi
e time is reset and the exe
ution restarts from s
rat
h. On the

other hand, the age memory poli
y is suited to represent an exe
ution me
hanism usually

referred to as preemptive resume (prs) poli
y: when a task is enabled again after preemp-

tion, its exe
ution restarts from the point it was interrupted. In general, the sto
hasti


pro
ess underlying a GDT SPN does not have a tra
table analyti
al formulation, while

a simulative solution has been investigated in [29℄.

With the aim of providing a modeler's representation able to automati
ally generate

an analyti
al representation, various restri
tions of the general GDT SPN model have

been dis
ussed in the literature [16, 9℄.

The semimarkov SPN, studied in [38, 5℄, seems of little pra
ti
al interest sin
e the

�ring of any transition for
es a resetting of all the other transitions. A semimarkov SPN

more suited for appli
ations has been dis
ussed in [23℄. In this de�nition, the transitions

are partitioned into three 
lasses: ex
lusive, 
ompetitive and 
on
urrent. Only ex
lusive

or 
ompetitive transitions are allowed to be non-exponential.

Cumani [22℄ has realized a pa
kage in whi
h ea
h PN-transition 
an be assigned a PH

[39℄ distributed �ring time. We refer to this model as PHSPN. The pe
uliar feature of

the PHSPN model is that it 
an support any 
ombination of the memory poli
ies de�ned

in [1℄ and that the related analyti
al solution 
an be 
ompletely automatized.

A parti
ular 
ase of non-Markovian SPN, is the 
lass of Deterministi
 and SPN

(DSPN). A DSPN is de�ned in [3℄ as a Markovian SPN where, in ea
h marking, a single

transition is allowed to have asso
iated a deterministi
 �ring time. Only the steady state

solution was provided in [3℄. An improved steady state algorithm was presented in [35℄,

and some stru
tural extensions were investigated in [17℄. Choi et al. [14℄ have observed

that the marking pro
ess underlying a DSPN is a Markov Regenerative Pro
ess (MRP)

for whi
h a 
losed form expression for the transition probability matrix 
an be derived

both as a fun
tion of the time and in steady state [19℄.

This observation has opened a very fertile line of resear
h aimed at the de�nition of

solvable 
lasses of SPNmodels whose underlying marking pro
ess is aMRP, and therefore

referred to as Markov Regenerative SPN (MRSPN). Choi et al. [15℄ have extended the

DSPN model by allowing the presen
e in ea
h marking of at most one transition with a

generally distributed �ring time. The solution proposed in [15℄ is based on the derivation

of the time-dependent transition probability matrix in the Lapla
e transform domain,
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followed by a numeri
al inversion. German and Lindemann [27℄ have proposed to derive

the steady state solution of the same model by resorting to the method of supplementary

variables [21℄. The possibility of applying the methodology of supplementary variables

to the transient analysis of DSPN's is explored in [25℄, where, however, only very spe
ial


ases are taken into 
onsideration.

The main limitation of the models dis
ussed in the mentioned referen
es is that the

generally distributed (or deterministi
) transitions must be assigned a �ring poli
y of

enabling memory type

1

.

A semanti
 generalization of the DSPN model, by in
luding the possibility of mod-

eling preemptive me
hanisms of resume type has been proposed in [11℄. A prs servi
e

poli
y means that the server is able to re
over an interrupted job by keeping memory

of the work already performed so that, upon restart, only the residual servi
e needs

to be 
ompleted. This modeling extension is 
ru
ial in 
onne
tion with fault tolerant

and parallel 
omputing systems, where a single task may be interrupted either during a

fault/re
overy 
y
le or for the exe
ution of a higher priority task, but when the 
ause

originating the interruption is 
eased, the dormant task is resumed from the point it was

interrupted. Finally, a more general 
lass of solvable MRSPN is de�ned in [10℄, where

both enabling and age memory poli
ies 
an be 
ombined into a single model.

The aim of this paper is to 
ompare the availableGDT SPNmodels re
ently appeared

in the literature from two distin
t and 
on
i
ting points of view: the modelling power and

the analyti
al tra
tability. To this end, the main features of the di�erent formulations are

brie
y des
ribed with the intent of stressing the basi
 assumptions and the 
omplexity

of the related analyti
al solution. A �nal example, based on the transient analysis of a


losed queuing system with deterministi
 servi
e time and various kinds of preemptive

servi
e poli
ies, is developed in length in order to put in eviden
e the limits and the

potentialities of the di�erent approa
hes.

The GDT SPN is formally de�ned in Se
tion 2. Se
tion 3 fo
uses on two main

realizations of the GDT SPN, namely: the PHSPN implemented by Cumani in [22℄ and

the DSPN introdu
ed by Ajmone and Chiola in [3℄ and further generalized by di�erent

authors [15, 16, 10℄ into the MRSPN model. A 
omparative dis
ussion of the modeling

power of the 
onsidered models is performed in Se
tion 4 through an example. Starting

from a simple queuing system, more 
omplex modeling assumptions are introdu
ed in

order to show how the 
onsidered models rea
t to the added stru
tures. The algorithmi



omplexity of the numeri
al solutions is brie
y addressed in Se
tion 5.

2 Generally Distributed Transition SPN

A marked Petri Net (PN) is a tuple PN = (P; T; I; O;H;M); where:

� P = fp

1

; p

2

; : : : ; p

np

g is the set of pla
es (drawn as 
ir
les);

1

The enabling memory assumption is relaxed in [17℄ where a deterministi
 transition 
an be disabled

in vanishing markings only. Sin
e vanishing markings are transversed in zero time, this assumption does

not modify the behavior of the marking pro
ess versus time
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� T = ft

1

; t

2

; : : : ; t

nt

g is the set of transitions (drawn as bars);

� I, O and H are the input, the output and the inhibitor fun
tions, respe
tively.

The input fun
tion I provides the multipli
ities of the input ar
s from pla
es to

transitions; the output fun
tion O provides the multipli
ities of the output ar
s

from transitions to pla
es; the inhibitor fun
tion H provides the multipli
ity of the

inhibitor ar
s from pla
es to transitions.

� M = fm

1

; m

2

; : : : ; m

np

g is the marking. The generi
 entry m

i

is the number of

tokens (drawn as bla
k dots) in pla
e p

i

, in marking M .

Input and output ar
s have an arrowhead on their destination, inhibitor ar
s have

a small 
ir
le. A transition is enabled in a marking if ea
h of its ordinary input pla
es


ontains at least as many tokens as the multipli
ity of the input fun
tion I and ea
h

of its inhibitor input pla
es 
ontains fewer tokens than the multipli
ity of the inhibitor

fun
tion H. An enabled transition �res by removing as many tokens as the multipli
ity

of the input fun
tion I from ea
h ordinary input pla
e, and adding as many tokens as

the multipli
ity of the output fun
tion O to ea
h output pla
e. The number of tokens in

an inhibitor input pla
e is not a�e
ted.

A markingM

0

is said to be immediately rea
hable from M , when it is generated from

M by �ring a single enabled transition t

k

. The rea
hability set R(M

0

) is the set of all the

markings that 
an be generated from an initial marking M

0

by repeated appli
ation of

the above rules. If the set T 
omprises both timed and immediate transitions, R(M

0

) is

partitioned into tangible (no immediate transitions are enabled) and vanishing markings,

a

ording to [2℄.

