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Abstrat

The analysis of stohasti systems with non-exponential timing requires the

development of suitable modeling tools. Reently, some e�ort has been devoted

to generalize the onept of Stohasti Petri nets, by allowing the �ring times to

be generally distributed. The evolution of the PN in time beomes a stohasti

proess, for whih in general, no analytial solution is available. The paper surveys

suitable restritions of the PN model with generally distributed transition times,

that have appeared in the literature, and ompares these models from the point of

view of the modeling power and the numerial omplexity.

Key words: Stohasti Petri Nets, Non-exponential Distributions, Phase-type

Distributions, Markov and Semimarkov Reward Models, Markov Regenerative Pro-

esses, Queueing Systems with Preemption.

1 Introdution

The usual de�nition of Stohasti Petri Net (SPN) implies that all the timed ativities

assoiated to the transitions are represented by exponential random variables, so that

the evolution of the net in time is mapped into a ontinuous time Markov hain (CTMC).

There are, however, pratial situations that are not overed by these models. In fat,

many ativities in omputer, ommuniation and manufaturing systems are more likely

represented by random variables with low variability (or even deterministi). Moreover,

some signi�ant measures, introdued to haraterize a stohasti system over an interval

rather then at a time instant (like the distribution funtion of umulative measures),

�

A preliminary version of this paper has been presented at the First European Conferene on De-

pendable Computing EDCC-1, Berlin, Otober 1994 [9℄
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annot be evaluated by solving a set of linear �rst order di�erential equations typial of

Markovian systems [40, 6℄ and require a more omplex stohasti formulation.

In reent years, several lasses of (SPN) models have been elaborated whih inor-

porate some non-exponential harateristis in their de�nition. The semantis of SPN's

with generally distributed transition times has been disussed in [1℄. We refer to this

model as Generally Distributed Transition SPN (GDT SPN). In order to properly de�ne

a marking proess assoiated to a GDT SPN, eah timed transition should be assigned

a memory poliy hosen among three possible alternatives: resampling, enabling and age

memory. The resampling poliy is mapped into a semi-markov marking proess. The

enabling memory poliy is suited to realize an exeution mehanism that in queueing

theory is alled preemptive repeat di�erent (prd) poliy. Whenever the task in servie

is preempted its servie time is reset and the exeution restarts from srath. On the

other hand, the age memory poliy is suited to represent an exeution mehanism usually

referred to as preemptive resume (prs) poliy: when a task is enabled again after preemp-

tion, its exeution restarts from the point it was interrupted. In general, the stohasti

proess underlying a GDT SPN does not have a tratable analytial formulation, while

a simulative solution has been investigated in [29℄.

With the aim of providing a modeler's representation able to automatially generate

an analytial representation, various restritions of the general GDT SPN model have

been disussed in the literature [16, 9℄.

The semimarkov SPN, studied in [38, 5℄, seems of little pratial interest sine the

�ring of any transition fores a resetting of all the other transitions. A semimarkov SPN

more suited for appliations has been disussed in [23℄. In this de�nition, the transitions

are partitioned into three lasses: exlusive, ompetitive and onurrent. Only exlusive

or ompetitive transitions are allowed to be non-exponential.

Cumani [22℄ has realized a pakage in whih eah PN-transition an be assigned a PH

[39℄ distributed �ring time. We refer to this model as PHSPN. The peuliar feature of

the PHSPN model is that it an support any ombination of the memory poliies de�ned

in [1℄ and that the related analytial solution an be ompletely automatized.

A partiular ase of non-Markovian SPN, is the lass of Deterministi and SPN

(DSPN). A DSPN is de�ned in [3℄ as a Markovian SPN where, in eah marking, a single

transition is allowed to have assoiated a deterministi �ring time. Only the steady state

solution was provided in [3℄. An improved steady state algorithm was presented in [35℄,

and some strutural extensions were investigated in [17℄. Choi et al. [14℄ have observed

that the marking proess underlying a DSPN is a Markov Regenerative Proess (MRP)

for whih a losed form expression for the transition probability matrix an be derived

both as a funtion of the time and in steady state [19℄.

This observation has opened a very fertile line of researh aimed at the de�nition of

solvable lasses of SPNmodels whose underlying marking proess is aMRP, and therefore

referred to as Markov Regenerative SPN (MRSPN). Choi et al. [15℄ have extended the

DSPN model by allowing the presene in eah marking of at most one transition with a

generally distributed �ring time. The solution proposed in [15℄ is based on the derivation

of the time-dependent transition probability matrix in the Laplae transform domain,
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followed by a numerial inversion. German and Lindemann [27℄ have proposed to derive

the steady state solution of the same model by resorting to the method of supplementary

variables [21℄. The possibility of applying the methodology of supplementary variables

to the transient analysis of DSPN's is explored in [25℄, where, however, only very speial

ases are taken into onsideration.

The main limitation of the models disussed in the mentioned referenes is that the

generally distributed (or deterministi) transitions must be assigned a �ring poliy of

enabling memory type

1

.

A semanti generalization of the DSPN model, by inluding the possibility of mod-

eling preemptive mehanisms of resume type has been proposed in [11℄. A prs servie

poliy means that the server is able to reover an interrupted job by keeping memory

of the work already performed so that, upon restart, only the residual servie needs

to be ompleted. This modeling extension is ruial in onnetion with fault tolerant

and parallel omputing systems, where a single task may be interrupted either during a

fault/reovery yle or for the exeution of a higher priority task, but when the ause

originating the interruption is eased, the dormant task is resumed from the point it was

interrupted. Finally, a more general lass of solvable MRSPN is de�ned in [10℄, where

both enabling and age memory poliies an be ombined into a single model.

The aim of this paper is to ompare the availableGDT SPNmodels reently appeared

in the literature from two distint and oniting points of view: the modelling power and

the analytial tratability. To this end, the main features of the di�erent formulations are

briey desribed with the intent of stressing the basi assumptions and the omplexity

of the related analytial solution. A �nal example, based on the transient analysis of a

losed queuing system with deterministi servie time and various kinds of preemptive

servie poliies, is developed in length in order to put in evidene the limits and the

potentialities of the di�erent approahes.

The GDT SPN is formally de�ned in Setion 2. Setion 3 fouses on two main

realizations of the GDT SPN, namely: the PHSPN implemented by Cumani in [22℄ and

the DSPN introdued by Ajmone and Chiola in [3℄ and further generalized by di�erent

authors [15, 16, 10℄ into the MRSPN model. A omparative disussion of the modeling

power of the onsidered models is performed in Setion 4 through an example. Starting

from a simple queuing system, more omplex modeling assumptions are introdued in

order to show how the onsidered models reat to the added strutures. The algorithmi

omplexity of the numerial solutions is briey addressed in Setion 5.

