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Besides the fact that – by definition – matrix-exponential processes (MEPs) are more
general than Markovian arrival processes (MAPs), only very little is known about the pre-
cise relationship of these processes in matrix notation. For the first time, this paper proves
the persistent conjecture that – in two dimensions – the respective sets, MAP(2) and
MEP(2), are indeed identical with respect to the stationary behavior. Furthermore, this
equivalence extends to acyclic MAPs, i.e., AMAP(2), so that AMAP (2) ≡ MAP (2) ≡
MEP (2). For higher orders, these equivalences do not hold.

The second-order equivalence is established via a novel canonical form for the (corre-
lated) processes. An explicit moment/correlation-matching procedure to construct the
canonical form from the first three moments of the interarrival time distribution and the
lag-1 correlation coefficient shows how these compact processes may conveniently serve
as input models for arrival/service processes in applications.

Keywords: Markovian arrival process, matrix-exponential process, canonical represen-
tation, moment/correlation matching.

1. Introduction

Since their theoretic foundation in [23], a huge body of matrix-analytical techniques
has been developed for queues and queueing networks, which can model complex systems
of diverse fields of applications. Random times and stochastic processes, e.g., for arrivals
and services, need to be represented in matrix notation. Two different notations have
become popular: on the one hand, phase-type distributions (PHs) and Markovian arrival
processes (MAPs, [21]), whose structure admits a probabilistic interpretation in terms of
Markov chains; on the other hand, matrix-exponential distributions (MEs) and processes
(MEPs, [20]), which gain more algebraic flexibility by abandoning this probabilistic inter-
pretation. Past and ongoing research on these distributions and processes, where PHs and
MAPs have received much more attention than their counterparts, identified a number
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of important properties (see e.g., [17,10,11,8]). However, neither the relationship between
PHs and MEs nor that of MAPs and MEPs is fully understood.

PH and ME distributions have rational Laplace transforms of their densities [20,3]. For
a specific matrix dimension n ≥ 1, ME distributions of order n contain PH distributions
of order n, i.e., ME(n) ⊃ PH(n). Generally, the true subset relation holds, except for
the trivial case n = 1 and for n = 2. However, beyond ME(2) ≡ PH(2), researchers have
not yet succeeded to clearly identify the difference sets for ME and PH distributions.

The algebraic flexibility of ME distributions allowed to develop a general canonical form
[25], where the parameters are given in terms of the first marginal moments. However,
for arbitrary dimension, it is still an open problem to decide if this canonical form actu-
ally represents a valid probability distribution or not (due to out-of-bounds moments). In
contrast, the Markovian structure of PHs makes it very easy to decide if a given candidate
represents a valid distribution, but the overparameterization of PHs makes their construc-
tion more difficult and has led to the proposal of several structural simplifications, like
acyclic PHs (APHs, [4]), to ease the moment fitting – however, often at the expense of
the modeling power.

In summary for distributions, it remains an open question how general different sub-
classes of PH distributions are and which set of distributions the specific PH representa-
tions cover – especially with respect to their ME counterparts. Such questions have been
answered only for two-state distributions. It is well-known that the set of two-state acyclic
PHs (or APH(2)) defines the same class as general PH(2)s or the structurally unrestricted
ME(2) distributions.

Many of the above general observations carry forward to the related stochastic processes.
By definition, MEPs of order n (referred to as rational arrival processes in [2]) contain
MAPs of order n, where corresponding sets obey a true subset relation for n ≥ 3. In view
of the situation for distributions, it has only been conjectured that the sets MAP(2) and
MEP(2) are identical, but the equivalence MAP (2) ≡ MEP (2) has not been proven yet.
In this paper, we provide a proof for MAP (2) ≡ MEP (2).

In analogy to the distributions, both MEPs and MAPs have their specific advantages
and disadvantages with respect to their construction. The canonical form for ME distrib-
utions has been extended to MEPs in [22], which – besides the first marginal moments –
involves the initial correlation coefficients. For processes, already the case n = 2 poses the
decision problem whether these input parameters lie within respective bounds in order for
the canonical form to represent a valid stochastic process. Inversely, a MAP candidate is
easily identified as a valid stochastic process due to its Markovian underpinning, but we
still lack both a general canonical form and a general fitting procedure for MAPs, even
for order 2.

The first research results related to the inverse characterization of MAP(2)s appeared
in [13], where the region of the first three moments and the single correlation parameter
is identified, which is permissible for a MAP(2) with hyperexponential marginals (i.e.,
where matrix D0 is diagonal). These results are extended in [14] to acyclic MAP(2)s
or AMAP(2)s, i.e., MAPs with APH marginals (where D0 is triangular), via a different
approach. That paper conjectures that AMAP(2)s might cover the whole class of arrival
processes having two phases. In other words, the set AMAP(2) might be equivalent to
the sets MAP(2) and MEP(2).
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In this paper, we introduce a special MAP(2) structure (that we call canonical form)
that is even more special than the AMAP(2) form given in [14], since it has only four pa-
rameters (as opposed to five). We prove that this canonical form represents all AMAP(2),
MAP(2) and MEP(2) processes with respect to stationary behavior. Only by reformu-
lating the bounds of the involved correlation parameter (in another form already given
in [14] for AMAP(2)s), we are able to prove that the class of AMAP(2)s represented
by the canonical form is equivalent to the class of MEP(2)s, which in turn ensures that
AMAP (2) ≡ MAP (2) ≡ MEP (2).

Besides this theoretical result together with a novel canonical form, this paper gives an
explicit analytical fitting procedure to construct these processes from information on their
marginal moments and their autocorrelation structure, e.g., the lag-1 correlation coeffi-
cient of interarrival times. Explicit correlation bounds for these classes are also provided.
Even though the second order naturally limits the use of MEP(2)s and MAP(2)s in traf-
fic/service modeling, we emphasize that excellent results could be obtained in practical
data fitting with examples of such processes by various authors, e.g., in [7,19,16]. In some
cases, MAP(2)s are also used as basic building blocks in more complex modeling and fit-
ting approaches [18,1]. Also note the various applications of two-state Markov-modulated
Poisson processes (MMPP(2)s) in teletraffic/internet engineering (e.g., [12,26]). Gen-
erally, compact models for arrival/service processes are very important to mitigate the
state-space explosion problem (e.g., in Markov modeling) or to design more efficient algo-
rithms (e.g., in traffic-based decomposition [9]). Due to their construction from moment
and correlation parameters, MAP(2)s or MEP(2)s are well suited for sensitivity analyses
of systems with respect to single arrival/service characteristics.

The rest of the paper is organized as follows. Section 2 introduces the distributions,
which have a second-order rational Laplace transform, along with their matrix repre-
sentations. From this discussion, the known equivalences ME(2) ≡ PH(2) ≡ APH(2)
will become obvious. In Section 3, we outline the different definitions of the stochastic
processes MEP(2)s, MAP(2)s and AMAP(2)s. Section 4 introduces the general canonical
form for second-order arrival processes. Its correlation bounds are first derived in the
context of restricted AMAP(2)s and then shown in Section 5 to extend to MEP(2)s. This
proves the equivalence MEP (2) ≡ (A)MAP (2). Section 6 outlines how the theoretical
results of this paper can be applied in practice and provides a fitting procedure for the
general canonical form. Finally, Section 7 summarizes and concludes this paper.

