Non-Exponential Stochastic Petri Nets:

an Overview of Methods and Techniques *

Andrea Bobbio
Dipartimento di Informatica
Universita di Torino, 10149 Torino, Italy

Miklés Telek
Department of Telecommunications
Technical University of Budapest, 1521 Budapest, Hungary

Abstract

The analysis of stochastic systems with non-exponential timing requires the
development of suitable modeling tools. Recently, some effort has been devoted
to generalize the concept of Stochastic Petri nets, by allowing the firing times to
be generally distributed. The evolution of the PN in time becomes a stochastic
process, for which in general, no analytical solution is available. The paper surveys
suitable restrictions of the PN model with generally distributed transition times,
that have appeared in the literature, and compares these models from the point of
view of the modeling power and the numerical complexity.

Key words: Stochastic Petri Nets, Non-exponential Distributions, Phase-type
Distributions, Markov and Semimarkov Reward Models, Markov Regenerative Pro-
cesses, Queueing Systems with Preemption.

1 Introduction

The usual definition of Stochastic Petri Net (SPN) implies that all the timed activities
associated to the transitions are represented by exponential random variables, so that
the evolution of the net in time is mapped into a continuous time Markov chain (CTMC).
There are, however, practical situations that are not covered by these models. In fact,
many activities in computer, communication and manufacturing systems are more likely
represented by random variables with low variability (or even deterministic). Moreover,
some significant measures, introduced to characterize a stochastic system over an interval
rather then at a time instant (like the distribution function of cumulative measures),

*A preliminary version of this paper has been presented at the First European Conference on De-
pendable Computing EDCC-1, Berlin, October 1994 [9]

cannot, be evaluated by solving a set of linear first order differential equations typical of
Markovian systems [40, 6] and require a more complex stochastic formulation.

In recent years, several classes of (SPN) models have been elaborated which incor-
porate some non-exponential characteristics in their definition. The semantics of SPN’s
with generally distributed transition times has been discussed in [1]. We refer to this
model as Generally Distributed Transition.SPN (GDT_SPN). In order to properly define
a marking process associated to a GDT_SPN, each timed transition should be assigned
a memory policy chosen among three possible alternatives: resampling, enabling and age
memory. The resampling policy is mapped into a semi-markov marking process. The
enabling memory policy is suited to realize an execution mechanism that in queueing
theory is called preemptive repeat different (prd) policy. Whenever the task in service
is preempted its service time is reset and the execution restarts from scratch. On the
other hand, the age memory policy is suited to represent an execution mechanism usually
referred to as preemptive resume (prs) policy: when a task is enabled again after preemp-
tion, its execution restarts from the point it was interrupted. In general, the stochastic
process underlying a GDT_SPN does not have a tractable analytical formulation, while
a simulative solution has been investigated in [29].

With the aim of providing a modeler’s representation able to automatically generate
an analytical representation, various restrictions of the general GDT_SPN model have
been discussed in the literature [16, 9].

The semimarkov SPN, studied in [38, 5], seems of little practical interest since the
firing of any transition forces a resetting of all the other transitions. A semimarkov SPN
more suited for applications has been discussed in [23]. In this definition, the transitions
are partitioned into three classes: exclusive, competitive and concurrent. Only exclusive
or competitive transitions are allowed to be non-exponential.

Cumani [22] has realized a package in which each PN-transition can be assigned a PH
[39] distributed firing time. We refer to this model as PHSPN. The peculiar feature of
the PHSPN model is that it can support any combination of the memory policies defined
in [1] and that the related analytical solution can be completely automatized.

A particular case of non-Markovian SPN, is the class of Deterministic and SPN
(DSPN). A DSPN is defined in [3] as a Markovian SPN where, in each marking, a single
transition is allowed to have associated a deterministic firing time. Only the steady state
solution was provided in [3]. An improved steady state algorithm was presented in [35],
and some structural extensions were investigated in [17]. Choi et al. [14] have observed
that the marking process underlying a DSPN is a Markov Regenerative Process (MRP)
for which a closed form expression for the transition probability matrix can be derived
both as a function of the time and in steady state [19].

This observation has opened a very fertile line of research aimed at the definition of
solvable classes of SPN models whose underlying marking process is a MR P, and therefore
referred to as Markov Regenerative SPN (MRSPN). Choi et al. [15] have extended the
DSPN model by allowing the presence in each marking of at most one transition with a
generally distributed firing time. The solution proposed in [15] is based on the derivation
of the time-dependent transition probability matrix in the Laplace transform domain,

followed by a numerical inversion. German and Lindemann [27] have proposed to derive
the steady state solution of the same model by resorting to the method of supplementary
variables [21]. The possibility of applying the methodology of supplementary variables
to the transient analysis of DSPN’s is explored in [25], where, however, only very special
cases are taken into consideration.

The main limitation of the models discussed in the mentioned references is that the
generally distributed (or deterministic) transitions must be assigned a firing policy of
enabling memory type '

A semantic generalization of the DSPN model, by including the possibility of mod-
eling preemptive mechanisms of resume type has been proposed in [11]. A prs service
policy means that the server is able to recover an interrupted job by keeping memory
of the work already performed so that, upon restart, only the residual service needs
to be completed. This modeling extension is crucial in connection with fault tolerant
and parallel computing systems, where a single task may be interrupted either during a
fault /recovery cycle or for the execution of a higher priority task, but when the cause
originating the interruption is ceased, the dormant task is resumed from the point it was
interrupted. Finally, a more general class of solvable MRSPN is defined in [10], where
both enabling and age memory policies can be combined into a single model.

The aim of this paper is to compare the available GDT_SPN models recently appeared
in the literature from two distinct and conflicting points of view: the modelling power and
the analytical tractability. To this end, the main features of the different formulations are
briefly described with the intent of stressing the basic assumptions and the complexity
of the related analytical solution. A final example, based on the transient analysis of a
closed queuing system with deterministic service time and various kinds of preemptive
service policies, is developed in length in order to put in evidence the limits and the
potentialities of the different approaches.

The GDT_SPN is formally defined in Section 2. Section 3 focuses on two main
realizations of the GDT_SPN, namely: the PHSPN implemented by Cumani in [22] and
the DSPN introduced by Ajmone and Chiola in [3] and further generalized by different
authors [15, 16, 10] into the MRSPN model. A comparative discussion of the modeling
power of the considered models is performed in Section 4 through an example. Starting
from a simple queuing system, more complex modeling assumptions are introduced in
order to show how the considered models react to the added structures. The algorithmic
complexity of the numerical solutions is briefly addressed in Section 5.

2 Generally Distributed Transition_SPN
A marked Petri Net (PN) is a tuple PN = (P, T,1,0, H, M), where:

e P={pi,pa...,Dnp} is the set of places (drawn as circles);

!The enabling memory assumption is relaxed in [17] where a deterministic transition can be disabled
in vanishing markings only. Since vanishing markings are transversed in zero time, this assumption does
not modify the behavior of the marking process versus time

o T = {t1,ty,...,ty} is the set of transitions (drawn as bars);

e /, O and H are the input, the output and the inhibitor functions, respectively.
The input function I provides the multiplicities of the input arcs from places to
transitions; the output function O provides the multiplicities of the output arcs
from transitions to places; the inhibitor function H provides the multiplicity of the
inhibitor arcs from places to transitions.

o M = {my,ma,...,myy} is the marking. The generic entry m; is the number of
tokens (drawn as black dots) in place p;, in marking M.