2 Generally Distributed Transition SPN

A marked Petri Net (PN) is a tuple PN = (P; T; I; O;H;M); where:

� P = fp

1

; p

2

; : : : ; p

np

g is the set of plaes (drawn as irles);

1

The enabling memory assumption is relaxed in [17℄ where a deterministi transition an be disabled

in vanishing markings only. Sine vanishing markings are transversed in zero time, this assumption does

not modify the behavior of the marking proess versus time
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� T = ft

1

; t

2

; : : : ; t

nt

g is the set of transitions (drawn as bars);

� I, O and H are the input, the output and the inhibitor funtions, respetively.

The input funtion I provides the multipliities of the input ars from plaes to

transitions; the output funtion O provides the multipliities of the output ars

from transitions to plaes; the inhibitor funtion H provides the multipliity of the

inhibitor ars from plaes to transitions.

� M = fm

1

; m

2

; : : : ; m

np

g is the marking. The generi entry m

i

is the number of

tokens (drawn as blak dots) in plae p

i

, in marking M .

Input and output ars have an arrowhead on their destination, inhibitor ars have

a small irle. A transition is enabled in a marking if eah of its ordinary input plaes

ontains at least as many tokens as the multipliity of the input funtion I and eah

of its inhibitor input plaes ontains fewer tokens than the multipliity of the inhibitor

funtion H. An enabled transition �res by removing as many tokens as the multipliity

of the input funtion I from eah ordinary input plae, and adding as many tokens as

the multipliity of the output funtion O to eah output plae. The number of tokens in

an inhibitor input plae is not a�eted.

A markingM

0

is said to be immediately reahable from M , when it is generated from

M by �ring a single enabled transition t

k

. The reahability set R(M

0

) is the set of all the

markings that an be generated from an initial marking M

0

by repeated appliation of

the above rules. If the set T omprises both timed and immediate transitions, R(M

0

) is

partitioned into tangible (no immediate transitions are enabled) and vanishing markings,

aording to [2℄.

A timed exeution sequene T

E

is a onneted path in the reahability graph R(M

0

)

augmented by a non-dereasing sequene of real non-negative values representing the

epohs of �ring of eah transition, suh that onseutive transition �rings orrespond to

ordered epohs �

i

� �

i+1

in T

E

.

T

E

= f (�

0

;M

(0)

) ; (�

1

;M

(1)

) ; : : : ; (�

i

;M

(i)

) ; : : :g (1)

The time interval �

i+1

� �

i

between onseutive epohs represents the period of time

that the PN sojourns in marking M

(i)

.

A variety of timing mehanisms have been proposed in the literature. The distin-

guishing features of the timing mehanisms are whether the duration of the events is

modeled by deterministi variables or random variables, and whether the time is asso-

iated to the PN plaes, transitions or tokens. If a probability measure is assigned to

the duration of the events represented by a transition, a timed exeution sequene T

E

is

mapped into a stohasti proess M(x); (x � 0), alled the Marking Proess. PN's in

whih the timing mehanism is stohasti are referred to as Stohasti PN (SPN).

A SPN with stohasti timing assoiated to the PN transitions and with generally

distributed �ring times (GDT SPN) was de�ned in [1℄, with partiular emphasis on the

semanti interpretation of the model.

De�nition 1. A GDT SPN is a marked SPN in whih:
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� To any timed transition t

k

2 T is assoiated a random variable 

k

modeling the time

needed by the ativity represented by t

k

to omplete, when onsidered in isolation.

� Eah random variable 

k

is haraterized by its (possibly marking dependent) u-

mulative distribution funtion G

k

(w).

� A set of spei�ations are given for univoally de�ning the stohasti proess asso-

iated to the ensemble of all the timed exeution sequenes T

E

. This set of spei�-

ations is alled the exeution poliy.

� A initial probability is given on the reahability set.

An exeution poliy is a set of spei�ations for univoally de�ning the stohasti proess

underlying the GDT SPN, given the PN topology and the set of Cdf's assoiated to

eah timed transition. Indeed, the inlusion of non-exponential timings destroys the

memoryless property and fores to speify how the system is onditioned upon the past

history. The exeution poliy omprises two spei�ations: a riterion to hoose the next

timed transition to �re (the �ring poliy), and a riterion to keep memory of the past

history of the proess (the memory poliy). A natural hoie to selet the next timed

transition to �re is aording to a rae poliy: if more than one timed transition is enabled

in a given marking, the transition �res whose assoiated random delay is statistially the

minimum. The memory poliy de�nes how the proess is onditioned upon the past.

In GDT SPN, the memory is represented by an age variable a

k

, assoiated to eah

timed transition t

k

, that inreases with the time in whih the orresponding transition

is enabled. The way in whih a

k

is related to the past history determines the di�erent

memory poliies. Three alternatives are onsidered:

� Resampling - The age variable a

k

is reset to zero at any hange of marking. The

�ring distribution depends only on the time elapsed in the urrent marking.

� Enabling memory - The age variable a

k

aounts for the time elapsed from the

last epoh in whih t

k

has been enabled. The �ring distribution depends on the

residual time needed for the transition to omplete given a

k

. When transition t

k

is

disabled (even without �ring) a

k

is reset.

� Age memory - The age variable a

k

aounts for the total time in whih t

k

has been

enabled from its last �ring. The �ring distribution depends on the residual time

needed for the transition to omplete given a

k

.

At the entrane in a new tangible marking, the residual �ring time is omputed for

eah enabled timed transition given its age variable. The next marking is determined

by the minimal residual �ring time among the enabled timed transitions (rae poliy).

Under an enabling memory poliy the �ring time of a transition is resampled from

the original distribution eah time the transition beomes enabled so that the time

eventually spent without �ring in prior enabling periods is lost. The memory of the

underlying stohasti proess annot extend beyond a single yle of enable/disable of

the orresponding transition. On the ontrary, if a transition is assigned an age memory

poliy, the age variable aounts for all the periods of time in whih the transition has

been enabled, independently of the number of enable/disable yles. Hene, the age
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memory is the only poliy that allows a transition to have a non-null memory also in

markings in whih is not enabled.

Sine exponential transitions do not have memory, the residual life time distribution

is independent of the value of the age variable. Hene, the three poliies have the same

e�et and we an onventionally assume that the age variables assoiated to exponential

transitions are identially zero.

3 Computational Restritions of the GDT SPN

The marking proess M(x) does not have, in general, an analytially tratable formula-

tion, while a simulative approah has been desribed in [29, 30℄. Various restritions of

the general model have been disussed in the literature [16, 9℄ suh that the underlying

marking proess M(x) is on�ned to belong to a known lass of analytially tratable

stohasti proesses.