2. Distributions with second-order rational Laplace transforms

Let X be a continuous non-negative random variable with cumulative distribution func-
tion

F (t) = Pr(X < t) = 1− veH t1I ,

where row vector v is referred to as the initial vector, square matrix H as the generator
and 1I as the closing vector. Without loss of generality (see [20]), throughout this paper
we assume that the closing vector, 1I, is a column vector of ones, i.e., 1I = [1, 1, . . . , 1]T .
As X is a continuous random variable, it has no probability mass at zero, i.e., v1I = 1.
The density, its Laplace transform and the moments of X can be computed as
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f(t) = veH t(−H)1I , (1)

f ∗(s) = E(e−sX) = v(sI −H)−1(−H)1I , (2)

µn = E(Xn) = n!v(−H)−n1I . (3)

In this paper, the cardinality of vector v and of matrix H is assumed to be 2. We
consider the following three cases:

• If f(t) ≥ 0 and
∫∞
0

f(t)dt = 1, then X has a ME(2) distribution. The elements of
v and H may be arbitrary real numbers.

• If v = π is a probability vector and H = A is a transient Markovian genera-
tor matrix (i.e., the generator matrix of a transient continuous-time Markov chain
(CTMC)), then X has a PH(2) distribution.

• If v = π is a probability vector and H = A is an acyclic transient Markovian
generator matrix, then X has an APH(2) distribution.

By ME(2), PH(2) and APH(2), we also denote the three corresponding sets of distribu-
tions. Generally, we use different notations for the matrix-exponential (ME, MEP) and
the Markovian (PH, MAP) representations to emphasize that different constraints apply
to them.

Recall that π is a probability vector when πi ≥ 0, π1I = 1 (where the latter condition
is fulfilled a priori). Matrix A is a transient Markovian generator when Aii < 0, Aij ≥ 0
for i 6= j, A1I ≤ 0, A1I 6= 0. Matrix A is an acyclic transient Markovian generator, when
A is a transient Markovian generator matrix and there is no loop in A, i.e., A12 or A21

is zero. Without loss of generality, we consider upper triangular acyclic generators in this
paper, i.e., A21 = 0. Scalars like Aij denote the ijth element of matrix A.

To ensure that f(t) in (1) is a density function, H generally has to fulfill the necessary
condition that its eigenvalues are real and negative (consequently H is non-singular). In
the second-order case, we can fully classify these density functions:

Theorem 1 [6] For second-order representations (1), the Laplace transform f ∗(s) has
the form

f ∗(s) =
1 + s/σ

(1 + s/λ1) · (1 + s/λ2)
. (4)

Function f(t) in (1) represents a density function, if and only if λ1, λ2 and σ are all real
and

0 < min (λ1, λ2) ≤ σ ≤ ∞ . (5)

The poles and the zero of f ∗(s) are −λ1,−λ2 and −σ, respectively, with all of them being
on the negative real axis. Without loss of generality, let λ1 ≤ λ2 (or −λ1 ≥ −λ2). The
density function can be written as

f(t) =

{
σ−λ1

λ2−λ1
· λ2

σ
· λ1e

−λ1t + σ−λ2

λ1−λ2
· λ1

σ
· λ2e

−λ2t, if λ1 < λ2 ,
λ1

σ
λ1e

−λ1t +
(
1− λ1

σ

)
λ2

1te
−λ1t, if λ1 = λ2 .

(6)
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Figure 1. ME(2) representation (7)
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Figure 2. ME(2) representation (8)

A matrix representation of distributions with the rational Laplace transform (4) does
not necessarily have a probabilistic/Markovian structure for vector v and matrix H . This
can already be seen from the visualization of the two-branch canonical representation

v =
[

σ−λ1

λ2−λ1
· λ2

σ
σ−λ2

λ1−λ2
· λ1

σ

]
, H =

[ −λ1 0
0 −λ2

]
(7)

in Figure 1. This representation can be interpreted as a transient CTMC (more precisely,
a Bernoulli mixture of two exponentials), if and only if λ1 ≤ σ ≤ λ2, where λ1 6= λ2 in
order to avoid stochastic equivalence with the scalar exponential distribution. Only in
this case, which corresponds to a squared coefficient of variation c2

v = µ2

µ1
2 − 1 ≥ 1, v is

probabilistic. In the other permissible range according to (5), σ > λ2, however, (7) is still
a valid ME(2) representation for a density function, but v is not a probability vector.

The notational differences between phase-type and matrix-exponential representations
could be highlighted by many other representations, where e.g., both the row sum and
the diagonal element of H may be positive in contrast with phase-type generators. De-
spite these differences, the three classes for second-order distributions, i.e., acyclic PH(2),
arbitrary PH(2) and ME(2), can easily be shown to be identical, which we formally state
in the following theorem.

Theorem 2 The distribution sets ME(2), PH(2) and APH(2) are equivalent, i.e.,
ME(2) ≡ PH(2) ≡ APH(2).

Proof: Based on the definition of these classes, we have ME(2) ⊃ PH(2) ⊃ APH(2).
Here, we only prove that any ME(2) distribution has an APH(2) representation.

Let us rewrite the Laplace transform f ∗(s) of the density function (see (4)) as

f ∗(s) =
1− λ1/σ

(1 + s/λ1) · (1 + s/λ2)
+

λ1/σ

(1 + s/λ2)
.

This structure reveals an analogy to a Laplace transform of a Bernoulli mixture of a hy-
poexponential density and an exponential density, which leads us to the following matrix-
exponential representation

v =
[
p 1− p

]
(= π) , H =

[−λ1 λ1

0 −λ2

]
(= A) , (8)

with p = 1− λ1

σ
. Figure 2 visualizes this acyclic ME(2) representation. It is easily verified

that (1) with these settings for v and H yields (6). Due to condition (5), i.e., λ1 ≤ σ,
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it follows 0 ≤ λ1

σ
≤ 1 so that representation (8) is indeed a valid APH(2) representation

(π,A).
2

Thus, we can represent any ME(2) distribution as an APH(2) distribution via (8) based
on which we identify a ME(2) distribution with the triple {p, α, λ1}, where α = λ1/λ2.
The valid ranges of the parameters are 0 ≤ p ≤ 1, 0 ≤ α ≤ 1, λ1 > 0. In this triple, p and
α define the “shape” of the distribution and λ1 affects only its “intensity”. Introducing
parameter α will also help us to formulate bounds and fitting procedures more simply in
the sequel of this paper.

The (π,A)-representation is not unique. A set of different APH representations can
describe the same distribution. For example, for later use introduce

π(a) =
[ p

1− αa
1− p

1− αa

]
, A(a) =

[−λ1 (1− a)λ1

0 −λ2

]
, (9)

which results in a valid APH representation when 0 ≤ a ≤ min{1, (1−p)/α}. If a = 1, we
require α 6= 1. Otherwise, the two-dimensional representation (9) reduces to a (scalar)
exponential distribution.