A timed exe
ution sequen
e T

E

is a 
onne
ted path in the rea
hability graph R(M

0

)

augmented by a non-de
reasing sequen
e of real non-negative values representing the

epo
hs of �ring of ea
h transition, su
h that 
onse
utive transition �rings 
orrespond to

ordered epo
hs �

i

� �

i+1

in T

E

.

T

E

= f (�

0

;M

(0)

) ; (�

1

;M

(1)

) ; : : : ; (�

i

;M

(i)

) ; : : :g (1)

The time interval �

i+1

� �

i

between 
onse
utive epo
hs represents the period of time

that the PN sojourns in marking M

(i)

.

A variety of timing me
hanisms have been proposed in the literature. The distin-

guishing features of the timing me
hanisms are whether the duration of the events is

modeled by deterministi
 variables or random variables, and whether the time is asso-


iated to the PN pla
es, transitions or tokens. If a probability measure is assigned to

the duration of the events represented by a transition, a timed exe
ution sequen
e T

E

is

mapped into a sto
hasti
 pro
ess M(x); (x � 0), 
alled the Marking Pro
ess. PN's in

whi
h the timing me
hanism is sto
hasti
 are referred to as Sto
hasti
 PN (SPN).

A SPN with sto
hasti
 timing asso
iated to the PN transitions and with generally

distributed �ring times (GDT SPN) was de�ned in [1℄, with parti
ular emphasis on the

semanti
 interpretation of the model.

De�nition 1. A GDT SPN is a marked SPN in whi
h:
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� To any timed transition t

k

2 T is asso
iated a random variable 


k

modeling the time

needed by the a
tivity represented by t

k

to 
omplete, when 
onsidered in isolation.

� Ea
h random variable 


k

is 
hara
terized by its (possibly marking dependent) 
u-

mulative distribution fun
tion G

k

(w).

� A set of spe
i�
ations are given for univo
ally de�ning the sto
hasti
 pro
ess asso-


iated to the ensemble of all the timed exe
ution sequen
es T

E

. This set of spe
i�-


ations is 
alled the exe
ution poli
y.

� A initial probability is given on the rea
hability set.

An exe
ution poli
y is a set of spe
i�
ations for univo
ally de�ning the sto
hasti
 pro
ess

underlying the GDT SPN, given the PN topology and the set of Cdf's asso
iated to

ea
h timed transition. Indeed, the in
lusion of non-exponential timings destroys the

memoryless property and for
es to spe
ify how the system is 
onditioned upon the past

history. The exe
ution poli
y 
omprises two spe
i�
ations: a 
riterion to 
hoose the next

timed transition to �re (the �ring poli
y), and a 
riterion to keep memory of the past

history of the pro
ess (the memory poli
y). A natural 
hoi
e to sele
t the next timed

transition to �re is a

ording to a ra
e poli
y: if more than one timed transition is enabled

in a given marking, the transition �res whose asso
iated random delay is statisti
ally the

minimum. The memory poli
y de�nes how the pro
ess is 
onditioned upon the past.

In GDT SPN, the memory is represented by an age variable a

k

, asso
iated to ea
h

timed transition t

k

, that in
reases with the time in whi
h the 
orresponding transition

is enabled. The way in whi
h a

k

is related to the past history determines the di�erent

memory poli
ies. Three alternatives are 
onsidered:

� Resampling - The age variable a

k

is reset to zero at any 
hange of marking. The

�ring distribution depends only on the time elapsed in the 
urrent marking.

� Enabling memory - The age variable a

k

a

ounts for the time elapsed from the

last epo
h in whi
h t

k

has been enabled. The �ring distribution depends on the

residual time needed for the transition to 
omplete given a

k

. When transition t

k

is

disabled (even without �ring) a

k

is reset.

� Age memory - The age variable a

k

a

ounts for the total time in whi
h t

k

has been

enabled from its last �ring. The �ring distribution depends on the residual time

needed for the transition to 
omplete given a

k

.

At the entran
e in a new tangible marking, the residual �ring time is 
omputed for

ea
h enabled timed transition given its age variable. The next marking is determined

by the minimal residual �ring time among the enabled timed transitions (ra
e poli
y).

Under an enabling memory poli
y the �ring time of a transition is resampled from

the original distribution ea
h time the transition be
omes enabled so that the time

eventually spent without �ring in prior enabling periods is lost. The memory of the

underlying sto
hasti
 pro
ess 
annot extend beyond a single 
y
le of enable/disable of

the 
orresponding transition. On the 
ontrary, if a transition is assigned an age memory

poli
y, the age variable a

ounts for all the periods of time in whi
h the transition has

been enabled, independently of the number of enable/disable 
y
les. Hen
e, the age
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memory is the only poli
y that allows a transition to have a non-null memory also in

markings in whi
h is not enabled.

Sin
e exponential transitions do not have memory, the residual life time distribution

is independent of the value of the age variable. Hen
e, the three poli
ies have the same

e�e
t and we 
an 
onventionally assume that the age variables asso
iated to exponential

transitions are identi
ally zero.

3 Computational Restri
tions of the GDT SPN

The marking pro
ess M(x) does not have, in general, an analyti
ally tra
table formula-

tion, while a simulative approa
h has been des
ribed in [29, 30℄. Various restri
tions of

the general model have been dis
ussed in the literature [16, 9℄ su
h that the underlying

marking pro
ess M(x) is 
on�ned to belong to a known 
lass of analyti
ally tra
table

sto
hasti
 pro
esses.

3.1 Exponentially Distributed SPN

When all the random variables 


k

asso
iated to the PN transitions are exponentially

distributed, the dynami
 behavior of the net is mapped into a CTMC, with state spa
e

isomorphi
 to the tangible subset of the rea
hability graph. This restri
tion is the most

popular in the literature [37, 24, 2℄, and a number of tools are built on this assumption

[13, 18, 20, 34℄.

3.2 Semi-Markov SPN

When all the PN transitions are assigned a resampling poli
y the marking pro
ess be-


omes a semi-Markov pro
ess. This restri
tion has been studied in [38, 5℄ but is of little

interest in appli
ations where it is diÆ
ult to imagine a situation where the �ring of any

transition of the PN has the e�e
t of for
ing a resampling to all the other transitions.

A more 
onsistent and interesting semi-Markov SPN model has been dis
ussed in

[23℄. In this de�nition, the transitions are partitioned into three 
lasses: ex
lusive, 
om-

petitive and 
on
urrent. Provided that the �ring time of all the 
on
urrent transitions

is exponentially distributed and that non-exponential 
ompetitive transitions are resam-

pled at the time the transition is enabled, the asso
iated marking pro
ess be
omes a

semi-Markov pro
ess.

3.3 Phase Type SPN (PHSPN)

A numeri
ally tra
table realization of the GDT SPN, is obtained by restri
ting the ran-

dom �ring times 


k

to be PH distributed [39℄, a

ording to the following:

De�nition 2. A PHSPN is a GDT SPN in whi
h:
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� To any timed transition t

k

2 T is asso
iated a PH random variable 


k

. The PH

model assigned to 


k

has �

k

stages with a single initial stage numbered stage 1 and

a single �nal stage numbered stage �

k

.