Input and output arcs have an arrowhead on their destination, inhibitor arcs have
a small circle. A transition is enabled in a marking if each of its ordinary input places
contains at least as many tokens as the multiplicity of the input function I and each
of its inhibitor input places contains fewer tokens than the multiplicity of the inhibitor
function H. An enabled transition fires by removing as many tokens as the multiplicity
of the input function I from each ordinary input place, and adding as many tokens as
the multiplicity of the output function O to each output place. The number of tokens in
an inhibitor input place is not affected.

A marking M’ is said to be immediately reachable from M, when it is generated from
M by firing a single enabled transition ¢;. The reachability set R(My) is the set of all the
markings that can be generated from an initial marking M, by repeated application of
the above rules. If the set 7' comprises both timed and immediate transitions, R(Mpy) is
partitioned into tangible (no immediate transitions are enabled) and vanishing markings,
according to [2].

A timed execution sequence Tg is a connected path in the reachability graph R (M)
augmented by a non-decreasing sequence of real non-negative values representing the
epochs of firing of each transition, such that consecutive transition firings correspond to
ordered epochs 7; < 7,41 in Tg.

Te = { (10, Mo)); (1, M(yy) 5 -5 (73, M@@y) 5 -+ -} (1)

The time interval 7;,1 — 7; between consecutive epochs represents the period of time
that the PN sojourns in marking M.

A variety of timing mechanisms have been proposed in the literature. The distin-
guishing features of the timing mechanisms are whether the duration of the events is
modeled by deterministic variables or random variables, and whether the time is asso-
ciated to the PN places, transitions or tokens. If a probability measure is assigned to
the duration of the events represented by a transition, a timed execution sequence T is
mapped into a stochastic process M(z), (z > 0), called the Marking Process. PN’s in
which the timing mechanism is stochastic are referred to as Stochastic PN (SPN).

A SPN with stochastic timing associated to the PN transitions and with generally
distributed firing times (GDT_SPN) was defined in [1], with particular emphasis on the
semantic interpretation of the model.

Definition 1. A GDT_SPN 1is a marked SPN in which:

e To any timed transition ty € T is associated a random variable v, modeling the time
needed by the activity represented by t, to complete, when considered in isolation.

e FEach random variable 7y is characterized by its (possibly marking dependent) cu-
mulative distribution function Gi(w).

e A set of specifications are given for univocally defining the stochastic process asso-
ciated to the ensemble of all the timed execution sequences Tg. This set of specifi-
cations is called the execution policy.

e A initial probability is given on the reachability set.

An execution policy is a set of specifications for univocally defining the stochastic process
underlying the GDT_SPN, given the PN topology and the set of Cdf’s associated to
each timed transition. Indeed, the inclusion of non-exponential timings destroys the
memoryless property and forces to specify how the system is conditioned upon the past
history. The execution policy comprises two specifications: a criterion to choose the next
timed transition to fire (the firing policy), and a criterion to keep memory of the past
history of the process (the memory policy). A natural choice to select the next timed
transition to fire is according to a race policy: if more than one timed transition is enabled
in a given marking, the transition fires whose associated random delay is statistically the
minimum. The memory policy defines how the process is conditioned upon the past.
In GDT_SPN, the memory is represented by an age variable ay, associated to each
timed transition ¢, that increases with the time in which the corresponding transition
is enabled. The way in which a; is related to the past history determines the different
memory policies. Three alternatives are considered:

e Resampling - The age variable a; is reset to zero at any change of marking. The
firing distribution depends only on the time elapsed in the current marking.

e FEnabling memory - The age variable a; accounts for the time elapsed from the
last epoch in which ¢, has been enabled. The firing distribution depends on the
residual time needed for the transition to complete given ay. When transition ¢, is
disabled (even without firing) ay is reset.

e Age memory - The age variable a; accounts for the total time in which ¢; has been
enabled from its last firing. The firing distribution depends on the residual time
needed for the transition to complete given ay.

At the entrance in a new tangible marking, the residual firing time is computed for
each enabled timed transition given its age variable. The next marking is determined
by the minimal residual firing time among the enabled timed transitions (race policy).
Under an enabling memory policy the firing time of a transition is resampled from
the original distribution each time the transition becomes enabled so that the time
eventually spent without firing in prior enabling periods is lost. The memory of the
underlying stochastic process cannot extend beyond a single cycle of enable/disable of
the corresponding transition. On the contrary, if a transition is assigned an age memory
policy, the age variable accounts for all the periods of time in which the transition has
been enabled, independently of the number of enable/disable cycles. Hence, the age

memory is the only policy that allows a transition to have a non-null memory also in
markings in which is not enabled.

Since exponential transitions do not have memory, the residual life time distribution
is independent of the value of the age variable. Hence, the three policies have the same
effect and we can conventionally assume that the age variables associated to exponential
transitions are identically zero.

3 Computational Restrictions of the GDT_SPN

The marking process M(z) does not have, in general, an analytically tractable formula-
tion, while a simulative approach has been described in [29, 30]. Various restrictions of
the general model have been discussed in the literature [16, 9] such that the underlying
marking process M(x) is confined to belong to a known class of analytically tractable
stochastic processes.

3.1 Exponentially Distributed SPN

When all the random variables 7, associated to the PN transitions are exponentially
distributed, the dynamic behavior of the net is mapped into a CTMC, with state space
isomorphic to the tangible subset of the reachability graph. This restriction is the most
popular in the literature [37, 24, 2], and a number of tools are built on this assumption
[13, 18, 20, 34].

3.2 Semi-Markov SPN

When all the PN transitions are assigned a resampling policy the marking process be-
comes a semi-Markov process. This restriction has been studied in [38, 5] but is of little
interest in applications where it is difficult to imagine a situation where the firing of any
transition of the PN has the effect of forcing a resampling to all the other transitions.

A more consistent and interesting semi-Markov SPN model has been discussed in
[23]. In this definition, the transitions are partitioned into three classes: exclusive, com-
petitive and concurrent. Provided that the firing time of all the concurrent transitions
is exponentially distributed and that non-exponential competitive transitions are resam-
pled at the time the transition is enabled, the associated marking process becomes a
semi-Markov process.

3.3 Phase Type SPN (PHSPN)

A numerically tractable realization of the GDT_SPN, is obtained by restricting the ran-
dom firing times v, to be PH distributed [39], according to the following:

Definition 2. A PHSPN is a GDT_SPN in which:

e To any timed transition ty € T is associated a PH random variable ;. The PH
model assigned to vy has vy stages with a single initial stage numbered stage 1 and
a single final stage numbered stage vy.

e To any timed transition t;, € T is assigned a memory policy among the three defined
alternatives: resampling, enabling or age memory.

The distinguishing feature of this model, is that it is possible to design a completely
automated tool that responds to the requirements stated in [31], and that, at the same
time, includes all the issues listed in Definition 2. The non-Markovian process generated
by the GDT_SPN over the reachability set R(My) is converted into a CTMC defined over
an expanded state space. The measures pertinent to the original process are defined at
the PN level and can be evaluated by solving the expanded CTMC.

