
Modeling Software Systems with Rejuvenation, Restoration and

Checkpointing through Fluid Stochastic Petri Nets

A. Bobbio

1

, S. Garg

2

, M. Gribaudo

3

, A. Horv�ath

4

, M. Sereno

3

, M. Telek

4

1

Dipartimento di Scienze e Tecnologie Avanzate, Universit�a del Piemonte Orientale, Alessandria, Italy

2

Lucent Technologies, Bell Laboratories, Murray Hill, NJ, USA

3

Dipartimento di Informatica, Universit�a di Torino, Italy

4

H��rad�astechnikai Tansz�ek, Budapesti M}uszaki Egyetem, Budapest, Hungary

Abstract

In this paper, we present a Fluid Stochastic Petri Net (FSPN) based model which captures the

behavior of aging software systems with checkpointing, rejuvenation and self-restoration, three well

known techniques of software fault tolerance. The proposed FSPN based modeling framework is

novel in many aspects. First, the FSPN formalism itself, as proposed in [24], is extended by adding

ush-out arcs. Second, the three techniques are simultaneously captured in a single model for the

�rst time. Third, the formalism enables modeling dependencies of the three techniques on various

system features such as failure, load and time in the same framework. Further, our base FSPN model

can be viewed as a generalization of most previous models in the literature. To demonstrate, we

present a set of FSPNs which are simple modi�cations of the base model. These represent software

systems with checkpointing only, rejuvenation only and checkpointing and rejuvenation. We show

that these FSPNs can not only mimic previously published models but can also extend them. For

one FSPN model, we present numerical results to illustrate their usage in deriving measures of

interest.

Keywords: Fluid Stochastic Petri Nets, System Aging, Rejuvenation, Checkpointing, Rollback Re-

covery.

1 Introduction

It is now well established that outages in computer systems are caused more due to software faults than

due to hardware faults [22, 33]. Therefore, to build reliable systems, it is imperative to improve the

reliability of software during the design, code development as well as the execution phase. Increasing the

testing time proportionately increases development costs but provides only marginal gains. Moreover,

it is well known that regardless of testing e�ort, large software always contains some residual bugs.

Therefore, improving the execution reliability of software via cost-e�ective fault-tolerance techniques

is becoming an attractive alternative.

One such technique called software rejuvenation, �rst proposed by Huang et al. in [25], is devised

to tolerate a speci�c subset of software faults. These faults result in a steady accrual of error conditions

in the internal state and/or the external operating environment of the executing software. The phe-

nomenon is called software aging [25]. E�ects of aging manifest as failures which may be observed as

just performance degradation (for instance reduction in the service rate of a database server), fail-stop

behavior (such as an application hang or a crash), or abnormal termination (such as erroneous output

of a simulation). Memory leaks, unreleased object references, faulty pointer handling and roundo�

errors are some typical examples of software faults which result in aging during software execution.

Numerous real-life examples, evincing the widespread existence of aging in software systems ranging

from popular desktop operating systems and applications to life and mission critical systems can be

found in the literature. Interested reader is referred to [17] for a comprehensive list. Garg et al. [18]

have shown the evidence of aging in general purpose UNIX systems via statistical time series analysis of

1

resource usage data. Software rejuvenation was originally de�ned as \preemptive rollback of a running

process to a clean state" and simply involved restarting a process after some cleanup. Several examples

of the use of rejuvenation in real systems may be found in [21, 23, 25, 30, 34].

Checkpointing, which involves saving the execution state of a program, along with transaction

logging, is another well known fault tolerance technique used primarily to reduce the recovery time after

failures. In this sense, it is complementary to the failure masking property of redundancy techniques

and the failure avoidance property of software rejuvenation. Naturally, combining checkpointing with

rejuvenation, as proposed in [10, 13] yields greater bene�ts.

As mentioned earlier, the concept of rejuvenation was proposed originally to simply mean process

restart which results in down time. However, at times, the system may undergo a procedure which

does not involve down time yet changes the degraded state to a more cleaner one. This self-restoration

only causes a performance overhead but no downtime. Well known examples include online garbage

collection such as in emacs or Java Virtual Machine (JVM), transaction logging and data backup and

archiving.

A typical example where rejuvenation, checkpointing and restoration are used together is a database

server. The database state is checkpointed to limit the size of \redo" logs and to reduce the recovery

time after a failure. The database server process is occasionally restarted (rejuvenated), possibly on

another machine to counteract aging. This planned outage not only prevents unplanned crashes, which

might occur during periods of high load but also restores the service rate. Moreover, administrators

occasionally cleanup the disk to free more space for the logs. The latter self restoration does not

interrupt the service, yet counteracts aging by providing extra resources.

Rejuvenation implies that the system experiences downtime equal to the time it takes to cleanup

and restart the software. However, once performed, the probability of an unplanned failure of the

software is reduced. Taking checkpoints also implies that the software is unavailable for the duration

it takes to complete a checkpoint. On the other hand, it saves the work executed so far thereby

eliminating the need to reexecute it after a failure. Similarly, self-restoration, although it does not

result in down time, the software experiences performance degradation for the duration. Therefore,

an important issue in the use of these techniques is to evaluate the tradeo� of their bene�t against

the overhead they cause and determine when and how often checkpointing, rejuvenation or restoration

should be initiated. Analytical modeling has been used to address this issue. We now briey describe

previous research work in modeling.

1.1 Previous Work in Modeling Checkpointing and Rejuvenation

In [15], Markov regenerative stochastic Petri net (MRSPN) formalism is used to model a software

system with rejuvenation. Aging is modeled simply by a two-stage Hypo-exponential failure and no

performance e�ects of aging are taken into account. The underlying Markov Regenerative Process

with a periodic rejuvenation policy is solved to compute the availability and to determine the optimal

\period" for initiating rejuvenation. Garg et al. [17] use a Non-homogeneous Continuous Time Markov

Chain (NHCTMC) to model the behavior of a transactions based software system. The model allows

generally distributed time to failure as well as its dependence on load and time, both current as well as

cumulative. It also allows the service rate to be dependent on time and load factors. The NHCTMC

is solved numerically to yield availability, throughput, probability of loss and an upper bound on the

mean response time of transactions. Additional models towards evaluating the e�ectiveness of software

rejuvenation can be found in [16, 31, 34]. A di�erent system model is discussed in [5] which assumes

that the degradation level of the system can be observed at prede�ned observation instances and

rejuvenation is initiated based on the observed degradation level, rather than at periodic intervals.

In the past two decades there have been a number of papers which evaluate the fundamental

tradeo� of reduction in recovery time and the checkpoint overhead itself and determine the optimal

checkpoint interval in di�erent software systems. In [7, 11, 27, 28, 32], systems with a �nite failure free

completion time are modeled in which checkpointing is used to either minimize the expected completion

time or maximize the probability that the software completes execution within a certain deadline. In

[6, 19, 20, 29], long running server software systems which employ checkpointing are modeled. The

2

measures of interest in this case include availability, throughput and response time.

Expected completion time of a programwith a �nite mission time is computed in [13]. The stochastic

model allows generally distributed time to failure and combines checkpointing, with rejuvenation.

Performance degradation is not captured and under periodic rejuvenation and checkpointing policies,

corresponding optimal intervals are determined.

In this paper, we apply the Fluid Stochastic Petri Net (FSPN) modeling formalism to analyze

degrading (aging) software systems which employ rejuvenation and checkpointing. In the literature,

there are several variations of Fluid Stochastic Petri Nets (FSPNs). In some cases this formalism has

been used for deriving analytical solutions [24, 35, 36], others use simulation as a solution methods

for FSPNs [2, 3, 9]. The FSPN formalism proposed in [24], extends the original proposal of [35], by

allowing the uid level in continuous places to a�ect the �ring rate of the timed transitions and the

rates of uid ow into and out of continuous places. In that paper the rates of the timed transitions

and the uid ows are \deterministic" functions of the FSPN state (discrete and continuous). This

formalism is referred to as \�rst order FSPNs". In [36], the continuous places are �lled and drained

at random (normally distributed) rate and this formalism is referred to as \second order FSPNs". In

this paper we extend the formalism of \�rst order" FSPNs by introducing ush-out arcs

1

. These arcs

connect continuous places to transitions, and describe the capability of a transition to ush out all

existing uid from a continuous place when it �res.

