
A tool support for automatic analysis based on thetagged customer approach

Levente Bodrog, Ǵabor Horv́ath, Śandor Ŕacz, Miklós Telek
Technical University of Budapest, 1521 Budapest, Hungary

e-mail:{bodrog,hgabor,raczs,telek }@webspn.hit.bme.hu

Abstract

The analysis of performance models based on thetagged
customer approachis composed by two main steps. The first
one is the stationary analysis of a Markov chain and the
second one is the transient analysis of another Markov (re-
ward) model whose initial distribution is derived from the
result of the first step. To the best of our knowledge none
of the existing performance analysis tools allow the auto-
matic evaluation of these performance models.

This paper presents an extension of the MRMSolve tool
for automatic execution of the two steps procedure. The the-
oretical background of this extension is well established and
the implementation is built mainly on the existing Markov
model analysis functions of MRMSolve, hence the contribu-
tion lies in the availability of the automatic analysis tool.

To demonstrate the modeling abilities and the practical
importance of the new tool we present the MRMSolve mod-
els of [7] and [8]. Based on these MRMSolve models one
can automatically generate the performance measures pre-
sented in [7] and [8].
Keywords: Markov reward models, Numerical analysis,
Tagged customer approach.

1. Introduction

The application of discrete state continuous time Markov
chains for performance analysis of computer and communi-
cation systems has a very long history. At the beginning the
manual description of the Markov model of the system be-
haviour and the associated manual symbolic model analy-
sis was the typical analysis approach. The applied model-
ing and analysis techniques improved a lot since that time.

The widespread use of powerful digital computers al-
lowed the numerical evaluation of larger Markov models.
The error-free manual generation of Markov models of such
size is already too complex for humans. New model de-
scription methodologies were developed to support the au-
tomatic generation of system models. Depending on the typ-
ical application area and the analysis goals a large number
of different model description languages were introduced
(stochastic Petri net [14], stochastic process algebra [10],

queueing network [23], stochastic activity network [21],
etc.) and automatic software tools (GreatSPN [4], UltraSan
[6], SHARPE [20], PEPSY [1], MOSEL [1], QNAT [11],
etc.) were developed to

• interpret the model description,

• automatically generate the low level model,

• calculate the required performance parameters and

• translate them back to the model description context.

A convenient way to define complex performance mea-
sures in a wide range of model description languages is the
use of reward variables. The value of a reward variable de-
pends on the stochastic process through a simple function.
The most common cases are the rate reward accumulation
and the impulse reward accumulation. During the sojourn
in a system state rate reward is accumulated at a constant
rate characterized by the system performance in the par-
ticular state. Impulse reward is accumulated at state transi-
tions of the stochastic process in an initial and final state de-
pendent manner. The reward accumulated according to this
simple function can represent almost all practically impor-
tant performance measures. E.g., it can represent positive
(negative) quantities like served (rejected) customers in a
queueing system, or performed work (accumulated stress).

The majority of the performance analysis tools can per-
form both steady state and transient analysis. An essential
difference between the transient and the steady state analy-
sis is that (in case of ergodic systems) the steady state mea-
sures are independent of the initial system state (it does not
need to be defined), while the transient measures depend on
the initial distribution of the system (hence it has to be de-
fined for transient analysis). In most of the practically im-
portant cases the transient analysis starts from a determinis-
tic initial distribution, i.e., the system starts from a particu-
lar system state (e.g., empty queue, perfect working condi-
tion) with probability 1.

The definition of deterministic initial state distribution is
quite easy in automatic performance analysis tools. Only a
single initial state (in Markov chain based models) or an ini-
tial marking (in Petri net based models) needs to be defined.

The majority of the performance tools are restricted to
the use of deterministic initial distribution or requires the

listing of the potential initial states and the associated initial
probabilities. Exceptions are, e.g., SPNP [5], METFAC2
[3]. This limitation practically inhibits the definition of ini-
tial distributions with a large number of potential initial
states.

One of the practically important exceptions to determin-
istic initial distribution comes from the use of tagged cus-
tomer approach. In this two steps analysis method the initial
condition of atagged customeris characterized first and the
transient performance parameters of the tagged customer
are analyzed next. The initial distribution of the second step
contains all system states which are reachable at the arrival
of the tagged customer. For larger systems it is infeasible to
calculate the initial distribution without automatic tool sup-
port. This paper presents a performance analysis tool for the
automatic analysis based on the tagged customer approach.
Another practically important case with non-deterministic
initial distribution is the consecutive transient analysis at
time t1, t2, . . . such that the initial distribution used for the
analysis of the interval(ti, ti+1) is the transient distribution
at timeti.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the tagged customer approach. Section 3
presents the proposed description language for automatic
analysis of this approach and Section 4 discusses the fea-
tures of the MRMSolve tool that implements the auto-
matic analysis. Two application examples from the field of
telecommunication demonstrate the practical use and the
automatic analysis of the tagged customer approach. The
first one evaluates the throughput of elastic streams in a
multi-service environment in Section 5 and the second one
analyzes the performance of peer-to-peer (P2P) file transfer
in Section 6. Some concluding remarks are given in Sec-
tion 7.