3.1 Exponentially Distributed SPN

When all the random variables 

k

assoiated to the PN transitions are exponentially

distributed, the dynami behavior of the net is mapped into a CTMC, with state spae

isomorphi to the tangible subset of the reahability graph. This restrition is the most

popular in the literature [37, 24, 2℄, and a number of tools are built on this assumption

[13, 18, 20, 34℄.

3.2 Semi-Markov SPN

When all the PN transitions are assigned a resampling poliy the marking proess be-

omes a semi-Markov proess. This restrition has been studied in [38, 5℄ but is of little

interest in appliations where it is diÆult to imagine a situation where the �ring of any

transition of the PN has the e�et of foring a resampling to all the other transitions.

A more onsistent and interesting semi-Markov SPN model has been disussed in

[23℄. In this de�nition, the transitions are partitioned into three lasses: exlusive, om-

petitive and onurrent. Provided that the �ring time of all the onurrent transitions

is exponentially distributed and that non-exponential ompetitive transitions are resam-

pled at the time the transition is enabled, the assoiated marking proess beomes a

semi-Markov proess.

3.3 Phase Type SPN (PHSPN)

A numerially tratable realization of the GDT SPN, is obtained by restriting the ran-

dom �ring times 

k

to be PH distributed [39℄, aording to the following:

De�nition 2. A PHSPN is a GDT SPN in whih:
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� To any timed transition t

k

2 T is assoiated a PH random variable 

k

. The PH

model assigned to 

k

has �

k

stages with a single initial stage numbered stage 1 and

a single �nal stage numbered stage �

k

.

� To any timed transition t

k

2 T is assigned a memory poliy among the three de�ned

alternatives: resampling, enabling or age memory.

The distinguishing feature of this model, is that it is possible to design a ompletely

automated tool that responds to the requirements stated in [31℄, and that, at the same

time, inludes all the issues listed in De�nition 2. The non-Markovian proess generated

by the GDT SPN over the reahability set R(M

0

) is onverted into a CTMC de�ned over

an expanded state spae. The measures pertinent to the original proess are de�ned at

the PN level and an be evaluated by solving the expanded CTMC.

The program pakage ESP [22℄ realizes the PHSPN model aording to De�nition 2.

The program allows the user to assign a PH distribution and a spei� memory poliy

to eah PN transition so that the di�erent exeution poliies an be put to work. In

the ESP tool, the algorithm for the generation of the expanded CTMC starts from the

knowledge of the reahability graph R(M

0

) and is driven by the di�erent PH models and

exeution poliies assigned to eah transition.

The expanded CTMC is represented by a direted graph H = (N

H

; A

H

) where

N

H

is the set of nodes (states of the expanded CTMC) and A

H

is the set of direted

ars (transitions of the expanded CTMC). The nodes in N

H

are pairs (M; W ), where

M 2 R(M

0

) is a marking of the original non-expanded SPN and W is a n

t

-dimensional

vetor of integers, whose kth entry w

k

(1 � w

k

� �

k

) represents the stage of �ring of

t

k

in its PH distribution.

Ars in A

H

are represented by 5-tuples (N; N

0

; k; i; j), where N is the soure node,

N

0

the destination node, and (i; j) is an ar in the PH model of transition t

k

. Therefore,

(N; N

0

; k; i; j) 2 A

H

means that in the expanded graph the proess goes from node N

to node N

0

when the stage of �ring of t

k

goes from stage i to stage j.

The expanded graph H is generated by an iterative algorithm [22℄. Let H be initially

empty; the algorithm starts by putting inN

H

the initial node N

(1)

H

= (M

0

; [ 1; 1; : : : ; 1 ℄)

(the PN is in its initial marking M

0

and all the n

t

random variables 

k

are in stage 1).

N

(1)

H

is marked as a non-expanded node. An expansion step is then performed on eah

non-expanded node N

(`)

H

= (M

(`)

; W

(`)

). For eah transition t

(`)

k

enabled in M

(`)

, we

searh for all the possible suessors of stage numbered w

(`)

k

in the PH model of t

(`)

k

(where w

(`)

k

is the kth omponent of W

(`)

, i.e. it is the stage of 

k

in state N

(`)

H

). Let

j (j = 1; : : : ; �

k

) be one of suh possible suessors. Two ases may arise depending

whether j = �

k

or j 6= �

k

; i.e. transition t

(`)

k

has reahed its terminal stage, or not.

CASE 1 - j 6= �

k

Transition t

(`)

k

has made a jump in its PH model without �ring. Then a new node

N

0 (`)

H

= (M

(`)

; W

0 (`)

) is generated, with w

0 (`)

k

= j and w

0 (`)

l

= w

(`)

l

(8 t

l

2 T ; t

l

6=

t

k

).

CASE 2 - j = �

k

Transition t

(`)

k

has reahed the �nal node of its PH model and thus has �red. In this
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ase, the new node N

0 (`)

H

= (M

0 (`)

; W

0 (`)

) is generated aording to the following

rule: M

0 (`)

is the marking immediately reahed from M

(`)

by �ring t

(`)

k

(M

(`)

�

t

(`)

k

! M

0 (`)

), and w

0 (`)

k

= 1 sine �ring of t

(`)

k

resets its stage ount to 1. The

values of the other entries of vetor W

0 (`)

, orresponding to the transitions enabled

in M

(`)

are set aording to the memory poliy attahed to the orresponding

transition:

� always set equal to 1 in the resampling ase;

� not modi�ed in the age memory ase;

� onditionally reset in the enabling memory ase (i.e. if the transition is still

enabled in the new markingM

0 (`)

the orresponding stage ount is not modi�ed

otherwise is set to 1).

In both ases, the new node N

0 (`)

H

= (M

0 (`)

; W

0 (`)

) is entered in N

H

(if not already

there) and a new ar A

0 (`)

H

= (N

(`)

H

; N

0 (`)

H

; k; w

(`)

k

; w

0 (`)

k

) is added to A

H

. The above

expansion step is iterated for all the transitions enabled in the urrent marking M

(`)

,

and until all the orresponding PH distributions have reahed their terminal stage. At

this point the expansion of the node N

(`)

H

is terminated and the node itself is marked as

expanded. The algorithm then searhes for the subsequent non-expanded node until all

the nodes have been searhed for.

The ardinality n

H

of the expanded state spae is upper bounded by the ross produt

of the ardinality of the reahability set of the basi PN times the ardinality of the PH

distributions of the n

t

random variables 

k

[1℄. The atual value of n

H

is diÆult to

evaluate a priori. In pratial ases this number an be very muh lower that the upper

bound, and is, in any ase, inreasing with the omplexity of the assigned memory

poliies. The resampling poliy is the one that generates the expanded CTMC with the

lower number of states, while the age poliy generates the expanded CTMC with the

larger number of states.

The markingM

(`)

of the original reahability set, is mapped into a maro state formed

by the union of all the nodes N

H

(M; W ) of the expanded graph suh that M = M

(`)

.