The FSPN framework proposed here coupled with the use of appropriate measures enables us to

capture the dynamic behavior of the software. Our contributions in this paper include the following.

� The model presented in this paper captures rejuvenation, aging/degradation, checkpointing and

self-restoration along with interdependencies in a combined general FSPN model.

� To capture these dynamics, we also enhance the FSPN modeling framework, as proposed by

Horton et al. in [24] to include ushing of uid places. That formalism allows for only draining

the uid out of a place at �nite rate and discrete jumps in uid levels are not possible to be

modeled.

� FSPN model for a server system which employs both rejuvenation and checkpointing.

� The FSPN modeling framework which allows to capture realistic scenarios such as failure during

any special operational phase (checkpointing, self restoration), and a combined system of check-

pointing and rejuvenation, where checkpointing does not necessarily result in a system renewal.

Most of the previous modeling work is limited in one or more of these aspects.

� Numerical analysis techniques for FSPNs with ush-out arcs and the de�nition of some perfor-

mance measures have been included in the paper. This demonstrates that the proposed FSPN

formalism is useful towards evaluating performance measures for systems with aging, rejuvena-

tion, and checkpointing.

The rest of the paper is organized as follows. In Section 2, we introduce the FSPN modeling formalism

and describe how it extends the existing ones. Section 3 consists of the description of the overall

model. We also present the combined FSPN model which captures the dynamics of degradation,

rejuvenation, self-restoration and checkpointing in this section. Our intent is to show that the extended

FSPN formalism is capable of capturing the multiple fault tolerance mechanisms in a single model

and therefore previous papers which attempt to model only a subset of these mechanisms are simply

special cases of this general model. In Section 4, we present such special cases and relate them to

speci�c previous modeling research. We also present the FSPN model of a server software which

employs checkpointing and rejuvenation and constitutes a contribution. Section 5 consists of numerical

experiments to illustrate the use of FSPN models and �nally we close in Section 6 with conclusions

and pointers to future work.

1

Adding ush-out arcs results in non-conformance to the real physical property of uids; that they can be pumped

and drained only at a �nite rate making uid level a continuous function in time. Nevertheless we still use the name and

the concepts of FSPNs to be consistent with the previous literature.

3

2 Fluid Stochastic Nets

1

In this paper, we apply the FSPN formalism to model systems which employ rejuvenation and check-

pointing and then we present the FSPN formalism necessary to this aim, that represents an extension

of the one proposed by Horton et al. in [24].

We de�ne FSPN as a 7-tuple hP ; T ;M

0

;A; F;W;Ri, where P is the set of places partitioned into

set of discrete places P

d

=

�

p

1

; : : : ; p

jP

d

j

	

, and the set of continuous places P

c

=

�

c

1

; : : : ; c

jP

c

j

	

. The

discrete places may contain tokens (the number of tokens in a discrete place is a natural number),

while the marking of continuous places is a non negative real number. In the graphical representation,

a discrete place is drawn as a single circle while a continuous place is drawn with two concentric circles.

The set of transitions T is partitioned into the set of timed transitions T

e

and the set of immediate

transitions T

i

. We denote the timed transitions with uppercase letters and the immediate transitions

with lowercase letters.

The state (marking) of an FSPN is described by a vector M = (m;x), where the vector m is the

marking of the discrete places and and the vector x represents the uid levels in the continuous places.

We use S to denote the set of all possible states (m;x). The initial state of the FSPN is denoted by

M

0

.

The set of arcs A is partitioned into four subsets A

d

, A

c

, A

h

, and A

f

. The subset A

d

contains

the discrete arcs which can be seen as the function A

d

: ((P

d

� T) [(T � P

d

))! IN. The arcs A

d

are

drawn as single arrows. The subset A

h

contains the inhibitor arcs, A

h

: (P

d

� T)! IN. These arcs are

drawn with a small circle at the end. A

c

is a subset of (P

c

� T

e

) [(T

e

� P

c

) and represents the set of

continuous arcs. In the graphical form, arcs in A

c

are drawn as double arrows to suggest a pipe. The

subset A

f

: (P

c

� T

e

) contains the ush-out arcs. These arcs connect continuous places to transitions,

and describe the capability of a transition to ush out all existing uid from a continuous place when

it �res. This is an extension to the FSPN formalism proposed in [24] in which such discrete jumps in

the uid level are not allowed. The dynamics of a real system, such as loss of queued jobs in a server or

work done, require this extension for modeling purposes. In other words, the previous FSPN formalism

is insu�cient to model such behavior. In the graphical representation, arcs in A

f

are drawn as thick

single arrows.

The rules that de�ne when a transition is enabled, are the same as the usual ones, de�ned in [1], i.e.,

the enabling conditions depend only on the discrete part of the FSPN. From this it follows that uid

and ush-out arcs does not change the enabling conditions of a transition because they act only the

continuous part of the marking.

In our formalism, an enabled transition T

j

2 T

e

may drain uid out of its continuous input places, and

may pump uid into its continuous output places at a �nite rate. The rates of ow may be dependent

on the discrete as well as the continuous part of the state M = (m;x).

The �ring rate function F is de�ned for timed transitions T

e

so that F : T

e

� S ! IR

+

. Therefore

a timed transition T

j

enabled in a marking m (discrete part of M = (m;x)), �res at rate F

j

(M),

allowing the �ring rates to be dependent on the discrete and/or the continuous marking.

The weight function W is de�ned for immediate transitions T

i

such that W : T

i

! IR

+

. Thus if an

immediate transition t

i

is enabled in a (vanishing) markingm (restricted only to the discrete marking

because the immediate transitions do not dependent on the continuous part of the marking), it �res

with probability W (t

i

)=

P

t

j

enabled in m

W (t

j

):

In order to describe the evolution of the continuous part of the marking, we need to introduce the

semantic of the continuous arcs A

c

. Each continuous arcs that connects a uid place c

l

2 P

c

to an

enabled timed transition T

j

2 T

j

, causes a \change" in the uid level of place c

l

. The absolute rate of

this change is determined by the value of a function R, called ow rate function. This is a function

of both the arc and the state such that R : A

c

� S ! IR

+

[f0g. We assume that R is continuous on

the uid component of the marking. The sign of R is positive if the arc is directed toward the uid

place (i.e. (T

j

; c

l

)), and negative if it is directed toward the transition (i.e. (c

l

; T

j

)). Let M(�) be

the marking process and X

l

(�) be the uid level of place c

l

at time � . If no ush out occurs, and no

1

The formalism used in this paper is applied for di�erent purposes in an ongoing work of some of the authors.

4

boundary is reached (i.e., there are no empty uid places), then:

dX

l

(�)

d�

= r

l

(M(�)) =

X

T

j

enabled inM(�)

R

j;l

(M(�))�

X

T

j

enabled inM(�)

R

l;j

(M(�)): (1)

The function r

l

(M(�)) in Equation (1) represents the total rate of uid change in state M(�). If a

transition T

j

�res at time � , and it is connected to a uid place c

l

with a ush out arc (i.e., (c

l

; T

j

) 2 A

f

),

or a boundary is reached when r

l

(M(�)) is negative (i.e., X

l

(�) = 0 and r

l

(M(�)) < 0), then:

X

l

(�) = 0:

It must be pointed out that in some previous uid formalism (see for instance [12]) r

l

(M(�)), can be

a piecewise continuous on the uid component of the marking. In this paper we provide equations and

solutions technique only when R is continuous on the uid component of the marking.

2.1 Performance measures de�ned on a FPSN

Previous work on FSPNs was mainly concentrated on the analytical or simulative description of the

dynamic of the system. Little attention has been paid to the modeling power of the formalism and to

the investigation of the meaning of the performance measures that can be obtained from the analysis

of the model. Here, we attempt to classify the set of performance measures which can be associated

with FSPN models. The limit of the modeling abilities of FSPNs is still an open research area.

It can be said, in general, that the set of performance measures that can be evaluated from a FSPN

encompasses the set of those that can be evaluated in discrete SPN models. In fact, in addition, we

can de�ne new measures that are speci�cally related to the uid (or continuous) part of the net. We

can refer to the measures connected to the discrete part of the FSPN as discrete performance measures

and to those connected to the continuous part as continuous performance measures.