2. Tagged customer approach

In the middle of the twentieth century the detailed analy-
sis of basic queueing systems resulted in several effective
intuitive explanations of their behaviour such as the concept
of flow balance, the role of utilization, the PASTA prop-
erty and the tagged customer approach [1]. According to
the tagged customer approach, an ergodic queueing system
can be analyzed by studying a single customer, referred to
as tagged customer, that enters the system according to an
initial distribution representing the state of the system just
after a customer arrival. Indeed, it is just an application of
the law of total probability. The required performance mea-
sure is calculated conditioned on the number of customer in
the system at customer arrival. The introduction of Markov
arrival processes extended the applicability of this approach
to more complex arrival processes [12], where the condition

is the number of customer in the system and the “phase” of
the modulating Markov chain.

This concept was successfully applied for the analysis of
queueing systems and networks, e.g., in [13, 16, 15]. In the
mean time the evolution of stochastic modeling and auto-
matic performance analysis of complex systems allow for
the description and the evaluation of more complex systems
with automatic performance analysis tools. This evolution
resulted in the generalization of the tagged customer ap-
proach as well:

• General arrival pattern:
The PASTA property describes the distribution of sys-
tem state at an arrival instant of a homogeneous Pois-
son process. Unfortunately, the arrival processes of
practically interesting systems are often non-Poisson
and the distribution of the system state seen by a cus-
tomer of a state dependent arrival processes is more
complex to evaluate. State dependent arrival patterns
characterize several practical systems. State depen-
dency might be a result of finite population, load con-
trol, service differentiation, etc. Another recently typ-
ical reason for state dependent arrival processes is the
widespread use of Markovian arrival process (MAP)
models [12].

• Conditional measures of the tagged customer:
Several performance measures of customers behaviour
can be evaluated without using the tagged customer
approach (e.g., the mean waiting time), but there are
complex measures that cannot be extracted from the
Markov chain describing the overall system behaviour.
An example of this kind of complex measures is the
conditional analysis of customers behaviour according
to the following scenario. Consider a system with cus-
tomer arrivals and departures. The performance mea-
sure of interest is the reward accumulated by a given
customer during the interval(0, t) supposing that the
customer is in the system at timet. A convenient way
to evaluate this kind of performance measures is to ap-
ply the tagged customer approach such that the behav-
iour of the tagged customer is analyzed over the(0, t)
interval and the departure of the tagged customer is
prohibited. This approach was applied for the analy-
sis of elastic streams in a multi-service environment in
[2, 7] as it is discussed in the first example.

The initial distribution of the tagged customer is com-
monly given as the stationary distribution of another
Markov chain describing the system without the tagged cus-
tomer. In more complex cases (e.g., in case of state depen-
dent arrival rates) the initial distribution can be defined as
a stationary (reward) measure of the Markov chain describ-
ing the system without the tagged customer.

The sizes of the Markov chains describing the system
with and without the tagged customer are usually differ-
ent. Due to this difference a mapping of the stationary mea-
sures of the first chain to the states of the second one is re-
quired. This mapping is very simple in the classical queue-
ing system examples, but it might be rather general in com-
plex models (e.g., in case of multi-class queueing systems).
The flexibility of this mapping step is indicated in the map-
ping sections of the examples presented below.

3. Model description language of MRMSolve

The model description language of MRMSolve is de-
signed to be a compact and flexible formalism for easy de-
scription of finite, very large and well structured systems.
For the details of this model description language we re-
fer the reader to [18].

The model description consists of sections (see Tables
1, 2). The model constants are defined in theConst sec-
tion, hence a model parameter (like the arrival rate) can be
modified easily without modifying the descriptions of ma-
trices and vectors. Variables are defined in theVar section.
The difference between constants and variables is that only
scalars are allowed on the right hand side of constant dec-
larations, while expressions are also allowed on the right
hand side of variable declarations. Complicated expressions
(functions) can be defined in theCode section.

State space variables are given inState section. Us-
ing more than one state space variable the user can con-
struct models with multi dimensional structure. The decla-
ration of the state variables contains their ranges as well.
The rules in theCondition section determine the valid
combinations of state variables.

The generator matrix and the vectors corresponding to
the model (like the reward rate vector and the initial prob-
ability vector) are described by the rules inVector and
Matrix sections. The vector rule syntax is:

Condition : State = value;

HereState identifies an element of the vector, andvalue
is assigned to this vector element (e.g., reward rate in
State). The optionalCondition is a boolean expres-
sion that can restrict the scope of the rule. The matrix rule
syntax is the following:

Condition : State1 -> State2 = value;

whereState1->State2 identifies the matrix element,
andvalue is assigned to this matrix element. During the
low level model construction phase the interpreter software
generates all possible states, and fills in the vectors and ma-
trices according to the rules with enabled condition.

To support the analysis of models based on the tagged
customer approach, we introduced an extension for the au-
tomatic definition of the initial probability vector. If the

embedded keyword is appended to theVector P0 line
the initial probability vector is computed from the steady
state probabilities of another Markov chain (Markov chain
without the tagged customer). In this case, the mapping
of the steady state probabilities of the Markov chain with-
out the tagged customer and the initial probabilities of the
Markov (reward) model with the tagged customer is pro-
vided in theMapping section. The mapping rules have the
following syntax:

Condition :
State_init -{weight}-> State_rewardmodel;

At the execution of this line, the initial probability of
State rewardmodel of the Markov chain with the
tagged customer is incremented by the product of the sta-
tionary probability ofState init of the Markov chain
without the tagged customer andweight if Condition
is true.