The program package ESP [22] realizes the PHSPN model according to Definition 2.
The program allows the user to assign a PH distribution and a specific memory policy
to each PN transition so that the different execution policies can be put to work. In
the ESP tool, the algorithm for the generation of the expanded CTMC starts from the
knowledge of the reachability graph R(M;) and is driven by the different PH models and
execution policies assigned to each transition.

The expanded CTMC is represented by a directed graph H = (N, Ag) where
Ny is the set of nodes (states of the expanded CTMC) and Ap is the set of directed
arcs (transitions of the expanded CTMC). The nodes in Ny are pairs (M, W), where
M € R(M,) is a marking of the original non-expanded SPN and W is a n;~dimensional
vector of integers, whose kth entry wy (1 < wy < ;) represents the stage of firing of
t, in its PH distribution.

Arcs in Ap are represented by 5-tuples (N, N'; k, i, j), where N is the source node,
N’ the destination node, and (i, j) is an arc in the PH model of transition ¢;. Therefore,
(N, N'; k, i, j) € Ay means that in the expanded graph the process goes from node N
to node N’ when the stage of firing of ¢, goes from stage i to stage j.

The expanded graph H is generated by an iterative algorithm [22]. Let H be initially
empty; the algorithm starts by putting in Nz the initial node Ng) = (M, [1,1,...,1])
(the PN is in its initial marking M; and all the n, random variables v, are in stage 1).
N l(ql) is marked as a non-expanded node. An expansion step is then performed on each
non-expanded node Ng) = (M®, W®). For each transition t,(f) enabled in M®) we
search for all the possible successors of stage numbered w,(f) in the PH model of tff)

(where w,(f) is the kth component of W® i.e. it is the stage of 7, in state Ng)). Let
J (7 = 1,...,) be one of such possible successors. Two cases may arise depending

whether j = v, or j # 14; i.e. transition t,(f) has reached its terminal stage, or not.

CASE 1 -] 7£ 1473
Transition t,(f) has made a jump in its PH model without firing. Then a new node
N;{(e) = (M®, W'®) is generated, with w;(é) =7 and w;(é) = wl(é) Vt, e T t; #

).

CASE 2 -] = Ui
Transition t,(f) has reached the final node of its PH model and thus has fired. In this

case, the new node N}IM) = (M'®, W'®) is generated according to the following
rule: M'® is the marking immediately reached from M® by firing t,(f) (M(Z) —
t,(f) — M'®), and w;(g) = 1 since firing of t,(f) resets its stage count to 1. The

values of the other entries of vector W', corresponding to the transitions enabled

in M are set according to the memory policy attached to the corresponding
transition:

e always set equal to 1 in the resampling case;
e not modified in the age memory case;
e conditionally reset in the enabling memory case (i.e. if the transition is still

enabled in the new marking M’ the corresponding stage count is not modified
otherwise is set to 1).

In both cases, the new node N}I(Z) = (M'®, W'®) is entered in Ny (if not already
there) and a new arc A0 = (NP, N9 &, w,(f), w;c(l)) is added to Ay. The above
expansion step is iterated for all the transitions enabled in the current marking M©®,
and until all the corresponding PH distributions have reached their terminal stage. At
this point the expansion of the node Ng) is terminated and the node itself is marked as
expanded. The algorithm then searches for the subsequent non-expanded node until all
the nodes have been searched for.

The cardinality ng of the expanded state space is upper bounded by the cross product
of the cardinality of the reachability set of the basic PN times the cardinality of the PH
distributions of the n; random variables v, [1]. The actual value of ny is difficult to
evaluate a priori. In practical cases this number can be very much lower that the upper
bound, and is, in any case, increasing with the complexity of the assigned memory
policies. The resampling policy is the one that generates the expanded CTMC with the
lower number of states, while the age policy generates the expanded CTMC with the
larger number of states.

The marking M of the original reachability set, is mapped into a macro state formed
by the union of all the nodes Ny (M, W) of the expanded graph such that M = M©.
This mapping allows the program to redefine the measures calculated as solution of the
Markov equation over the expanded graph in terms of the markings of the original PN.

An alternative approach for the inclusion of PH distributions into SPN models con-
sists in substituting each transition, at the PN level, with a proper sub-PN realizing the
required PH model. However, a naive application of this approach, as proposed in [37],
can not correctly accommodate the different memory policies. An attempt to realize a
sub-PN able to account for all the three memory policies is in [12] (but restricted to PH
distributions with equal diagonal elements). Nevertheless, the expansion at the PN level
has been strongly discouraged in [1] on the basis of the following motivations:

e The inclusion of a sub-PN for each transition makes the expanded PN very intricate

and difficult to understand. The added primitive elements (places, transitions and

arcs) refer only to the stochastic behavior of a single transition and hide the general
structure of the model. The fascinating simplicity of the PN language is destroyed.

e [t seems hardly possible to automatize a procedure for generating the PHSPN
model expanding the basic PN and taking into account general PH distributions
and interactions among different memory policies.

3.4 Deterministic SPN

The Deterministic and Stochastic PN model has been introduced in [3], with the aim of
providing a technique for considering stochastic systems in which some time variables
assume a constant value. In [3] only the steady state solution has been addressed.
An improved algorithm for the evaluation of the steady state probabilities has been
successively presented in [35], and some structural extensions have been proposed in
[17].

Definition 3 - A DSPN [3] is a GDT_SPN in which:

e The set T of transitions is partitioned into a subset T, of exponential transitions
(EXP) and a subset T; of deterministic transitions (DET), such that T =T, UT,.

e To any EXP transition t, € T, is associated an exponentially distributed random
variable vy

e To any DET transition t; € T, is associated a deterministic firing time d;.
e At most, a single DET transition is allowed to be enabled in each marking.

e The only allowed execution policy for the DET transition is the race policy with
enabling memory.

According to Definition 3, during the firing of a DET transition, the marking process
can undergo EXP transitions only, thus describing a CTMC called the subordinated
process. The steady state solution technique, originally proposed in [3], is based on
the evaluation of the subordinated CTMC' at a time corresponding to the duration of
the DET transition. Various improvements and extensions of the original algorithm
are in [35, 17]. Tools currently supporting steady state measures for DSPN models are
DSPNexpress [36], UltraSAN [20] and TimeNET [26].

Choi et al. [14] have shown that the marking process associated to a DSPN is
a Markov regenerative process (MRP), for which steady state and transient solution
equations are available [19]. In order to prove their assertion, Choi et al. have introduced
the following modified execution sequence:

Te = { (75, M) ; (7, M)); ... 5 (77, M) 5 ...} (2)
Epoch 77 is derived from 7;° as follows:

1. If no DET transition is enabled in marking M;), define 77, to be the first time
after 7 that a state change occurs.

2. If a DET transition is enabled in marking M;), define 7, to be the time when the

DET transition fires or is disabled as a consequence of the firing of a competitive
EXP transition.

According to case 2) of the above definition, during [7;*, 7%,), the PN can evolve in
the subset of R(M,) reachable from M;, through EXP transitions concurrent with the
given DET transition. The marking process during this time interval is the C'TMC sub-
ordinated to marking M;. Therefore, if a DET transition is enabled in M;), the sojourn

9

time is given by the minimum between the first passage time out of the subordinated
CTMC and the constant firing time associated to the DET transition.