3. Arrival processes of second order

Let X(t) be the number of arrivals at time t in an interval-stationary arrival process,
defined by matrices H0 and H1, whose sequence of interarrival times is X0, X1, . . . The
joint density of X0, X1, . . . , Xk is

f(x0, x1, . . . , xk) = veH0x0H1e
H0x1H1 . . . eH0xkH11I , (10)

where v is the solution of v(−H0)
−1H1 = v and v1I = 1.

Again, we focus on the cardinality of 2 for H0 and H1. Similar to the previous section,
we consider three cases:

• If f(x0, x1, . . . , xk) ≥ 0 ∀ k ≥ 0 and ∀ x1, x2, . . . , xk ≥ 0 and∫
x1

. . .
∫

xk
f(x0, x1, . . . , xk)dx1 . . . dxk = 1 ∀ k ≥ 0, then X(t) is a matrix-

exponential process, MEP(2).

• If H0 = D0 is a transient Markovian generator matrix and H1 = D1 ≥ 0, such
that −D01I = D11I, then X(t) is a Markovian arrival process, MAP(2).

• If H0 = D0 is an acyclic transient Markovian generator matrix and H1 = D1 ≥
0, such that −D01I = D11I, then X(t) is an acyclic Markovian arrival process,
AMAP(2).

In analogy to the distribution sets ME(2), PH(2) and APH(2), we also denote the above
three sets of processes by MEP(2), MAP(2) and AMAP(2), respectively. Whether these
acronyms are used for the specific set or an element thereof will be apparent from the
context.
When X(t) is a MEP(2), it has the following properties:
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• The stationary interarrival time distribution is matrix-exponential with parameters
v and H0. Therefore, H0 fulfills the conditions of ME distributions provided in the
previous section.

• Starting from an arbitrary initial vector (v0), the respective initial vectors at the
consecutive interarrivals (v1,v2, . . .) satisfy vi = vi−1G, where G = (−H0)

−1H1.
Matrix G has the following properties: vG = v and G1I = 1I.

– 1I = G1I implies that the respective initial vectors of the consecutive arrivals
(v1,v2, . . .) satisfy vi1I = 1, if v01I = 1.

– 1I = G1I = (−H0)
−1H11I implies −H01I = H11I.

When X(t) is a MAP(2), it has the following additional properties:

• The phases of the system at arrival epochs form a DTMC with transition probability
matrix P = (−D0)

−1D1, i.e., the elements of P are between 0 and 1 (P is a
stochastic matrix).

• v = π is a probability vector. It is the stationary distribution of the embedded
DTMC, i.e., πP = π, π1I = 1.

The major differences of the MEP case and the MAP case are the following. The row
sum and the diagonal element of H0 can be positive, the elements of v and G can be
negative or greater than one and H1 can contain negative elements. Note, however, that
row sums of H0 + H1 must be zero in both cases.

Since the interarrival times of a MEP(2) have a ME(2) distribution with generator H0

and initial vector v, the moments of the interarrival times are (in accordance with (3)):

µn = n!v(−H0)
−n1I . (11)

If X(t) is a MEP(2) (MAP(2)), matrix G (P ) has two eigenvalues: 1 and γ. Parameter
γ defines the geometric decay of the lag-k correlation function [15]:

Corr(X0, Xk) =
E[(X0 − E[X])(Xk − E[X])]

Var[X]
= γk ·

µ2

2
− µ2

1

µ2 − µ2
1

, (12)

where random variable X stands for a generic interarrival time. Since autocorrelation
functions are necessarily non-divergent, eigenvalue γ is limited to −1 ≤ γ < 1 a priori.

The consecutive discussions are based on the observation that the first three moments
of the interarrival time (or equivalently λ1, α, p) and the lag-1 correlation coefficient (or
equivalently γ, according to (12)) uniquely define the stationary behavior of MEP(2)s [5].

4. Canonical AMAP(2)s

In Section 4.1, we present the general canonical form for second-order processes.
This canonical form at first sight appears to be even more constrained than arbitrary
AMAP(2)s, due to an enforced zero element in matrix D1 besides the upper triangular
matrix D0. But we will show later in Section 5 that every MEP(2) can be transformed
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to this canonical form. This proves the equivalence of classes AMAP(2), MAP(2) and
MEP(2). Until this proof is completed, we refer to all processes being represented by the
canonical form as canonical AMAP(2)s.

In Section 4.2, we derive the correlation bounds for canonical AMAP(2)s. We achieve
this by basing the original representation on a parameter set which involves the correlation
parameter γ. This new parameterization enables us to formulate the correlation bounds
in a simple form. In fact, it is this simplicity of the bounds that allows us to show their
validity for MEP(2)s in Section 5.

4.1. The canonical form of second-order processes
We first define the general canonical form. The representation is based on the rate

parameters λ1 and λ2 and probabilities a and b, where a corresponds to the parameter
with the same name in the APH representation (9). Dependent on the characteristics of
the correlation structure (see Corollary 1 below), there are two variants of the canonical
form.

Definition 1 The first canonical representation of MAP(2)s is defined as follows:

D0 =

[−λ1 (1− a)λ1

0 −λ2

]
, D1 =

[
aλ1 0

(1− b)λ2 bλ2

]
.

The second canonical form is given by

D0 =

[−λ1 (1− a)λ1

0 −λ2

]
, D1 =

[
0 aλ1

bλ2 (1− b)λ2

]
,

where 0 < λ1 ≤ λ2, 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1. Additionally, we require that

• a, b 6= 1 in the first canonical form (for recurrency) and

• b 6= 0 in the second canonical form (for recurrency) and

• λ1 6= λ2, if a = 1 in the second canonical form.

For correlated processes, a and b must be nonzero.

Several characteristics of the canonical form depend only on parameters a and b:

Corollary 1 The correlation parameter γ of the first canonical form is given by

γ = ab. (13)

The correlation parameter γ of the second canonical form is given by

γ = −ab. (14)

The phase probability vector at stationary arrival epochs in case of the first canonical form
is

π =
[

1−b
1−ab

b−ab
1−ab

]
, (15)

In case of the second canonical form, it is

π =
[

b
1+ab

1− b
1+ab

]
. (16)
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Basing the representations on parameters λ1, α, p, γ
We may also express the canonical forms in terms of the four parameters λ1, α, p, γ.

Parameters α = λ1

λ2
and p were already introduced in Section 2 (see equation (9)). To

complete the transformation, we still need to express parameters a and b in terms of
λ1, α, p, γ.

According to (9), we can get several representations of the same APH(2) distribution
with different settings of a in its valid range. On the other hand, the phase probability
vector π of the canonical AMAP(2) is given by (15) for positive γ and (16) for negative
γ. (For γ = 0, the canonical AMAP(2) simply reduces to an APH(2) renewal process
with trivial relations, e.g., a = b = 0 in the first canonical form.) By equating the initial
vector π(a) of the marginal APH(2) distribution and the phase probability vector π of
the canonical AMAP(2), we may determine parameters a and b in terms of α, p, γ.