4. The MRMSolve reward model tool

With the continuous development of the MRMSolve
package, we intend to collect, implement and integrate in
a common environment as much computational functional-
ity of Markov reward models as possible. MRMSolve con-
sists of a set of command line tools and a graphical user
interface. The command line tools take the model descrip-
tion as input and provide different performance measures.
The command line tools implement the computationally in-
tensive procedures. These tools are written in C++ to speed
up the computation.

The graphical user interface (Figure 1) is written in Java.
It allows to edit, check and visualize models, to investigate
the effect of model parameters on the reward measure of in-
terest.

Figure 1. MRMSolve 2.0 screenshot

The graphical user interface offers the following model
verification methods:

• syntax check of a selected model,

• show state space (list the states),

• draw state space (using the tools of the Graph Visual-
ization Project (of the ATT Research Lab.) [19]).

The graphical interface provides flexible analysis possi-
bilities for the reward models. The following measures can
be evaluated:

• the distribution of the accumulated reward and of the
completion time (if supported for the model),

• the moments of the accumulated reward and of the
completion time (if supported for the model),

• moment based estimation for the accumulated reward
and for the completion time,

• moment based estimation for the completion time from
the moments of the accumulated reward.

Series of runs can be generated automatically, where the
moments are computed as the function of a model parame-
ter appearing in the ’Const’ section of the model descrip-
tion.

With the built-in diagram editor it is possible to draw and
compare all available analysis results of all opened mod-
els. The tool calls ’gnuplot’ to create the required plots. The
user can set and change the most important plot options,
like the range of the x and y axis, the style of lines, the lin-
ear and logarithmic scaling of the axes, or the position of
the legends. The graphical results can be exported to en-
capsulated postscript files. The standard C++ and Java im-
plementation makes MRMSolve platform independent. We
have installed it on Unix and Windows.

The new functionality of MRMSolve, the support for the
tagged customer approach, is implemented using some ex-
isting elements of MRMSolve (like the stationary analysis
command line tool) and a new feature for mapping the sta-
tionary probabilities to the initial probabilities of another
Markov chain.

5. Analysis of elastic streams in a multi-
service environment

Multi-service systems supporting fixed bandwidth and
elastic flows arise in various telecommunication scenarios.
The analysis of these models appeared in several research
papers [2, 7]. We evaluate a multi-rate system supporting
peak allocated stream and elastic flows based on [7] using
the MRMSolve tool. This model allows us to evaluate sys-
tems where non-adaptive stream traffic with strict QoS re-
quirement, like voice traffic, and rate-adaptive elastic traf-
fic, like packet switched traffic, share a common resource,

e.g., a transmission link. For stream traffic the system guar-
antees the required bandwidth to fulfill the QoS require-
ment using priority over elastic traffic. The elastic flows
use some kind of flow control mechanisms (like TCP) to
adapt their actual bandwidth to the bandwidth left avail-
able by the stream traffic. Figure 2 illustrates the system be-
haviour. During the lifetime of stream flows their required
bandwidths are provided by the system. However, elastic
flows adapt their bandwidth demands to the available band-
width. As Figure 2 shows, if there is enough bandwidth for
the elastic flows they receive their peak bandwidth. If there
is not enough capacity for providing the peak bandwidth for
each elastic flow, then the elastic flows reduce their band-
width uniformly.

stream flows

elastic flo
ws

peak allocated stream flows

rate adaptive elastic flows

� � �
actual bw of

tagged elastic flow

Link capacity

peak bw of tagged

elastic flow

Figure 2. Bandwidth sharing in the multi-
service environment

The performance measure of interest is the throughput of
elastic flows. The throughput of an elastic flow is the trans-
mitted data divided by the length of the transmission. For
example, when an elastic flow transmits1, 000 Kbit dur-
ing 10 sec, then its throughput is100 Kbps. Formally, the
throughput of an elastic flow of lengtht is the integral of its
instantaneous bandwidth function:

Throughput(t) =
1
t

∫ t

0

r(t)beldt

wherebel is the peak bandwidth demand of the elastic flow
andr(t) denotes the compression of elastic flow at timet,
such that, ifr(t) = 1 then elastic flows receive their peak
bandwidths at timet. Throughput(t) is a random variable
and we use the tagged customer approach to study its distri-
bution. We define a Markov reward model whose accumu-
lated reward is identical with Throughput(t).

5.1. Model description

First we introduce the input parameters of the Markov
reward model of the studied system and then precisely for-
malize the system behaviour.

The link of capacityC serves stream and elastic flows
that are characterized as follows:

• Thestreamflows are characterized by their peak band-
width demandbst (b st), flow arrival rateλst (l st)
and the mean length of flowstst (t st).

• Theelasticflows are characterized by their peak band-
width demandbel (b el), minimal bandwidth require-
ment bel

min = rminbel, flow arrival rateλel (l el),
and by the mean of exponentially distributed flow time
when the peak bandwidth is available,tel (t el). rmin

(rmin) is the maximal bandwidth reduction of elastic
flows. The elastic flows experience the ideal condition
when the peak demand is always available throughout
the whole time of flows. If the elastic flow receives
less bandwidth than its peak bandwidth demand then
its length will be longer.