Choi et al. show that the sequence 7;° forms a sequence of regenerative time points,
so that the marking process M(z) is a Markov regenerative process MRP. According to
[15, 19], we define the following matrix valued functions:

V(z) = [Vij(xz)] suchthat Vi(z) = Pr{M(z)=j|M(0) =1}
K(z) = [Kij(2)] " Kij(x) = PriMu =7, o <z|M(0) =i (3)

E(z) = [Ei(x)] ’ Eij(z) = PriM(z)=j, 77 > 2| M(0) =i}

Matrix V() is the transition probability matrix and provides the probability that the
marking process M(z) is in marking j at time z given it was in ¢ at = 0. The matrix
K(z) is the global kernel of the MRP and provides the probability that the regeneration
interval ends in marking j at time x, given that it started in marking : at x = 0. Finally,
the matrix E(x) is the local kernel and describes the behavior of the marking process
inside two consecutive regeneration time points. The transient behavior of the DSPN can
be evaluated by solving the following generalized Markov renewal equation (in matrix
form) [19, 15]:

V(z) = E(x) + K *x V(z) (4)

where K * V() is a convolution matrix, whose (7, j)-th entry is:

K+ V@) = ¥ [dKa(y) V(o) ()

Equation (4) can be solved numerically in the time domain. An alternative ap-
proach, suggested in [14], consists in transforming the convolution equation (4) in the
Laplace domain. By denoting the Laplace Stieltjes transform (LST) of a function F(z)
by F~(s) = [5° e ** dF(z), Equation (4) becomes:

V™(s) = E7(s) + K™(s) V7(s) (6)

whose solution is:

V¥(s) =[I - K™(s)] " E™(s) (7)

The time domain solution of (7) can be obtained by numerical inversion [32].

10

3.5 Markov Regenerative SPN (MRSPN)

A natural extension of the DSPN has been proposed in [15], where the DET transition
in Definition 3 is replaced by a GEN transition. This model is referred to by the authors
as MRSPN*.

Definition 4. A MRSPN* is a GDT_SPN in which:

e The set T of transitions is partitioned into a subset T, of exponential transitions
(EXP) and a subset T, of generally distributed transitions (GEN), such that T =
T. UT,.

e To any EXP transition t, € T, is associated an exponentially distributed random
variable vy.

e To any GEN transition t; € Ty is associated a generally distributed random variable
Vi

e At most, a single GEN is allowed to be enabled in each marking.

e The only allowed execution policy for the GEN transition is the race policy with
enabling memory.

By Definition 4, during the firing of a GEN transition only EXP transitions can
concurrently fire: the process subordinated to a GEN transition is a CTMC. The matrices
K(z) and E(z) in (3) depend on the specific Cdf’s assumed in the model. In [15],
closed form expressions are derived when the Cdf of the GEN transitions is the uniform
distribution.

3.6 MRSPN with non overlapping activity cycles

With the aim of extending the modeling power of MRSPN’s by including GEN tran-
sitions with age memory policy, Bobbio and Telek [11, 10] have investigated a class of
models characterized by the fact that the subordinated process between two consecutive
regeneration time points is a Semimarkov Reward Process [40].

Since in a GDT_SPN the memory of the marking process is related to the positive
value assumed by the age variables attached to the GEN transitions (EXP transitions
do not carry memory), a regeneration time point occurs at the entrance in a marking in
which all the age variables are reset.

Definition 5. A a Markov Regenerative Stochastic Petri Nets (MRSPN) [11] is a
GDT_SPN, for which an embedded Markov renewal sequence (7, M) exists such that
at the epoch T,; of entrance in the tangible marking M,y all the age variables are equal
to 0.

In order to restrict Definition 5 to a class of solvable models, the concept of MR-
SPN with non overlapping activity cycles has been introduced in [10]. This new class
encompasses and generalizes all the models previously appeared in the literature and
mentioned in the previous sections.

11

Definition 6 - A GEN transition is dormant in those markings in which the corre-
sponding age variable is equal to zero and is active in those markings in which the age
variable is greater than zero. The activity cycle of a GEN transition is the period of time
tn which a transition is active between two dormant periods.

Let ¢, be a GEN transition. The activity cycle of ¢, is influenced by its memory
policy, and can be characterized in the following way:

e Resampling Memory - If ¢, is a resampling memory transition, its activity cycle
starts as soon as t, becomes enabled, and ends at the first subsequent firing of any
transition (including ¢, itself). During the activity cycle of a resampling memory
transition no change of marking is possible.

e Enabling Memory - If t, is an enabling memory transition its activity cycle starts
as soon as t, becomes enabled when dormant, and ends either when ¢, fires, or
when it becomes disabled by the firing of a competitive transition. During the
activity cycle the marking can change inside the subset of connected markings in
which ¢, is enabled. The age variable associated to ¢, grows continuously during
the activity cycle starting from 0.

e Age Memory - If t; is an age memory transition, its activity cycle starts as soon
as t, becomes enabled when dormant, and ends only at the firing of ¢, itself.
During the activity cycle of an age memory transition there is no restriction on
the markings reachable by the marking process. The age memory policy is the
only policy in which a transition can be active even in markings in which is not
enabled. During the activity cycle, the age variable is non-decreasing in the sense
that increases continuously in those markings in which ¢, is enabled and maintains
its constant positive value in those markings in which #; is not enabled. The
enabling/disabling condition of ¢, during its activity cycle is tracked by introducing
a reward (indicator) variable which is set to 1 in those markings in which ¢, is
enabled and set to 0 in those markings in which ¢, is not enabled. With this
assignment, the value of the age variable versus time can be computed as the total
accumulated reward.

Definition 7 - Activity cycles are non-overlapping if there exists a dominant transition
whose activity cycle strictly contains the activity cycles of all the active transitions.

Definition 8 - A MRSPN with non-overlapping activity cycles is a MRSPN in which
all the regeneration periods are dominated by a single transition: any two Successive
regeneration time points correspond to the start and to the end of the activity cycle of
the dominant transition.

Definition 8, includes the possibility that the activity cycles of GEN transitions are
completely contained into the activity cycle of the dominant one, hence allowing the
simultaneous enabling of different GEN transitions inside the same subordinated process.
In particular in [10], the class of models for which the process subordinated to any GEN
transition is a reward semimarkov process is defined and analyzed. In order to arrive
to closed form expressions for the global and local kernels of the underlying MRP, the
following situations are examined separately.

3.6.1 Enabling memory dominant transition

The dominant GEN transition ¢, is of enabling type. The next regeneration time point
occurs because one of the following two mutually exclusive events:

12

e t, fires: this event can be formulated as a completion time problem [33, 7] when
the age variable a, reaches a value equal to the firing requirement ~,.

e 1, is disabled: this event can be formulated as a first passage time in the subset of
states in which ¢, becomes disabled.

Accordingly, the following two types of subordinated processes can be distinguished.

TYPE A - The subordinated process is a CTMC: no other GEN transitions are activated
during the activity cycle of t,.

A subordinated process of Type A is the only one arising from Definition 3 for
DSPN [3, 14, 35] and from Definition 4 for MRSPN* [15, 27]. All the examples
reported in the mentioned references belong to this case.

TYPE B - The subordinated process is a semimarkov process: during the activity cycles
of ty other GEN transitions can be activated one at the time (or more generally
according to the rules stated in [23]).