Moreover, discrete performance measures can still be classi�ed as discrete state measures (when

the measure refers to the probability of occurrence of some condition on the discrete markings) and

throughput measures (when the measure refers to the passage of tokens through the net or to the

number of �rings of a transition). Similarly, continuous performance measures can be classi�ed as uid

state measures and ow measures. Flow measures can be considered as the continuous counterpart of

discrete throughput measures. The rate of ow through a uid arc is the counterpart of the throughput

of a discrete arc connected to a timed transition while the rate of ow through a ush-out arc is the

counterpart of the throughput of an arc connected to an immediate transition. Since in FSPNs, the

�ring rate of a timed transition may depend both on the discrete and the continuous component of the

marking, the �ring time may be any generally distributed random variable, and the meaning and the

evaluation of the throughput measures are more complex than in the Markovian SPN models.

A very elegant and unifying way to de�ne and to compute both kinds of performance measures

in discrete SPNs is by means of the concept of reward [4, 8]. In FSPN, the ow rate assigned to a

continuous arc may, as well, be interpreted as a reward rate that can be dependent on the discrete and

the continuous component of the marking. In this view, uid places are structural elements whose uid

level represents the accumulation of the reward as a function of the time. Hence, in FSPN the reward

is directly associated with the graphical representation of the model allowing to describe and evaluate

all the reward measures in a natural way at the level of the graphical representation without using any

additional speci�cation (as in discrete SPN).

Furthermore, reward measures can be de�ned at a given time instant, in steady state (if it exists) or

over a time interval. In Markov Reward Models, like those generated from Discrete SPNs, the reward

measures that can be evaluated at the same cost of the solution of the standard Markov equation, are

the expected instantaneous reward measures (either at a given time instant or in steady state) or the

expected accumulated reward measures [4]. The majority of the packages dealing with SPNs restricts

the evaluation of signi�cant measures to the expected reward measures mentioned above.

5

The evaluation of the cdf of the reward accumulated over a �nite time interval requires a considerable

increase in the computational e�ort and is usually not o�ered in SPN packages. On the contrary, FSPNs

allow to de�ne these distribution measures within the default structural speci�cations and to evaluate

them with the default modeling abilities. As an example, the cdf of the reward accumulated over a

time interval can be evaluated as the distribution of the uid level at a properly de�ned uid place.

Moreover, in order to evaluate the distribution of the completion time or response time of a task on

a server, a suitable absorbing condition must be structurally de�ned on the FSPN, so that the above

distribution can be computed as the probability of absorption in a structural element of the FSPN (an

example of such a construction is given in Section 4.3).

3 System description

We consider a software system which exhibits aging/degradation in two ways.

Soft failure: The system performance decreases due to system degradation. An example is increased

paging activity by the kernel due to locked memory resources which results in a reduction in e�ective

CPU cycles. The user perceived e�ect may include less total work done per unit time, reduction in the

service rate of a server etc.

Hard failure: The probability of the occurrence of a crash failure (failure rate) increases with time due

to system degradation. The software becomes unavailable resulting in no work being done. Aging may

result in soft, hard or both kinds of failures although one may be more noticeable than the other.

To counteract the e�ect of aging, software rejuvenation is used, whereas, to prevent the loss of work,

checkpointing with rollback recovery is employed. In addition, the system may have complementary

restoration capability which reduces the \age" (degradation level) without making the software un-

available.

We present an FSPN model of such a software system in which all the three are coexistent, which,

to the best of our knowledge, have not been coexistent together before. We now list the processes,

which together capture the dynamics of the software system and allow us via the FSPN formalism to

evaluate various measures of interest. The FSPN model, shown in Figure 1, will be explained in the

sequel.

� Degradation. The degradation process, which models aging, is modeled by a continuous quantity

which may depend on the number of jobs currently in the server queue. We assume that the

software system is a server which serves customers arriving according to a Poisson process. The

degradation may also simply depend on the time the software witnessed a renewal event (crash

or rejuvenation) or it may depend on the total amount of work completed since the last renewal

event. Our model can capture each of these dependencies.

� Rejuvenation. We assume that the decision of performing a rejuvenation may depend on the

degradation level and on the time spent since last renewal event. It is natural to assume that a

rejuvenation always forces a checkpoint otherwise work already done since the last checkpoint is

lost.

� Work. A continuous quantity, simply captures the work done by the system. An example is the

total CPU cycles used by the server. This work is occasionally saved with a checkpoint. If a

crash occurs the work done by the system not saved yet is lost.

� Time, also a continuous quantity is needed to keep track of the time spent since the last check-

point, crash or rejuvenation occurred and is needed to model dependencies as well as to calculate

measures of interest.

� Checkpoint. When a checkpoint occurs the work done by the system not saved yet is saved. A

crash can occur during a checkpoint, in this case the work not saved by a previous checkpoint is

lost.

6

� Crash. When the system crashes the work done by the system not saved yet by a checkpoint is

lost. A crash is a renewal event, i.e., it resets the degradation level of the system.

� Self Restoration. We assume that the self restoration capability of the software, when in progress,

continually decreases the degradation level.

� Workload. This is used to represent the service behavior of the system. The service time may

depend on the degradation level and on the number of customers in the system. We assume that

the number of customers that can be accepted by the system is limited by a �nite bu�er size.

When the bu�er is full, during a crash or a rejuvenation the arrival process is stopped. On the

other hand the service stops during checkpoints, rejuvenations, and crashes.

The repair after a crash failure and rejuvenation is assumed to renew the system, i.e., the system is

restored to the \as good as new" state. Crash failure may induce a loss of customers in the system and

the performed work since the last checkpoint. We now proceed to describe the FSPN model, shown in

Figure 1, which captures the above aspects together. In Section 4, we will present special cases of this

model which capture a subset of these aspects in more details.

3.1 An FSPN for model of the considered system

T1r

c R 1,1 (m)

c1

Degradation

p2 p3

r

T3

F2 (x1,x3)

T2

a

c

Rejuvenation

x1

Work

R 4,2 (m,x1)

T4

1

c2 c3
x3

x2 x2

Time

T5

1

c4
x4

x4

p11 p10

Self Restoration

F14 (m,x1)

T14

T15

F15 (m,x1)

t13

p6

T8

F8 (x1,x3)

Crash

r

p7

t11

p9

p8

T9

t12
c

a

R 1,15 (m,x1)

x1

x1

x4

x3

x2

h
x3 x4

p4 p5

h

T6

F6 (x2,x4)

T7

Checkpoint

r

c

t10

x2

ch r
ch r

Workload

p1

m

T17

T16

F17 (m,x1)

k

r c

ch r

Figure 1: FSPN model of a server system with rejuvenation and checkpoints and self-restoration

Table 1 maps the labels on the transitions and on the places of the FSPN of Figure 1 to the processes

described earlier. In order to make the net representation clearer, we have denoted some inhibitor arcs

with a triangle and a label which implies that there are inhibitor arcs from place to transitions having

the same label.

� We start by describing the subnet labeled Degradation. The continuous marking of place c

1

,

i.e., x

1

is a measure of the degradation level of the system. Transition T

1

pumps uid in place

c

1

and represents the increasing of the system degradation. The ow rate at which the uid is

pumped in place c

1

can depend on the (discrete) marking of place p

1

that represents the number

of customers in the system (e.g, R

1;1

(m)). If we need to represent a degradation process that

7

Transictions Activities

T

1

Increase of degradation level

T

2

Beginning of a rejuvenation (preceded by a forced checkpoint)

T

3

End of a rejuvenation

T

4

Increase of work and the time spent since last renewal event

T

5

Increasing of the time spent since last checkpoint

T

6

Beginning of a checkpoint (independent of a rejuvenation)

T

7

End of a checkpoint

T

8

Occurrence of a crash

T

9

Recovery from a crash

t

10

Crash during a checkpoint

t

11

Crash independent of a checkpoint

t

12

Crash independent of self restoration

t

13

Crash during a self restoration

T

14

Beginning of a self restoration

T

15

End of a self restoration

T

16

Arrival of customers to the system

T

17

Service of customers

Fluid Place Meaning

c

1

Degradation level (continuous marking denoted by x

1

)

c

2

Work not saved yet (continuous marking denoted by x

2

)

c

3

Time spent since last renewal event (continuous marking denoted by x

3

)

c

4

Time spent since last checkpoint (continuous marking denoted by x

4

)

Table 1: Description of the FSPN of Figure 1

depends on the time since last renewal event (rejuvenation or crash) we de�ne the ow rate at

which the uid is pumped in place c

1

as R

1;1

(m; x

3

) (where x

3

is the continuous marking of place

c

3

and represents the time since last renewal event). We can also express a non-linear degradation

processes by making the ow rate at which the uid is pumped in place c

1

function of x

1

itself

(e.g., R

1;1

(x

1

)). dependent on x

1

itself.