All arrival processes are independent Poisson processes and
both the service times of stream flows and the carried load
of elastic flows are exponentially distributed. The resource
sharing policy is as follows:

• The stream flows always get their peak bandwidths.
The elastic flows are only allowed to use the capac-
ity left by the stream flows.

• The sum of the peak bandwidths of ongoing stream
flows and the minimal bandwidth of ongoing elastic
flows has to be less than or equal to the link capac-
ity.

• If the sum of the peak bandwidth requirements of all
ongoing elastic flows does not exceed the capacity left
by the ongoing stream flows each flow gets its required
peak bandwidth.

• Otherwise, when the link is serving at its total capac-
ity, the remaining bandwidth is shared between indi-
vidual elastic flows equally.

To describe the time evolution of a tagged elastic flow,
we build up a Markov reward model. The reward variable
describes the bandwidth received by the tagged elastic flow.
Table 1 provides the model description used in the MRM-
Solve tool.

A two-dimensional Markov chain describes the behav-
iour of the model while the tagged elastic flow is in the sys-
tem. The pair of numbers of ongoing stream flows (nst) and
ongoing elastic flows (nel) identify a state of the model:

S = {(nst, nel) : nstbst + nelb
min
el ≤ C and nel ≥ 1}

The first condition guarantees the capacity limitation and
the second condition guarantees that the tagged elastic
flow is always present in the model. The firstState and
Condition section formally describes the structure of the
state space.

In state(nst, nel) the bandwidth share of an elastic flow
(including the tagged elastic flow as well) can be calculated
as follows:

b(nst, nel) = min
(

bel,
C − nstbst

nel

)
.

The firstCode section defines this relation.
The state transition intensities are described in the

Matrix Q section. There are four types of transitions:

1. arrival of a stream flow,

2. arrival of an elastic flow,

3. departure of a stream flow and

4. departure of an elastic flow excluding the tagged flow.

The reward assigned to states are described in the
Vector R section. The reward variable describes the
bandwidth received by the tagged elastic flow.

To determine the initial distribution of the Markov re-
ward model we build up another Markov chain. This
Markov chain describes the system behaviour without the
tagged elastic flow. The state space of this Markov chain is

S ′ = {(nst, nel) : nstbst + nelb
min
el ≤ C}

where we do not exclude states where the number of on-
going elastic flow is zero. Right after the tagged customer
arrival the number of elastic flows increases by one. This
translates to the following mapping of the state-spaces:

S ′ → S : (nst, nel)− 1 → (nst, nel + 1)

Thus, we use the steady-state probability of state(nst, nel)
in the first Markov chain as the initial probability of
state(nst, nel + 1) in the second Markov reward model.
The sectionVector P0 embedded specifies the second
Markov chain and the sectionMapping the mapping of the
state-spaces.

5.2. Analysis

The model parameters are provided in the firstConst
paragraph in Table 1. Figure 3a provides the distribution of
the throughput at timet = 1sec, i.e., the amount of data
transmitted in1sec divided by1sec. MRMSolve also pro-
vides upper and lower limits for this measure. The bounds
are derived using the first21 moments of the measure.
These bounds are useful when the computational complex-
ity of direct distribution calculation is infeasible.

Figure 3b shows how the mean value of the through-
put depends on the time. As we can see the throughput is
smaller for largert. The reason of this time dependent be-
haviour of the throughput is that the Markov reward model
does not start from its steady-state distribution.

Markov reward model (MRM) that describes the time evolution
of bandwidth received by the tagged elastic customer
type prs;
Const # System description (Input parameters)

C = 10; # Link capacity [BU]
b_st = 1; # Bandwidth demand of stream flows [BU]
b_el = 2; # Peak bandwidth of elastic flows [BU]
rho_st = 5; # Offered load of stream flows
rho_el = 1.5; # Offered load of elastic flows
log_t_st = 1; # Log of mean length of stream flows [TU]
log_t_el = 1; # Log of (ideal) mean length of elastic flows [TU]
rmin = 0.1; # Maximal allowed compression of elastic flows

Var # Derived parameters
r = 0; # Actual compression of elastic flows
mu_st = 1.0/pow(10,log_t_st); # Departure rate of stream flows
mu_el = 1.0/pow(10,log_t_el); # Ideal departure rate of stream flows
l_st = rho_st * mu_st; # Arrival rate of stream flows
l_el = rho_el * mu_el; # Arrival rate of elastic flows

State # State variables (a two-dimensional state-space)
n_st : 0 To floor(C/b_st); # Number of ongoing stream flows
n_el : 0 To floor(C/(rmin * b_el)); # Number of ongoing elastic flows

Condition # Valid combination of state variables
n_st * b_st+n_el * b_el * rmin <= C; # Capacity limitation
n_el > 0; # Tagged elastic flow is always present in the system

Code # Calculating the compression of elastic flows in the state (n_st,n_el)
r = if(n_el>0,(C-n_st * b_st)/(n_el * b_el),1); # Actual compression of ongoing elastic flows
r = min(1,r); # Compression is always less than or equal to 1