We have to distinguish two cases dependent on the sign of γ:

Case γ > 0:
From π(a) = π (see equation (15)), we get

p

1− αa
=

1− b

1− ab
. (17)

The second equation is identical to (13): γ = ab.
This set of equations has two solutions, where a, b > 0 holds in both solutions. If there

is a valid solution at all (i.e., γ is permissible), then it is the following one:

a =
1

2α

(
1 + αγ − p(1− γ)−

√
(1 + αγ − p(1− γ))2 − 4αγ

)
,

b =
1

2

(
1 + αγ − p(1− γ) +

√
(1 + αγ − p(1− γ))2 − 4αγ

)
. (18)

Case γ < 0:
From π(a) = π (see equation (16)), we get

p

1− αa
=

b

1 + ab
. (19)

The second equation is identical to (14): γ = −ab.
For permissible γ, there is only one solution in this case:

a =
−γ

p(1− γ)− αγ
,

b = p(1− γ)− αγ .
(20)

Thus, both canonical forms in Definition 1 can also be expressed in terms of λ1, α, p, γ
as opposed to λ1, λ2, a, b. Since λ1, λ2 are positive rates and a, b must be probabilities, the
Markovian nature of the original canonical forms can be decided easily a priori based on
the values of these parameters. The situation is different for the representations based on



10

λ1, α, p, γ. Whereas by definition it must hold that λ1 > 0 and α, p ∈ [0, 1], the permissible
range of γ is not obvious.

In the next subsection, we exploit the knowledge about the other parameters to deter-
mine which maximal and minimal values γ may assume so that the canonical AMAP(2)
representations based on λ1, α, p, γ are valid Markovian arrival processes.

4.2. Correlation bounds of the canonical AMAP(2)s
In the following, we derive upper and lower bounds for the correlation parameter γ in

terms of the shape parameters α and p. It turns out that these bounds are independent
of the rate parameter λ1.

During the derivation of both upper and lower γ-bounds, we follow the same idea.
Essentially, we translate the constraints on parameters a and b, i.e., 0 ≤ a, b ≤ 1 (with
the specific exceptions mentioned in Definition 1) to constraints on parameter γ. As
the main step to this end, we express γ as a function of parameter a, and compute the
(permissible) values of a (in terms of α and p) that produce the maximal and the minimal
value of γ.

As we will see, specific choices of α and p restrict the permissible range of probability
parameter a for c2

v < 1. Therefore, we investigate these constraints of parameter a first.
With α and p given, the condition that π(a) in (9) has to be a probability vector

limits the range of a in [0, 1]. For the first vector component, p
1−αa

≥ 0 always holds, if
0 ≤ a ≤ 1. From p

1−αa
≤ 1, we obtain a ≤ min{1, (1− p)/α}. The next lemma gives an

easy-to-check condition to identify the upper limit of a:

Lemma 1 c2
v < 1, if and only if α > 1− p.

Proof: The squared coefficient of variation c2
v can be expressed in terms of the parameters

α and p as follows:

1− c2
v = 2− µ2

µ1
2

=
4 p λ2

(λ1 + p λ2)2
(λ1 − (1− p)λ2) =

4p

(α + p)2
(α− (1− p)) .

Here, moments µ1 and µ2 are computed from (3) with APH(2) representation (9). Ob-
serving that the fraction on the right-hand side (rhs) is always positive proves the lemma.
2

Thus, with Lemma 1, the valid ranges of a are

a ∈ [0, 1−p
α

], if c2
v < 1 ,

a ∈ [0, 1], if c2
v ≥ 1 .

In the derivations of γ-bounds, we at least have to distinguish the two cases c2
v < 1 and

c2
v > 1 for both lower and upper γ-bounds. The derivations in Appendix A reveal that

for c2
v > 1 (hyperexponential marginal) and γ < 0 (lower bound) we additionally have to

treat the subcases 1−p
p+α

< 1 and 1−p
p+α

≥ 1.

Correspondingly, Figure 3 depicts the partitioning of the (p, α)-plane into three areas
I, II, III, for which lower and upper γ-bounds are derived separately (see Appendix A).
Table 1 summarizes these results of Appendix A.
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Table 1
Lower and upper γ-bounds for the three areas in the (p, α)-plane

area conditions lower γ-bound upper γ-bound

I c2
v < 1 − 1−p

p+α

α+p(α+p−1)−2
√

p α(−1+p+α)

(p+α)2

II c2
v > 1 & 1−p

p+α
< 1 − 1−p

p+α
1

III c2
v > 1 & 1 ≤ 1−p

p+α
p

p+α−1
1

Finally, we point out that the correlation bounds of the set AMAP(2) were given in
[14] in terms of the first three moments of the marginal APH(2) distribution. Indeed,
these bounds can be transformed to the ones for canonical AMAP(2)s given in Table 1.
The more compact structure of the canonical form in Definition 1 (with one parameter
less than in [14]) significantly simplifies the derivation of γ-bounds. In fact, derivations
were only sketched in [14], while we are able to give explicit proofs in this paper. More
importantly, it is only the new parameterization (in terms of α and p) of these bounds
that enables us to show the identity relationship between MEP(2)s and AMAP(2)s in
Section 5.

5. Equivalence of MEP(2) and AMAP(2)

In this section, we prove the identity of the sets MEP(2) and canonical AMAP(2).
From this fact, the central result of this paper actually follows, namely the equivalences
MEP (2) ≡ MAP (2) ≡ AMAP (2). We achieve this by deriving necessary constraints,
which apply to the correlation parameter of an arbitrary MEP(2). The fact that the
MEP(2) correlation range does not exceed that of canonical AMAP(2)s implies that
MEP(2) is also a subset of canonical AMAP(2). As MEP (2) ⊃ MAP (2) ⊃ AMAP (2) ⊃
canonical AMAP (2) holds by definition, the identities are then proven.

Similar to ME(2) distributions, the (H0,H1)-representation of MEP(2) processes is
not unique. In order to evaluate some necessary constraints of the MEP(2) class, we
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need to start from a non-degenerate representation of the interarrival time distribution.
A representation is degenerate, if vi = 0 or {H01I}i = 0 for i = 1 or i = 2. The
acyclic representation (8) is degenerate, while the one in (9) is non-degenerate for all
0 < a < (1−p)/α. We start from the following non-degenerate representation H0,H1,
whose interarrival time distribution is according to (9):

v =
[

pλ2

λ2−λ1a
, 1− pλ2

λ2−λ1a

]
, H0 =

[−λ1 (1−a)λ1

0 −λ2

]
, H1 =

[
aλ1(1−q1) aλ1q1

λ2q2 λ2(1−q2)

]
. (21)

From any different MEP(2) representation, (Ĥ0, Ĥ1) , this representation can be obtained
through a similarity transform with a matrix B, i.e., H0 = B−1Ĥ0B, H1 = B−1Ĥ1B,
where matrix B satisfies B1I = 1I and {B−1Ĥ0B}21 = 0. If (Ĥ0, Ĥ1) and (H0,H1)
represent the same process, such a matrix B exists.