� The subnet labeled Rejuvenation represents the rejuvenation events. In the initial marking, place

p

2

contains 1 token and p

3

no tokens. Transition T

2

represents the beginning of a rejuvenation,

and its �ring rate F

2

(x

1

; x

3

) may depend on the degradation level of the system (x

1

) and on the

time since last renewal event (x

3

). We assume that when the system performs a rejuvenation, a

checkpoint is forced. The vice versa is not true, i.e., a checkpoint does not imply a rejuvenation.

When T

2

�res (a rejuvenation begins) the token in place p

2

is moved in place p

3

and places c

1

,

c

2

, c

3

, and c

4

are ushed out (thick arcs from these places to transition T

2

). In this manner the

�ring of T

2

resets the level of degradation of the system, the work not saved yet, the time since

last renewal event, and the time since last checkpoint to zero. Transition T

3

represents the time

required to complete a rejuvenation. When the system is performing a rejuvenation (token in

place p

3

) the following transitions are disabled: T

1

, T

4

, T

5

, T

6

, T

8

and T

16

. This is obtained with

inhibitor arcs with label r. The meaning is that while the system is rejuvenating all the jobs and

timers are stopped and the system is as good as new at the end of the rejuvenation. Moreover

neither a checkpoint (since rejuvenation is already a checkpoint) nor a crash (since its occurrence

can be included in transition T

3

that models the time spent by the system in this state) can

occur.

� The subnet labeled Work describes the accumulation of the work done by the system. Transition

T

4

pumps uid in places c

2

and c

3

with rate R

4;2

(m; x

1

) and 1 respectively. The uid level of

c

2

represents the work of the system not saved yet by a checkpoint, while the uid level of c

3

represents the time since last renewal event (i.e., crash or rejuvenation). The rate R

4;2

(m; x

1

) at

which T

4

pumps uid in c

2

may be dependent on the degradation level of the system (continuous

marking x

1

) and on the number of customers in the system (discrete marking m). In this way,

we can express \soft failures" and system load dependency. Place c

2

is ushed out by the �ring

of transitions T

2

(checkpoint forced by a rejuvenation), T

7

(execution of a checkpoint without

rejuvenation), and T

8

(occurrence of a crash). Transition T

4

is disabled when the system is

performing a rejuvenation or a checkpoint, or when a crash occurs. This is obtained with the

inhibitor arcs labeled c, h, and r. Place c

3

is ushed out by �ring of transitions that represents

the occurrence of a renewal event, i.e., rejuvenation or crash.

8

� The subnet labeled Time describes the time spent since the last checkpoint. The continuous

marking of place c

4

(denoted by x

4

) represents this quantity. Place c

4

is ushed out by the �ring

of a transition that represents the occurrence of one of the following events: rejuvenation (and

checkpoint forced), checkpoint, and crash. The inhibitor arcs on transition T

5

represent that the

time is stopped when either a checkpoint, rejuvenation or crash recovery is in progress.

� The subnet labeled Checkpoint describes the occurrence of a checkpoint independent of a rejuve-

nation. Transition T

6

represents the beginning of a checkpoint, the �ring time F

6

(x

2

; x

4

) of this

transition may depend on the quantities x

2

and x

4

that are the markings of place c

2

and c

4

. This

means that the occurrence of a checkpoint may depend on the quantity of work executed and

not saved by a checkpoint yet, and by the time since the last checkpoint. The �ring of T

6

ushes

out place c

4

while T

7

ushes out place c

2

. With these actions we represent the fact that the

beginning of a checkpoint resets the time spent since the last checkpoint, while the completion

of the checkpoint saves the work not saved yet. In this manner we can model the occurrence

of a crash during a checkpoint. If a crash occurs (token in place p

6

) after the beginning of a

checkpoint (token in place p

5

), transition T

7

cannot �re because it is enabled in conict with the

immediate transition t

10

. The �ring of t

10

puts the token in place p

4

. Place c

2

is not ushed

out by transition T

7

that represents the saving of the work not saved yet, but it is ushed out

by transition T

8

that represents the lost of this work. The inhibitor arcs on transition T

6

inhibit

the occurrence of a checkpoint independent of a rejuvenation during a rejuvenation or when a

crash occurs. When the system is performing a checkpoint (token in place p

5

) the occurrence of

a rejuvenation is inhibited (label h on place p

5

and on transition T

2

).

� The subnet labeled Crash describes the crash event. Transition T

8

represents the occurrence

of the crash. The �ring time F

8

(x

1

; x

2

) of this transition may depend on the degradation level

(x

1

) and on the time spent since last renewal event (x

3

). The immediate transitions t

10

and t

11

,

enabled in mutual exclusion, model the situation when a crash occurs during a checkpoint phase

(t

10

). The immediate transitions t

12

and t

13

, enabled in mutual exclusion, model the situation

when a crash occurs during a self restoration phase (t

13

). The occurrence of a crash resets the

degradation level (place c

1

), the level of work not saved yet (place c

2

), the time spent since last

renewal event (place c

3

), and the time spent since last checkpoint (place c

4

). The inhibitor arc

from place p

3

to transition T

8

inhibits the occurrence of a crash during a rejuvenation.

� The subnet labeled Self Restoration describes some self adjusting capability of the system. This

can be seen as a light rejuvenation, i.e., a partial restoration that does not prevent the normal

behavior of the system. With this subsystem we can model for example a garbage collector.

Transition T

14

represents the beginning of this partial restoration. The �ring rate of T

14

F

14

(m; x

1

)

may depend on the number of customers within the system and on the degradation level. During

the self restoration phase (token in p

10

) a crash can occur (�ring of T

8

followed by the �ring of

t

11

), but the occurrence of a rejuvenation is inhibited (inhibitor arc from place p

10

to transition

T

2

). The duration of the self restoration phase, modeled by transition T

15

, may depend on the

level of degradation and on the number of customers in the system.

� The subnet labeled Workload models the arrival of customers in the system (�ring of transition

T

16

) that require service (�ring of transition T

17

). The service time may be dependent on the

degradation level and on the number of customers in the system. The arrival of customers

is inhibited when the bu�er is full, i.e., there are k customers in the system (inhibitor arc with

multiplicity k from place p

1

to transition T

16

), when a crash or a rejuvenation occur (inhibitor arcs

with labels c and r on transition T

16

). On the other hand the service stops during a checkpoint,

a crash, and a rejuvenation (inhibitor arcs with labels h, c, and r on transition T

17

).

3.2 Performance measures

In this section, we propose some interesting performance measures for the FSPN of Figure 1, according

to the taxonomy proposed in Section 2.1, and we discuss how to evaluate them.

9

Examples of discrete state measures are, for instance, the point or the steady state availability

(probability that the system is working at a given time instant or in steady-state) or the interval

availability (the expected fraction of time in the interval [0; �) in which the system is working). From

the FSPN of Figure 1, these measures can be obtained by summing up the probability of the markings

whose discrete component carries a token in places p

2

, p

4

, and p

9

. Further, let us denote by P

loss

the

long run probability that an arriving customer will be lost. P

loss

can be computed by observing that

the considered event can happen for two di�erent reasons: i)- the system is not available due to a

rejuvenation (no tokens in place p

2

) or a crash (no tokens in place p

9

); ii) - the bu�er is full (k tokens

in place p

1

).

The expected response time of a customer, T

res

can be de�ned as the expected time that a customer

spends in the system, and can be evaluated from a combination of a discrete state measure and a

throughput measure. Indeed, applying the Little's law, T

res

can be obtained by computing the average

number of tokens in place p

1

and the throughput of transition T

17

. If the �ring rate of T

17

is marking

independent, or it depends on the discrete part of the marking only, this measure can be computed

by standard techniques. If, instead, the �ring rate of T

17

depends on the continuous component of the

marking, the underlying marking process is no more a Markov chain, but computation of T

res

can still

be obtained in the FSPN formalism with a reasonable e�ort (computation of the probability of the

complete markings).