� To any timed transition t

k

2 T is assigned a memory poli
y among the three de�ned

alternatives: resampling, enabling or age memory.

The distinguishing feature of this model, is that it is possible to design a 
ompletely

automated tool that responds to the requirements stated in [31℄, and that, at the same

time, in
ludes all the issues listed in De�nition 2. The non-Markovian pro
ess generated

by the GDT SPN over the rea
hability set R(M

0

) is 
onverted into a CTMC de�ned over

an expanded state spa
e. The measures pertinent to the original pro
ess are de�ned at

the PN level and 
an be evaluated by solving the expanded CTMC.

The program pa
kage ESP [22℄ realizes the PHSPN model a

ording to De�nition 2.

The program allows the user to assign a PH distribution and a spe
i�
 memory poli
y

to ea
h PN transition so that the di�erent exe
ution poli
ies 
an be put to work. In

the ESP tool, the algorithm for the generation of the expanded CTMC starts from the

knowledge of the rea
hability graph R(M

0

) and is driven by the di�erent PH models and

exe
ution poli
ies assigned to ea
h transition.

The expanded CTMC is represented by a dire
ted graph H = (N

H

; A

H

) where

N

H

is the set of nodes (states of the expanded CTMC) and A

H

is the set of dire
ted

ar
s (transitions of the expanded CTMC). The nodes in N

H

are pairs (M; W ), where

M 2 R(M

0

) is a marking of the original non-expanded SPN and W is a n

t

-dimensional

ve
tor of integers, whose kth entry w

k

(1 � w

k

� �

k

) represents the stage of �ring of

t

k

in its PH distribution.

Ar
s in A

H

are represented by 5-tuples (N; N

0

; k; i; j), where N is the sour
e node,

N

0

the destination node, and (i; j) is an ar
 in the PH model of transition t

k

. Therefore,

(N; N

0

; k; i; j) 2 A

H

means that in the expanded graph the pro
ess goes from node N

to node N

0

when the stage of �ring of t

k

goes from stage i to stage j.

The expanded graph H is generated by an iterative algorithm [22℄. Let H be initially

empty; the algorithm starts by putting inN

H

the initial node N

(1)

H

= (M

0

; [ 1; 1; : : : ; 1 ℄)

(the PN is in its initial marking M

0

and all the n

t

random variables 


k

are in stage 1).

N

(1)

H

is marked as a non-expanded node. An expansion step is then performed on ea
h

non-expanded node N

(`)

H

= (M

(`)

; W

(`)

). For ea
h transition t

(`)

k

enabled in M

(`)

, we

sear
h for all the possible su

essors of stage numbered w

(`)

k

in the PH model of t

(`)

k

(where w

(`)

k

is the kth 
omponent of W

(`)

, i.e. it is the stage of 


k

in state N

(`)

H

). Let

j (j = 1; : : : ; �

k

) be one of su
h possible su

essors. Two 
ases may arise depending

whether j = �

k

or j 6= �

k

; i.e. transition t

(`)

k

has rea
hed its terminal stage, or not.

CASE 1 - j 6= �

k

Transition t

(`)

k

has made a jump in its PH model without �ring. Then a new node

N

0 (`)

H

= (M

(`)

; W

0 (`)

) is generated, with w

0 (`)

k

= j and w

0 (`)

l

= w

(`)

l

(8 t

l

2 T ; t

l

6=

t

k

).

CASE 2 - j = �

k

Transition t

(`)

k

has rea
hed the �nal node of its PH model and thus has �red. In this

7




ase, the new node N

0 (`)

H

= (M

0 (`)

; W

0 (`)

) is generated a

ording to the following

rule: M

0 (`)

is the marking immediately rea
hed from M

(`)

by �ring t

(`)

k

(M

(`)

�

t

(`)

k

! M

0 (`)

), and w

0 (`)

k

= 1 sin
e �ring of t

(`)

k

resets its stage 
ount to 1. The

values of the other entries of ve
tor W

0 (`)

, 
orresponding to the transitions enabled

in M

(`)

are set a

ording to the memory poli
y atta
hed to the 
orresponding

transition:

� always set equal to 1 in the resampling 
ase;

� not modi�ed in the age memory 
ase;

� 
onditionally reset in the enabling memory 
ase (i.e. if the transition is still

enabled in the new markingM

0 (`)

the 
orresponding stage 
ount is not modi�ed

otherwise is set to 1).

In both 
ases, the new node N

0 (`)

H

= (M

0 (`)

; W

0 (`)

) is entered in N

H

(if not already

there) and a new ar
 A

0 (`)

H

= (N

(`)

H

; N

0 (`)

H

; k; w

(`)

k

; w

0 (`)

k

) is added to A

H

. The above

expansion step is iterated for all the transitions enabled in the 
urrent marking M

(`)

,

and until all the 
orresponding PH distributions have rea
hed their terminal stage. At

this point the expansion of the node N

(`)

H

is terminated and the node itself is marked as

expanded. The algorithm then sear
hes for the subsequent non-expanded node until all

the nodes have been sear
hed for.

The 
ardinality n

H

of the expanded state spa
e is upper bounded by the 
ross produ
t

of the 
ardinality of the rea
hability set of the basi
 PN times the 
ardinality of the PH

distributions of the n

t

random variables 


k

[1℄. The a
tual value of n

H

is diÆ
ult to

evaluate a priori. In pra
ti
al 
ases this number 
an be very mu
h lower that the upper

bound, and is, in any 
ase, in
reasing with the 
omplexity of the assigned memory

poli
ies. The resampling poli
y is the one that generates the expanded CTMC with the

lower number of states, while the age poli
y generates the expanded CTMC with the

larger number of states.

The markingM

(`)

of the original rea
hability set, is mapped into a ma
ro state formed

by the union of all the nodes N

H

(M; W ) of the expanded graph su
h that M = M

(`)

.

This mapping allows the program to rede�ne the measures 
al
ulated as solution of the

Markov equation over the expanded graph in terms of the markings of the original PN.

An alternative approa
h for the in
lusion of PH distributions into SPN models 
on-

sists in substituting ea
h transition, at the PN level, with a proper sub-PN realizing the

required PH model. However, a naive appli
ation of this approa
h, as proposed in [37℄,


an not 
orre
tly a

ommodate the di�erent memory poli
ies. An attempt to realize a

sub-PN able to a

ount for all the three memory poli
ies is in [12℄ (but restri
ted to PH

distributions with equal diagonal elements). Nevertheless, the expansion at the PN level

has been strongly dis
ouraged in [1℄ on the basis of the following motivations:

� The in
lusion of a sub-PN for ea
h transition makes the expanded PN very intri
ate

and diÆ
ult to understand. The added primitive elements (pla
es, transitions and

ar
s) refer only to the sto
hasti
 behavior of a single transition and hide the general

stru
ture of the model. The fas
inating simpli
ity of the PN language is destroyed.

� It seems hardly possible to automatize a pro
edure for generating the PHSPN

model expanding the basi
 PN and taking into a

ount general PH distributions

and intera
tions among di�erent memory poli
ies.