Note that −H01I = H11I, as required (see Section 3). The eigenvalues of (−H0)
−1H1

are 1 and a(1 − q1 − q2). Recall from Section 3 that the eigenvalue of (−H0)
−1H1 less

than 1 corresponds to γ. From γ = a(1− q1 − q2) and v(−H0)
−1H1 = v, we have

q2 =
p(γ − 1)

aα− 1
and q1 = 1− γ

a
− p(γ − 1)

aα− 1
.

At this point, with the ME(2) distribution being fixed, the correlation parameter γ is
the only “free” parameter in representation (21). The main constraint that limits γ of the
MEP(2) class is that the joint density (10), f(x0, x1, . . . , xk), must be non-negative. This
constraint may be reformulated in terms of conditional densities. The kth interarrival
time with density

f(xk|X0 = x0, . . . , Xk−1 = xk−1)=
veH0x0H1e

H0x1H1 . . . eH0xk−1H1

veH0x0H1eH0x1H1 . . . eH0xk−1H11I
eH0xkH11I

must be a valid ME(2) distribution ∀ k ≥ 0 and ∀x1, x2, . . . , xk ≥ 0. Random variable Xk

has a valid ME(2) distribution, if its initial vector

vk(x0, x1, . . . , xk−1) =
veH0x0H1e

H0x1H1 . . . eH0xk−1H1

veH0x0H1eH0x1H1 . . . eH0xk−1H11I
(22)

is in the valid range defined by H0. The valid range of representation (21) is

0 ≤ {vk(x0, x1, . . . , xk−1)}1 ≤ 1

1− aα
=

λ2

λ2 − λ1a
(23)

according to representation (9) and Theorem 2. For second-order distributions, it is
sufficient to check if the first element of vector vk falls into the valid range, since the
property {vk(•)}1 + {vk(•)}2 = 1 ensures the validity of the second element of vk(•).

In fact, in Appendix B, we only discuss the validity of vector vk for two limiting cases,
from which correlation bounds for parameter γ are obtained. These bounds already
constrain the permissible range of γ to the one of the canonical AMAP(2) representation
in Table 1 of Section 4.2 such that MEP (2) ⊂ canonicalAMAP (2). Since the subset
relation, MEP (2) ⊃ MAP (2) ⊃ AMAP (2) ⊃ canonicalAMAP (2), is granted by the
definition of the processes and the identity of the interarrival distributions is given by
Theorem 2, the equivalence of Theorem 3 is then established.
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Theorem 3 The process sets MEP(2), MAP(2) and AMAP(2) are equivalent, i.e.,

MEP (2) ≡ MAP (2) ≡ AMAP (2) .

The detailed proof is provided in Appendix B.

6. Practical application of the canonical form for second-order processes

In practical applications, two problems are often encountered: the inverse problem,
where a process should be constructed from given traffic characteristics, and the transfor-
mation problem, where a given process representation should be transformed into another
one, preferably to a canonical form (if available). The transformation may be motivated
by obtaining a representation which expedites numerical procedures due to a sparser struc-
ture. In our context of second-order processes, queue analysis techniques or simulation
procedures benefit from the triangular forms of matrices D0 and D1 (see canonical form
of Definition 1) for arrival/service processes of a queue. Furthermore, some algorithms
may even rely on a Markovian structure for a given process. Then, a given true MEP
representation should be converted to a true MAP. In our case, this may be achieved by
reducing the transformation problem to an inverse problem, i.e., traffic characteristics,
like marginal moments and correlation coefficients, are computed from the MEP(2) and
used to determine the parameters of the canonical form, which represents an AMAP(2).

In Section 4, we saw that four parameters are sufficient to characterize the stationary
behavior of any second-order process, namely (λ1, λ2, a, b) or alternatively (λ1, α, p, γ).
However, these parameters are not commonly observed, measured or computed in appli-
cations. In Section 6.1, we provide a mapping to construct a canonical AMAP(2) based
on the first three moments of the interarrival times, µ1, µ2, µ3 (see (11)), and on the lag-1
correlation coefficient, as defined in (12) for k = 1. Note that due to the equivalences
proved in Section 5 any second-order process can be represented by the canonical form. Of
course, a mapping procedure may start in principle from any four (sufficiently different)
traffic characteristics and we discuss this issue in Section 6.2.

6.1. Matching moments and correlation
The matching of three moments and the lag-1 correlation coefficient means to solve a

system of four non-linear equations. Three equations are given by (11) for n = 1, 2, 3 with
matrix H0 = D0 of the canonical form from Definition 1. An additional equation specifies
(positive or negative) γ according to equation (13) or (14), respectively. Parameter γ itself
is determined from the lag-1 correlation coefficient via (12) with k = 1.

The symbolic solution of this system of equations is very cumbersome. Instead of solving
it directly, we decompose the fitting procedure into two steps in analogy to [14]. Here,
however, the fitting results in the AMAP(2) canonical form, which has one parameter less
than the form in [14].

Step 1: obtain an APH(2) representation (8) based on the three moments. This step
provides λ1, λ2 and p. At this point, the parameter set (λ1, α, p, γ) is available,
where α = λ1

λ2
.
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Step 2: transform the parameter set (λ1, α, p, γ) into the equivalent parameter set
(λ1, λ2, a, b), in terms of which the canonical form is given. This step was already
conducted in Section 4.1.

The fitting procedure
To make the formulas compact, we introduce the following moment expressions related

to Hankel determinants (see also [13]):

h1 = µ1, h2 =
µ2

2µ2
1

− 1

(
=

c2
v − 1

2

)
, h3 =

µ3

6µ3
1

− µ2
2

4µ4
1

.

By utilizing the results of [24], a canonical APH(2) can be constructed to describe the
interarrival time based on the first three moments µ1, µ2, µ3 (or equivalently h1, h2, h3).
The resulting triple (λ1, α, p) is the following:

if h2 ≥ 0 (c2
v ≥ 1): λi =

h3 + h2
2 + h2 ∓

√
(h3 + h2

2 + h2)2 − 4h2h3

2h1h3

, i = 1, 2 ,

p =
−h3 − h2

2 + h2 +
√

(h3 + h2
2 + h2)2 − 4h2h3

h3 + h2
2 + h2 +

√
(h3 + h2

2 + h2)2 − 4h2h3

, α =
λ1

λ2

,

if h2 < 0 (c2
v < 1): λi =

h3 + h2
2 + h2 ±

√
(h3 + h2

2 + h2)2 − 4h2h3

2h1h3

, i = 1, 2 ,

p =
h3 + h2

2 − h2 +
√

(h3 + h2
2 + h2)2 − 4h2h3

−h3 − h2
2 − h2 +

√
(h3 + h2

2 + h2)2 − 4h2h3

, α =
λ1

λ2

.

(24)

The case h2 = 0 (c2
v = 1) is excluded in the following, because it leads to a degenerate

representation stochastically equivalent to an exponential distribution.
Now parameters a and b are computed from (18), if γ > 0, or from (20), if γ < 0. For

the sake of completeness, we repeat these formulas here:

if γ ≥ 0: a =
1

2α

(
1 + αγ − p(1− γ)−

√
(1 + αγ − p(1− γ))2 − 4αγ

)

b =
1

2

(
1 + αγ − p(1− γ) +

√
(1 + αγ − p(1− γ))2 − 4αγ

)
,

if γ ≤ 0: a =
−γ

p(1− γ)− αγ
, b = p(1− γ)− αγ .