Another measure which can be evaluated based on discrete state measures is the completion time,

i.e., the time needed to complete a given amount of work. It will be shown in Section 4, that introducing

a little modi�cation to the FSPN of Figure 1, we can compute the expected value and the cdf of the

completion time. The possibility of evaluating the cdf of the completion time enables us to evaluate

other related performance measures such as the probability of completing a task by a given deadline

which is a fundamental performance characterization for real-time systems. This last result represents

an improvement with respect to the measures that can be computed using the approach described in

[13].

The set of continuous performance indices that can be computed for systems with rejuvenation

and checkpointing is based on measures that are related to the continuous component of the FSPN.

In the proposed formalism, it is possible to compute the ow rates along uid arcs, the ow rates

along ush-out arcs and the service rates of timed transitions with �ring rates dependent from both

the discrete and the continuous component of the marking. An examples for these measures can be

represented by the portion of \useful" work done with respect to the total work performed by the

system. This measure can be obtained by computing the ow rate along ush-out arcs (as it will be

shown extensively in Section 5).

4 FSPN models of special systems

In Section 3 a general system model is presented which captures the e�ect of checkpointing self restora-

tion and rejuvenation at the same time. Some details speci�c to a particular system, however, is not

captured in the model of Figure 1 to keep it at reasonable complexity. In this section we provide

detailed models of degrading systems where only a subset of these fault tolerance schemes are applied.

At the same time we indicate how the introduced models can capture the systems discussed in the

previous literature.

4.1 System with checkpointing and rollback recovery only

A FSPN model of a system with checkpointing and rollback recovery is depicted in Figure 2. Note that

the crash subnet of this model is more detailed than the crash subnet of original FSPN in Figure 1.

In the case of a crash failure (T

8

�res), a token reaches p

7

and system repair starts. When the

repair completes (�ring of transition T

12

) the rollback recovery phase starts whose time depends on the

amount of logged transactions since the last checkpoint (uid level of c

2

).

Common assumptions of some papers dealing with checkpointing are that the system fails at a constant

10

T12

Work

R 4,2 (m)

T4

1

c2 c3
x3x2

Time

T5

1

c4
x4

x4

p6

T8

F8 (x3)

Crash

p7

t11

p9

p8

T9

c

x4x3
x2

x2

x4

p4 p5

h

T6

F6 (x2,x4)

T7

Checkpoint

c

t10

x2

F9 (x2)

ch
ch

Workload

p1

m

T17

T16

F17 (m)

c

ch

k
t18

Figure 2: FSPN modeling a system with only checkpointing

rate (exponentially distributed failure time), and that the system renews after every checkpoint. This

case can be captured by eliminating T

5

and c

4

, and the associated arcs from Figure 2.

As long as the system failures were mainly caused by hardware failures the exponential failure time

assumption was widely accepted. When the software problems become dominant in system failures

the exponential failure time assumption was relaxed. Some models still assumed system renewal at

checkpoints [11], while some others assumed that system degradation is accumulated till the occurrence

of a crash failure [20]. Due to the independent \clocks" at c

3

and c

4

, the FSPN model in Figure 2 can

capture both assumptions because the time spent since the last checkpoint and the time spent since

the last system failure are represented by the markings of c

4

and c

3

respectively.

General failure time distributions (including exponential) can be captured in our model by assigning

appropriate rate function, F

8

(�) to the transition T

8

. The renewal of the failure process at checkpoint

can be captured by making F

8

(�) a function of the uid level in c

4

, which represents the time spent

since the last checkpoint. Moreover, by making F

8

(�) a function of uid level in c

3

(which represents the

time spent since the crash) the failure process may be assumed to renew only upon a crash. In other

words, degradation continues through checkpointing. In some cases the real system behavior is better

captured assuming that the failure rate is a function of the work done since the last checkpoint. For

instance, no degradation might occur if the CPU is idle. This case can be easily captured by making

the transition rate of T

8

dependent on the uid level in c

2

.

Another common assumption in previous models, for the sake of analytical tractability, is that

failures do not occur during checkpointing. The FSPN model in Figure 2 allows failures to occur

during checkpointing which is closer to the real behavior.

4.2 System with only rejuvenation

Rejuvenation is used primarily to reduce the e�ect of aging, which results in an increasing (crash)

failure rate [25]. Di�erent time to failure distributions (Hyper-exponential in [25]) and rejuvenation

intervals (exponentially distributed in [25], deterministic in [15]) have been considered. The FSPN in

Figure 3 captures these models by assigning appropriate transition rate functions F

8

(�) and F

2

(�) to

the transition T

8

and T

2

, respectively.

11

T1r

c 1

c1

Degradation

p2 p3

r

T3

F2 (x1)

T2

c

Rejuvenation

x1

x1

x1

c

T8

F8 (x1)
rp9

T9

p6

Crash

Figure 3: FSPN modeling a system with only rejuvenation

In [14, 16, 17] the system was assumed to be a long running server software prone to only crash

failures and which serves randomly arriving customers. In these systems, rejuvenations and crash

failures ush out the customers from the system. Moreover, any customer arriving during recovery

or rejuvenation is also lost. Therefore, the number of lost customers becomes a performance measure

of interest to determine and to optimize. Two policies were proposed to minimize the number of lost

customers. Policies which adopted equidistant rejuvenation intervals independent of the number of

customers in the system at the beginning of rejuvenation are referred to as time dependent policies.

The FSPN in Figure 4 captures the time dependent rejuvenation policy when the service rate of

transition T

2

is independent of m (marking of place p

1

) but dependent on the uid level of place c

1

(F

2

(x

1

)). In case of a crash failure or a rejuvenation the customers are ushed out from the system

by the immediate transitions t

18

and t

19

respectively. The probability that a customer is lost may be

reduced by initiating rejuvenation only when the system is empty in addition to a periodic interval.

The rejuvenation policies which takes into account the number of customers in the system are referred

to as time and load dependent policies. A simple time and load dependent policy was studied in [14]

which uses two thresholds to control rejuvenation. Rejuvenation is initiated (T

2

�res) as soon as the

�rst threshold expired and there is no customer in the system (p

1

is empty, and t

21

�res), or when

the second threshold expires. This behavior is captured by appropriate F

2

(m; x

1

). In our model, soft

failures, i.e., the degradation in system performance, can be additionally considered by making the

service rate, transition T

17

, depend on the degradation level of the system.

A system with only soft failures (performance degradation) and rejuvenation is studied in [31] and

an optimal rejuvenation policy based on the number of customers in the system and known service rate

function is proposed. This behavior can be obtained by eliminating the Crash subnet from Figure 4,

where the dependence of the system performance on the degradation level is described by the transition

rate F

17

(m; x

1

) which depends on the uid level in c

1

.

Finally, the combined e�ect of increasing (crash) failure rate and decreasing system performance

was considered in [17] and The FSPN in Figure 4 mimics this model where system aging is captured

by F

8

(x

1

) (hard failure) and F

17

(m; x

1

) (soft failure).

4.3 System with Checkpointing and Rejuvenation

From the above discussion, it is clear that a periodic renewal of aging systems can increase their

performance with respect to some performance measures. It is also straightforward that the state of

continuously running servers has to be saved before rejuvenation, i.e., a checkpoint has to be made

12

T1r

c 1

c1

Degradation

F2 (m,x1)

T2

Rejuvenation

x1

x1

x1

T8

F8 (x1)
rp9

Crash

c

c

p6

T9

p2 p3

r

T3

Workload

p1

T17

T16

F17 (m,x1)

t18

k
t19

m

rc

r c

Figure 4: FSPN modeling a system with only rejuvenation and the external process

before rejuvenating the system. In [13], a software with a �nite failure free completion time is modeled

and it is shown that additional performance gain can be obtained, i.e., the expected completion time

can be further reduced if the system state is saved more frequently than it is rejuvenated. The system

can be modeled via our FSPN framework as well and is shown in Figure 5. In addition, our model

allows for failures to occur while checkpointing is in progress. This aspect is captured by immediate

transitions t

10

, t

11

and places p

6

and p

5

along with associated input, output and inhibitor arcs. In

addition, the FSPN in Figure 5 may be used to compute not only the average completion time but also

the distribution of the completion time. The latter enables us to evaluate other performance measures

such as the probability of completion by a given deadline which is relevant to real time systems. The

subnets labeled Total work and Completion (together) model the �nite failure free work needed to be

completed by the software. Firing of transition T

14

, controlled by the marking, x

5

of place c

5

denotes

completion. Note that the rollback recovery time, determined by the �ring rate of transition T

9

is a

function of the marking x

2

of place c

2

, which represents the work lost due to this failure.