8



3.4 Deterministi
 SPN

The Deterministi
 and Sto
hasti
 PN model has been introdu
ed in [3℄, with the aim of

providing a te
hnique for 
onsidering sto
hasti
 systems in whi
h some time variables

assume a 
onstant value. In [3℄ only the steady state solution has been addressed.

An improved algorithm for the evaluation of the steady state probabilities has been

su

essively presented in [35℄, and some stru
tural extensions have been proposed in

[17℄.

De�nition 3 - A DSPN [3℄ is a GDT SPN in whi
h:

� The set T of transitions is partitioned into a subset T

e

of exponential transitions

(EXP) and a subset T

d

of deterministi
 transitions (DET), su
h that T = T

e

[ T

d

.

� To any EXP transition t

k

2 T

e

is asso
iated an exponentially distributed random

variable 


k

.

� To any DET transition t

j

2 T

d

is asso
iated a deterministi
 �ring time d

j

.

� At most, a single DET transition is allowed to be enabled in ea
h marking.

� The only allowed exe
ution poli
y for the DET transition is the ra
e poli
y with

enabling memory.

A

ording to De�nition 3, during the �ring of a DET transition, the marking pro
ess


an undergo EXP transitions only, thus des
ribing a CTMC 
alled the subordinated

pro
ess. The steady state solution te
hnique, originally proposed in [3℄, is based on

the evaluation of the subordinated CTMC at a time 
orresponding to the duration of

the DET transition. Various improvements and extensions of the original algorithm

are in [35, 17℄. Tools 
urrently supporting steady state measures for DSPN models are

DSPNexpress [36℄, UltraSAN [20℄ and TimeNET [26℄.

Choi et al. [14℄ have shown that the marking pro
ess asso
iated to a DSPN is

a Markov regenerative pro
ess (MRP), for whi
h steady state and transient solution

equations are available [19℄. In order to prove their assertion, Choi et al. have introdu
ed

the following modi�ed exe
ution sequen
e:

T

E

= f (�

�

0

;M

(0)

) ; (�

�

1

;M

(1)

) ; : : : ; (�

�

i

;M

(i)

) ; : : :g (2)

Epo
h �

�

i+1

is derived from �

�

i

as follows:

1. If no DET transition is enabled in marking M

(i)

, de�ne �

�

i+1

to be the �rst time

after �

�

i

that a state 
hange o

urs.

2. If a DET transition is enabled in markingM

(i)

, de�ne �

�

i+1

to be the time when the

DET transition �res or is disabled as a 
onsequen
e of the �ring of a 
ompetitive

EXP transition.

A

ording to 
ase 2) of the above de�nition, during [�

�

i

; �

�

i+1

), the PN 
an evolve in

the subset of R(M

0

) rea
hable from M

(i)

, through EXP transitions 
on
urrent with the

given DET transition. The marking pro
ess during this time interval is the CTMC sub-

ordinated to markingM

(i)

. Therefore, if a DET transition is enabled inM

(i)

, the sojourn

9



time is given by the minimum between the �rst passage time out of the subordinated

CTMC and the 
onstant �ring time asso
iated to the DET transition.

Choi et al. show that the sequen
e �

�

i

forms a sequen
e of regenerative time points,

so that the marking pro
ess M(x) is a Markov regenerative pro
ess MRP. A

ording to

[15, 19℄, we de�ne the following matrix valued fun
tions:

V(x) = [V

ij

(x)℄ su
h that V

ij

(x) = PrfM(x) = j jM(0) = ig

K(x) = [K

ij

(x)℄ " K

ij

(x) = PrfM

(1)

= j ; �

�

1

� xjM(0) = ig

E(x) = [E

ij

(x)℄ " E

ij

(x) = PrfM(x) = j ; �

�

1

> xjM(0) = ig

(3)

MatrixV(x) is the transition probability matrix and provides the probability that the

marking pro
ess M(x) is in marking j at time x given it was in i at x = 0. The matrix

K(x) is the global kernel of the MRP and provides the probability that the regeneration

interval ends in marking j at time x, given that it started in marking i at x = 0. Finally,

the matrix E(x) is the lo
al kernel and des
ribes the behavior of the marking pro
ess

inside two 
onse
utive regeneration time points. The transient behavior of the DSPN 
an

be evaluated by solving the following generalized Markov renewal equation (in matrix

form) [19, 15℄:

V(x) = E(x) + K � V(x) (4)

where K � V(x) is a 
onvolution matrix, whose (i; j)-th entry is:

[K � V(x)℄

ij

=

X

k

Z

x

0

dK

ik

(y)V

kj

(x� y) (5)

Equation (4) 
an be solved numeri
ally in the time domain. An alternative ap-

proa
h, suggested in [14℄, 
onsists in transforming the 
onvolution equation (4) in the

Lapla
e domain. By denoting the Lapla
e Stieltjes transform (LST) of a fun
tion F (x)

by F

�

(s) =

R

1

0

e

�sx

dF (x), Equation (4) be
omes:

V

�

(s) = E

�

(s) + K

�

(s) V

�

(s) (6)

whose solution is:

V

�

(s) = [I � K

�

(s)℄

�1

E

�

(s) (7)

The time domain solution of (7) 
an be obtained by numeri
al inversion [32℄.

10



3.5 Markov Regenerative SPN (MRSPN)

A natural extension of the DSPN has been proposed in [15℄, where the DET transition

in De�nition 3 is repla
ed by a GEN transition. This model is referred to by the authors

as MRSPN

�

.

De�nition 4. A MRSPN

�

is a GDT SPN in whi
h:

� The set T of transitions is partitioned into a subset T

e

of exponential transitions

(EXP) and a subset T

g

of generally distributed transitions (GEN), su
h that T =

T

e

[ T

g

.

� To any EXP transition t

k

2 T

e

is asso
iated an exponentially distributed random

variable 


k

.

� To any GEN transition t

j

2 T

d

is asso
iated a generally distributed random variable




j

.

� At most, a single GEN is allowed to be enabled in ea
h marking.

� The only allowed exe
ution poli
y for the GEN transition is the ra
e poli
y with

enabling memory.

By De�nition 4, during the �ring of a GEN transition only EXP transitions 
an


on
urrently �re: the pro
ess subordinated to a GEN transition is a CTMC. The matri
es

K(x) and E(x) in (3) depend on the spe
i�
 Cdf's assumed in the model. In [15℄,


losed form expressions are derived when the Cdf of the GEN transitions is the uniform

distribution.

3.6 MRSPN with non overlapping a
tivity 
y
les

With the aim of extending the modeling power of MRSPN's by in
luding GEN tran-

sitions with age memory poli
y, Bobbio and Telek [11, 10℄ have investigated a 
lass of

models 
hara
terized by the fa
t that the subordinated pro
ess between two 
onse
utive

regeneration time points is a Semimarkov Reward Pro
ess [40℄.

Sin
e in a GDT SPN the memory of the marking pro
ess is related to the positive

value assumed by the age variables atta
hed to the GEN transitions (EXP transitions

do not 
arry memory), a regeneration time point o

urs at the entran
e in a marking in

whi
h all the age variables are reset.