This mapping allows the program to rede�ne the measures alulated as solution of the

Markov equation over the expanded graph in terms of the markings of the original PN.

An alternative approah for the inlusion of PH distributions into SPN models on-

sists in substituting eah transition, at the PN level, with a proper sub-PN realizing the

required PH model. However, a naive appliation of this approah, as proposed in [37℄,

an not orretly aommodate the di�erent memory poliies. An attempt to realize a

sub-PN able to aount for all the three memory poliies is in [12℄ (but restrited to PH

distributions with equal diagonal elements). Nevertheless, the expansion at the PN level

has been strongly disouraged in [1℄ on the basis of the following motivations:

� The inlusion of a sub-PN for eah transition makes the expanded PN very intriate

and diÆult to understand. The added primitive elements (plaes, transitions and

ars) refer only to the stohasti behavior of a single transition and hide the general

struture of the model. The fasinating simpliity of the PN language is destroyed.

� It seems hardly possible to automatize a proedure for generating the PHSPN

model expanding the basi PN and taking into aount general PH distributions

and interations among di�erent memory poliies.
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3.4 Deterministi SPN

The Deterministi and Stohasti PN model has been introdued in [3℄, with the aim of

providing a tehnique for onsidering stohasti systems in whih some time variables

assume a onstant value. In [3℄ only the steady state solution has been addressed.

An improved algorithm for the evaluation of the steady state probabilities has been

suessively presented in [35℄, and some strutural extensions have been proposed in

[17℄.

De�nition 3 - A DSPN [3℄ is a GDT SPN in whih:

� The set T of transitions is partitioned into a subset T

e

of exponential transitions

(EXP) and a subset T

d

of deterministi transitions (DET), suh that T = T

e

[ T

d

.

� To any EXP transition t

k

2 T

e

is assoiated an exponentially distributed random

variable 

k

.

� To any DET transition t

j

2 T

d

is assoiated a deterministi �ring time d

j

.

� At most, a single DET transition is allowed to be enabled in eah marking.

� The only allowed exeution poliy for the DET transition is the rae poliy with

enabling memory.

Aording to De�nition 3, during the �ring of a DET transition, the marking proess

an undergo EXP transitions only, thus desribing a CTMC alled the subordinated

proess. The steady state solution tehnique, originally proposed in [3℄, is based on

the evaluation of the subordinated CTMC at a time orresponding to the duration of

the DET transition. Various improvements and extensions of the original algorithm

are in [35, 17℄. Tools urrently supporting steady state measures for DSPN models are

DSPNexpress [36℄, UltraSAN [20℄ and TimeNET [26℄.

Choi et al. [14℄ have shown that the marking proess assoiated to a DSPN is

a Markov regenerative proess (MRP), for whih steady state and transient solution

equations are available [19℄. In order to prove their assertion, Choi et al. have introdued

the following modi�ed exeution sequene:

T

E

= f (�

�

0

;M

(0)

) ; (�

�

1

;M

(1)

) ; : : : ; (�

�

i

;M

(i)

) ; : : :g (2)

Epoh �

�

i+1

is derived from �

�

i

as follows:

1. If no DET transition is enabled in marking M

(i)

, de�ne �

�

i+1

to be the �rst time

after �

�

i

that a state hange ours.

2. If a DET transition is enabled in markingM

(i)

, de�ne �

�

i+1

to be the time when the

DET transition �res or is disabled as a onsequene of the �ring of a ompetitive

EXP transition.

Aording to ase 2) of the above de�nition, during [�

�

i

; �

�

i+1

), the PN an evolve in

the subset of R(M

0

) reahable from M

(i)

, through EXP transitions onurrent with the

given DET transition. The marking proess during this time interval is the CTMC sub-

ordinated to markingM

(i)

. Therefore, if a DET transition is enabled inM

(i)

, the sojourn

9



time is given by the minimum between the �rst passage time out of the subordinated

CTMC and the onstant �ring time assoiated to the DET transition.

Choi et al. show that the sequene �

�

i

forms a sequene of regenerative time points,

so that the marking proess M(x) is a Markov regenerative proess MRP. Aording to

[15, 19℄, we de�ne the following matrix valued funtions:

V(x) = [V

ij

(x)℄ suh that V

ij

(x) = PrfM(x) = j jM(0) = ig

K(x) = [K

ij

(x)℄ " K

ij

(x) = PrfM

(1)

= j ; �

�

1

� xjM(0) = ig

E(x) = [E

ij

(x)℄ " E

ij

(x) = PrfM(x) = j ; �

�

1

> xjM(0) = ig

(3)

MatrixV(x) is the transition probability matrix and provides the probability that the

marking proess M(x) is in marking j at time x given it was in i at x = 0. The matrix

K(x) is the global kernel of the MRP and provides the probability that the regeneration

interval ends in marking j at time x, given that it started in marking i at x = 0. Finally,

the matrix E(x) is the loal kernel and desribes the behavior of the marking proess

inside two onseutive regeneration time points. The transient behavior of the DSPN an

be evaluated by solving the following generalized Markov renewal equation (in matrix

form) [19, 15℄:

V(x) = E(x) + K � V(x) (4)

where K � V(x) is a onvolution matrix, whose (i; j)-th entry is:

[K � V(x)℄

ij

=

X

k

Z

x

0

dK

ik

(y)V

kj

(x� y) (5)

Equation (4) an be solved numerially in the time domain. An alternative ap-

proah, suggested in [14℄, onsists in transforming the onvolution equation (4) in the

Laplae domain. By denoting the Laplae Stieltjes transform (LST) of a funtion F (x)

by F

�

(s) =

R

1

0

e

�sx

dF (x), Equation (4) beomes:

V

�

(s) = E

�

(s) + K

�

(s) V

�

(s) (6)

whose solution is:

V

�

(s) = [I � K

�

(s)℄

�1

E

�

(s) (7)

The time domain solution of (7) an be obtained by numerial inversion [32℄.

10



3.5 Markov Regenerative SPN (MRSPN)

A natural extension of the DSPN has been proposed in [15℄, where the DET transition

in De�nition 3 is replaed by a GEN transition. This model is referred to by the authors

as MRSPN

�

.

De�nition 4. A MRSPN

�

is a GDT SPN in whih:

� The set T of transitions is partitioned into a subset T

e

of exponential transitions

(EXP) and a subset T

g

of generally distributed transitions (GEN), suh that T =

T

e

[ T

g

.

� To any EXP transition t

k

2 T

e

is assoiated an exponentially distributed random

variable 

k

.

� To any GEN transition t

j

2 T

d

is assoiated a generally distributed random variable



j

.

� At most, a single GEN is allowed to be enabled in eah marking.

� The only allowed exeution poliy for the GEN transition is the rae poliy with

enabling memory.