The steady state analysis of a MRSPN with Type B subordinated process has been
considered in [16]. The proposed algorithm is based on an efficient computational
extension of the randomization technique [28], assuming that GEN distributions
are piecewise defined by polynomials multiplied by exponential expressions. This
class of distributions is called ezpolynomial.

3.6.2 Age memory dominant transition

The situation in which the dominant GEN transition ¢, is of age type has been addressed
for the first time in [11]. The only criterion for the termination of the activity cycle is
the firing of #,, and the state space of the subordinated process contains all the states
reachable during the activity cycle of ¢,. During its activity cycle transition ¢, can be
either enabled or disabled. The corresponding binary reward variable is set equal to 1 in
the states of the subordinated process in which ¢, is enabled and equal to 0 in the states
of the subordinated process in which ¢, is not enabled. The firing of ¢, can be formulated
as a completion time problem [33, 7] in a reward stochastic model when the age variable
ay (calculated as the total accumulated reward) reaches the firing requirement .
Two types of subordinated processes can be distinguished also in this case.

TYPE C - The subordinated process is a reward CTMC: during the activity cycle of t,
no other GEN transitions are activated.

TYPE D - The subordinated process is a reward semi-Markov process: during the ac-
tivity cycle of t, other GEN transitions can be activated one at the time (or more
generally according to the rules stated in [23]).

The next Section reports an example in which Type C and Type D subordinated
processes are combined in the same PN.

13

3.6.3 DET transitions

A particular case arises when all the GEN transitions are assumed to be of DET type.
The MRSPN with non overlapping activity cycles and DET transitions can be considered
as a direct generalization of the DSPN model of Definition 3, where the modeling power
is augmented to accommodate the presence of memory policies of both enabling and age
type. In [10], a procedure is given to derive the K(x) and E(z) matrices (3) when the
subordinated process is of Type D (a semimarkov reward model) and the non-exponential
transitions are DET.

The GEN case can be derived from the solution of the DET case by the following
argument. Let us fix a value 7, = w of the r.v. associated to the dominant transition,
and let us derive K;;(x|w) as in the pure DET case. Then, given that G,(w) is the Cdf

of v,:

)= [Kij(alw) dG,(w) s)

A similar argument holds for the entries of matrix E(z). The solutions for subordi-

nated processes of Types A, B and C can be derived as special cases of the solution of
Type D.

4 Example: Finite Queue with Preemption

We carry on a comparison between the modeling power and the numerical results ob-
tained from the Laplace Transform Method (LTM) applied to MRSPN (or DSPN in
particular cases) and the PHSPN model through the analysis of a simple queueing sys-
tems with different kinds of preemption. We consider, as a base example, the M/D/1/2/2
(a closed queueing system with two buffer positions and two customers) introduced in
[3]. The non-preemptive service mechanism has been already analyzed in [3] for what
concerns the steady state measures and revisited in [14] for what concerns the transient
behavior. In the figures, EXP transitions are drawn as empty rectangles, DET transitions
as filled rectangles and immediate transitions as thin bars.

4.1 Case I - Non Preemptive Queue

The PN for the M/D/1/2/2 system, proposed in [3], is reported in Figure 1. Place p;
contains ”thinking” customers (i.e. awaiting to submit a job) and transition ¢; represents
the submission of jobs. Jobs queueing for service are represented by tokens in ps. A token
in p3 means that the server is busy while a token in p, means that the server is idle.
Transition ¢, is the job service time; when the job is completed the customer returns in
his thinking state. Transition #3 is an immediate transition modelling the start of service
i.e. the transfer of the job from the queue to the server.

In [3, 14], the following assumptions were made. #; is EXP with firing rate m; - A
being m; the number of tokens in p; and A\ = 0.5 job/hour. ty is a DET transition
modeling a constant service time of duration d = 1.0 hour.

14

P 2001 @ 20
t t |t b
Z 1010 % 11 \" b2
D3 (’)m h R e b2
Ly, [on0(ss) 02
a) b) c)

Figure 1 - a) - PN modelling the atomic operation of a M/D/1/2/2 (after
[3]); b) - corresponding reduced reachability graph; c) - simpli-
fied PN.

The reduced reachability graph of the PN (after eliminating the vanishing markings
arising from the immediate transition ¢; [2]) is composed of three states, denoted by
s1, s2 and s3 in Figure 1b. The PN of Figure 1a is a DSPN according to Definition 3
and shows in details the atomic steps by which a customer submits a job and the job is
serviced. Figure 1c shows, however, a simpler PN isomorphic to the one of Figure 1a.

Tokens in place p; of Figure 1c represent customers in the thinking state, while p,
contains the jobs in the queue (included the one under service). ¢; models the submitting
time and t5 is the service time. It is easy to verify that the above PN generates the same
marking process M(z) of Figure 1b when ¢, is EXP with rate m; - A and ¢, is DET. The
probabilities versus time of the two states s; and s3 are reported in Figure 2 in solid line,
computed by means of the Laplace transform method (LTM).

Approximating the DSPN of Figure 1c by means of the PHSPN model is straightfor-
ward. Transition ¢ is assigned a PH distribution and an enabling memory policy. Since
the Erlang distribution is the PH with the minimum coefficient of variation [4] it is ap-
propriate to approximate the DSPN by assigning ¢y an Erlang distribution of increasing
order. In Figure 2 we compare the results obtained from the PHSPN model, by reporting
the behavior of the state probabilities versus time in two cases: when i) the random firing
time assigned to t is Erlang(5) (dashed line), and ii) when is Erlang(100) (dotted line).
In both cases the expected value of the Erlang matches with the value d = 1.0 hours of
the DET model, being all the other parameters unchanged. It is interesting to observe
that the local maxima and minima in the probability behavior do not appear with the
Erlang(5), while the visual agreement is very satisfactory in the case of the Erlang(100).

As a further comparison, Table I shows the values of the steady state probabilities
calculated from LTM for the DSPN and from the PHSPN model when ¢y is assumed
to be Erlang(5), Erlang(10), Erlang(100) and Erlang(1000), respectively. It should be
stressed that the present case can be considered as a worst case example since a DET
type variable can be closely approximated by a PH only as the number of stages grows

15

st. prob.
——LTM
1t ———— Erl(5)
------- Erl(100)
. X
3 35

Figure 2 - Transient behavior of the state probabilities for the non
preemptive M/D/1/2/2

to oo [4].

4.2 Preemptive Queue with Identical Customers

Let us assume a M/D/1/2/2 with a preemptive service and the same kind of customers.
The job in execution is preempted as soon as a new job joins the queue. Two cases can
be considered depending whether the job restarted after preemption is resampled from
the same distribution function (prd), or is resumed (prs).

4.2.1 Case II - prd policy

With reference to Figure 1c, each time transition ¢; fires (a thinking customer submits a
job) while p, is marked (a job is currently under service) transition ¢5 should be reset and
resampled. In the PHSPN model this mechanism can be simply realized by assigning
to ty a resampling policy. It is easy to prove that the underlying process M(x) is a
semi-Markov process, since each time the DET transition t, is entered, a regeneration
point is produced since a new job starts.