De�nition 5. A a Markov Regenerative Sto
hasti
 Petri Nets (MRSPN) [11℄ is a

GDT SPN, for whi
h an embedded Markov renewal sequen
e (�

�

n

; M

(n)

) exists su
h that

at the epo
h �

�

n

of entran
e in the tangible marking M

(n)

all the age variables are equal

to 0.

In order to restri
t De�nition 5 to a 
lass of solvable models, the 
on
ept of MR-

SPN with non overlapping a
tivity 
y
les has been introdu
ed in [10℄. This new 
lass

en
ompasses and generalizes all the models previously appeared in the literature and

mentioned in the previous se
tions.

11



De�nition 6 - A GEN transition is dormant in those markings in whi
h the 
orre-

sponding age variable is equal to zero and is a
tive in those markings in whi
h the age

variable is greater than zero. The a
tivity 
y
le of a GEN transition is the period of time

in whi
h a transition is a
tive between two dormant periods.

Let t

g

be a GEN transition. The a
tivity 
y
le of t

g

is in
uen
ed by its memory

poli
y, and 
an be 
hara
terized in the following way:

� Resampling Memory - If t

g

is a resampling memory transition, its a
tivity 
y
le

starts as soon as t

g

be
omes enabled, and ends at the �rst subsequent �ring of any

transition (in
luding t

g

itself). During the a
tivity 
y
le of a resampling memory

transition no 
hange of marking is possible.

� Enabling Memory - If t

g

is an enabling memory transition its a
tivity 
y
le starts

as soon as t

g

be
omes enabled when dormant, and ends either when t

g

�res, or

when it be
omes disabled by the �ring of a 
ompetitive transition. During the

a
tivity 
y
le the marking 
an 
hange inside the subset of 
onne
ted markings in

whi
h t

g

is enabled. The age variable asso
iated to t

g

grows 
ontinuously during

the a
tivity 
y
le starting from 0.

� Age Memory - If t

g

is an age memory transition, its a
tivity 
y
le starts as soon

as t

g

be
omes enabled when dormant, and ends only at the �ring of t

g

itself.

During the a
tivity 
y
le of an age memory transition there is no restri
tion on

the markings rea
hable by the marking pro
ess. The age memory poli
y is the

only poli
y in whi
h a transition 
an be a
tive even in markings in whi
h is not

enabled. During the a
tivity 
y
le, the age variable is non-de
reasing in the sense

that in
reases 
ontinuously in those markings in whi
h t

g

is enabled and maintains

its 
onstant positive value in those markings in whi
h t

g

is not enabled. The

enabling/disabling 
ondition of t

g

during its a
tivity 
y
le is tra
ked by introdu
ing

a reward (indi
ator) variable whi
h is set to 1 in those markings in whi
h t

g

is

enabled and set to 0 in those markings in whi
h t

g

is not enabled. With this

assignment, the value of the age variable versus time 
an be 
omputed as the total

a

umulated reward.

De�nition 7 - A
tivity 
y
les are non-overlapping if there exists a dominant transition

whose a
tivity 
y
le stri
tly 
ontains the a
tivity 
y
les of all the a
tive transitions.

De�nition 8 - A MRSPN with non-overlapping a
tivity 
y
les is a MRSPN in whi
h

all the regeneration periods are dominated by a single transition: any two su

essive

regeneration time points 
orrespond to the start and to the end of the a
tivity 
y
le of

the dominant transition.

De�nition 8, in
ludes the possibility that the a
tivity 
y
les of GEN transitions are


ompletely 
ontained into the a
tivity 
y
le of the dominant one, hen
e allowing the

simultaneous enabling of di�erent GEN transitions inside the same subordinated pro
ess.

In parti
ular in [10℄, the 
lass of models for whi
h the pro
ess subordinated to any GEN

transition is a reward semimarkov pro
ess is de�ned and analyzed. In order to arrive

to 
losed form expressions for the global and lo
al kernels of the underlying MRP, the

following situations are examined separately.

3.6.1 Enabling memory dominant transition

The dominant GEN transition t

g

is of enabling type. The next regeneration time point

o

urs be
ause one of the following two mutually ex
lusive events:

12



� t

g

�res: this event 
an be formulated as a 
ompletion time problem [33, 7℄ when

the age variable a

g

rea
hes a value equal to the �ring requirement 


g

.

� t

g

is disabled: this event 
an be formulated as a �rst passage time in the subset of

states in whi
h t

g

be
omes disabled.

A

ordingly, the following two types of subordinated pro
esses 
an be distinguished.

TYPE A - The subordinated pro
ess is a CTMC: no other GEN transitions are a
tivated

during the a
tivity 
y
le of t

g

.

A subordinated pro
ess of Type A is the only one arising from De�nition 3 for

DSPN [3, 14, 35℄ and from De�nition 4 for MRSPN

�

[15, 27℄. All the examples

reported in the mentioned referen
es belong to this 
ase.

TYPE B - The subordinated pro
ess is a semimarkov pro
ess: during the a
tivity 
y
les

of t

g

other GEN transitions 
an be a
tivated one at the time (or more generally

a

ording to the rules stated in [23℄).

The steady state analysis of aMRSPN with Type B subordinated pro
ess has been


onsidered in [16℄. The proposed algorithm is based on an eÆ
ient 
omputational

extension of the randomization te
hnique [28℄, assuming that GEN distributions

are pie
ewise de�ned by polynomials multiplied by exponential expressions. This


lass of distributions is 
alled expolynomial.

3.6.2 Age memory dominant transition

The situation in whi
h the dominant GEN transition t

g

is of age type has been addressed

for the �rst time in [11℄. The only 
riterion for the termination of the a
tivity 
y
le is

the �ring of t

g

, and the state spa
e of the subordinated pro
ess 
ontains all the states

rea
hable during the a
tivity 
y
le of t

g

. During its a
tivity 
y
le transition t

g


an be

either enabled or disabled. The 
orresponding binary reward variable is set equal to 1 in

the states of the subordinated pro
ess in whi
h t

g

is enabled and equal to 0 in the states

of the subordinated pro
ess in whi
h t

g

is not enabled. The �ring of t

g


an be formulated

as a 
ompletion time problem [33, 7℄ in a reward sto
hasti
 model when the age variable

a

g

(
al
ulated as the total a

umulated reward) rea
hes the �ring requirement 


g

.

Two types of subordinated pro
esses 
an be distinguished also in this 
ase.

TYPE C - The subordinated pro
ess is a reward CTMC: during the a
tivity 
y
le of t

g

no other GEN transitions are a
tivated.

TYPE D - The subordinated pro
ess is a reward semi-Markov pro
ess: during the a
-

tivity 
y
le of t

g

other GEN transitions 
an be a
tivated one at the time (or more

generally a

ording to the rules stated in [23℄).

The next Se
tion reports an example in whi
h Type C and Type D subordinated

pro
esses are 
ombined in the same PN.
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3.6.3 DET transitions

A parti
ular 
ase arises when all the GEN transitions are assumed to be of DET type.