(25)

Note that we explicitly included the uncorrelated case γ = 0 for both canonical forms,
which lead to the same representation with a = 0, b = 1−p and a = 0, b = p, respectively.

Boundary conditions apply both to the correlation parameter γ (as discussed in Ap-
pendix A) and to the moments. Without checking the boundary conditions for h1, h2, h3

and γ beforehand, the fitting procedure (24) and (25) may fail (e.g., due to negative dis-
criminants). An indirect check of the validity of the input parameters consists of verifying
whether the resulting canonical AMAP(2) is indeed a proper Markovian arrival process
with well defined rate matrices.

However, available moment bounds and the correlation bounds derived in Appendix A
enable the user to determine the validity of the input parameters in advance, as outlined
in the next paragraphs.
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Table 2
Moment bounds for h1, h2, h3

h1 > 0 hypoexponential hyperexponential

h2 −1
4
≤ h2 < 0 0 < h2

h3 h2(1− h2 − 2
√−h2) ≤ h3 ≤ −h2

2 0 < h3

Table 3
Lower and upper γ-bounds in terms of h2 and h3

area conditions lower γ-bound upper γ-bound

I h2 < 0 −(h3

h2
+ h2) − (

√−h3+h2)2

h2

II h2 > 0 & h3

h2
+ h2 < 1 −(h3

h2
+ h2) 1

III h2 > 0 & 1 ≤ h3

h2
+ h2

h3+h2
2−h2−

√
(h3+h2

2−h2)2+4h3
2

h3+h2
2−h2+

√
(h3+h2

2−h2)2+4h3
2

1

Summary of moment and correlation bounds
Initially, by means of Table 2 (taken from [14]), the validity of the first three moments

h1, h2, h3 can be ensured so that Step 1 of the fitting procedure, (24), is guaranteed to
deliver permissible parameters, i.e., λ1 > 0 and α, p ∈ [0, 1].

Before Step 2 of the fitting procedure, the correlation bounds of Table 1 (in terms
of α and p) allow one to check, if parameter γ is within the permissible range. Any
potentially unnecessary computation (like evaluating (24)) may be avoided, if one resorts
to the correlation bounds in terms of the moment parameters h2, h3. Table 3 is simply a
transformation of Table 1.

If h1, h2, h3 and γ fall within the respective bounds given by Tables 2 and 3, the fitting
procedure will always provide a valid canonical AMAP(2) representation, i.e., λ2 ≥ λ1 > 0
and a, b ∈ [0, 1].

6.2. Disussion of the practical application
We point out that especially fitting the correlation parameter γ to a given correlation

structure is not restricted to the lag-1 correlation coefficient. Instead of solving (12) for
γ with k = 1, this equation uniquely determines a value for γ for any (given) correlation
coefficient at odd lag k. Furthermore, any pair of two adjacent correlation coefficients may
be used to set γ via γ = Corr(X0, Xk+1)/Corr(X0, Xk). Such settings reflect the decay of
the autocorrelation to some extent. Of course, γ-values determined in different ways may
also be combined in a weighted sum in order to improve the fit to a given autocorrelation
function as most appropriate for the considered application.

The fitting procedure of Section 6.1 matches the four parameters of the canonical form
based on the first three moments and parameter γ (e.g., related to the lag-1 correlation).
If the inverse description for other four moment or correlation parameters is of interest,
one can transform the given parameters to the first three marginal moments and the lag-1
correlation parameter according to [5]. Depending on the given moment and correlation
parameters, this transformation can be unique (with explicit solution) or can have more
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than one (potentially only numerical) solutions out of which zero, one or more solutions
may be feasible.

Generally, it is still an open research issue which traffic parameters characterize the
performance-relevant properties of a traffic process best. Surely, the choice of parameters
also depends on the specific application and performance measures to be computed. The
fitting procedure of this section, however, shows that even second-order arrival processes
already provide an astonishing flexibility in this mapping.

7. Conclusions

This paper proves the conjecture that the sets of second-order matrix-exponential
processes (MEP(2)s) and second-order Markovian arrival processes (MAP(2)s) are equiv-
alent. As opposed to higher dimensions, the algebraic flexibility of MEP(2)s does not
extend their modeling power over that of MAP(2)s. While this was known with respect
to second-order distributions, the capability of these processes to capture correlations
has not been fully characterized. Since we also showed that the sets of MAP(2)s and
of acyclic MAP(2)s are identical, we are now able to represent any of these processes
(MEP(2), MAP(2) or AMAP(2)) in an acyclic Markovian canonical form, which is intro-
duced here for the first time. For this canonical AMAP(2) form, we explicitly computed
the necessary and sufficient ranges of the single correlation parameter. Essentially, these
bounds for AMAP(2)s were known before, but are now given in a substantially simpler
form in terms of the parameters of the canonical form (and not in terms of the moments
of the marginal distribution as in [14]). In fact, these simplified expressions only allowed
us to prove the mentioned equivalence relations.

It is one thing to show properties of stochastic processes and another to actually con-
struct these processes from moment/correlation information. We provided explicit analyt-
ical formulas to fit the first three moments of the marginal distribution and one correlation
parameter to the parameters of the canonical AMAP(2) forms. This procedure also ben-
efits from the more compact structure of the canonical forms (as compared to the one
presented in [14]).

In conclusion, this paper reveals the relationships between second-order stochastic
processes in matrix notation and in particular deepens the understanding of matrix-
exponential and Markovian traffic modeling. It remains to be seen inasmuch the results of
this paper are helpful in the treatment of higher-dimensional and less-limited processes.

REFERENCES

1. A. T. Andersen and B. F. Nielsen. An application of superpositions of two-state
Markovian sources to the modelling of self-similar behaviour. In Proc. 16th Annual
Joint Conference of the IEEE Computer and Communications Societies, INFOCOM
’97, volume 1, pages 196–204, Kobe, Japan, 1997.

2. S. Asmussen and M. Bladt. Point processes with finite-dimensional conditional prob-
abilities. Stochastic Processes and their Applications, 82:127–142(16), July 1999.

3. S. Asmussen and C. A. O’Cinneide. Matrix-exponential distributions – distributions
with a rational Laplace transform. In S. Kotz and C. Read, editors, Encyclopedia of
Statistical Sciences, pages 435–440, New York, 1997. John Wiley & Sons.



17
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14. A. Heindl, G. Horváth, and K. Gross. Explicit inverse characterizations of acyclic
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Appendix

A. Derivation of correlation bounds for canonical AMAP(2)s

We first need to express γ as a function of parameter a (and for given α and p). In order
to obtain the positive upper bounds for γ, we maximize this function with respect to a.
Analogously, to obtain the negative lower bounds for γ, this function is minimized with
respect to a. We consider these two cases in the following two subsections, respectively.
At the beginning of each subsection, we first investigate if the a priori restriction that
γ ∈ [−1, 1) is further constrained by the fact that parameter b of the canonical form must
be in [0, 1]. Recall that a transformation from a permissible parameter set λ1, α, p, γ to
λ1, λ2, a, b must not result in invalid parameters.