It is natural to think of using checkpointing along with rejuvenation to enhance the availability

and increase the throughput of a long running server software as well. This combination has not been

modeled in any of the previous work and is easily obtained from the general FSPN model of Figure 1

by eliminating the part of self restoration and adding speci�c details to the external process. Figure 6

depicts the FSPN model.

As before, crash failures can occur during checkpointing which results in the loss of work as indicated

by the marking x

2

. The time since last rejuvenation or checkpointing, indicated by the marking x

4

is

used to model the time dependence of checkpointing or rejuvenation policy by making the transition

rates of T

2

and T

6

dependent on x

4

. In addition, rejuvenation is initiated either when the system is

empty or when a �xed interval expires. This is obtained with the rate dependence of transition T

5

, this

transition may �re when a given degradation level is reached and the system is empty (dependency

on m and x

1

) or when a �xed interval expires (dependency on x

4

). This behavior, similarly to the

one explained for the FSPN of Figure 4, is captured by a proper setting of F

2

(m; x

1

; x

4

). All jobs are

ushed from the queue if either T

2

�res (rejuvenation) or if the transition T

8

�res (crash). Moreover,

we assume that the service process (transition T

17

) stops during checkpointing. However, arrival is not

inhibited and jobs continue to be queued. Crash or rejuvenation, on the other hand inhibit both arrival

as well as service processes. Typical measures of interest are availability of the server (probability of

markings with one token in places p

2

, p

4

, and p

9

), throughput of the system (throughput transition of

T

17

), useful work performed by the system (this can be computed by with the ratio between the sum

13

T12

p6

T8

F8 (x1)

p7

t11

p9

p8

T9 F9 (x2)

T1r

c 1

c1

Degradation

p2 p3

r

T3

F2 (x1,x2)

T2

c

Rejuvenation

x1

Work since last rejuvenation,
crash, and checkpoint

x2

x4

p6

Crash

t11

x1

x1

x4

h

p4 p5

h

T6

F6 (x2,x4)

T7

Checkpoint

r

c

t10

x2

R 4,2 (x1)

c2
x2

T4

Time

T5

1

c4
x4

x4

ch r
ch r

r

cc

Total work

T13

c5
x5

ch r

p11

p10

T14

R 13,5 (x1)

F14 (x5)

x5

Completion

Figure 5: Modeling �nite mission time system with rejuvenation and checkpointing

the ow rates of the ush-out arc connecting place c

2

to transition T

2

and transition T

7

and the total

ow rate that exits form place c

2

), etc.

5 Numerical Experiments

In this section, numerical results are derived for the net of Figure 7. We point out that these results,

and also the technique to obtain them, are included to show how some performance measures can be

obtained from a given FSPN. The net of Figure 7 models a system with checkpointing and rejuvenation.

When the system performs a rejuvenation a checkpoint is forced, on the other hand a checkpoint does

not imply a rejuvenation.

The rate of degradation is constant, R

11

= 1, while the rate at which the work is accumulated depends

on the degradation level (R

4;2

(x

1

)). The �ring rates of the transitions associated with rejuvenation

and crash failure (T

2

and T

8

, respectively) also depend on the degradation level (F

2

(x

1

), F

8

(x

1

)). The

�ring of transition T

6

represents the beginning of a checkpoint and depends on the accumulated work

and the time elapsed since the last checkpoint (F

6

(x

2

; x

4

)). The �ring rates of timed transition T

3

, T

7

,

and T

9

are constant and denoted by �, , and �, respectively.

In the following, we present the state equations describing the evolution of the marking process

and some additional equations for the evaluation of speci�c performance measures. The analytical

description of ow measures of FSPN models were not discussed previously in the literature, hence it

can be considered as a contribution of this paper.

The four tangible (discrete) markings of the net are as follows: m

0

= fp

2

; p

4

; p

9

g denotes the working

state (Normal) state of the system, m

1

= fp

3

; p

4

; p

9

g is the marking in which the system performs re-

juvenation (Rejuvenation), m

2

= fp

2

; p

5

; p

9

g is the checkpointing state (Checkpoint), m

3

= fp

2

; p

4

; p

8

g

denotes the system state reached when a crash failure occurs (Crash). To describe the probability of a

given marking (m;x) we will derive the appropriate density functions. In m

0

all the uid levels may

be nonzero:

�

0

(�;x

1

;x

2

;x

4

)= lim

�

1

;�

2

;�

3

!0

Pr(m(�)=m

0

;X

1

(�)2 (x

1

;x

1

+�

1

); X

2

(�)2 (x

2

;x

2

+�

2

);X

4

(�)2 (x

4

;x

4

+�

3

))

�

1

�

2

�

3

;

14

T12

p6

T8

F8 (x1,x4)

p7

t11

p9

p8

T9 F9 (x2)

T1r

c

c1

Degradation
p2

p3

r

T3

F2 (m,x1,x4)

T2

c

Rejuvenation

x1

Work

x2

x4

p6

Crash

t11

x2

x1

x4

h

p4 p5

h

T6

F6 (x4)

T7

Checkpoint

r

c

t10

x2

R 4,2 (m,x1)

c2
x2

T4

Time

T5

1

c4
x4

x4

ch r
ch r

r

cc

R 1,1 (m,x1)

Workload

p1

m

T17

T16

F17 (m,x1)

r c

ch r

k

t19 t18

Figure 6: Server Software with checkpointing and rejuvenation

in statem

1

all the uid levels are 0:

�

1

(�) = Pr(m(�) =m

1

);

in statem

2

the degradation level and the accumulated work may be nonzero:

�

2

(�; x

1

; x

2

) = lim

�

1

;�

2

!0

Pr(m(�) =m

2

; X

1

(�) 2 (x

1

; x

1

+�

1

); X

2

(�) 2 (x

2

; x

2

+ �

2

))

�

1

�

2

;

in m

3

all the uid levels are 0:

�

3

(�) = Pr(m(�) =m

3

):

Using the above notations the evolution of the process is described by the following partial di�erential

equations (the equations may be derived using a generalization of the method presented in [24] and

[26]):

@�

0

(�; x

1

; x

2

; x

4

)

@�

+

@�

0

(�; x

1

; x

2

; x

4

)

@x

1

+

@(�

0

(�; x

1

; x

2

; x

4

)R

4;2

(x

1

))

@x

2

+

@�

0

(�; x

1

; x

2

; x

4

)

@x

4

= ��

0

(�; x

1

; x

2

; x

4

) [F

2

(x

1

) + F

6

(x

2

; x

4

) + F

8

(x

1

)]

@�

1

(�)

@�

= ���

1

(�) +

Z

1

0

Z

1

0

Z

1

0

�

0

(�; x

1

; x

2

; x

4

)F

2

(x

1

)dx

1

dx

2

dx

4

@�

2

(�; x

1

; x

2

)

@�

+

@�

2

(�; x

1

; x

2

)

@x

1

= � (+ F

8

(x

1

))�

2

(�; x

1

; x

2

) +

Z

1

0

�

0

(�; x

1

; x

2

; x

4

)F

6

(x

2

; x

4

)dx

4

@�

3

(�)

@�

= ���

3

(�) +

Z

1

0

Z

1

0

"

Z

1

0

�

0

(�; x

1

; x

2

; x

4

)dx

4

+ �

2

(�; x

1

; x

2

)

#

F

8

(x

1

)dx

1

dx

2

;

with initial conditions

�

0

(�; 0; 0; 0) = ��

1

(�) + ��

3

(�)

�

0

(�; x

1

; 0; 0) =

Z

1

0

�

2

(�; x

1

; x

2

)dx

2

:

15

T1r

c 1

c1

Degradation

p2 p3

r

T3

F2 (x1)

T2

c

Rejuvenation

x1

Work

x2

x4

p6

T8

F8 (x1)

Crash

r

t11

p9

p8

T9

x1

x1

x4

x2

h

p4 p5

h

T6

F6 (x2,x4)

T7

Checkpoint

r

c

t10

x2

c

R 4,2 (x1)

c2
x2

T4

Time

T5

1

c4
x4

x4

ch r
ch r

Figure 7: FSPN modeling a system with rejuvenations and checkpoints

In the discrete marking m

0

the di�erence of the uid levels of c

1

and c

4

(i.e., x

1

� x

4

) is the

degradation level at which the last checkpoint was taken, since R

11

= R

54

= 1. The last ush out of

the uid of c

2

occurred at that degradation level, and the uid is �lled to c

2

at rate R

42

(m; x

1

) from

degradation level x

1

� x

4

to x

1

, i.e.:

x

2

=

Z

x

1

x

1

�x

4

R

4;2

(x) dx :