TheMRSPN with non overlapping a
tivity 
y
les and DET transitions 
an be 
onsidered

as a dire
t generalization of the DSPN model of De�nition 3, where the modeling power

is augmented to a

ommodate the presen
e of memory poli
ies of both enabling and age

type. In [10℄, a pro
edure is given to derive the K(x) and E(x) matri
es (3) when the

subordinated pro
ess is of Type D (a semimarkov reward model) and the non-exponential

transitions are DET.

The GEN 
ase 
an be derived from the solution of the DET 
ase by the following

argument. Let us �x a value 


g

= w of the r.v. asso
iated to the dominant transition,

and let us derive K

ij

(xjw) as in the pure DET 
ase. Then, given that G

g

(w) is the Cdf

of 


g

:

K

ij

(x) =

Z

1

w=0

K

ij

(xjw) dG

g

(w) (8)

A similar argument holds for the entries of matrix E(x). The solutions for subordi-

nated pro
esses of Types A, B and C 
an be derived as spe
ial 
ases of the solution of

Type D.

4 Example: Finite Queue with Preemption

We 
arry on a 
omparison between the modeling power and the numeri
al results ob-

tained from the Lapla
e Transform Method (LTM) applied to MRSPN (or DSPN in

parti
ular 
ases) and the PHSPN model through the analysis of a simple queueing sys-

tems with di�erent kinds of preemption. We 
onsider, as a base example, the M/D/1/2/2

(a 
losed queueing system with two bu�er positions and two 
ustomers) introdu
ed in

[3℄. The non-preemptive servi
e me
hanism has been already analyzed in [3℄ for what


on
erns the steady state measures and revisited in [14℄ for what 
on
erns the transient

behavior. In the �gures, EXP transitions are drawn as empty re
tangles, DET transitions

as �lled re
tangles and immediate transitions as thin bars.

4.1 Case I - Non Preemptive Queue

The PN for the M/D/1/2/2 system, proposed in [3℄, is reported in Figure 1. Pla
e p

1


ontains "thinking" 
ustomers (i.e. awaiting to submit a job) and transition t

1

represents

the submission of jobs. Jobs queueing for servi
e are represented by tokens in p

2

. A token

in p

3

means that the server is busy while a token in p

4

means that the server is idle.

Transition t

2

is the job servi
e time; when the job is 
ompleted the 
ustomer returns in

his thinking state. Transition t

3

is an immediate transition modelling the start of servi
e

i.e. the transfer of the job from the queue to the server.

In [3, 14℄, the following assumptions were made. t

1

is EXP with �ring rate m

1

� �

being m

1

the number of tokens in p

1

and � = 0:5 job/hour. t

2

is a DET transition

modeling a 
onstant servi
e time of duration d = 1:0 hour.
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Figure 1 - a) - PN modelling the atomi
 operation of a M/D/1/2/2 (after

[3℄); b) - 
orresponding redu
ed rea
hability graph; 
) - simpli-

�ed PN.

The redu
ed rea
hability graph of the PN (after eliminating the vanishing markings

arising from the immediate transition t

i

[2℄) is 
omposed of three states, denoted by

s

1

; s

2

and s

3

in Figure 1b. The PN of Figure 1a is a DSPN a

ording to De�nition 3

and shows in details the atomi
 steps by whi
h a 
ustomer submits a job and the job is

servi
ed. Figure 1
 shows, however, a simpler PN isomorphi
 to the one of Figure 1a.

Tokens in pla
e p

1

of Figure 1
 represent 
ustomers in the thinking state, while p

2


ontains the jobs in the queue (in
luded the one under servi
e). t

1

models the submitting

time and t

2

is the servi
e time. It is easy to verify that the above PN generates the same

marking pro
ess M(x) of Figure 1b when t

1

is EXP with rate m

1

�� and t

2

is DET. The

probabilities versus time of the two states s

1

and s

3

are reported in Figure 2 in solid line,


omputed by means of the Lapla
e transform method (LTM).

Approximating the DSPN of Figure 1
 by means of the PHSPN model is straightfor-

ward. Transition t

2

is assigned a PH distribution and an enabling memory poli
y. Sin
e

the Erlang distribution is the PH with the minimum 
oeÆ
ient of variation [4℄ it is ap-

propriate to approximate the DSPN by assigning t

2

an Erlang distribution of in
reasing

order. In Figure 2 we 
ompare the results obtained from the PHSPN model, by reporting

the behavior of the state probabilities versus time in two 
ases: when i) the random �ring

time assigned to t

2

is Erlang(5) (dashed line), and ii) when is Erlang(100) (dotted line).

In both 
ases the expe
ted value of the Erlang mat
hes with the value d = 1:0 hours of

the DET model, being all the other parameters un
hanged. It is interesting to observe

that the lo
al maxima and minima in the probability behavior do not appear with the

Erlang(5), while the visual agreement is very satisfa
tory in the 
ase of the Erlang(100).

As a further 
omparison, Table I shows the values of the steady state probabilities


al
ulated from LTM for the DSPN and from the PHSPN model when t

2

is assumed

to be Erlang(5), Erlang(10), Erlang(100) and Erlang(1000), respe
tively. It should be

stressed that the present 
ase 
an be 
onsidered as a worst 
ase example sin
e a DET

type variable 
an be 
losely approximated by a PH only as the number of stages grows
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Figure 2 - Transient behavior of the state probabilities for the non

preemptive M/D/1/2/2

to 1 [4℄.

4.2 Preemptive Queue with Identi
al Customers

Let us assume a M/D/1/2/2 with a preemptive servi
e and the same kind of 
ustomers.

The job in exe
ution is preempted as soon as a new job joins the queue. Two 
ases 
an

be 
onsidered depending whether the job restarted after preemption is resampled from

the same distribution fun
tion (prd), or is resumed (prs).

4.2.1 Case II - prd poli
y

With referen
e to Figure 1
, ea
h time transition t

1

�res (a thinking 
ustomer submits a

job) while p

2

is marked (a job is 
urrently under servi
e) transition t

2

should be reset and

resampled. In the PHSPN model this me
hanism 
an be simply realized by assigning

to t

2

a resampling poli
y. It is easy to prove that the underlying pro
ess M(x) is a

semi-Markov pro
ess, sin
e ea
h time the DET transition t

2

is entered, a regeneration

point is produ
ed sin
e a new job starts.

Even if the 
lass of semi-markov pro
esses is a proper sub
lass of the Markov regen-

erative pro
esses, the above preemptive me
hanism 
annot be generated from the DSPN

of De�nition 3. In fa
t, sin
e t

1

is not 
ompetitive with respe
t to t

2

, the �ring of the

former does not disable the latter, that indeed is not resampled. The PN in Figure 3a

des
ribes a 
orre
t DSPN with the required preemption poli
y. Pla
e p

1

in Figure 3a
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Table I - Steady state probabilities for the non preemptive queue (Case I)

DSPN PHSPN

State

(LTM) Erl(5) Erl(10) Erl(100) Erl(1000)

s

1

0.37754 0.38307 0.38039 0.37783 0.37757

s

2

0.48984 0.46773 0.47845 0.48867 0.48972

s

3

0.13262 0.14920 0.14116 0.13350 0.13271
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Figure 3 - Preemptive M/D/1/2/2 ith identi
al 
ustomers


ontains the 
ustomers thinking, while pla
e p

2


ontains the number of submitted jobs

(in
luded the one under servi
e). Pla
e p

3

represents a single job getting servi
e: servi
e

is interrupted (t

2

is disabled) if a new job joins the queue (transition t

3

�res before t

2

).

t

1

and t

3

are assigned the EXP submitting time and transitions t

2

and t

4

a DET servi
e

time. Assigning an enabling memory poli
y to t

2

and t

4

the prd servi
e me
hanism is

generated, while respe
ting the requirements of De�nition 3.