Matrix Q # State transitions
[n_st,n_el]->[n_st+1,n_el] = l_st; # Arrival of a new stream flow
[n_st,n_el]->[n_st,n_el+1] = l_el; # Arrival of a new elastic flow
[n_st,n_el]->[n_st-1,n_el] = n_st * mu_st; # Departure of an ongoing stream flow
[n_st,n_el]->[n_st,n_el-1] = r * (n_el-1) * mu_el; # Departure of an ongoing elastic flow

Vector R # Bandwidth received by the tagged elastic customer
[n_st,n_el] = b_el * r;

Markov chain (MC) whose steady state solution provides
initial distribution of MRM defined above
Vector P0 embedded

Const
C = 10; # Link capacity [BU]
b_st = 1; # Bandwidth demand of stream flows [BU]
b_el = 2; # Peak bandwidth of elastic flows [BU]
rho_st = 5; # Offered load of stream flows
rho_el = 1.5; # Offered load of elastic flows
log_t_st = 1; # Log of mean length of stream flows [TU]
log_t_el = 1; # Log of (ideal) mean length of elastic flows [TU]
rmin = 0.1; # Maximal allowed compression of elastic flows

Var
r = 0; # Actual compression of elastic flows
mu_st = 1.0/pow(10,log_t_st); # Departure rate of stream flows
mu_el = 1.0/pow(10,log_t_el); # Ideal departure rate of stream flows
l_st = rho_st * mu_st; # Arrival rate of stream flows
l_el = rho_el * mu_el; # Arrival rate of elastic flows

State
n_st : 0 To floor(C/b_st); # Number of ongoing stream flows
n_el : 0 To floor(C/(rmin * b_el)); # Number of ongoing elastic flows

Condition
n_st * b_st+n_el * b_el * rmin <= C; # Capacity limitation

Code
r = if(n_el>0,(C-n_st * b_st)/(n_el * b_el),1); # Actual compression of ongoing elastic flows
r = min(1,r); # Compression is always less than or equal to 1

P0generator
[n_st,n_el]->[n_st+1,n_el] = l_st; # Arrival of a new stream flow
[n_st,n_el]->[n_st,n_el+1] = l_el; # Arrival of a new elastic flow
[n_st,n_el]->[n_st-1,n_el] = n_st * mu_st; # Departure of an ongoing stream flow
[n_st,n_el]->[n_st,n_el-1] = r * n_el * mu_el; # Departure of an ongoing elastic flow

Transforming the steady-state distribution of MC to initial distribution of MRM
Mapping

[n_st;n_el]-{1}->[n_st;n_el+1];

Table 1. Model description in the MRMSolve

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

cd
f

Throughput of at time 1sec

cdf
cdf (upper)
cdf (lower)

a) Throughput distribution at timet = 1sec

 1.36

 1.38

 1.4

 1.42

 1.44

 1.46

 1.48

 1.5

 1.52

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t

Time [sec]

1. moment

b) Mean throughput vs time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

cd
f

Throughput

t=1 cdf (upper)
t=1 cdf (lower)

t=100 cdf (upper)
t=100 cdf (lower)

t=10000 cdf (upper)
t=10000 cdf (lower)

c) Upper/lower bounds of the distribution

Figure 3. Throughput of elastic streams in the multiservice environment

Finally, Figure 3c shows the bounds of the throughput
distribution as a function oft. According to our expecta-
tion, for largert the throughput will be more deterministic,
since it gets closer and closer to the stationary throughput.

6. Peer-to-peer example

This example demonstrates the application of the tagged
customer analysis feature of MRMSolve for the perfor-
mance analysis of P2P file sharing. We take the model of
P2P download from [8, 9].

These papers assume that the bottleneck in file transfer
is located either at the client side, or at the server side, but
not in the network backbone. The client and server relation
refers to the direction of the tagged file transfer. The avail-
able bandwidth during the tagged file transfer depends on
how many downloads and uploads proceed in parallel at the
client and the server side. The number of parallel file trans-
fers is changing during the tagged transfer, new request may
arrive and ongoing requests may finish. The system behav-
iour is modeled by a Markov chain, that modulates the avail-
able bandwidth during the tagged file transfer.

The common performance measure of interest in P2P
networks is the distribution of the transfer time. This per-
formance measure was obtained by a fluid stochastic Petri
net in [8]. However, the bandwidth of the tagged flow is
a positive quantity, hence this model can be analyzed by
MRMSolve, such that thecompletion timerepresents the
file transfer time.

6.1. Model Description

Both the client and server side allow only a given num-
ber of file downloads and uploads in parallel. If this limit is
not reached yet, new download or upload requests can ar-
rive according to a Poisson process with parameterλ. The
completion time of a request is approximated by a 2-phase
hyper-exponential distribution.

tagged download

Psd

lambda*wsd

lambda*wcu

Pcu

Pcd

lambda*wcd

lambda*wsu

Psu

downloads

uploads

downloads

uploads

CLIENT SERVER

Figure 4. Model of the peers

The model description is presented by Table 2. The
meaning of the constants is as follows:

• Pcu, Pcd: the maximal number of parallel upload and
download requests at the client side.

• Psu, Psd: the maximal number of parallel upload and
download requests at the server side.

• lambda : the arrival rate of file transfer requests.

• wcd (wcu): the portion of download (upload) request
to the client having a given network connection. This
parameter ensures that the arrival rate to the client
(popularity) is depending on its network connection.