By De�nition 4, during the �ring of a GEN transition only EXP transitions an

onurrently �re: the proess subordinated to a GEN transition is a CTMC. The matries

K(x) and E(x) in (3) depend on the spei� Cdf's assumed in the model. In [15℄,

losed form expressions are derived when the Cdf of the GEN transitions is the uniform

distribution.

3.6 MRSPN with non overlapping ativity yles

With the aim of extending the modeling power of MRSPN's by inluding GEN tran-

sitions with age memory poliy, Bobbio and Telek [11, 10℄ have investigated a lass of

models haraterized by the fat that the subordinated proess between two onseutive

regeneration time points is a Semimarkov Reward Proess [40℄.

Sine in a GDT SPN the memory of the marking proess is related to the positive

value assumed by the age variables attahed to the GEN transitions (EXP transitions

do not arry memory), a regeneration time point ours at the entrane in a marking in

whih all the age variables are reset.

De�nition 5. A a Markov Regenerative Stohasti Petri Nets (MRSPN) [11℄ is a

GDT SPN, for whih an embedded Markov renewal sequene (�

�

n

; M

(n)

) exists suh that

at the epoh �

�

n

of entrane in the tangible marking M

(n)

all the age variables are equal

to 0.

In order to restrit De�nition 5 to a lass of solvable models, the onept of MR-

SPN with non overlapping ativity yles has been introdued in [10℄. This new lass

enompasses and generalizes all the models previously appeared in the literature and

mentioned in the previous setions.

11



De�nition 6 - A GEN transition is dormant in those markings in whih the orre-

sponding age variable is equal to zero and is ative in those markings in whih the age

variable is greater than zero. The ativity yle of a GEN transition is the period of time

in whih a transition is ative between two dormant periods.

Let t

g

be a GEN transition. The ativity yle of t

g

is inuened by its memory

poliy, and an be haraterized in the following way:

� Resampling Memory - If t

g

is a resampling memory transition, its ativity yle

starts as soon as t

g

beomes enabled, and ends at the �rst subsequent �ring of any

transition (inluding t

g

itself). During the ativity yle of a resampling memory

transition no hange of marking is possible.

� Enabling Memory - If t

g

is an enabling memory transition its ativity yle starts

as soon as t

g

beomes enabled when dormant, and ends either when t

g

�res, or

when it beomes disabled by the �ring of a ompetitive transition. During the

ativity yle the marking an hange inside the subset of onneted markings in

whih t

g

is enabled. The age variable assoiated to t

g

grows ontinuously during

the ativity yle starting from 0.

� Age Memory - If t

g

is an age memory transition, its ativity yle starts as soon

as t

g

beomes enabled when dormant, and ends only at the �ring of t

g

itself.

During the ativity yle of an age memory transition there is no restrition on

the markings reahable by the marking proess. The age memory poliy is the

only poliy in whih a transition an be ative even in markings in whih is not

enabled. During the ativity yle, the age variable is non-dereasing in the sense

that inreases ontinuously in those markings in whih t

g

is enabled and maintains

its onstant positive value in those markings in whih t

g

is not enabled. The

enabling/disabling ondition of t

g

during its ativity yle is traked by introduing

a reward (indiator) variable whih is set to 1 in those markings in whih t

g

is

enabled and set to 0 in those markings in whih t

g

is not enabled. With this

assignment, the value of the age variable versus time an be omputed as the total

aumulated reward.

De�nition 7 - Ativity yles are non-overlapping if there exists a dominant transition

whose ativity yle stritly ontains the ativity yles of all the ative transitions.

De�nition 8 - A MRSPN with non-overlapping ativity yles is a MRSPN in whih

all the regeneration periods are dominated by a single transition: any two suessive

regeneration time points orrespond to the start and to the end of the ativity yle of

the dominant transition.

De�nition 8, inludes the possibility that the ativity yles of GEN transitions are

ompletely ontained into the ativity yle of the dominant one, hene allowing the

simultaneous enabling of di�erent GEN transitions inside the same subordinated proess.

In partiular in [10℄, the lass of models for whih the proess subordinated to any GEN

transition is a reward semimarkov proess is de�ned and analyzed. In order to arrive

to losed form expressions for the global and loal kernels of the underlying MRP, the

following situations are examined separately.

3.6.1 Enabling memory dominant transition

The dominant GEN transition t

g

is of enabling type. The next regeneration time point

ours beause one of the following two mutually exlusive events:

12



� t

g

�res: this event an be formulated as a ompletion time problem [33, 7℄ when

the age variable a

g

reahes a value equal to the �ring requirement 

g

.

� t

g

is disabled: this event an be formulated as a �rst passage time in the subset of

states in whih t

g

beomes disabled.

Aordingly, the following two types of subordinated proesses an be distinguished.

TYPE A - The subordinated proess is a CTMC: no other GEN transitions are ativated

during the ativity yle of t

g

.

A subordinated proess of Type A is the only one arising from De�nition 3 for

DSPN [3, 14, 35℄ and from De�nition 4 for MRSPN

�

[15, 27℄. All the examples

reported in the mentioned referenes belong to this ase.

TYPE B - The subordinated proess is a semimarkov proess: during the ativity yles

of t

g

other GEN transitions an be ativated one at the time (or more generally

aording to the rules stated in [23℄).

The steady state analysis of aMRSPN with Type B subordinated proess has been

onsidered in [16℄. The proposed algorithm is based on an eÆient omputational

extension of the randomization tehnique [28℄, assuming that GEN distributions

are pieewise de�ned by polynomials multiplied by exponential expressions. This

lass of distributions is alled expolynomial.

3.6.2 Age memory dominant transition

The situation in whih the dominant GEN transition t

g

is of age type has been addressed

for the �rst time in [11℄. The only riterion for the termination of the ativity yle is

the �ring of t

g

, and the state spae of the subordinated proess ontains all the states

reahable during the ativity yle of t

g

. During its ativity yle transition t

g

an be

either enabled or disabled. The orresponding binary reward variable is set equal to 1 in

the states of the subordinated proess in whih t

g

is enabled and equal to 0 in the states

of the subordinated proess in whih t

g

is not enabled. The �ring of t

g

an be formulated

as a ompletion time problem [33, 7℄ in a reward stohasti model when the age variable

a

g

(alulated as the total aumulated reward) reahes the �ring requirement 

g

.

Two types of subordinated proesses an be distinguished also in this ase.

TYPE C - The subordinated proess is a reward CTMC: during the ativity yle of t

g

no other GEN transitions are ativated.

TYPE D - The subordinated proess is a reward semi-Markov proess: during the a-

tivity yle of t

g

other GEN transitions an be ativated one at the time (or more

generally aording to the rules stated in [23℄).