Table II 
ompares the steady state probabilities assuming the submitting and servi
e

time distributions identi
al to the non preemptive 
ase. The transient behaviors of the

probabilities versus time of states s

1

and s

3

are reported in Figure 5 (Case II) 
omputed

by means of the LTM for the DSPN model. Similarly, Figure 6 (Case II) shows the

behaviors for the PHSPN model with the servi
e time given by an Erlang(100).
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Table II - Steady state probabilities with equal 
ustomers

DSPN PHSPN

State

(LTM) Erl(5) Erl(10) Erl(100) Erl(1000)

Case II - prd poli
y

s

1

0.33942 0.35317 0.34642 0.34014 0.33950

s

2

0.44038 0.43122 0.43572 0.43991 0.44034

s

3

0.22019 0.21561 0.21786 0.21995 0.22017

4.2.2 Case III - prs poli
y

The prs poli
y means that when a new job joins the queue the job under servi
e is

preempted until the newly arrived job 
ompletes his servi
e. The preempted job is then

resumed and put in exe
ution from the point of preemption without loss of the previously

performed work.

The prs me
hanism for the M/D/1/2/2 queue 
orresponds to the PN of Figure 3

when t

2

and t

4

is assigned an age memory poli
y. Ea
h time t

2

is disabled without �ring

(t

3

�res before t

2

) the age variable a

2

is not reset. Hen
e, as the se
ond job 
ompletes

(t

4

�res), the system returns in s

2

keeping memory of the value of a

2

, so that the time

to 
omplete the interrupted job 
an be evaluated as the residual servi
e time given a

2

.

With the above assignments, the PN of Figure 3a is a MRSPN with non overlapping

a
tivity 
y
les. A detailed analysis of this example is in [11℄. The regeneration time

points in the marking pro
ess M(x) 
orrespond to the epo
hs of entran
e in markings

in whi
h all the age variables are equal to zero (De�nition 5). By inspe
ting Figure 3b,

the regeneration time points result to be the epo
hs of entran
e in s

1

and of entran
e in

s

2

from s

1

. The pro
ess subordinated to state s

1

is a single step CTMC (being the only

enabled transition t

1

exponential) and in
ludes the only rea
hable state s

2

.

The pro
ess subordinated to state s

2

is dominated by transition t

2

and in
ludes the

states s

3

, s

2

. Sin
e s

2

is the only state in whi
h t

2

is enabled, the reward variable is set

equal to 1 in s

2

and equal to 0 elsewhere. With the given reward rates, a

2

is equal to the


umulative sojourn time in s

2

and, therefore, 
ounts the total time during whi
h t

2

is

enabled before �ring. During the �ring of t

2

the subordinated pro
ess alternates between

states s

2

and s

3

. Sin
e t

4

is non-exponential (DET in this 
ase) the subordinated pro
ess

is a reward semi-Markov pro
ess of Type D (Se
tion 3.6.2).

The transient behavior is depi
ted in Figure 5 (Case III) 
omputed by the LTM for

MRSPN and in Figure 6 
omputed from the PHSPN model with the DET transitions

approximated by an Erlang(100).
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Figure 4 - Preemptive M/D/1/2/2 queue with two 
lasses of 
ustomers

In this 
ase, the servi
e me
hanism is a preemptive LIFO [41℄ and satis�es the re-

quirements of symmetri
 queues. Hen
e, the steady state probabilities are insensitive

to the distribution of the servi
e time and depend only on its mean d (d = 1 in this

example) a

ording to the following balan
e equations [41℄:

2� d �

s1

= �

s2

; � d �

s2

= �

s3

:

Solving the above balan
e equations provides: �

s1

= 0:4, �

s2

= 0:4 and �

s3

= 0:2.

4.3 Preemptive Queue with Di�erent Classes of Customers

An interesting 
ase arises when the two 
ustomers are of di�erent 
lasses, and 
ustomer of


lass 2 preempts 
ustomer of 
lass 1 but not vi
e versa. A PN illustrating the M/D/1/2/2

queue in whi
h the jobs submitted by 
ustomer 2 have higher priority over the jobs

submitted by 
ustomer 1 is reported in Figure 4. Pla
e p

1

(p

3

) represents 
ustomer 1

(2) thinking, while pla
e p

2

(p

4

) represent job 1 (2) under servi
e. Transition t

1

(t

3

) is

the submission of a job of type 1 (2), while transition t

2

(t

4

) is the 
ompletion of servi
e

of a job of type 1 (2). The inhibitor ar
 from p

4

to t

2

models the des
ribed preemption

me
hanism: as soon as a type 2 job joins the queue the type 1 job eventually under

servi
e is interrupted.

If we assume that the servi
e time is not exponentially distributed, two possible

preemption poli
ies 
an be 
onsidered depending whether the job of type 1 is resampled

after preemption (prd 
ase) or is resumed (prs 
ase).

4.3.1 Case IV - prd poli
y

Sin
e this poli
y 
an be realized by assigning to the servi
e transitions t

2

and t

4

an

enabling memory poli
y, the present 
ase is in
luded in the DSPN model of De�nition

3. Table III shows the steady state probability values 
omputed from (7) and from the

PHSPN model with various Erlang approximations.
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Table III - Steady state probabilities with di�erent 
ustomers

MRSPN PHSPN

State

(LTM) Erl(5) Erl(10) Erl(100) Erl(1000)

Case IV - prd poli
y

s

1

0.35015 0.36194 0.35618 0.35076 0.35021

s

2

+ s

4

0.45429 0.44193 0.44801 0.45365 0.45423

s

3

0.19556 0.19613 0.19582 0.19558 0.19556

Case V - prs poli
y

s

1

0.39291 0.39458 0.39377 0.39300 n.a.

s

2

+ s

4

0.42835 0.42166 0.42493 0.42800 n.a.

s

3

0.17874 0.18375 0.18130 0.17900 n.a.

4.3.2 Case V - prs poli
y

Under a prs servi
e poli
y, after 
ompletion of the type 2 job, the interrupted type 1

job is resumed 
ontinuing the new servi
e period from the point rea
hed just before the

last interruption. In the PN of Figure 4a this servi
e poli
y is realized by assigning to

transitions t

2

and t

4

an age memory poli
y.

>From Figure 4b, it is easily re
ognized that s

1

, s

2

and s

4


an all be regeneration

states, while s

3


an never be a regeneration state (in s

3

either a job of type 1 or 2 is always

in exe
ution so that their 
orresponding memory variables are never simultaneously 0).