• wsd (wsu): the portion of download (upload) request
to the server having a given network connection.

• mu1, mu2, alpha1 , alpha2 : the parameters of
the hyper-exponential completion time of the back-
ground transfers.mu1, m2are intensities;alpha1 and
alpha2 are the initial probabilities of the distribution
(alpha2 = 1−alpha1).

• modembw, isdn bw, dsl upld , dsl dwld : the
total bandwidth of the given network technology.

The state space is the product of the state space of the
four queues of the model (Figure 4), thus the state variables
in the model are:

• a1 (a2): the number of upload request being in phase
1 (2) in the hyper-exponential service time at the client.
As indicated in theCondition section, the number

of background uploads (a1+a2) plus the tagged trans-
fer must be less than the maximal number of download
requests allowed (Pcu).

• b1 (b2): the number of download request being in
phase 1 (2) in the hyper-exponential service time at
the client. In theCondition section,b1+b2<=Pcu
ensures that the number of background downloads is
bounded byPcd.

• c1 , c2 , d1 , d2 : their meaning is the same asa1 , a2 ,
b1 , b2 , but at the server side.

The section corresponding to the generator matrix
(Matrix Q) describes the behaviour of the 4 independent
M/H2/Pcd/Pcd (Pcu,Psu,Psd, accordingly) queues.

TheVector R section defines the bandwidth available
for the tagged transfer. The ”+1” in the expression corre-
sponds to the tagged customer.

In Vector P0 theembedded keyword means that the
initial state probabilities of the reward model are taken from
the steady state distribution of a Markov chain that is em-
bedded into the model description.

TheMapping section defines how the steady state dis-
tribution of the embedded model is mapped to the initial
probability vector of the reward model. In this example
we compute the steady state distribution of the background
process of the file transfer, therefore the generator of the
embedded model is very similar to the one of the analyzed
model. The difference is that the tagged customer is a nor-
mal customer in the embedded model. The mapping of the
probabilities is such that it does not map probabilities to
states where the tagged customer cannot arrive (thus, when
the download queue of the client or the upload queue of the
server is full).

6.2. Analysis

There are two ways in MRMSolve to evaluate the distri-
bution of the completion time. There is a direct distribution
solver, with 3 selectable algorithms, and there is a moment
based estimation method [22]. Among the 3 direct solution
algorithm only the one by Sericola [17] gave numerically
stable results for this problem. It was slow (1-2 minutes per
point) compared to the moment based estimation (1-2 sec-
onds per point). In this section – where not indicated – all
the plots are generated using the direct solver with the Seri-
cola algorithm. The values of the constants of the model are
taken from [8]. The size of the downloaded file is 4 MB.

In Figure 5a the transfer time distribution of the file is
depicted, where both the client and the server have a 56
kbps modem connection. The plots on the figure compare
the results obtained by the direct distribution solver and the
moment based estimation (using 5 and 17 moments). This
figure demonstrates that the tool offers a choice between

analysis speed and accuracy. With the moment based esti-
mations it is possible to get an initial idea about the shape
of the distribution quickly, before executing the time con-
suming exact distribution solver.

In Figure 5b we investigate the effect of the server side
connection on the transfer times. On the client side an ISDN
connection is assumed (128 kbps), and the server is con-
nected with a modem (56 kbps), ISDN (128 kbps), and
ADSL (256 kbps up). If the server is connected by a mo-
dem, then it will be the bottleneck of the transfer; in the
other two cases the 128 kbps ISDN bandwidth will be
the tightest connection. The DSL performs better because,
while the client side load conditions are the same, the server
side has more bandwidth, and thus will be the bottleneck
less frequently.

Figure 5c depicts the transfer time distribution as the
function of lambda , thus, as the function of the in-
coming transfer request rate. Both the client and the
server have ISDN connection in this example. This means
that the minimum and maximum download times are
the same for alllambda (32000/128 = 250 seconds
and 32000/(128/4) = 1000 seconds). With increas-
ing lambda the probabilities move toward the maximum
download time.

7. Conclusions

The analysis of complex systems based on the tagged
customer approach is theoretically known, but usually
too complex to perform manually. To support this analy-
sis model description languages and associated automatic
analysis tools are required. This paper presents a tool with
this functionality which was not available before according
to the authors knowledge.

The main elements of the analysis of the tagged customer
approach are the mapping of the Markov chain describing
the system without the tagged customer to the one describ-
ing the system with the tagged customer, the definition of
the initial distribution of the second Markov chain based on
the stationary behaviour of the first one, and the construc-
tion of the second Markov chain according to the required
performance measure. The proposed model description and
analysis allows a flexible definition of these main elements.

Two telecommunication examples demonstrate the mod-
eling and analysis abilities of the proposed approach. The
examples are taken from the literature, are described by one-
page description files, and are automatically analyzed by the
MRMSolve tool.