The next Setion reports an example in whih Type C and Type D subordinated

proesses are ombined in the same PN.

13



3.6.3 DET transitions

A partiular ase arises when all the GEN transitions are assumed to be of DET type.

TheMRSPN with non overlapping ativity yles and DET transitions an be onsidered

as a diret generalization of the DSPN model of De�nition 3, where the modeling power

is augmented to aommodate the presene of memory poliies of both enabling and age

type. In [10℄, a proedure is given to derive the K(x) and E(x) matries (3) when the

subordinated proess is of Type D (a semimarkov reward model) and the non-exponential

transitions are DET.

The GEN ase an be derived from the solution of the DET ase by the following

argument. Let us �x a value 

g

= w of the r.v. assoiated to the dominant transition,

and let us derive K

ij

(xjw) as in the pure DET ase. Then, given that G

g

(w) is the Cdf

of 

g

:

K

ij

(x) =

Z

1

w=0

K

ij

(xjw) dG

g

(w) (8)

A similar argument holds for the entries of matrix E(x). The solutions for subordi-

nated proesses of Types A, B and C an be derived as speial ases of the solution of

Type D.

4 Example: Finite Queue with Preemption

We arry on a omparison between the modeling power and the numerial results ob-

tained from the Laplae Transform Method (LTM) applied to MRSPN (or DSPN in

partiular ases) and the PHSPN model through the analysis of a simple queueing sys-

tems with di�erent kinds of preemption. We onsider, as a base example, the M/D/1/2/2

(a losed queueing system with two bu�er positions and two ustomers) introdued in

[3℄. The non-preemptive servie mehanism has been already analyzed in [3℄ for what

onerns the steady state measures and revisited in [14℄ for what onerns the transient

behavior. In the �gures, EXP transitions are drawn as empty retangles, DET transitions

as �lled retangles and immediate transitions as thin bars.

4.1 Case I - Non Preemptive Queue

The PN for the M/D/1/2/2 system, proposed in [3℄, is reported in Figure 1. Plae p

1

ontains "thinking" ustomers (i.e. awaiting to submit a job) and transition t

1

represents

the submission of jobs. Jobs queueing for servie are represented by tokens in p

2

. A token

in p

3

means that the server is busy while a token in p

4

means that the server is idle.

Transition t

2

is the job servie time; when the job is ompleted the ustomer returns in

his thinking state. Transition t

3

is an immediate transition modelling the start of servie

i.e. the transfer of the job from the queue to the server.

In [3, 14℄, the following assumptions were made. t

1

is EXP with �ring rate m

1

� �

being m

1

the number of tokens in p

1

and � = 0:5 job/hour. t

2

is a DET transition

modeling a onstant servie time of duration d = 1:0 hour.
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Figure 1 - a) - PN modelling the atomi operation of a M/D/1/2/2 (after

[3℄); b) - orresponding redued reahability graph; ) - simpli-

�ed PN.

The redued reahability graph of the PN (after eliminating the vanishing markings

arising from the immediate transition t

i

[2℄) is omposed of three states, denoted by

s

1

; s

2

and s

3

in Figure 1b. The PN of Figure 1a is a DSPN aording to De�nition 3

and shows in details the atomi steps by whih a ustomer submits a job and the job is

servied. Figure 1 shows, however, a simpler PN isomorphi to the one of Figure 1a.

Tokens in plae p

1

of Figure 1 represent ustomers in the thinking state, while p

2

ontains the jobs in the queue (inluded the one under servie). t

1

models the submitting

time and t

2

is the servie time. It is easy to verify that the above PN generates the same

marking proess M(x) of Figure 1b when t

1

is EXP with rate m

1

�� and t

2

is DET. The

probabilities versus time of the two states s

1

and s

3

are reported in Figure 2 in solid line,

omputed by means of the Laplae transform method (LTM).

Approximating the DSPN of Figure 1 by means of the PHSPN model is straightfor-

ward. Transition t

2

is assigned a PH distribution and an enabling memory poliy. Sine

the Erlang distribution is the PH with the minimum oeÆient of variation [4℄ it is ap-

propriate to approximate the DSPN by assigning t

2

an Erlang distribution of inreasing

order. In Figure 2 we ompare the results obtained from the PHSPN model, by reporting

the behavior of the state probabilities versus time in two ases: when i) the random �ring

time assigned to t

2

is Erlang(5) (dashed line), and ii) when is Erlang(100) (dotted line).

In both ases the expeted value of the Erlang mathes with the value d = 1:0 hours of

the DET model, being all the other parameters unhanged. It is interesting to observe

that the loal maxima and minima in the probability behavior do not appear with the

Erlang(5), while the visual agreement is very satisfatory in the ase of the Erlang(100).

As a further omparison, Table I shows the values of the steady state probabilities

alulated from LTM for the DSPN and from the PHSPN model when t

2

is assumed

to be Erlang(5), Erlang(10), Erlang(100) and Erlang(1000), respetively. It should be

stressed that the present ase an be onsidered as a worst ase example sine a DET

type variable an be losely approximated by a PH only as the number of stages grows
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Figure 2 - Transient behavior of the state probabilities for the non

preemptive M/D/1/2/2

to 1 [4℄.

4.2 Preemptive Queue with Idential Customers

Let us assume a M/D/1/2/2 with a preemptive servie and the same kind of ustomers.

The job in exeution is preempted as soon as a new job joins the queue. Two ases an

be onsidered depending whether the job restarted after preemption is resampled from

the same distribution funtion (prd), or is resumed (prs).

4.2.1 Case II - prd poliy

With referene to Figure 1, eah time transition t

1

�res (a thinking ustomer submits a

job) while p

2

is marked (a job is urrently under servie) transition t

2

should be reset and

resampled. In the PHSPN model this mehanism an be simply realized by assigning

to t

2

a resampling poliy. It is easy to prove that the underlying proess M(x) is a

semi-Markov proess, sine eah time the DET transition t

2

is entered, a regeneration

point is produed sine a new job starts.

Even if the lass of semi-markov proesses is a proper sublass of the Markov regen-

erative proesses, the above preemptive mehanism annot be generated from the DSPN

of De�nition 3. In fat, sine t

1

is not ompetitive with respet to t

2

, the �ring of the

former does not disable the latter, that indeed is not resampled. The PN in Figure 3a

desribes a orret DSPN with the required preemption poliy. Plae p

1

in Figure 3a
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Table I - Steady state probabilities for the non preemptive queue (Case I)

DSPN PHSPN

State

(LTM) Erl(5) Erl(10) Erl(100) Erl(1000)

s

1

0.37754 0.38307 0.38039 0.37783 0.37757

s

2

0.48984 0.46773 0.47845 0.48867 0.48972

s

3

0.13262 0.14920 0.14116 0.13350 0.13271
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Figure 3 - Preemptive M/D/1/2/2 ith idential ustomers

ontains the ustomers thinking, while plae p

2

ontains the number of submitted jobs

(inluded the one under servie). Plae p

3

represents a single job getting servie: servie

is interrupted (t

2

is disabled) if a new job joins the queue (transition t

3

�res before t

2

).

t

1

and t

3

are assigned the EXP submitting time and transitions t

2

and t

4

a DET servie

time. Assigning an enabling memory poliy to t

2

and t

4

the prd servie mehanism is

generated, while respeting the requirements of De�nition 3.