Only exponential transitions are enabled in s

1

and the next regeneration states 
an be

either s

2

or s

4

depending whether t

1

or t

3

�res �rst. In s

4

the dominant transition is

t

4

and the next regeneration marking 
an be either state s

1

or s

2

depending whether

during the exe
ution of the type 2 job a type 1 job does require servi
e (but remains

blo
ked until 
ompletion of the type 2 job) or does not. The reward variable is set to 1

in states s

3

and s

4

, where t

4

is enabled, so that the age variable a

4


ounts the total time

spent in either of the two states s

3

or s

4

. The subordinated pro
ess is a Type C reward

CTMC. >From s

2

the dominant transition is t

2

and the next regeneration state 
an be

only s

1

. During the �ring of t

2

multiple 
y
les (s

2

- s

3

) 
an o

ur depending whether

type 2 jobs arrive to interrupt the exe
ution of the type 1 job. The reward variable is set

to 1 in state s

2

so that the subordinated pro
ess is a Type D reward-SMP (t

4

is GEN).

Subordinated pro
esses of both Types C and D are mixed in the same net. A detailed
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Figure 5 - Comparison of the state probabilities 
omputed by the

Lapla
e transform method for DSPN (Case I, Case II

and Case IV) and for MRSPN (Case III and Case V).

derivation of the 
losed form equations for this example is in [11℄.

The steady state results are reported in Table III. Note that the values 
orresponding

to the Erlang(1000) are not available (n.a.) due to the explosion of the state spa
e (see

Se
tion 5.1). The transient probabilities for Case IV and Case V are reported in Figure

5 
omputed by means of the LTM for the DSPN (Case IV) and for the MRSPN with non

overlapping intervals (Case V). The 
orresponding results, 
omputed for the PHSPN

model, with an Erlang(100) assigned to the DET transitions, are similarly shown in

Figure 6.

The steady state results for Case I, Case II and Case IV where also 
he
ked using

the pa
kage TimeNET [26℄ based on the supplementary variable te
hnique.

5 Computational 
omplexity

Let us brie
y summarize the elementary 
omputational steps for the evaluation of the

transient solution in the two 
onsidered methodologies (MRSPN and PHSPN). The PH-

SPN solution is fully supported by a tool [22℄, while the Lapla
e transform method for

the transient analysis of MRSPN requires manual and automati
 manipulation. The

method of supplementary variables for DSPN, implemented in TimeNET [26℄, is also

fully supported by a tool but is presently restri
ted to the steady state solution only.
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Figure 6 - Comparison of the state probabilities 
omputed from

the PHSPN for the 5 examined Cases and with Er-

lang(100).

5.1 Evaluation of PHSPN model

For the evaluation of this model we used the ESP tool ([22℄). The pro
edure 
an be

divided into the following steps:

1. generation of the rea
hability tree;

2. generation of the expanded CTMC;

3. solution of the resulting CTMC.

Step 1) is standard. The 
omputational 
omplexity of steps 2) and 3) depends on

the number of tangible states and on the order of the PH distribution asso
iated to ea
h

transition. With PH distributions of order � the 
ardinality of the expanded CTMC is

n

H

= 2�+1 in Case I, n

H

= 2�+1 in Case II, n

H

= �

2

+�+1 in Case III, n

H

= 3�+1 in

Case IV and n

H

= �

2

+2�+1 in Case V. As mentioned in Se
tion 3.3, the 
ardinality of

the expanded state spa
e n

H

is strongly in
uen
ed by the memory poli
ies. In this trivial

example, with � = 100 (Erlang100) the generation of the CTMC takes 2 m for Cases III

and V, and the whole analysis two further minutes on a IBM RISC 6000 
omputer.

5.2 Lapla
e Transform Method for MRSPN

Let us �rst suppose that all the GEN transitions are DET. The 
omputational method


an be divided in the following steps [14℄:
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1. generation of the rea
hability tree;

2. manual derivation of the entries of the K

�

(s) and E

�

(s) matri
es symboli
ally in

the Lapla
e transform domain;

3. symboli
al matrix inversion and matrix multipli
ation by using a standard pa
kage

(e.g. MATHEMATICA) in order to obtain the V

�

(s) matrix (Equation 7) in the

LT domain;

4. time domain solution obtained by a numeri
al inversion of the entries of the V

�

(s),

resorting to the Jagerman's method [32℄. For the sake of uniformity, this step has

been implemented in MATHEMATICA language.

In the GEN 
ase, point 2) in the above list should be repla
ed by

2

0

manual derivation of the entries of the K

�

(s) and E

�

(s) matri
es symboli
ally in

Lapla
e transform domain as in the DET 
ase;

2

00

un
onditioning of the entries of the K

�

(s) and E

�

(s) matri
es, a

ording to the

Cdf of the GEN distributions (Equation 8).

Step 1) 
an be performed with any PN pa
kage. Step 2) is done manually, and its

diÆ
ulty depends on the non-zero entries of the involved matri
es, and on the 
omplexity

of the pro
ess subordinated to the dominant GEN transitions. The 
omplexity in
reases

going from subordinated pro
esses of Type A and C (CTMC) to subordinated pro
esses

of Type B and D (SMP), and going from Types A and B (all the states have the same

reward) to Types C and D (states are assigned a binary reward).

The 
omputational 
omplexity of step 3) depends on the dimension of the matri
es

(i.e. the number of tangible markings) and the 
omplexity of the elements of the kernels

(the diÆ
ulty of step 3 is related to the diÆ
ulty of step 2). The 
omplexity of the

numeri
al inversion at step 4) also depends on two fa
tors; the 
omplexity of the fun
tion

to invert, and the pres
ribed a

ura
y. For the example des
ribed in the previous se
tion,

the 
omputational time for the symboli
 inversion was not signi�
ant, while the numeri
al

inversion required about 30 s on an IBM RISC 6000 ma
hine, for ea
h point of the

transient solution.

5.3 Dis
ussion

Even if the deterministi
 distribution is typi
ally non PH, an approximation error for the

steady state probabilities of the order of 10

�2

is rea
hed by repla
ing the DET transition

with an Erlang(5) and an error of the order of 10

�4

by repla
ing the DET transition

with an Erlang(1000). The use of PH distributions and of the PHSPN model o�ers the

modeler a 
exible tool for pres
ribing various intera
tions among the timed a
tivities.

Moreover, if the random variables of the system to be modeled are really of PH type,

the PHSPN provides exa
t results. Otherwise, a preliminary step is needed in whi
h the

random times of the system are approximated by PH random variables resorting to a

suitable estimation te
hnique [8℄. The expansion of the state spa
e is, of 
ourse, a 
ause

of non-negligible diÆ
ulties, sin
e it worsens the problem of the exponential growth of the
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state spa
e both with the model 
omplexity, and with the order of the PH distribution

assigned to ea
h transition.

The MRSPN model, 
ombining GEN (or DET) �ring times with exponential �ring

times, o�ers an innovative approa
h in many pra
ti
al appli
ations. At the present

state of the art, no automatized tools are available for the generation of the matri
es

K(x) and E(x) and for the solution of the 
onvolution equation versus time. The Lapla
e

transform te
hnique, used in the examples, does not seem suited for a 
omplete numeri
al

automatization. An alternative numeri
al approa
h 
ould be based on the dire
t solution

of the 
onvolution equation (4) in time domain or in the solution of a system of partial

di�erential equations arising from the in
lusion of supplementary variables [25℄.
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