The computational complexity of the analysis is mainly
determined by the applied reward analysis method. Apart
of some very special cases the general automatic analysis
based on MRMSolve has the same complexity as the analy-

type prs;
Const

Pcu=2; # maximal number of parallel client uploads
Pcd=2; # maximal number of parallel client downloads
Psu=2; # maximal number of parallel server uploads
Psd=2; # maximal number of parallel server downloads
wcu=0.4; # portion of upload requests on a client with modem connection
wcd=0.21; # portion of download requests on a client with modem connection
wsu=0.07; # portion of upload requests on a server with isdn connection
wsd=0.07; # portion of download requests on a server with isdn connection
lambda=0.006; mu1=0.001; mu2=0.1; alpha1=0.6; alpha2=0.4;
modem_bw = 56; isdn_bw = 128; dsl_upld = 256; dsl_dwld = 1024;

State
a1 : 0 To Pcu; a2 : 0 To Pcu; b1 : 0 To Pcd; b2 : 0 To Pcd;
c1 : 0 To Psu; c2 : 0 To Psu; d1 : 0 To Psd; d2 : 0 To Psd;

Condition
a1+a2 <= Pcu; b1+b2 <= Pcd-1; c1+c2 <= Psu-1; d1+d2 <= Psd;

Matrix Q
uploads to the client
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1+1,a2,b1,b2,c1,c2,d1,d2] = wcu * lambda * alpha1;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2+1,b1,b2,c1,c2,d1,d2] = wcu * lambda * alpha2;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1-1,a2,b1,b2,c1,c2,d1,d2] = mu1 * a1 ;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2-1,b1,b2,c1,c2,d1,d2] = mu2 * a2 ;
downloads from the client
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1+1,b2,c1,c2,d1,d2] = wcd * lambda * alpha1;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1,b2+1,c1,c2,d1,d2] = wcd * lambda * alpha2;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1-1,b2,c1,c2,d1,d2] = mu1 * b1 ;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1,b2-1,c1,c2,d1,d2] = mu2 * b2 ;
uploads to the server
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1,b2,c1,c2,d1+1,d2] = wsu * lambda * alpha1;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1,b2,c1,c2,d1,d2+1] = wsu * lambda * alpha2;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1,b2,c1,c2,d1-1,d2] = mu1 * d1 ;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1,b2,c1,c2,d1,d2-1] = mu2 * d2 ;
downloads from the server
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1,b2,c1+1,c2,d1,d2] = wsd * lambda * alpha1;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1,b2,c1,c2+1,d1,d2] = wsd * lambda * alpha2;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1,b2,c1-1,c2,d1,d2] = mu1 * c1 ;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1,b2,c1,c2-1,d1,d2] = mu2 * c2 ;

Vector R
client is modem, server is isdn
[a1,a2,b1,b2,c1,c2,d1,d2] = min(modem_bw/(a1+a2+b1+b2+1),isdn_bw/(c1+c2+d1+d2+1));

Vector P0 embedded
Const

Pcu=2; # maximal number of parallel client uploads
Pcd=2; # maximal number of parallel client downloads
Psu=2; # maximal number of parallel server uploads
Psd=2; # maximal number of parallel server downloads
wcu=0.4; # portion of upload requests on a client with modem connection
wcd=0.21; # portion of download requests on a client with modem connection
wsu=0.07; # portion of upload requests on a server with dsl connection
wsd=0.07; # portion of download requests on a server with dsl connection
lambda=0.006; mu1=0.001; mu2=0.1; alpha1=0.6; alpha2=0.4;
modem_bw = 56; isdn_bw = 128; dsl_upld = 256; dsl_dwld = 1024;

State
a1 : 0 To Pcu; a2 : 0 To Pcu; b1 : 0 To Pcd; b2 : 0 To Pcd;
c1 : 0 To Psu; c2 : 0 To Psu; d1 : 0 To Psd; d2 : 0 To Psd;

Condition
a1+a2 <= Pcu; b1+b2 <= Pcd; c1+c2 <= Psu; d1+d2 <= Psd;

P0generator
uploads to the client
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1+1,a2,b1,b2,c1,c2,d1,d2] = wcu * lambda * alpha1;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2+1,b1,b2,c1,c2,d1,d2] = wcu * lambda * alpha2;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1-1,a2,b1,b2,c1,c2,d1,d2] = mu1 * a1 ;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2-1,b1,b2,c1,c2,d1,d2] = mu2 * a2 ;
downloads from the client
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1+1,b2,c1,c2,d1,d2] = wcd * lambda * alpha1;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1,b2+1,c1,c2,d1,d2] = wcd * lambda * alpha2;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1-1,b2,c1,c2,d1,d2] = mu1 * b1 ;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1,b2-1,c1,c2,d1,d2] = mu2 * b2 ;
uploads to the serer
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1,b2,c1,c2,d1+1,d2] = wsu * lambda * alpha1;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1,b2,c1,c2,d1,d2+1] = wsu * lambda * alpha2;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1,b2,c1,c2,d1-1,d2] = mu1 * d1 ;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1,b2,c1,c2,d1,d2-1] = mu2 * d2 ;
downloads from the server
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1,b2,c1+1,c2,d1,d2] = wsd * lambda * alpha1;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1,b2,c1,c2+1,d1,d2] = wsd * lambda * alpha2;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1,b2,c1-1,c2,d1,d2] = mu1 * c1 ;
[a1,a2,b1,b2,c1,c2,d1,d2]->[a1,a2,b1,b2,c1,c2-1,d1,d2] = mu2 * c2 ;