Even if the class of semi-markov processes is a proper subclass of the Markov regen-
erative processes, the above preemptive mechanism cannot be generated from the DSPN
of Definition 3. In fact, since t; is not competitive with respect to ¢, the firing of the
former does not disable the latter, that indeed is not resampled. The PN in Figure 3a
describes a correct DSPN with the required preemption policy. Place p; in Figure 3a

16

Table I - Steady state probabilities for the non preemptive queue (Case I)

DSPN PHSPN
State
(LTM) | Eri(5) | Eri(10) | Eri(100) | Erl(1000)
si | 0.37754 | 0.38307 | 0.38039 | 0.37783 | 0.37757
sy | 0.48084 | 0.46773 | 0.47845 | 0.48867 | 0.48972
ss 1 0.13262 | 0.14920 | 0.14116 | 0.13350 | 0.13271
(51) 2001
tl
$2) 1110
ta | | 44
@ 0201
a) b)

Figure 3 - Preemptive M/D/1/2/2 ith identical customers

contains the customers thinking, while place p, contains the number of submitted jobs
(included the one under service). Place ps represents a single job getting service: service
is interrupted (¢, is disabled) if a new job joins the queue (transition ¢z fires before ¢5).
t; and t3 are assigned the EXP submitting time and transitions ¢, and ¢, a DET service
time. Assigning an enabling memory policy to ¢ and t4 the prd service mechanism is
generated, while respecting the requirements of Definition 3.

Table IT compares the steady state probabilities assuming the submitting and service
time distributions identical to the non preemptive case. The transient behaviors of the
probabilities versus time of states s; and s; are reported in Figure 5 (Case II) computed
by means of the LTM for the DSPN model. Similarly, Figure 6 (Case II) shows the
behaviors for the PHSPN model with the service time given by an Erlang(100).

17

Table II - Steady state probabilities with equal customers

DSPN PHSPN
State
(LTM) | Eri(5) | Erl(10) | Erl(100) | Erl(1000)

Case II - prd policy

s1 | 0.33942 | 0.35317 | 0.34642 | 0.34014 | 0.33950
se | 0.44038 | 0.43122 | 0.43572 | 0.43991 | 0.44034
s3 | 0.22019 | 0.21561 | 0.21786 | 0.21995 | 0.22017

4.2.2 Case III - prs policy

The prs policy means that when a new job joins the queue the job under service is
preempted until the newly arrived job completes his service. The preempted job is then
resumed and put in execution from the point of preemption without loss of the previously
performed work.

The prs mechanism for the M/D/1/2/2 queue corresponds to the PN of Figure 3
when 5 and %, is assigned an age memory policy. Each time ¢ is disabled without firing
(t3 fires before t5) the age variable ay is not reset. Hence, as the second job completes
(t4 fires), the system returns in s, keeping memory of the value of ay, so that the time
to complete the interrupted job can be evaluated as the residual service time given a,.

With the above assignments, the PN of Figure 3a is a MRSPN with non overlapping
activity cycles. A detailed analysis of this example is in [11]. The regeneration time
points in the marking process M(x) correspond to the epochs of entrance in markings
in which all the age variables are equal to zero (Definition 5). By inspecting Figure 3b,
the regeneration time points result to be the epochs of entrance in s; and of entrance in
sy from s;. The process subordinated to state s; is a single step CTMC' (being the only
enabled transition ¢; exponential) and includes the only reachable state s,.

The process subordinated to state s, is dominated by transition £, and includes the
states s3, sg. Since ss is the only state in which ¢, is enabled, the reward variable is set
equal to 1 in sy and equal to 0 elsewhere. With the given reward rates, a, is equal to the
cumulative sojourn time in sy and, therefore, counts the total time during which %, is
enabled before firing. During the firing of ¢5 the subordinated process alternates between
states so and s3. Since t4 is non-exponential (DET in this case) the subordinated process
is a reward semi-Markov process of Type D (Section 3.6.2).

The transient behavior is depicted in Figure 5 (Case III) computed by the LTM for
MRSPN and in Figure 6 computed from the PHSPN model with the DET transitions
approximated by an Erlang(100).

18

3
) ——

p pz(S
tl A=
p p >
t t

a) b)

Figure 4 - Preemptive M/D/1/2/2 queue with two classes of customers

In this case, the service mechanism is a preemptive LIFO [41] and satisfies the re-
quirements of symmetric queues. Hence, the steady state probabilities are insensitive
to the distribution of the service time and depend only on its mean d (d = 1 in this
example) according to the following balance equations [41]:

2 d g1 = Tyo 3 ANdTg = T3 .

Solving the above balance equations provides: 7,y = 0.4, 75 = 0.4 and 7,3 = 0.2.

4.3 Preemptive Queue with Different Classes of Customers

An interesting case arises when the two customers are of different classes, and customer of
class 2 preempts customer of class 1 but not vice versa. A PN illustrating the M/D/1/2/2
queue in which the jobs submitted by customer 2 have higher priority over the jobs
submitted by customer 1 is reported in Figure 4. Place p; (p3) represents customer 1
(2) thinking, while place py (ps) represent job 1 (2) under service. Transition #; (t3) is
the submission of a job of type 1 (2), while transition 5 (¢4) is the completion of service
of a job of type 1 (2). The inhibitor arc from p4 to ¢, models the described preemption
mechanism: as soon as a type 2 job joins the queue the type 1 job eventually under
service is interrupted.

If we assume that the service time is not exponentially distributed, two possible
preemption policies can be considered depending whether the job of type 1 is resampled
after preemption (prd case) or is resumed (prs case).

4.3.1 Case IV - prd policy

Since this policy can be realized by assigning to the service transitions ¢, and ¢, an
enabling memory policy, the present case is included in the DSPN model of Definition
3. Table IIT shows the steady state probability values computed from (7) and from the
PHSPN model with various Erlang approximations.

19

Table IIT - Steady state probabilities with different customers

MRSPN PHSPN
State
(LTM) | Erl(5) | Erl(10) | Erl(100) | Erl(1000)

Case IV - prd policy

51 0.35015 | 0.36194 | 0.35618 | 0.35076 | 0.35021
So + 54 | 0.45429 | 0.44193 | 0.44801 | 0.45365 | 0.45423
53 0.19556 | 0.19613 | 0.19582 | 0.19558 | 0.19556

Case V - prs policy

51 0.39291 | 0.39458 | 0.39377 | 0.39300 n.a.
s9 + 54 | 0.42835 | 0.42166 | 0.42493 | 0.42800 n.a.
S3 0.17874 | 0.18375 | 0.18130 | 0.17900 n.a.

4.3.2 Case V - prs policy

Under a prs service policy, after completion of the type 2 job, the interrupted type 1
job is resumed continuing the new service period from the point reached just before the
last interruption. In the PN of Figure 4a this service policy is realized by assigning to
transitions ¢ and £, an age memory policy.