A.1. Upper bounds for correlation parameter γ
When computing the upper/positive correlation bounds (γ > 0), parameter b can be

expressed from equations (17) and (13) as:

b = 1− p

1− αa
(1− γ) , (26)

where p
1−αa

∈ [0, 1], if a is valid. From (26), it follows that any positive γ may be chosen
for b to be in [0, 1], i.e., b ∈ [0, 1] does not impose an additional constraint on γ.

To find the upper bound, we express b from (17), substitute it into (13), and obtain γ
as a function of a:

γ(a) =
a(1− α a− p)

1− α a− a p
. (27)
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The upper correlation bound is the maximum of this function with respect to a valid
parameter a. This function has always two roots, one at a = 0 and one at a = 1

α
(1− p).

The derivative of γ(a) is the following:

d

da
γ(a) =

1− 2 α a− p

1− α a− a p
+

a(1− α a− p)(α + p)

(1− α a− a p)2
.

To obtain the maximum value, we look for a(MAX), for which d
da

γ(a)|a=a(MAX) = 0.
There are two solutions:

a
(MAX)
i =

α±
√

p α(α + p− 1)

α2 + αp
, i = 1, 2 .

For assessing the potential extrema, we need to consider the permissible range of para-
meter a, which was determined in Section 4.2 (after Lemma 1) and shown to depend on
c2
v. Therefore, we distinguish the two subcases c2

v < 1 and c2
v > 1.

Subcase c2
v < 1, where a ∈ [0, 1−p

α
]

In this case, function γ(a) has a maximum in the valid region, since it has roots at the
borders of the valid region (at a = 0 and at a = 1−p

α
) and has a positive derivative at

a = 0. This maximum is tighter than γ(a) = 1, since – if a < 1 – it always holds that
γ(a) < 1 according to (27). Note that a = 1 is not admitted for γ > 0 (see first canonical
form in Definition 1).

From the two solutions of d
da

γ(a) = 0, only the one where the square root appears with
negative sign is a real maximum, since the second derivative is negative only in this case.
Thus, parameter a that maximizes γ(a) is:

a(MAX) =
α−

√
p α(α + p− 1)

α2 + α p
.

Finally the upper limit of γ is:

γ(MAX) = γ(a(MAX)) =
α + p(α + p− 1)− 2

√
p α(−1 + p + α)

(p + α)2
. (28)

Subcase c2
v > 1, where a ∈ [0, 1]

In this case, function γ(a) is positive and increases monotonically in (0, 1
α+p

). From

Lemma 1, it follows that if c2
v > 1 holds, 1

α+p
> 1. Therefore the maximum of γ(a) is at

the right-hand border of the valid region, i.e., at a = 1:

γ(MAX) = γ(a)|a=1 = 1 . (29)

A.2. Lower bounds for correlation parameter γ
In order to check if b ∈ [0, 1] imposes an additional constraint on γ < 0 (i.e., an

additional lower/negative correlation bound), we use equations (19) and (14) to express
parameter b as

b = (1− γ)
p

1− αa
.
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Obviously, this expression can be greater than 1 for γ < 0 (as p
1−αa

∈ [0, 1]). This means
that – for b to be in [0, 1] – we have the following lower bound for γ:

γ ≥ p + αa− 1

p
= γ̃(a) . (30)

In other words, the condition b ∈ [0, 1] mandates that γ̃(a) ≤ γ < 0.
To find the lowest permissible value of γ, we first express γ as a function of a via (14)

and (19):

γ̂(a) =
−a p

1− a α− a p
.

We must minimize this function with respect to a without violating γ > γ̃(a) (see (30)).
Let us first determine the range of a, where the lower bound γ̃(a) supersedes γ̂(a), i.e.,
where γ̂(a) ≤ γ̃(a) holds:

−a p

1− a α− a p
≤ p + αa− 1

p
.

Solving this inequality, we find that γ̃(a) is tighter, if

a ≥ 1− p

p + α
.

Thus the possible cases are:

• If a < 1−p
p+α

, the lower bound is provided by the minimum of γ̂(a) in the range

a = (0, 1−p
p+α

). Since γ̂(a) decreases monotonically, the minimum is reached for the
largest possible value of a.

• If a ≥ 1−p
p+α

, the lower bound is provided by γ̃(a). But γ̃(a) increases monotonically
with a. Thus the smallest value of the lower bound is reached for the smallest value
of a: a = 1−p

p+α
.

Based on this discussion, the optimal parameter a is a(MIN) =
1− p

p + α
, if it is permissible.

The permissible ranges of parameter a depend on c2
v (see Section 4.2, after Lemma 1)

so that we again treat the two subcases c2
v < 1 and c2

v > 1 separately:

Subcase c2
v < 1, where a ∈ [0, 1−p

α
]

Since 1−p
p+α

< 1−p
α

, the above choice of parameter a is optimal and permissible:

a(MIN) =
1− p

p + α
.

At this point, both γ̃(a) and γ̂(a) are equal and provide the lower limit for γ:

γ(MIN) = − 1− p

p + α
. (31)
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Subcase c2
v > 1, where a ∈ [0, 1]

In this case, 1−p
p+α

< 1 does not necessarily hold.

• If 1−p
p+α

< 1, then we have the same optimal and permissible parameter a and the

same lower bound as in the case c2
v < 1. Therefore,

γ(MIN) = − 1− p

p + α
. (32)

• If 1−p
p+α

≥ 1, then the lower bound is determined by γ̂(a). Since γ̂(a) decreases
monotonically, the optimal parameter a is located at the upper border of the valid
range, a(MIN) = 1, and

γ(MIN) =
p

p + α− 1
. (33)

B. Proof of Theorem 3

The proof of Theorem 3 is based on the study of the permissible range of parameter γ
for MEP(2)s. It turns out that this permissible range for MEP(2)s is identical with the
one of AMAP(2)s.

In fact, as outlined before Theorem 3 in Section 5, it suffices to consider two limiting
cases, namely that the interarrival periods are very short or very long. We treat these
two cases in Sections B.1 and B.2, respectively. Essentially, necessary conditions for
the initial vector (22) of the kth interarrival time distribution are exploited to derive
correlation bounds. We indicate the two cases by the notation

vk(0) = lim
x0↘0,x1↘0,...,xk−1↘0

vk(x0, x1, . . . , xk−1)

vk(∞) = lim
x0↗∞,x1↗∞,...,xk−1↗∞

vk(x0, x1, . . . , xk−1) .

B.1. Necessary conditions based on vk(0)
To analyze the sequence of initial vectors vk(0), where k ≥ 1, we define

the function û(x, t) that expresses the first element of the initial vector for Xk

({vk(x0, x1, . . . , xk−2, t)}1) as a function of the first element of the initial vector for Xk−1

({vk−1(x0, x1, . . . , xk−2)}1 = x) assuming Xk−1 = t:

û(x, t) =

{
[x, 1− x] eH0t H1

[x, 1− x] eH0t H1 1I

}

1

.