Mapping
(b1+b2)<Pcd & (c1+c2)<Psu : [a1;a2;b1;b2;c1;c2;d1;d2]-{1}->[a1;a2;b1;b2;c1;c2;d1;d2];

Table 2. Model description of the P2P example

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

cd
f

Transfer time [s]

Exact distribution
Lower bound (17 moments)
Upper bound (17 moments)

Lower bound (5 moments)
Upper bound (5 moments)

a) Distribution and its estimates

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

cd
f

Transfer time [s]

modem
ISDN
DSL

b) Effect of server side connections

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 300 400 500 600 700 800 900 1000 1100

cd
f

Transfer time [s]

lambda=0.002
lambda=0.004
lambda=0.006
lambda=0.008

lambda=0.01
lambda=0.02
lambda=0.03
lambda=0.05

c) Effect of background load

Figure 5. Transfer time distribution in the P2P example

sis based on specific softwares developed for the analysis of
a particular performance measure of a given model.

References

[1] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor
Trivedi. Queueing Networks and Markov Chains. John Wi-
ley and Sons, 1998.

[2] S.C. Borst, R. Nunez-Queija, and M.J.G. van Uitert. User-
level performance of elastic traffic in integrated-services net-
works. Performance Evaluation, pages 507–519, 2002.

[3] J. A. Carrasco. Markovian dependability/performability
modelingof fault-tolerant systems. In H. Pham, editor,Re-
liability Engineering Handbook, pages 613–642. 2003.

[4] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo.
Greatspn 1.7: Graphical editor and analyzer for timed and
stochastic petri nets.Performance Evaluation, 24(1-2):47–
68, November 1995.

[5] G. Ciardo, J. Muppala, and K.S. Trivedi. SPNP: stochastic
Petri net package. InPNPM89, pages 142–151. IEEE Com-
puter Society, 1989.

[6] Joseph A. Couvillion, Roberto Freire, Ron Johnson, W. Dou-
glas Obal, M. Akber Qureshi, Manish Rai, William H.
Sanders, and Janet E. Tvedt. Performability modeling with
ultraSAN. IEEE Software, 8(5):69–80, 1991.

[7] G. Fodor, S. Ŕacz, and M. Telek. On providing blocking
probability- and throughput guarantees in a multi-service en-
vironment. International Journal of Communication Sys-
tems, 15:4:257–285, May 2002.

[8] R. Gaeta, M. Gribaudo, D. Manini, and M. Sereno. Fluid sto-
chastic petri nets for computing transfer time distributions in
peer-to-peer file sharing applications.Electronic Notes in
Theoretical Computer Science, 128:79–99, 2005.

[9] R. Gaeta, M. Gribaudo, D. Manini, and M. Sereno. Analysis
of resource transfers in peer-to-peer file sharing applications
using fluid models.Perform. Eval., 63(3):149–174, 2006.

[10] H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic
process algebras as a tool for performance and dependabil-
ity modelling. InProc. of IPDS, Erlangen, Germany, 1995.
IEEE Computer Society Press.

[11] H. T. Kaur, D. Manjunath, and S. K. Bose. The queuing
network analysis tool (QNAT). InProceedings 8th Interna-
tional Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, volume 8, pages
341–347, 2000.

[12] G. Latouche and V. Ramaswami.Introduction to Matrix An-
alytic Methods in Stochastic Modeling. American Statistical
Association and the Society for Industrial and Applied Math-
ematics, 1999.

[13] Benjamin Melamed and Micha Yadin. Numerical computa-
tion of sojourn-time distributions in queuing networks.Jour-
nal of ACM, 31(4):839–854, 1984.

[14] M.K. Molloy. Performance analysis using stochastic Petri
nets.IEEE Tr. on Computers, C-31:913–917, 1982.

[15] J. K. Muppala, K. S. Trivedi, V. Mainkar, and V. G. Kulkarni.
Numerical computation of response time distributions using
stochastic reward nets.Annals of Oper. Res., 48(1-4):155–
184, 1994.

[16] J.K. Muppala, S.P. Woolet, and K.S. Trivedi. Composite per-
formance and dependability analysis. InProc. of PMCCS,
pages 131–161, Enschede (NL), 1991.

[17] H. Nabli and B. Sericola. Performability analysis: a new
algorithm. IEEE Transactions on Computers, 45:491–494,
1996.

[18] S. Ŕacz, B. P. T́oth, and M. Telek. MRMSolve: Numeri-
cal analysis of large Markov reward models. InTools 2000,
pages 337–340. Springer, LNCS 1786, 2000.

[19] AT&T Labs Research. Graphviz -
open source graph drawing software.
http://www.research.att.com/sw/tools/graphviz.

[20] R. Sahner, K.S. Trivedi, and A. Puliafito.Performance and
Reliability Analysis of Computer Systems. Kluwer Academic
Publisher, 1996.

[21] Willaim H. Sanders and John F. Meyer. Stochastic activity
networks: formal definitions and concepts. Infirst EEF/Euro
summer school on trends in computer science, pages 315–
343. Springer-Verlag New York, Inc., 2002.

[22] A. Tari, M. Telek, and P. Buchholz. A unified approach to
the moments based distribution estimation - the unbounded
case. InEPEW, pages 79–93, Versailles, France, Sept 2005.

[23] J. Walrand.An Introduction to Queueing Networks. Prentice-
Hall, 1988.