. From Figure 4b, it is easily recognized that s;, s, and s4 can all be regeneration
states, while s3 can never be a regeneration state (in s3 either a job of type 1 or 2 is always
in execution so that their corresponding memory variables are never simultaneously 0).
Only exponential transitions are enabled in s; and the next regeneration states can be
either s, or s, depending whether ¢, or ¢3 fires first. In s, the dominant transition is
t4 and the next regeneration marking can be either state s; or sy depending whether
during the execution of the type 2 job a type 1 job does require service (but remains
blocked until completion of the type 2 job) or does not. The reward variable is set to 1
in states s3 and s4, where 4 is enabled, so that the age variable a4 counts the total time
spent in either of the two states s3 or s4. The subordinated process is a Type C reward
CTMC. ;From sy the dominant transition is ¢, and the next regeneration state can be
only s;. During the firing of ¢, multiple cycles (sg - s3) can occur depending whether
type 2 jobs arrive to interrupt the execution of the type 1 job. The reward variable is set
to 1 in state sy so that the subordinated process is a Type D reward-SMP (t, is GEN).
Subordinated processes of both Types C and D are mixed in the same net. A detailed

20

st. prob. Casel| ------- Case IV

----Casell — -CaseV

0.5§

01 L L L s L s L X

Figure 5 - Comparison of the state probabilities computed by the
Laplace transform method for DSPN (Case I, Case II
and Case IV) and for MRSPN (Case IIT and Case V).

derivation of the closed form equations for this example is in [11].

The steady state results are reported in Table III. Note that the values corresponding
to the Erlang(1000) are not available (n.a.) due to the explosion of the state space (see
Section 5.1). The transient probabilities for Case IV and Case V are reported in Figure
5 computed by means of the LTM for the DSPN (Case IV) and for the MRSPN with non
overlapping intervals (Case V). The corresponding results, computed for the PHSPN
model, with an Erlang(100) assigned to the DET transitions, are similarly shown in
Figure 6.

The steady state results for Case I, Case II and Case IV where also checked using
the package TimeNET [26] based on the supplementary variable technique.

5 Computational complexity

Let us briefly summarize the elementary computational steps for the evaluation of the
transient solution in the two considered methodologies (MRSPN and PHSPN). The PH-
SPN solution is fully supported by a tool [22], while the Laplace transform method for
the transient analysis of MRSPN requires manual and automatic manipulation. The
method of supplementary variables for DSPN, implemented in TimeNET [26], is also
fully supported by a tool but is presently restricted to the steady state solution only.

21

st. prob. T el "y
0.5§ ----Casell — -CaseV
' — — Caselll
P,
0.4 S —
S e
0.3}
e
f—
01/ . , | | | | y
1 15 2 25 3 35

Figure 6 - Comparison of the state probabilities computed from
the PHSPN for the 5 examined Cases and with Er-
lang(100).

5.1 Evaluation of PHSPN model

For the evaluation of this model we used the ESP tool ([22]). The procedure can be
divided into the following steps:

1. generation of the reachability tree;
2. generation of the expanded CTMC;
3. solution of the resulting CTMC.

Step 1) is standard. The computational complexity of steps 2) and 3) depends on
the number of tangible states and on the order of the PH distribution associated to each
transition. With PH distributions of order v the cardinality of the expanded CTMC is
ng=2v+1inCasel, ny =2v+1in CaseIl, ny = 2 4+v+11in Case II[, ny = 3v+1in
Case IV and ny = v? +2v+1 in Case V. As mentioned in Section 3.3, the cardinality of
the expanded state space ny is strongly influenced by the memory policies. In this trivial
example, with » = 100 (Erlang100) the generation of the CTMC takes 2 m for Cases III
and V, and the whole analysis two further minutes on a IBM RISC 6000 computer.

5.2 Laplace Transform Method for MRSPN

Let us first suppose that all the GEN transitions are DET. The computational method
can be divided in the following steps [14]:

22

1. generation of the reachability tree;

2. manual derivation of the entries of the K™(s) and E™~(s) matrices symbolically in
the Laplace transform domain;

3. symbolical matrix inversion and matrix multiplication by using a standard package
(e.g. MATHEMATICA) in order to obtain the V~(s) matrix (Equation 7) in the
LT domain;

4. time domain solution obtained by a numerical inversion of the entries of the V~(s),

resorting to the Jagerman’s method [32]. For the sake of uniformity, this step has
been implemented in MATHEMATICA language.

In the GEN case, point 2) in the above list should be replaced by

2" manual derivation of the entries of the K™(s) and E™(s) matrices symbolically in
Laplace transform domain as in the DET case;

2" unconditioning of the entries of the K™ (s) and E™~(s) matrices, according to the
Cdf of the GEN distributions (Equation 8).

Step 1) can be performed with any PN package. Step 2) is done manually, and its
difficulty depends on the non-zero entries of the involved matrices, and on the complexity
of the process subordinated to the dominant GEN transitions. The complexity increases
going from subordinated processes of Type A and C (CTMC) to subordinated processes
of Type B and D (SMP), and going from Types A and B (all the states have the same
reward) to Types C and D (states are assigned a binary reward).

The computational complexity of step 3) depends on the dimension of the matrices
(i.e. the number of tangible markings) and the complexity of the elements of the kernels
(the difficulty of step 3 is related to the difficulty of step 2). The complexity of the
numerical inversion at step 4) also depends on two factors; the complexity of the function
to invert, and the prescribed accuracy. For the example described in the previous section,
the computational time for the symbolic inversion was not significant, while the numerical
inversion required about 30 s on an IBM RISC 6000 machine, for each point of the
transient solution.

5.3 Discussion

Even if the deterministic distribution is typically non PH, an approximation error for the
steady state probabilities of the order of 1072 is reached by replacing the DET transition
with an Erlang(5) and an error of the order of 10~* by replacing the DET transition
with an Erlang(1000). The use of PH distributions and of the PHSPN model offers the
modeler a flexible tool for prescribing various interactions among the timed activities.
Moreover, if the random variables of the system to be modeled are really of PH type,
the PHSPN provides exact results. Otherwise, a preliminary step is needed in which the
random times of the system are approximated by PH random variables resorting to a
suitable estimation technique [8]. The expansion of the state space is, of course, a cause
of non-negligible difficulties, since it worsens the problem of the exponential growth of the

23

state space both with the model complexity, and with the order of the PH distribution
assigned to each transition.

The MRSPN model, combining GEN (or DET) firing times with exponential firing
times, offers an innovative approach in many practical applications. At the present
state of the art, no automatized tools are available for the generation of the matrices
K(z) and E(z) and for the solution of the convolution equation versus time. The Laplace
transform technique, used in the examples, does not seem suited for a complete numerical
automatization. An alternative numerical approach could be based on the direct solution
of the convolution equation (4) in time domain or in the solution of a system of partial
differential equations arising from the inclusion of supplementary variables [25].

Acknowledgments

The authors thank R. German for making available the package TimeNET. The work
of Andrea Bobbio was partially supported by CNR grant No. 96.01939.CT12. Miklés
Telek was partially supported by OTKA grant No. T-16637.

References

[1] M. Ajmone Marsan, G. Balbo, A. Bobbio, G. Chiola, G. Conte, and A. Cumani.
The effect of execution policies on the semantics and analysis of stochastic Petri
nets. [EEE Transactions on Software Engineering, SE-15:832-846, 1989.

[2] M. Ajmone Marsan, G. Balbo, and G. Conte. A class of generalized stochastic Petri

nets for the performance evaluation of multiprocessor systems. ACM Transactions
on Computer Systems, 2:93—122, 1984.

(3] M. Ajmone Marsan and G. Chiola. On Petri nets with deterministic and exponen-

tially distributed firing times. In Lecture Notes in Computer Science, volume 266,
pages 132-145. Springer Verlag, 1987.