In case of representation (21)

û(x, t) =
e−λ1txα(aα−1)(p(γ − 1) + γ(α−1))− e−λ1t/αp(1−α + x(aα−1))(γ−1)

(aα−1)(e−λ1txα(aα− 1) + e−λ1t/α(x + α− axα− 1))
. (34)

Substituting t = 0 results in

u(x) = û(x, 0) =
p(1 + x(aα− 1))(γ − 1) + xαγ(aα− 1)

(aα− 1)(1 + x(aα− 1))
.
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Let wk be the first element of vector vk(0) and w = 0 and w̄ = 1
1−aα

the lower and
upper bound, respectively, of valid ME(2) distributions as defined in (23). Element wk

can be obtained successively from u(x) via

w0 =
p

1− aα
, w1 = u(w0), w2 = u(w1), w3 = u(w2), . . .

To ensure that w ≤ wk ≤ w̄ ∀ k ≥ 0, u(x) has to fulfill the following necessary constraints:

C1: x = u(x) has a solution in range [w, w̄] denoted by x∗, and

C2: −1 ≤ u′(x∗) ≤ 1.

C3: If x = u(x) has another solution in range [w, w̄] denoted by x∗∗ and x∗ < x∗∗, then

w < w0 =
p

1− aα
< x∗∗.

There are further obvious necessary constraints, but we use only these three in this
subsection. The intuitive explanation of these constraints is as follows: u(x) is a hyper-
bola. If u(x) = x has two solutions in range (w, w̄), one satisfies and one violates C2. The

vertical axis of the hyperbola is at x =
p

1− aα
. If γ > 0 (γ < 0) then u(x) is increasing

(decreasing) on both sides of this vertical axis (Figure 4).
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Figure 4. Exemplary behavior of equation u(x) = x with γ > 0 (left) and γ < 0 (right)
for a = 0.4, γ = ±0.1, p = 0.3, α = 0.5

If C1 is violated such that x > u(x) (x < u(x)) in the range w ≤ x ≤ w̄, then the series
wk eventually decreases below w (increases above w̄). If C2 is violated, then starting from
a point different from x∗, i.e., w0 6= x∗, the series wk diverges away from x∗, either out of
the interval [w, w̄] or to another point x•, which satisfies C1 and C2. This case of another
solution, i.e., when x = u(x) has two solutions in the range (w, w̄), is considered in C3. If
we have w < x∗ < x∗∗ < w̄, then – starting from the interval (w, x∗∗) (i.e., w0 ∈ (w, x∗∗))
– wk converges to x∗, but – starting from the interval (x∗∗, w̄) (i.e., w0 ∈ (x∗∗, w̄)) – wk

increases above w̄.
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Constraint C1: x = u(x) is a quadratic equation in x, whose solutions are

x∗i =
p(1− γ) + (1− αγ)∓

√
p2(1− γ)2 + (1− αγ)2 − 2p(1− γ)(αγ + 1)

2(1− aα)
, i = 1, 2 .

(35)

It has a real solution, if

p2(1− γ)2 + (1− αγ)2 − 2p(1− γ)(αγ + 1) ≥ 0 . (36)

When γ < 0, inequality (36) holds. When γ > 0, we have two cases. If c2
v > 1 (i.e.,

p + α− 1 < 0), then (36) is satisfied. If c2
v < 1 (i.e., p + α− 1 > 0), then (36) represents

a necessary constraint for γ as a function of p and α. Correlation parameter γ should
satisfy

γ ≤ p(p−1)+pα+α−2
√

pα(p+α−1)

(p + α)2
or γ ≥ p(p−1)+pα+α+2

√
pα(p + α−1)

(p + α)2
. (37)

According to constraint C3 and the following Lemma, the second part of (37) is not
valid, which leaves the necessary condition

γ ≤ p(p− 1) + pα + α− 2
√

pα(p + α− 1)

(p + α)2
, (38)

when γ > 0 and p + α− 1 > 0. Note the identity of the bound expression with (28).

Lemma 2 When p + α− 1 > 0 and

γ ≥ p(p− 1) + pα + α + 2
√

pα(p + α− 1)

(p + α)2
, (39)

then x∗2 <
p

1− aα
.

Proof: Based on the definition of x∗2 in (35), we need to show that

2p−
(

p(1− γ) + (1− αγ)

)
>

√
p2(1− γ)2 + (1− αγ)2 − 2p(1− γ)(αγ + 1) . (40)

We show this in two steps. First we show that the lhs of (40) is positive, and then we
show that the square of the lhs of (40) is greater than the square of the rhs. Multiplying
the lhs with (p + α) yields

[
2p−

(
p(1− γ) + (1− αγ)

)]
(p + α) = (p + (p + α)γ − 1)(p + α) ≥

p(p + α) + p(p− 1) + pα + α + 2
√

pα(p + α− 1)− (p + α) =

2p(p + α− 1) + 2
√

pα(p + α− 1) > 0 ,

(41)
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where we substituted the lower bound of γ (39) in the second step and applied the con-
dition p + α− 1 > 0 in the last one.

The square of the lhs of (40) minus the square of its rhs is

4p2 − 4p

(
p(1− γ) + (1− αγ)

)
+ 4p(1− γ) = 4pγ(p + α− 1) > 0 , (42)

which proves the lemma. 2

Now, we consider the effect of constraint C2, when γ < 0. In this case, equation
u(x) = x has exactly one solution in [w, w̄] and u(x) is decreasing, i.e., u′(x) < 0 (see
Figure 4). Substituting x∗1 from (35) into u′(x), we obtain that u′(x∗) ≥ −1 if

γ ≥ − 1− p

p + α
. (43)

We can summarize the results of this subsection by means of Figure 3 in Section 4.2,
which depicts the (p, α)-plane. In area I, we have c2

v < 1 (p + α > 1) and (38) upper
bounds γ. In areas II and III, we have c2

v > 1 (p + α < 1) and the constraints do not
upper bound γ (i.e., γ < 1). Expression (43) lower bounds γ, but this lower bound is
meaningless (less than −1) in area III and effective in areas I and II only.

B.2. Necessary condition based on vk(∞)
Substituting t = ∞ into (34) for û(x, t) results in

ũ(x) = û(x,∞) =
p(γ − 1) + γ(α− 1)

aα− 1
.

Note that ũ(x) is actually independent of x. Due to this independence, it is sufficient to
check, if w1 = {v1(∞)}1 = ũ(x) is in the interval [w, w̄]. From w = 0 ≤ ũ(x) we obtain

γ ≥ p

p + α− 1
. (44)

Expression (44) provides another lower bound of γ comparable to (33). This lower
bound is meaningless (less than −1) in areas I and II of Figure 3 and effective in area III.

When we collect all the necessary constraints in this section and compare them with
the correlation bounds for canonical AMAP(2)s in Section 4.2, it is easily seen that γ for
MEP(2)s is at least as restricted as the correlation parameter for canonical AMAP(2)s.
Since the tuple (λ1, α, p, γ) completely defines a second-order arrival process, this section
proves that MEP (2) ⊂ canonical AMAP (2). Therefore, together with Section 4, it holds
that MEP (2) ≡ MAP (2) ≡ AMAP (2).