Table II ompares the steady state probabilities assuming the submitting and servie

time distributions idential to the non preemptive ase. The transient behaviors of the

probabilities versus time of states s

1

and s

3

are reported in Figure 5 (Case II) omputed

by means of the LTM for the DSPN model. Similarly, Figure 6 (Case II) shows the

behaviors for the PHSPN model with the servie time given by an Erlang(100).

17



Table II - Steady state probabilities with equal ustomers

DSPN PHSPN

State

(LTM) Erl(5) Erl(10) Erl(100) Erl(1000)

Case II - prd poliy

s

1

0.33942 0.35317 0.34642 0.34014 0.33950

s

2

0.44038 0.43122 0.43572 0.43991 0.44034

s

3

0.22019 0.21561 0.21786 0.21995 0.22017

4.2.2 Case III - prs poliy

The prs poliy means that when a new job joins the queue the job under servie is

preempted until the newly arrived job ompletes his servie. The preempted job is then

resumed and put in exeution from the point of preemption without loss of the previously

performed work.

The prs mehanism for the M/D/1/2/2 queue orresponds to the PN of Figure 3

when t

2

and t

4

is assigned an age memory poliy. Eah time t

2

is disabled without �ring

(t

3

�res before t

2

) the age variable a

2

is not reset. Hene, as the seond job ompletes

(t

4

�res), the system returns in s

2

keeping memory of the value of a

2

, so that the time

to omplete the interrupted job an be evaluated as the residual servie time given a

2

.

With the above assignments, the PN of Figure 3a is a MRSPN with non overlapping

ativity yles. A detailed analysis of this example is in [11℄. The regeneration time

points in the marking proess M(x) orrespond to the epohs of entrane in markings

in whih all the age variables are equal to zero (De�nition 5). By inspeting Figure 3b,

the regeneration time points result to be the epohs of entrane in s

1

and of entrane in

s

2

from s

1

. The proess subordinated to state s

1

is a single step CTMC (being the only

enabled transition t

1

exponential) and inludes the only reahable state s

2

.

The proess subordinated to state s

2

is dominated by transition t

2

and inludes the

states s

3

, s

2

. Sine s

2

is the only state in whih t

2

is enabled, the reward variable is set

equal to 1 in s

2

and equal to 0 elsewhere. With the given reward rates, a

2

is equal to the

umulative sojourn time in s

2

and, therefore, ounts the total time during whih t

2

is

enabled before �ring. During the �ring of t

2

the subordinated proess alternates between

states s

2

and s

3

. Sine t

4

is non-exponential (DET in this ase) the subordinated proess

is a reward semi-Markov proess of Type D (Setion 3.6.2).

The transient behavior is depited in Figure 5 (Case III) omputed by the LTM for

MRSPN and in Figure 6 omputed from the PHSPN model with the DET transitions

approximated by an Erlang(100).

18



��

��

��

��

��

��

��

��

r

��

��

��

��

��

��

��

��

s

1

s

2

s

4

s

3

t

1

t

3

t

2

t

4

1010

1001

0101

a) b)

p

1

p

2

p

4

p

3

r

?

?

?

?

?

?

??











�











�

J

J

J

Ĵ
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Figure 4 - Preemptive M/D/1/2/2 queue with two lasses of ustomers

In this ase, the servie mehanism is a preemptive LIFO [41℄ and satis�es the re-

quirements of symmetri queues. Hene, the steady state probabilities are insensitive

to the distribution of the servie time and depend only on its mean d (d = 1 in this

example) aording to the following balane equations [41℄:

2� d �

s1

= �

s2

; � d �

s2

= �

s3

:

Solving the above balane equations provides: �

s1

= 0:4, �

s2

= 0:4 and �

s3

= 0:2.

4.3 Preemptive Queue with Di�erent Classes of Customers

An interesting ase arises when the two ustomers are of di�erent lasses, and ustomer of

lass 2 preempts ustomer of lass 1 but not vie versa. A PN illustrating the M/D/1/2/2

queue in whih the jobs submitted by ustomer 2 have higher priority over the jobs

submitted by ustomer 1 is reported in Figure 4. Plae p

1

(p

3

) represents ustomer 1

(2) thinking, while plae p

2

(p

4

) represent job 1 (2) under servie. Transition t

1

(t

3

) is

the submission of a job of type 1 (2), while transition t

2

(t

4

) is the ompletion of servie

of a job of type 1 (2). The inhibitor ar from p

4

to t

2

models the desribed preemption

mehanism: as soon as a type 2 job joins the queue the type 1 job eventually under

servie is interrupted.

If we assume that the servie time is not exponentially distributed, two possible

preemption poliies an be onsidered depending whether the job of type 1 is resampled

after preemption (prd ase) or is resumed (prs ase).

4.3.1 Case IV - prd poliy

Sine this poliy an be realized by assigning to the servie transitions t

2

and t

4

an

enabling memory poliy, the present ase is inluded in the DSPN model of De�nition

3. Table III shows the steady state probability values omputed from (7) and from the

PHSPN model with various Erlang approximations.
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Table III - Steady state probabilities with di�erent ustomers

MRSPN PHSPN

State

(LTM) Erl(5) Erl(10) Erl(100) Erl(1000)

Case IV - prd poliy

s

1

0.35015 0.36194 0.35618 0.35076 0.35021

s

2

+ s

4

0.45429 0.44193 0.44801 0.45365 0.45423

s

3

0.19556 0.19613 0.19582 0.19558 0.19556

Case V - prs poliy

s

1

0.39291 0.39458 0.39377 0.39300 n.a.

s

2

+ s

4

0.42835 0.42166 0.42493 0.42800 n.a.

s

3

0.17874 0.18375 0.18130 0.17900 n.a.

4.3.2 Case V - prs poliy

Under a prs servie poliy, after ompletion of the type 2 job, the interrupted type 1

job is resumed ontinuing the new servie period from the point reahed just before the

last interruption. In the PN of Figure 4a this servie poliy is realized by assigning to

transitions t

2

and t

4

an age memory poliy.

>From Figure 4b, it is easily reognized that s

1

, s

2

and s

4

an all be regeneration

states, while s

3

an never be a regeneration state (in s

3

either a job of type 1 or 2 is always

in exeution so that their orresponding memory variables are never simultaneously 0).