[4] D. Aldous and L. Shepp. The least variable phase type distribution is Erlang.
Stochastic Models, 3:467-473, 1987.

[5] A. Bertoni and M. Torelli. Probabilistic Petri nets and semi Markov processes. In
Proceedings 2-nd European Workshop on Petri Nets, 1981.

(6] A. Bobbio. Stochastic reward models in performance/reliability analysis. Journal
on Communications, XLITT:27-35, January 1992.

[7] A. Bobbio and M. Telek. Task completion time. In Proceedings 2nd International
Workshop on Performability Modelling of Computer and Communication Systems
(PMCCS2), 1993.

[8] A. Bobbio and M. Telek. A benchmark for PH estimation algorithms: results for
Acyclic-PH. Stochastic Models, 10:661-677, 1994.

9] A. Bobbio and M. Telek. Computational restrictions for SPN with generally dis-
tributed transition times. In D. Hammer K. Echtle and D. Powell, editors, First
European Dependable Computing Conference (EDCC-1), Lecture Notes in Computer
Science, volume 852, Springer-Verlag, pages 131-148, 1994.

24

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

A. Bobbio and M. Telek. Markov regenerative SPN with non-overlapping activity

cycles. In International Computer Performance and Dependability Symposium -
IPDS95, pages 124-133. IEEE CS Press, 1995.

A. Bobbio and M. Telek. Transient analysis of a preemptive resume M/D/1/2/2
through Petri nets. Technical report, Department of Telecommunications - Technical
University of Budapest, April 1994.

P. Chen, S.C. Bruell, and G. Balbo. Alternative methods for incorporating non-
exponential distributions into stochastic timed Petri nets. In Proceedings Interna-
tional Workshop on Petri Nets and Performance Models - PNPM89, pages 187-197.
IEEE Computer Society, 1989.

G. Chiola. GreatSPN 1.5 Software architecture. In G. Balbo and G. Serazzi, edi-

tl%gé Computer Performance Evaluation, pages 121-136. Elsevier Science Publishers,

Hoon Choi, V.G. Kulkarni, and K. Trivedi. Transient analysis of deterministic
and stochastic Petri nets. In Proceedings of the 14-th International Conference on
Application and Theory of Petri Nets, Chicago, June 1993.

H. Choi, V.G. Kulkarni, and K. Trivedi. Markov regenerative stochastic Petri nets.
Performance Evaluation, 20:337-357, 1994.

G. Ciardo, R. German, and C. Lindemann. A characterization of the stochastic pro-

cess underlying a stochastic Petri net. IEEE Transactions on Software Engineering,
20:506-515, 1994.

G. Ciardo and C. Lindemann. Analysis of deterministic and stochastic Petri nets.

In Proceedings International Workshop on Petri Nets and Performance Models -
PNPM93, pages 160-169. IEEE Computer Society, 1993.

G. Ciardo, J. Muppala, and K.S. Trivedi. SPNP: stochastic Petri net package.
In Proceedings International Workshop on Petri Nets and Performance Models -
PNPM8&9, pages 142-151. IEEE Computer Society, 1989.

E. Cinlar. Introduction to Stochastic Processes. Prentice-Hall, Englewood Cliffs,
1975.

J.A. Couvillon, R. Freire, R. Johnson, W.D. Obal, M.A. Qureshi, M. Rai,
W. Sanders, and J.E. Tvedt. Performability modeling with UltraSAN. IEEE Soft-
ware, 8:69-80, September 1991.

D.R. Cox. The analysis of non-markovian stochastic processes by the inclusion

of supplementary variables. Proceedings of the Cambridge Phylosophical Society,
51:4337440, 1955.

A. Cumani. Esp - A package for the evaluation of stochastic Petri nets with phase-
type distributed transition times. In Proceedings International Workshop Timed
Petri Nets, pages 144-151, Torino (Ttaly), 1985. IEEE Computer Society Press no.
674.

J. Bechta Dugan, K. Trivedi, R. Geist, and V.F. Nicola. Extended stochastic Petri
nets: applications and analysis. In Proceedings PERFORMANCE 8/, Paris, 1984.

G. Florin and S. Natkin. Les reseaux de Petri stochastiques. Technique et Science
Informatique, 4:143-160, 1985.

25

[25] R. German. Transient Analysis of deterministic and stochastic Petri nets by the
method of supplementary variables. Internal Report Technische Universitiat Berlin
(to be presented MASCOT’95), 1994.

[26] R. German, C. Kelling, A. Zimmermann, and G. Hommel. TimeNET - A toolkit
for evaluating non-markovian stochastic Petri nets. Report No. 19 - Technische
Universitat Berlin, 1994.

[27] R. German and C. Lindemann. Analysis of stochastic Petri nets by the method of
supplementary variables. Performance Evaluation, 20:317-335, 1994.

[28] D. Gross and D. Miller. The randomization technique as a modeling tool and solution
procedure for transient Markov processes. Operations Research, 32:343-361, 1984.

[29] P.J. Haas and G.S. Shedler. Regenerative stochastic Petri nets. Performance Eval-
uation, 6:189-204, 1986.

[30] P.J. Haas and G.S. Shedler. Stochastic Petri nets with simultaneous transition

firings. In Proceedings International Workshop on Petri Nets and Performance
Models - PNPM87, pages 24-32. IEEE Computer Society, 1987.

[31] B.R. Haverkort and K. Trivedi. Specification techniques for Markov Reward Models.
Discrete Event Dynamic Systems: Theory and Applications, 3:219-247, 1993.

[32] D.L. Jagerman. An inversion technique for the Laplace transform. The Bell System
Technical Journal, 61:1995-2002, October 1982.

[33] V.G. Kulkarni, V.F. Nicola, and K. Trivedi. On modeling the performance and

reliability of multi-mode computer systems. The Journal of Systems and Software,
6:175-183, 1986.

[34] R. Lepold. PEPNET: A new approach to performability modelling using stochastic
Petri nets. In Proceedings 1st International Workshop on Performability Modelling
of Computer and Communication Systems, pages 3-17, University of Twente - En-
schede (NL), 1991.

[35] C. Lindemann. An improved numerical algorithm for calculating steady-state so-

lutions of deterministic and stochastic Petri net models. Performance FEvaluation,
18:75-95, 1993.

[36] C. Lindemann. DSPNexpress: a software package for the efficient solution of deter-
ministic and stochastic Petri nets. Performance Evaluation, 22:3-21, 1995.

[37] M.K. Molloy. On the integration of delay and throughput measures in distributed
processing models. Technical report, Phd Thesis, UCLA, 1981.

[38] S. Natkin. Les reseaux de Petri stochastiques et leur application a I’evaluation des

systemes informatiques. Technical report, These de Docteur Ingegneur, CNAM,
Paris, 1980.

[39] M.F. Neuts. Matriz Geometric Solutions in Stochastic Models. Johns Hopkins
University Press, Baltimore, 1981.

[40] A. Reibman, R. Smith, and K.S. Trivedi. Markov and Markov reward model tran-
sient analysis: an overview of numerical approaches. FEuropean Journal of Opera-
tional Research, 40:257-267, 1989.

[41] R.W. Wolff. Stochastic Modeling and the Theory of Queues. Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 19809.

26