Hence, in the discrete marking m

0

, the uid levels are dependent, and any two of them determine the

third one based on this relation. Using the function x

4

= a(x

1

; x

2

) that determines x

4

based on the

uid levels x

1

and x

2

and the notation �

0

0

(�; x

1

; x

2

) = �

0

(�; x

1

; x

2

; a(x

1

; x

2

)); the di�erential equations

simplify to the following form:

@�

0

0

(�; x

1

; x

2

)

@�

+

@�

0

0

(�; x

1

; x

2

)

@x

1

+

@(�

0

0

(�; x

1

; x

2

)R

4;2

(x

1

))

@x

2

= ��

0

0

(�; x

1

; x

2

) [F

2

(x

1

) + F

6

(x

2

; a(x

1

; x

2

)) + F

8

(x

1

)]

@�

1

(�)

@�

= ���

1

(�) +

Z

1

0

Z

1

0

�

0

0

(�; x

1

; x

2

)F

2

(x

1

)dx

1

dx

2

@�

2

(�; x

1

; x

2

)

@�

+

@�

2

(�; x

1

; x

2

)

@x

1

= � (+ F

8

(x

1

))�

2

(�; x

1

; x

2

) + �

0

0

(�; x

1

; x

2

)F

6

(x

2

; a(x

1

; x

2

))

@�

3

(�)

@�

= ���

3

(�) +

Z

1

0

Z

1

0

h

�

0

0

(�; x

1

; x

2

) + �

2

(�; x

1

; x

2

)

i

F

8

(x

1

)dx

1

dx

2

;

and the initial conditions are

�

0

0

(�; 0; 0) = ��

1

(�) + ��

3

(�)

�

0

0

(�; x

1

; 0) =

Z

1

0

�

2

(�; x

1

; x

2

)dx

2

:

The probabilities of the discrete markings are obtained by integrating the densities

Pr(m(�)=m

0

)=

Z

1

0

Z

1

0

�

0

0

(�; x

1

; x

2

)dx

1

dx

2

; and Pr(m(�)=m

2

)=

Z

1

0

Z

1

0

�

2

(�; x

1

; x

2

)dx

1

dx

2

:

16

To compute the average rate C(�) at which work is checkpointed at time � we have to take into account

both the checkpoints caused by rejuvenation and those occurring independently of a rejuvenation. It

may be expressed as:

C(�) =

Z

1

0

Z

1

0

x

2

(�

2

(�; x

1

; x

2

) + �

0

0

(�; x

1

; x

2

) F

2

(x

1

)) dx

1

dx

2

:

From which we have that the average checkpointed work until a given time � is W

c

(�) =

R

�

0

C(�)d� .

In a similar way, the average rate at which work is lost due to a crash failure is:

L(�) =

Z

1

0

Z

1

0

x

2

�

0

0

(�; x

1

; x

2

) F

8

(x

1

)dx

1

dx

2

;

and the average work lost until � is: W

l

(�) =

R

�

0

L(�)d� .

An interesting performance measure of the system which is obtained as a ow measure is the ratio

of the average checkpointed work and the average work done by the system (i.e., the sum of work

checkpointed and lost until time �). E�ciency may be computed as

E(�) =

W

c

(�)

W

c

(�) +W

l

(�)

(2)

The set of parameters used in the calculations are the following:

� The work-rate is given by

R

4;2

(x

1

) =

(

r

max

� (r

max

� r

min

)

x

1

�

min

x

1

< �

min

r

min

x

1

� �

min

So that the work-rate is linearly decreasing until �

min

, and after this level of degradation remains

constant. In our example r

max

= 10, r

min

= 0:5, �

min

= 480.

� The �ring rate of the transition T

6

associated with the checkpointing is

F

6

(x

2

; x

4

) = �(x

2

� �

work

) + �(x

4

� �

time

);

where �(x � �) is the Dirac-impulse at time � . As a result checkpoint occurs if the level of

accumulated work reaches �

work

or the time elapsed since the last checkpoint is �

time

. The

example will be evaluated for di�erent values of �

work

. The parameter �

time

is equal to 120.

� The �ring rate of transition T

2

is F

2

(x

1

) = �(x

1

� �

rej

), i.e., rejuvenation is initiated at a degra-

dation level �

rej

. The example will be evaluated for di�erent values of �

rej

.

� The Weibull hazard function is used for the �ring rate F

8

(x

1

) with shape parameter � = 2 and

scale parameter � = 2� 10

�6

. So that the �ring rate of T

8

is a linear function of the degradation

level F

8

(x

1

) = � � x

1

.

� The rates of the exponential transitions are � = 1=6, = 1 and � = 1=60.

Equidistant discretization was applied for the calculations (the time and uid levels are discretized

using the same step size). The correctness of the discretization method was veri�ed by comparing the

discretization results with the results given by a simulator. Both the simulator and the discretization

algorithm were speci�cally implemented for this example and not for a general FSPN. The result given

by discretization and the simulator are satisfactorily close to each other.

Figures 8, 9, and 10 show the probabilities of the discrete markings over two time scales for the follow-

ing 3 sets of parameters: case A: �

work

= 200 and �

rej

= 200, case B: �

work

= 200 and �

rej

= 400,

case C: �

work

= 400 and �

rej

= 400. The frequent small impulses are associated with checkpointing,

while the rare larger impulses represent rejuvenation. The impulses are getting wider and smother as

17

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

P
r.

time

Normal
Rejuv.

Checkp.
Crash

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

P
r.

time

Normal
Rejuv.

Checkp.
Crash

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000
time

Normal
Rejuv.

Checkp.
Crash

Figure 8: Probabilities of markings in case A

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

P
r.

time

Normal
Rejuv.

Checkp.
Crash

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

P
r.

time

Normal
Rejuv.

Checkp.
Crash

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000
time

Normal
Rejuv.

Checkp.
Crash

Figure 9: Probabilities of markings in case B

time elapses due to the exponentially distributed events while the system undergoes checkpointing and

rejuvenation.

Figure 11 shows the e�ciency, as de�ned in (2), of the 3 cases as a function of time. E�ciency is 0

before the �rst checkpoint by de�nition. As it can be seen in Figure 11, the e�ciency is a performance

parameter which does not capture satisfactorily all important consequences of checkpointing and re-

juvenation. Based on the de�nition in (2), the more often the system is checkpointed or rejuvenated

the better its e�ciency is. The most important shortcoming of the e�ciency measure is that it does

not consider the time while the system is unavailable. Better performance measures, like the ratio of

the (interval average or steady state) performance over the maximum performance level (R

42

(0)) can

be evaluated based on the FSPN model. The considered e�ciency measure was selected as a simple

measure to demonstrate the new features of the proposed FSPN formalism.

6 Conclusions and future works

In this paper, we extend the current FSPN formalism with ush-out arcs which enable the uid in

a place to be instantaneously removed. We presented a fairly general Fluid stochastic Petri net,

which uses this extension, to model systems with rejuvenation, restoration and checkpointing. We

also presented several specialized FSPNs, derived from the general FSPN to model systems with only

checkpointing, only rejuvenation and with checkpointing as well as rejuvenation. The last combination,

used for server type software systems was not considered before in the literature and our FSPN model

18

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

P
r.

time

Normal
Rejuv.

Checkp.
Crash

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

P
r.

time

Normal
Rejuv.

Checkp.
Crash

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000
time

Normal
Rejuv.

Checkp.
Crash

Figure 10: Probabilities of markings in case C

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0 100 200 300 400 500

E
ffi

ci
en

cy

time

A
B
C

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0 100 200 300 400 500

E
ffi

ci
en

cy

time

A
B
C

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0 500 1000 1500 2000 2500
time

A
B
C

Figure 11: E�ciency

19

constitutes a novel contribution. The intent in presenting several special models was twofold. First

we wanted to show that it is indeed possible to capture the e�ects of checkpointing, restoration and

rejuvenation as well as any combination of one or more schemes using the extended FSPN formalism.