Only exponential transitions are enabled in s

1

and the next regeneration states an be

either s

2

or s

4

depending whether t

1

or t

3

�res �rst. In s

4

the dominant transition is

t

4

and the next regeneration marking an be either state s

1

or s

2

depending whether

during the exeution of the type 2 job a type 1 job does require servie (but remains

bloked until ompletion of the type 2 job) or does not. The reward variable is set to 1

in states s

3

and s

4

, where t

4

is enabled, so that the age variable a

4

ounts the total time

spent in either of the two states s

3

or s

4

. The subordinated proess is a Type C reward

CTMC. >From s

2

the dominant transition is t

2

and the next regeneration state an be

only s

1

. During the �ring of t

2

multiple yles (s

2

- s

3

) an our depending whether

type 2 jobs arrive to interrupt the exeution of the type 1 job. The reward variable is set

to 1 in state s

2

so that the subordinated proess is a Type D reward-SMP (t

4

is GEN).

Subordinated proesses of both Types C and D are mixed in the same net. A detailed
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Figure 5 - Comparison of the state probabilities omputed by the

Laplae transform method for DSPN (Case I, Case II

and Case IV) and for MRSPN (Case III and Case V).

derivation of the losed form equations for this example is in [11℄.

The steady state results are reported in Table III. Note that the values orresponding

to the Erlang(1000) are not available (n.a.) due to the explosion of the state spae (see

Setion 5.1). The transient probabilities for Case IV and Case V are reported in Figure

5 omputed by means of the LTM for the DSPN (Case IV) and for the MRSPN with non

overlapping intervals (Case V). The orresponding results, omputed for the PHSPN

model, with an Erlang(100) assigned to the DET transitions, are similarly shown in

Figure 6.

The steady state results for Case I, Case II and Case IV where also heked using

the pakage TimeNET [26℄ based on the supplementary variable tehnique.

5 Computational omplexity

Let us briey summarize the elementary omputational steps for the evaluation of the

transient solution in the two onsidered methodologies (MRSPN and PHSPN). The PH-

SPN solution is fully supported by a tool [22℄, while the Laplae transform method for

the transient analysis of MRSPN requires manual and automati manipulation. The

method of supplementary variables for DSPN, implemented in TimeNET [26℄, is also

fully supported by a tool but is presently restrited to the steady state solution only.
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Figure 6 - Comparison of the state probabilities omputed from

the PHSPN for the 5 examined Cases and with Er-

lang(100).

5.1 Evaluation of PHSPN model

For the evaluation of this model we used the ESP tool ([22℄). The proedure an be

divided into the following steps:

1. generation of the reahability tree;

2. generation of the expanded CTMC;

3. solution of the resulting CTMC.

Step 1) is standard. The omputational omplexity of steps 2) and 3) depends on

the number of tangible states and on the order of the PH distribution assoiated to eah

transition. With PH distributions of order � the ardinality of the expanded CTMC is

n

H

= 2�+1 in Case I, n

H

= 2�+1 in Case II, n

H

= �

2

+�+1 in Case III, n

H

= 3�+1 in

Case IV and n

H

= �

2

+2�+1 in Case V. As mentioned in Setion 3.3, the ardinality of

the expanded state spae n

H

is strongly inuened by the memory poliies. In this trivial

example, with � = 100 (Erlang100) the generation of the CTMC takes 2 m for Cases III

and V, and the whole analysis two further minutes on a IBM RISC 6000 omputer.

5.2 Laplae Transform Method for MRSPN

Let us �rst suppose that all the GEN transitions are DET. The omputational method

an be divided in the following steps [14℄:
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1. generation of the reahability tree;

2. manual derivation of the entries of the K

�

(s) and E

�

(s) matries symbolially in

the Laplae transform domain;

3. symbolial matrix inversion and matrix multipliation by using a standard pakage

(e.g. MATHEMATICA) in order to obtain the V

�

(s) matrix (Equation 7) in the

LT domain;

4. time domain solution obtained by a numerial inversion of the entries of the V

�

(s),

resorting to the Jagerman's method [32℄. For the sake of uniformity, this step has

been implemented in MATHEMATICA language.

In the GEN ase, point 2) in the above list should be replaed by

2

0

manual derivation of the entries of the K

�

(s) and E

�

(s) matries symbolially in

Laplae transform domain as in the DET ase;

2

00

unonditioning of the entries of the K

�

(s) and E

�

(s) matries, aording to the

Cdf of the GEN distributions (Equation 8).

Step 1) an be performed with any PN pakage. Step 2) is done manually, and its

diÆulty depends on the non-zero entries of the involved matries, and on the omplexity

of the proess subordinated to the dominant GEN transitions. The omplexity inreases

going from subordinated proesses of Type A and C (CTMC) to subordinated proesses

of Type B and D (SMP), and going from Types A and B (all the states have the same

reward) to Types C and D (states are assigned a binary reward).

The omputational omplexity of step 3) depends on the dimension of the matries

(i.e. the number of tangible markings) and the omplexity of the elements of the kernels

(the diÆulty of step 3 is related to the diÆulty of step 2). The omplexity of the

numerial inversion at step 4) also depends on two fators; the omplexity of the funtion

to invert, and the presribed auray. For the example desribed in the previous setion,

the omputational time for the symboli inversion was not signi�ant, while the numerial

inversion required about 30 s on an IBM RISC 6000 mahine, for eah point of the

transient solution.

5.3 Disussion

Even if the deterministi distribution is typially non PH, an approximation error for the

steady state probabilities of the order of 10

�2

is reahed by replaing the DET transition

with an Erlang(5) and an error of the order of 10

�4

by replaing the DET transition

with an Erlang(1000). The use of PH distributions and of the PHSPN model o�ers the

modeler a exible tool for presribing various interations among the timed ativities.

Moreover, if the random variables of the system to be modeled are really of PH type,

the PHSPN provides exat results. Otherwise, a preliminary step is needed in whih the

random times of the system are approximated by PH random variables resorting to a

suitable estimation tehnique [8℄. The expansion of the state spae is, of ourse, a ause

of non-negligible diÆulties, sine it worsens the problem of the exponential growth of the
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state spae both with the model omplexity, and with the order of the PH distribution

assigned to eah transition.

The MRSPN model, ombining GEN (or DET) �ring times with exponential �ring

times, o�ers an innovative approah in many pratial appliations. At the present

state of the art, no automatized tools are available for the generation of the matries

K(x) and E(x) and for the solution of the onvolution equation versus time. The Laplae

transform tehnique, used in the examples, does not seem suited for a omplete numerial

automatization. An alternative numerial approah ould be based on the diret solution

of the onvolution equation (4) in time domain or in the solution of a system of partial

di�erential equations arising from the inlusion of supplementary variables [25℄.
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