Second we wanted to show that models previously reported in the literature for such systems can be

cast in the proposed FSPN framework. Moreover, some of the assumptions made in these models can

be generalized and still be captured in our FSPN framework. We also showed that the FSPN formalism

is e�ective, in the sense that it can be solved using numerical and/or simulation techniques to obtain

state probabilities and to derive measures of interest.

However, in order to make FSPNs to be a viable modeling formalism, several issues remain to be

addressed. First, extensions which allow discrete, random jumps in the uid level of a continuous place

need to be incorporated in addition to the jump-to-zero of the uid level, provided by the ush-out

arcs. This would raise issues about the stability of the underlying stochastic process. Therefore, for

the extended formalism to be theoretically sound, precise necessary/su�ciency conditions for stability

need to be determined. An orthogonal need is in the availability of robust software tools which can

solve an FSPN model via numerical or simulation techniques.

References

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with

Generalized Stochastic Petri Nets. John Wiley & Sons, 1995.

[2] H. Alla and R. David. Autonomous and Timed Continuous Petri Nets. Lecture Notes in Computer

Science; Advances in Petri Nets 1993, 674:71{90, 1993.

[3] H. Alla and R. David. Continuous and Hybrid Petri Nets. Journal of Systems Circuits and

Computers, 8(1), Feb 1998. Special issue on Petri Nets.

[4] A. Bobbio, A. Pulia�to, M. Telek, and K. S. Trivedi. Recent Developments in Non-Markovian

Stochastic Petri Nets. Journal of Systems Circuits and Computers, 8(1):119{158, Feb 1998.

[5] A. Bobbio and M. Sereno. Fine Grained Software Rejuvenation Models. In Proc. 3-th International

Computer Performance & Dependability Symposium (IPDS '98), pages 4{12, Durham, North

Carolina, USA, September 1998. IEEE Comp. Soc. Press.

[6] R. V. Campos and E. de Sousa e Silva. Availability and performance evaluation of database

systems under periodic checkpoints. In Proc. of the 25th IEEE Intnl. Symposium on Fault Tolerant

Computing (FTCS), pages 269{277, Pasadena, California, 1995.

[7] P. F. Chimento and K. S. Trivedi. The Completion Time of Programs on Processors Subject to

Failure and Repair. IEEE Transactions on Computers, 42(10):1184{1194, October 1993.

[8] G. Ciardo, J. K. Muppala, and K. S. Trivedi. On the solution of GSPN reward models. Performance

Evaluation, 12(4):237{253, 1991.

[9] G. Ciardo, D. M. Nicol, and K. S. Trivedi. Discrete-event Simulation of Fluid Stochastic Petri

Nets. In Proc. 7th Int. Workshop on Petri Nets and Performance Models (PNPM'97), pages

217{225, Saint Malo, France, June 1997. IEEE Comp. Soc. Press.

[10] E. G. Co�man and E. N. Gilbert. Optimal strategies for scheduling checkpoints and preventive

maintenance. IEEE Transactions on Reliability, 39(1):9{18, April 1990.

[11] A. Duda. The e�ects of checkpointing on program execution time. Information Processing Letters,

16:221{229, 1983.

[12] A. I. Elwalid and D. Mitra. Statistical Multiplexing with Loss Priorities in Rate-Based Conges-

tion Control of High-Speed Networks. IEEE Transaction on Communications, 42(11):2989{3002,

November 1994.

20

[13] S. Garg, Y. Huang, C. Kintala, and K. S. Trivedi. Minimizing completion time of a program

by checkpoint and rejuvenation. In Proc. 1996 ACM SIGMETRICS Conference, pages 252{261,

Philadelphia, PA, May 1996.

[14] S. Garg, A. Pfening, A. Pulia�to, M. Telek, and K. S. Trivedi. Modeling and analysis of load

and time dependent software rejuvenation policies. In Proceedings 3-rd International Workshop

on Performability Modeling of Computer and Communication Systems (PMCCS3), pages 35{39,

Bloomingdale, IL, Sep 1996.

[15] S. Garg, A. Pulia�to, M. Telek, and K. S. Trivedi. Analysis of software rejuvenation using Markov

regenerative stochastic Petri net. In Proc. of 6

th

Int. Symposium on Software Reliability Engineer-

ing (ISSRE95), Toulouse, France, October 1995.

[16] S. Garg, A. Pulia�to, M. Telek, and K. S. Trivedi. On the analysis of software rejuvenation policies.

In Proc. 12th Annual Conference on Computer Assurance (COMPASS), Gaitersburg, MD, June

16-20 1997.

[17] S. Garg, A. Pulia�to, M. Telek, and K. S. Trivedi. Analysis of preventive maintenance in trans-

action based software systems. IEEE Trans. on Computers, 47(1):96{107, 1998. Special issue on

Dependability of Computing Systems.

[18] S. Garg, A. van Moorsel, K. S. Trivedi, and K. Vaidyanathan. A methodology for detection and

estimation of software aging. In Proc. of the Ninth International Symposium on Software Reliability

Engineering, pages 282{292, Paderborn, Germany, November 4-7 1998.

[19] E. Gelenbe. On the optimum checkpointing interval. Journal of ACM, 2(27):259{270, April 1979.

[20] E. Gelenbe and M. Hernandez. Optimum checkpoints with age dependent failures. Acta Infor-

matica, 27:519{531, 1990.

[21] J. Gray. Why do computers stop and what can be done about it? In Proc. of 5th Symp. on

Reliability in Distributed Software and Database Systems, pages 3{12, January 1986.

[22] J. Gray and D. P. Siewiorek. High-availability computer systems. IEEE Computer, pages 39{48,

September 1991.

[23] B. O. A. Grey. Making SDI software reliable through fault-tolerant techniques. Defense Electronics,

pages 77{80,85{86, August 1987.

[24] G. Horton, V. G. Kulkarni, D. M. Nicol, and K. S. Trivedi. Fluid stochastic Petri Nets: Theory,

Application, and Solution Techniques. European Journal of Operations Research, 105(1):184{201,

Feb 1998.

[25] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. Software rejuvenation: Analysis, module

and applications. In Proc. of 25

th

Int. Symposium on Fault-Tolerance Computing (FTCS-25),

Pasadena, CA, USA, June 1995.

[26] R. J. Karandikar and V. G. Kulkarni. Second-Order Fluid Flow Models: Reected Brownian

Motion in a Random Environment. Operations Research, 43(1):77{88, 1995.

[27] V. G. Kulkarni, V. F. Nicola, and K. S. Trivedi. The completion time of a job on multi-mode

systems. Advances in Applied Probability, 19:491{496, December 1987.

[28] V. G. Kulkarni, V. F. Nicola, and K. S. Trivedi. E�ects of checkpointing and queuing on program

performance. Communications on Statistics- Stochastic Models, 6(4):615{648, 1990.

[29] P. Lecuyer and J. Malenfant. Computing optimal checkpointing strategies for rollback and recovery

systems. IEEE Transactions on Computers, C-37(4):491{496, April 1988.

21

[30] E. Marshall. Fatal error: how Patriot overlooked a Scud. Science, 13:1347, March 1992.

[31] A. Pfening, S. Garg, A. Pulia�to, M. Telek, and K. S. Trivedi. Optimal rejuvenation for tolerating

soft failures. Performance Evaluation, 27 & 28:491{506, October 1996.

[32] K. G. Shin, T. Lin, and Y. Lee. Optimal checkpointing of real-time tasks. IEEE Transactions on

Computers, C-36(11), November 1987.

[33] M. Sullivan and R. Chillarege. Software defects and their impact on system availability - a study

of �eld failures in operating systems. In Proc. 21st IEEE Intnl. Symposium on Fault-Tolerant

Computing, pages 2{9, 1991.

[34] A. T. Tai, S. N. Chau, L. Alkalaj, and H. Hecht. On-board preventive maintenace: analysis

of e�ectiveness and optimal duty period. In Proc. of 3rd Intnl. Worskshop on Object-oriented

Real-time Dependable Systems, Newport Beach, California, February 1997.

[35] K. Trivedi and V. Kulkarni. FSPNs: Fluid Stochastic Petri nets. In Application and Theory of

Petri Nets 1993, Proc. 14

th

Intern. Conference, LNCS, Chicago, USA, June 1993. Springer Verlag.

[36] K. Wolter. Second order uid stochastic petri nets: an extension of gspns for approximate and con-

tinuous modelling. In Proc. of World Congress on System Simulation, pages 328{332, Singapore,

Sep 1997.

22

